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Seafood, including fish, prawns and various marine products, is a critical component of global nutrition
due to its high protein content, essential fatty acids, vitamins and minerals. Traditional methods

for assessing seafood freshness such as sensory evaluation and microbiological analysis are labor-
intensive, time-consuming and often require specialized equipment. To address these limitations,

this research presents an automated freshness detection system for refrigerated fish using machine
learning and evaluates the effectiveness of different packaging techniques. Six seafood varieties:
Mackerel, Sardine, Prawn, Pomfret, Red Snapper and Cuttlefish were stored under refrigeration and
packaged using three methods: vacuum, shrink, and normal packaging. A paper-based pH sensor
integrated with Methyl Red and Bromocresol Purple was utilized as a freshness indicator. This sensor
effectively monitored spoilage by capturing L*, a*, and b* color values over time. Key parameters,
including protein content, lipid content, and Total Volatile Basic Nitrogen (TVB-N) levels, were
measured throughout the storage period to assess changes in fish quality. These measurements were
used to train a Random Forest (RF) model, aimed at accurately predicting the pH values of the samples.
The model’s performance was evaluated using standard metrics such as Mean Absolute Error (MAE),
Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). Among the tested varieties, Pomfret
and Mackerel displayed the lowest MSE values (0.004625 and 0.005034, respectively), indicating high
predictive reliability. The RMSE values, representing average prediction error magnitude, were also
minimal for Pomfret (0.068007) and Mackerel (0.070949). Furthermore, MAE values confirmed robust
predictions, with Pomfret (0.065833) and Mackerel (0.062933) achieving the least deviation from actual
measurements. The study demonstrates the effectiveness of the paper-based pH sensor as a visual
indicator of spoilage, while the RF-based prediction model offers a reliable method for ensuring food
safety and quality during cold-chain storage. Integrating sensor-based monitoring with advanced
packaging presents a viable solution for extending the shelf life of seafood and enhancing consumer
safety.
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Seafood, including fish, prawns, cuttlefish and other marine products, forms a vital part of the global diet due
to its high nutritional value. Rich in high-quality proteins, vitamins, minerals and essential fatty acids such as
Eicosa-Pentaenoic Acid (EPA) and Docosa-Hexaenoic Acid (DHA), seafood offers numerous health benefits.
These polyunsaturated fatty acids (PUFAs) contribute to improved brain function, cardiovascular health and
reduced inflammation!2. In India, the fisheries and aquaculture sector support over 14 million livelihoods and
contributes significantly to national food security and economic growth through exports.

One of the major challenges in the seafood industry is maintaining product freshness during storage and
distribution. The quality and shelf life of seafood are greatly influenced by packaging methods. Conventional
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packaging materials provide limited protection against oxygen, which can accelerate spoilage. In contrast,
vacuum packaging reduces oxygen exposure, thereby inhibiting the growth of aerobic bacteria and delaying
oxidative degradation. Similarly, shrink packaging helps retain moisture and forms a tight seal, further reducing
oxygen penetration. Both vacuum and shrink packaging have proven effective in extending the shelf life of
perishable seafood products®.

Spoilage in seafood is typically accompanied by biochemical changes, including the release of basic
nitrogenous compounds like ammonia, which increases the pH of fish tissue. This change in pH can be detected
using pH-sensitive colorimetric indicators. Methyl Red (MR) changes from red to yellow and Bromocresol
Purple (BCP) shifts from yellow to purple as pH rises, offering a simple, real-time visual indication of spoilage*.
These indicators, when embedded in paper-based biosensors, provide a non-invasive and cost-effective method
for monitoring seafood freshness directly on the product.

In addition to visual indicators, scientific techniques such as Fourier Transform Infrared (FTIR) Spectroscopy
are employed to analyze the chemical composition of seafood. FTIR can detect molecular changes in proteins
and lipids that occur during spoilage, offering insights into degradation pathways®. Another widely accepted
metric is the Total Volatile Basic Nitrogen (TVB-N) level, which measures the concentration of nitrogenous
compounds like trimethylamine, dimethylamine and ammonia byproducts of microbial and enzymatic activity
during spoilage®’.

Despite the accuracy of these analytical methods, they are often time-consuming, require specialized
equipment and may not be feasible for real-time monitoring across all fish species. Recent advancements in
non-destructive technologies such as spectral imaging and Nuclear Magnetic Resonance (NMR) spectroscopy
have addressed some of these limitations, but broad applicability remains a challenge®.

To overcome these barriers, the seafood industry is increasingly exploring the use of Artificial Intelligence
(AI) and automation. Machine Learning (ML) and Deep Learning (DL) techniques have demonstrated great
potential in automating food quality assessment, reducing subjectivity and enabling real-time decision-
making®!%. These technologies can improve accuracy and efficiency in detecting seafood freshness while
minimizing manual intervention!4!6.

The novelty of this research lies in the integration of a non-invasive, paper-based pH biosensor system with
machine learning techniques to enable real-time and accurate assessment of seafood freshness under refrigerated
conditions. Unlike traditional sensory and microbiological methods, this approach offers a low-cost, rapid and
scalable solution by using colorimetric indicators (Methyl Red and Bromocresol Purple) and correlating their L*,
a*, b* color values with spoilage progression. Furthermore, the study systematically compares the effectiveness
of three different packaging methods namely normal, vacuum and shrink across six commonly consumed
seafood varieties. By incorporating biochemical markers such as protein, lipid content and TVB-N levels into
a random forest model to predict freshness, this work presents a comprehensive framework that enhances the
monitoring of seafood quality. This multifaceted strategy positions the research as a significant advancement in
the automation and accuracy of seafood quality evaluation.

Materials and methods

Fish sampling

Fresh fish samples, including Mackerel (Scomber scombrus), Sardine (Sardina pilchardus), Prawn (Metapenaeus
dobsoni), Black Pomfret (Parastromateus niger), Red Snapper (Lutjanus campechanus) and Cuttlefish (Sepiida),
were collected immediately after harvest from the seashore market in Royapuram, Chennai, Tamil Nadu. The
samples were transported to the laboratory in an ice box to maintain freshness. Upon arrival, the fish were sliced,
beheaded, filleted and washed with tap water. The cleaned samples were then divided and packed using three
different packaging methods: vacuum packaging, shrink packaging and regular packaging with low-density
polyethylene covers. All samples were stored under refrigeration at 4 °C.

Sensor preparation

The paper-based pH sensor was prepared using two colorimetric dyes—Methyl Red and Bromocresol Purple as
shown in Fig. 1 ref.!”. After preparation, the sensor was placed on the surface of each fish sample. The change in
color of the paper sensor was measured using a Hunter Lab Colorimeter.

Quality analysis

The six types of fish samples, packed using three different packaging methods, were sampled at intervals of
3 days from day 0 to day 12. The experiment was conducted in triplicate. Quality parameters were analyzed
at each interval. The pH of the samples was measured using a pH meter. The color values of the paper-based
sensors were measured using a HunterLab XE Color Quest and used as the primary dataset. The color attributes
were expressed in terms of L*, a*, and b* values, representing Lightness, Redness, and Yellowness for positive
color values, and Blackness, Greenness, and Blueness for negative color values in the dried samples.

Protein content was estimated using Lowry’s method!8. Fat content was determined using a Soxhlet apparatus,
with petroleum ether as the solvent. Fourier Transform Infrared (FTIR) Spectral analysis was performed using a
Shimadzu Irtracer 100, which has a spectral range of 4400-500 cm™.

Total Volatile Basic Nitrogen (TVB-N) levels were determined using a steam distillation method with
trichloroacetic acid as the solvent. The distillate was titrated with 0.01 N Hydrochloric Acid using a Rosolic Acid
indicator, with the endpoint indicated by a pale pink color. TVB-N was calculated using the formula shown in
Eq. (1):

(N)14(300 + W) x V4
500

TVBN (mg /100 gm) = (1
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Fig. 1. Preparation of paper based sensors.

where,
V1= Volume of standard acid consumed.
W =water content of sample (g / 100 g).

Random forest model
The parameters such as L*, a*, b*, dE, protein, TVB-N, pH and fat content were obtained using the methods
described above. These measurements were recorded for the different packaging methods over a 12-day period
with sampling every 3 days. The collected data was used to train a random forest regression model, a powerful
machine learning technique for predicting pH values.

The methodology for pH value estimation with random forest regression follows several key steps:

1. Data Collection: Gather a comprehensive dataset that includes all relevant features, including color metrics
(L*, a*, b*, dE), protein content, TVB-N, pH and fat.

2. Data Preprocessing: Clean the dataset by handling missing values and outliers, normalizing numerical var-
iables, and encoding categorical variables appropriately to prepare the data for model training.

3. Dataset Splitting: The dataset was divided into two subsets: a training set and a testing set. The training set
was used for model training, while the testing set was used for model evaluation.

4. Model Training: The random forest algorithm creates an ensemble of decision trees, where each tree is
trained on a random subset of the training data with replacement. A random subset of features is considered
at each split, helping reduce overfitting and improving model generalization.

5. Hyperparameter Tuning: The hyperparameters of the random forest algorithm, such as the number of
trees, the maximum depth of the trees and the minimum number of samples required to split a node, were
optimized using techniques like grid search or randomized search to improve model performance.

6. Model Evaluation: The model’s performance was evaluated using appropriate regression metrics, including
Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). These met-
rics help assess how well the model predicts the pH values compared to actual values.

7. Model Iteration and Updates: Based on evaluation results, the model was iteratively improved by adjusting
hyperparameters and feature selection techniques to enhance prediction accuracy. Additionally, the model
was continuously monitored and updated to maintain its accuracy across different fish varieties, packaging
methods and storage conditions.

This methodology enables consumers, suppliers and industry professionals to harness the power of machine
learning for the automatic detection of pH values in seafood samples, thereby facilitating effective freshness
monitoring and quality control.

Experimental results

Development of paper-based dual sensors

Paper-based sensors using Methyl Red (MR) and Bromocresol Purple (BCP) indicators were successfully
developed. As shown in Fig. 2a,b, the MR sensors exhibited a pinkish-red coloration, while the BCP sensors
appeared yellow under initial conditions. These sensors are pH-sensitive: an increase or decrease in pH causes
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Fig. 3. (a) Change in the MR sensor. (b) Change in the BCP sensor.

the MR sensor to change from pinkish-red to yellow, whereas the BCP sensor transitions from yellow to purple.
These color transitions are illustrated clearly in Fig. 3a,b.

Fish packaging with different packaging techniques

After cleaning and filleting, all six varieties of fish were packaged using three different methods: conventional,
vacuum, and shrink packaging. Low-Density Polyethylene (LDPE) and Polypropylene (PP) pouches were used
for this purpose. Figure 4a,b,c show the packaging methods implemented.

Colour analysis of the sensors

pH indicators used for monitoring the freshness of food typically alter their color in response to changes in the
chemical composition of food samples during storage (Listyarini et al., 2018). Similarly, the color of paper-based
dual sensors prepared using Methyl Red (MR) and Bromocresol Purple (BCP) indicators shifted when placed
over fish samples stored under three different packaging conditions in refrigeration. To evaluate the effectiveness
of these sensors, pH buffer solutions ranging from 3 to 7, with an incremental difference of 0.1, were prepared.
These solutions were used to observe the corresponding color changes.

The results are presented in a graph, where the total color difference (dE) is plotted along the y-axis and the
three different packaging configurations of the fish samples are plotted along the x-axis. Figure 5 illustrates the
dE values of the MR sensor across different pH ranges, while Fig. 6 displays the dE values of the BCP sensor for
the same pH ranges.

As the pH levels in the package headspace increase during storage, volatile gases are released into the
atmosphere (Fatemeh et al., 2017). Consequently, the color of the sensors changes, indicating the freshness of
each sample. The findings reveal that the total color difference is more pronounced in the pH range between 4
and 6 compared to other ranges. The data further suggest that the sensors become darker as the pH approaches
a more basic state, causing the color of the indicators to change accordingly.

The color of both sensors placed over the fish samples for a period of 12 days, with observations recorded
at 3-day intervals, indicated that the overall color change in the sensors for Mackerel, Sardine, Cuttlefish, and
Pomfret samples was relatively higher compared to Prawn and Red Snapper.

Figure 7 presents the dE values against the pH values for the MR and BCP sensors attached to vacuum-packed
Sardine and Mackerel samples stored at refrigerated temperatures. Figure 8 illustrates the dE values against the
pH values for MR and BCP sensors attached to vacuum-packed Prawn and Cuttlefish samples under the same
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Fig. 4. (a) Conventional packaging. (b) Vacuum packaging. (c) Shrink packaging.
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Fig. 5. dE values of MR sensor at different pH range. Mean + SD at p <0.05 level for triplicate data.

storage conditions. Similarly, Fig. 9 displays the dE values against the pH values for MR and BCP sensors linked
to vacuum-packed Red Snapper and Pomfret samples kept at refrigerator temperature.

Estimation of pH
After the death of the fish, blood circulation halts, cutting off its oxygen supply. As a result, enzymes in the
muscle break down glycogen into its component molecules, producing lactic acid. This process causes a decline
in the pH of the fish muscle. The production of lactic acid continues until the glycogen supply is completely
exhausted. Following this stage, rigor mortis sets in, characterized by muscle stiffness, which is then gradually
followed by a decrease in stiffness and an increase in pH, leading to muscle softening (Tavares et al., 2021).
Data collected and presented in Table 1 shows that on the zeroth day (immediately after harvest), the pH was
approximately 7, indicating that the fish was freshly caught and retained a high level of nutritional value. Fresh
fish typically have a pH range of 6.0 to 6.5, characterized by firm flesh and no foul smell. Moderately fresh fish
exhibit a pH range of 6.5 to 6.8, with a softer texture and mild odor, but are still considered edible. In contrast,
spoiled fish have a pH greater than 6.8, sometimes exceeding 7.5, accompanied by a slimy texture and a strong
ammonia-like odor. This correlation between fish freshness and pH during cold storage was also reviewed by
Abbas et al.”?.
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Fig. 6. dE values of BCP sensor at different pH range. Mean + SD at p < 0.05 level for triplicate data.
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Fig. 7. dE values of MR and BCP sensors attached with sadrine and mackerel stored at refrigerator
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Fig. 8. dE values of MR and BCP sensors attached with prawn and cuttle fish stored at refrigerator
temperature.

As the number of storage days increased, the pH initially decreased but then began to rise gradually. This is
attributed to the emission of TVB-N, which is accompanied by the production of alkaline bacterial metabolites'®.

Estimation of protein

Fish, particularly Mackerel, Sardine, and Pomfret, are well-known for their high protein content. To quantify the
protein levels in fresh fish samples, Lowry’s method was employed, and the results are presented in Table 2. When
the experiment was repeated at 3-day intervals, it was observed that the protein content gradually decreased
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Fig. 9. dE values of MR and BCP sensors attached with Red snapper and Pomfret stored at refrigerator

temperature.
dE
pH BCP MR
Fish sample | Days | Regular Vacuum Shrink Regular Vacuum Shrink Regular Vacuum Shrink
Oth 6.72+£0.04 |6.72+0.04 |6.72+0.04 |45.72+0.08 | 45.72+0.08 | 45.72+0.08 | 23.31+1.94 | 23.31+1.94 | 23.31+£1.94
3rd 6.46+£0.02 |6.89 7.01 22.21+0.85 | 40.92+0.10 | 35.51+1.66 | 22.21+0.85 | 25.65+0.42 | 32.96+0.98
Mackerel 6th 6.44+0.01 |6.56 6.58 31.1£0.49 |53.17+1.64 | 40.28+0.38 | 31.1+£0.49 | 33.17+£1.22 | 40.53+0.65
9th 6.15+0.01 |6.18 6.2 38.4+0.59 |62.17+0.57 | 55.92+2.10 | 38.4+£0.59 | 41.36+1.67 | 43.32+1.14
12th | 5.97+0.03 |5.99 6.01 41.28+0.09 | 62.53+0.73 | 58.86+0.20 | 41.28+0.09 | 43.61+£0.22 | 45.88+0.10
Oth 6.78+0.02 | 6.78+0.052 | 6.78+0.02 |36.36+0.21 | 36.36+0.21 | 36.36+0.21 | 24.31+1.91 | 2431191 | 2431191
3rd 6.34+0.02 | 6.66 6.69 28.25+0.39 | 34.78+0.4 | 41.61+0.07 | 28.25+0.39 | 38.87+0.18 | 37.39+0.19
Sardine 6th 6.24+0.02 |6.39 6.3 37.47+0.16 | 41.07+0.63 | 51.62+0.09 | 37.47+0.16 | 43.77+1.27 | 44.46+0.35
9th 6.22+£0.03 | 6.3 6.10 40.97+0.35 | 45.48+0.46 | 55.25+0.91 | 40.97+0.35 | 45.39+0.51 | 50.11+0.58
12th | 5.96+0.04 |6.10 6.39 41.79+0.44 | 44.9+0.09 | 54.43+0.14 | 41.79+0.44 | 56.93+0.13 | 52.01+0.01
Oth 6.82+£0.05 |6.82+0.05 |6.82+0.05 |39.84£0.15 |39.8+0.15 |39.8+0.15 |23.47+1.42 |23.47+142 |23.47+1.42
3rd 6.075£0.1 |6.22+0.22 |6.01+0.04 |31.02+0.97 | 20.90£5.12 | 59.31+0.16 | 17.01+2.8 |17.30+0.35 | 28.76+£0.47
Red snapper | 6th 595+0.02 |6.16+0.01 |591+0.09 |56.7+£0.17 |26.49+2.21 |49.28+1.55 | 37.49+0.10 | 30.63+1.69 | 25.06+0.64
9th 5.65+0.04 |6.035+0.02 | 5.72+0 33.63+1.10 | 52.85+0.17 | 39.14+0.75 | 36.03+1.6 | 36.11+£0.03 | 34.94+0.86
12th | 5.51+0.05 |597+0.042 | 5.65+0.04 |39.62+1.56 | 27.55+0.54 | 37.33+£0.57 | 33.50+£0.95 | 28.27+0.48 | 50.76 £0.14
0Oth 6.26+0.05 |6.26+£0.05 |6.26+0.05 |39.76+£0.07 | 39.76+0.07 | 39.76+0.07 | 16.6+£0.88 | 16.6+0.88 | 16.6+0.88
3rd 5.82+0.03 |6.15+0.042 | 6.005+0.03 | 24.3+1.04 | 60.14+£0.73 | 49.18+1.14 | 17.4+0.57 |45.55+2.8 |35.38+3.17
Cuttlefish 6th 5.73+£0.01 |5575+0.03 | 5.76+0.03 |45.01+3.34 | 54.75£0.9 |45.71+3.2 |45.1+29 40.35+1.1 | 35.42+1.88
9th 5.67+0.02 |5.10£0.02 |566+0.04 |43.19+£0.77 | 40.83+0.51 | 33.18+0.38 | 43.54+0.3 | 30.26+0.18 | 35.97+0.25
12th | 5.5+0.05 5.01+£0.12 |5.605+0.10 | 66.73+2.24 | 51.83+0.24 | 49.93+0.68 | 54.12+0.65 | 40.47+0.09 | 54.12+0.65
Oth 6.60+£0.34 |6.60+0.34 |6.60+0.34 |3528+1.46 | 3528+1.46 | 35.28+1.46 | 23.52+0.02 | 23.52+0.02 | 23.52+0.02
3rd 594+0.03 |6.24+0.04 |6+0.02 51.9+1.51 |33.2+0.5 63.47+1.03 | 22.52+0.42 | 34.8+1.98 |34.49+1.01
Pomfret 6th 5.855+0.04 | 6.03+0.02 |5.93+0.06 |46.26+0.14 | 49.57+3.1 |67.38+0.22 | 33.02+0.59 | 42.32+0.3 | 44.45+2.90
9th 571£0.02 |594+0.03 |583+0.12 |37.84+0.98 |358+0.42 |34.5+0.39 |30.91+0.55 |28.49+0.19 | 46.9+0.03
12th | 5.58+0.042 | 5.78+0.08 |571+0.02 |56.85+0.1 |44.21+0.19 | 43.54+0.32 | 50.67+0.63 | 41.66+0.07 | 37.55+0.89
Oth 6.81+0.02 |6.81+0.02 |6.81+0.02 |32.07+0.18 | 32.07+0.18 | 32.07+0.18 | 21.51+1.78 | 21.51+1.78 | 21.51+1.78
3rd 6.49+0.02 | 6.56 6.67 21.42+0.37 | 23.17+0.42 | 36.32+0.86 | 21.42+0.37 | 23.58 £3.01 | 23.37+0.75
Prawn 6th 6.46+£0.02 | 6.54 6.58 40.40£0.46 | 26.28+0.63 | 44.41+0.99 | 40.40+0.46 | 30.15£0.63 | 26.11+0.74
9th 6.3+0.03 6.48 6.54 31.96+0.24 | 49.85+0.39 | 46+0.46 31.96+£0.24 | 40.18+£0.45 | 27.45+1.01
12th |5.89+0.02 |6.31 6.22 29.06+0.07 | 55.81£0.69 | 53.53+0.25 | 29.06+0.07 | 38.81+0.43 | 31.68+0.97

Table 1. pH estimation of fish samples stored under refrigerated temperature (4 °C) using three packaging

conditions. Mean £ SD at p <0.05 level for triplicate data.
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Amount of protein (g/100g)

Fish sample | Days | Regular Vacuum Shrink

Oth 18.26+0.35 18.48+0.38 | 18.34+0.41
3rd 13.92+0.01 17.64+0.004 | 18.02+0.008
Mackerel 6th 10.47+0.03 15.12+0.03 | 17.89+0.008
9th 7.45+0.02 12.01+0.008 | 15.67+£0.008
12th 7.01+0.007 |9.16+0.02 13.31+0.004
0Oth 13.50+0.21 13.50+0.21 13.50+0.21
3rd 13.06+0.03 12.03+0.43 | 13.34+0.03
Sardine 6th 11.15+0.03 10.33+0.03 | 13.14+0.02
9th 9.88+0.01 9.84+0.01 11.23+0.01
12th 6.60+0.04 14.96+£0.30 | 10.96+0.01
0Oth 22.39+0.43 22.39+£0.43 |22.39+£0.43
3rd 20.33+£0.22 20.44+0.28 18.62+0.25

Red snapper | 6th 18.84+0.1212 | 19.84+0.12 | 16.34+0.1
9th 17.51+£0.23 18.92+£0.35 | 15.35+£0.35
12th | 17.36+0.05 16.55+0.61 12.48+0.26
Oth 16.2+0.92 16.2+0.92 16.2+0.92
3rd 14.36+0.32 15.31+£0.54 | 14.22+0.43
Cuttlefish 6th 12.22+0.11 14.34+0.07 | 13.33+0.27

9th 10.59+0.21 13+£0.62 14.03+1.69
12th 9.41+0.07 12.51£0.44 | 10.12+0.02
0Oth 16.4£0.25 16.4+0.25 16.4£0.25
3rd 13.67+0.93 14.25+£0.16 | 12.32+£091
Pomfret 6th 12.87+0.19 13.48+0.46 | 10.76+0.48

9th 11.85+0.45 12.81+0.26 | 10.01+0.47
12th | 10.23+0.79 12.48+0.32 8.94+0.588
0Oth 19.30+0.04 19.30+£0.04 | 19.30+0.04
3rd 17.75+0.03 18.02+0.009 | 19.12+0.008
Prawn 6th 12.25+0.04 16.15+£0.01 | 18.84+0.008
9th 11.05+0.03 13.63+£0.02 | 15.73+0.008
12th 8.33+£0.008 | 11.26+0.05 | 13.70+0.04

Table 2. Protein estimation of fish samples stored under refrigerated temperature using three packaging
conditions. Mean + SD at p <0.05 level for triplicate data.

over time. This decline was not abrupt but progressive. The reduction in protein levels is primarily attributed to
autolysis, an intrinsic breakdown of proteins and fats caused by a series of complex enzyme reactions.

Since the samples were stored under refrigerated conditions, the rate and extent of protein degradation were
significantly minimized. Shenouda et al. (1980) demonstrated that several factors contribute to protein loss in
fish during refrigeration, including enzyme-mediated activity of trimethylamine oxide (TMAO), an increase in
solute concentration, dehydration, the formation of ice crystals, and accretion.

Estimation of fat

Hydrolysis and oxidation are two distinct chemical reactions that occur during the processing and storage of
fish, both contributing to the reduction of fat content. During lipid hydrolysis, free fatty acids are released,
leading to the denaturation of proteins as their structure is compromised (Bashir et al., 2021). It was observed
that the fat content decreased progressively as the storage period increased.

After being refrigerated for 12 days, the fat content in the fatty fish Mackerel and Sardine dropped from
12to 9 gand 11 to 9 g, respectively. A similar trend was observed in the other four fish samples: Red Snapper,
Cuttlefish, Pomfret and Prawn. The results are summarized in Table 3. The reduction in lipid content during
refrigerated storage is primarily attributed to oxidation. This oxidative reaction generates peroxides, which
accelerate the degradation of fish quality (A. Keyvan et al., 2008).

Results of random forest model
The random forest model was trained using data collected from six different varieties of fish, each packed using
different packaging methods. Table 4 presents the observed values for L*, a*, b*, dE, pH, protein and fat over a
period of 0 to 12 days under refrigerated conditions.

The random forest model was trained separately for each variety of fish. The decision tree generated for
the Prawn variety is shown in Fig. 10. The decision tree possesses several essential characteristics that define
its structure and functionality. At the root node, the initial condition is established as protein<11.775, which
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Amount of fat (g/5g)
Fish sample | Days | Regular Vacuum Shrink
Oth 20.98+0.02 | 20.98+0.02 | 20.98+0.02
3rd 13.4£0.15 |15.1£0.06 | 15.7+0.06
Mackerel 6th 11.7+£0.07 11.6+0.001 | 12.49+0.02
9th 8+0.002 9+0.002 10+0.04
12th | 2+0.02 5.5+0.003 | 6.7+0.006
0Oth
3rd 11.8+0.03 | 14.8+£0.07 | 14.98+0.04
Sardine 6th 11+0.10 12+0.01 13.1+£0.02
9th 9+0.001 10.6+0.001 | 9.75+0.03
12th | 8.3+0.03 9.8+£0.001 |9.03+0.16
0Oth 3.65 3.65 3.65
3rd 2.93+0.19 |3.14+0.11 3.12+0.03
Red snapper | 6th | 2.28+0.05 |2.95+0.04 |2.88+0.05
9th 1.77+0.8 2.40+0.21 1.87+0.06
12th | 0.76+0.04 1.01+£0.05 | 0.9+£0.07
Oth 3.73+0.92 |3.73+£0.92 |3.73+0.92
3rd 3.11+0.07 |3.27+0.04 |3.16+0.05
Cuttlefish 6th 2.75£0.09 |2.98+0.01 |2.95+0.02
9th 1.92+0.05 |2.58+0.03 |2.26%0.055
12th | 1.57£0.02 |2.01£0.066 | 1.93+0.101
Oth 2.63+£0.25 |2.63£0.25 |2.63+£0.25
3rd 2.15+£0.05 |2.28+0.055 | 2.13+£0.03
Pomfret 6th 1.60+0.03 | 1.7+0.07 1.53+0.12
9th | 1.25+0.1 1.2+0.1 1.02+0.04
12th | 0.83+0.08 |0.99+£0.02 | 0.79+0.44
0Oth 16.8+0.08 | 16.8+0.08 | 16.8+0.08
3rd 13+0.08 14.6+£0.07 | 14.85+0.04
Prawn 6th 11+0.06 12.4+0.01 12.32+0.03
9th 7+0.03 8.9+0.002 |8.97+0.03
12th | 5.01+0.04 |8.03+£0.004 | 8.6+0.06

Table 3. Fat estimation of fish samples stored under refrigerated temperature using three packaging

conditions.
Methyl red | Bromocresol purple
Trail 1 Trail 1
Name dE dE Days | Package | Protein TVB-N pH Fat
Mackerel 23.31+1.94 | 45.72+0.08 0 Vacuum | 18.75+0.08 | 9.38+0.48 | 6.72 20.98+0.02
Sardine 24.31+1.91 | 36.36+0.21 0 Vacuum | 13.50£0.21 | 12.11+0.51 | 6.38 5.32+0.03
Pomfret 23.52+0.02 | 35.28 +1.46 0 Vacuum | 16.4+0.25 |7.23+0.46 |6.60+0.34 | 2.63
Red snapper | 23.47+1.42 | 39.8+0.15 0 Vacuum | 22.39+0.43 | 7.51£0.12 | 6.82+0.05 | 3.65
Prawn 21.51+1.78 | 32.07+0.18 0 Vacuum | 19.30£0.04 | 10.21+0.45 | 6.81 16.8+0.08
Cuttle fish 16.6+0.88 | 39.76+0.07 0 Vacuum | 16.2£0.92 | 7.18+0.212 | 6.26+0.05 | 3.73
Mackerel 23.31+1.94 | 45.72+0.08 0 Shrink 18.75+0.08 | 9.38+0.48 | 6.72 20.98+0.02

Table 4. Collected data using six varieties of fishes.

splits the dataset into two branches: the left branch if the condition is true, and the right branch if it is false.
Intermediate nodes further refine the data subsets. For example, in the left subtree, further divisions occur
based on criteria such as package<0.5. Similarly, the right subtree branches off according to parameters like

TVB-N<11.32 and dE<34.73.

Leaf nodes, represented as terminal boxes, indicate the final predictions of the tree. Each node in the tree
displays the number of samples that reach that specific point. Additionally, the squared error at each node serves

as a measure of predictive accuracy, where smaller values signify better performance.
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Fig. 10. Decision tree from random forest for prawn.

Decision Tree from Random Forest

Protein_Expanded 4 <= 14.175
squared_error = 0.065
samples = 7
value = 5.972

True False

TVB-N_Expanded_2 <= 15.035
squared_error = 0.01
samples =5
value = 5.843

dE_Expanded_1 <= 28.66
squared_error = 0.029

samples = 2
value = 6.36

Protein_Expanded_1 <= 13.01 Fat_Expanded_3 <= 1.15 = =
squared_error = 0.004 squared_error = 0.001 squ.:;ergale;;o; 'i 0.0 squz;emdafer;o;-l 00
samples = 3 samples = 2 value = 6.6 value = 6.24
value = 5.922 value = 5.745 -~ -

/

dE.1_Expanded_1 <= 56.73
squared_error = 0.001

N\

squared_error = -0.0
samples = 1
value = 6.03

squared_error
samples = 1

samples = 2 value = 5.78

value = 5.895

' squared_error = 0.0

squared_error = 0.0
samples = 1
value = 5.86

squared_error = 0.0
samples = 1
value = 5.93

Fig. 11. Decision tree from random forest for Pomfret.

The random forest model was trained separately for each variety of fish. The decision tree generated for
the fish variety Pomfret is shown in Fig. 11. This decision tree possesses several key characteristics that define
its structure and functionality. At the root node, the initial condition is established as protein <14.175, which
divides the dataset into two branches: the left branch if the condition is true and the right branch if it is false.
Intermediate nodes further refine the data subsets. For example, in the left subtree, additional splits occur based
on criteria such as TVB-N <15.035. Similarly, in the right subtree, divisions are made according to parameters
like dE <28.66.

Leaf nodes, represented as terminal boxes, indicate the final predictions of the tree. These leaf nodes mark the
completion of the decision-making path, where the model assigns a prediction based on the features observed.

The random forest model was trained separately for each variety of fish. The decision tree generated for the
fish variety Red Snapper is shown in Fig. 12. This decision tree possesses several key characteristics that define
its structure and functionality. At the root node, the initial condition is established as protein<21.77, which
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Fig. 12. Decision tree from random forest for red snapper.
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Fig. 13. Decision tree from random forest for sardine.

divides the dataset into two branches: the left branch if the condition is true and the right branch if it is false.
Intermediate nodes further refine the data subsets. For example, in the left subtree, additional splits occur based
on criteria such as TVB-N<11.815. Leaf nodes, represented as terminal boxes, indicate the final predictions of
the tree. These leaf nodes mark the end of the decision-making path, where the model makes its final prediction
based on the observed features.

The random forest model was trained separately for each variety of fish. The decision tree generated for the
fish variety Sardine is shown in Fig. 13. This decision tree possesses several key characteristics that define its
structure and functionality. At the root node, the initial condition is established as fat < 12.545, which divides the
dataset into two branches: the left branch if the condition is true and the right branch if it is false. Intermediate
nodes further refine the data subsets. For example, in the left subtree, additional splits occur based on criteria
such as TVB-N<23.715. Similarly, the right subtree is divided according to parameters like TVB-N<18.08.
Leaf nodes, represented as terminal boxes, indicate the final predictions of the tree. These leaf nodes mark the
conclusion of decision paths, where the model outputs its final prediction based on the observed features.
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Fig. 14. Decision tree from random forest for mackerel.
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Fig. 15. Decision tree from random forest for Cuttle fish.

The random forest model was trained separately for each variety of fish. The decision tree generated for the
fish variety Mackerel is shown in Fig. 14. This decision tree possesses several key characteristics that define
its structure and functionality. At the root node, the initial condition is established as protein <9.84, which
divides the dataset into two branches: the left branch if the condition is true and the right branch if it is false.
Intermediate nodes further refine the data subsets. For example, in the left subtree, additional splits occur based
on criteria such as TVB-N<22.67. Similarly, the right subtree is divided according to parameters like dE < 28.83.
Leaf nodes, represented as terminal boxes, indicate the final predictions of the tree. These leaf nodes mark the
end of decision paths, where the model outputs its final prediction based on the observed features.

The random forest model was trained separately for each variety of fish. The decision tree generated for the
fish variety Cuttlefish is shown in Fig. 15. This decision tree exhibits several key characteristics that define its
structure and functionality. At the root node, the initial condition is set as TVB-N<22.23, which divides the
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S.No | Fish type MSE RMSE MAE Predicted pH Values

1 Mackerel 0.005034 | 0.070949 | 0.062933 | [6.1288 6.3068 6.7436]

2 Sardine 0.052419 | 0.228953 | 0.142333 | [6.3112 6.4641 6.3999]

3 Prawn 0.021878 | 0.147912 | 0.126867 | [6.3401 6.3272 6.7821]

4 Pomfret 0.004625 | 0.068007 | 0.065833 | [5.86612 5.87182 6.5202 ]
5 Red snapper | 0.012893 | 0.113547 | 0.107973 | [5.87892 5.79684 6.732]
6 Cuttlefish 0.104992 | 0.324024 | 0.22476 | [5.6548 5.7156 6.19612]

Table 5. MAE, MSE and RMSE values.

S.No | Fish type Predicted pH Value on 15th day of vacuum storage | Freshness category
1 Mackerel 5.75768 Fresh

2 Sardine 6.5458 Moderately fresh

3 Prawn 5.85712 Fresh

4 Pomfret 6.5341 Moderately fresh

5 Red snapper | 5.97256 Fresh

6 Cuttlefish 6.3252 Fresh

Table 6. Freshness classification of fish samples based on predicted pH values.

dataset into two branches: the left branch if the condition is true and the right branch if it is false. Intermediate
nodes further refine the data subsets. For example, in the left subtree, additional splits occur based on criteria
such as fat<3.125. Leaf nodes, represented as terminal boxes, indicate the final predictions of the tree. These
leaf nodes mark the end of decision paths, where the model outputs its final prediction based on the observed
features.

The random forest model generates multiple decision trees during the training phase. When testing the model,
an unknown sample is provided, and the model predicts its pH value. The performance of the random forest
model is assessed using evaluation metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE),
and Root Mean Squared Error (RMSE). Table 5 presents the predicted pH values alongside the corresponding
evaluation metrics.

The freshness of the fish is classified into three categories namely Fresh, Moderately Fresh, and Spoiled based
on the predicted pH values using the trained Random Forest model. The freshness category for each fish type on
the 15th day of vacuum storage is shown in Table 6.

Conclusion

In conclusion, the paper-based dual sensors were successfully developed, and their efficiency was evaluated by
comparing the color values obtained from buffer solutions with those of the sensors placed over refrigerated
fish samples. The total amount of protein and fat in the fish samples stored under refrigeration for an extended
period showed a gradual decline. This decrease is attributed to the refrigeration process, which, through the
formation of ice crystals, inhibits the chemical reactions that typically lead to fish spoilage. As a result, the
depletion of nutrients was less severe.

The rate of spoilage in vacuum packaging was found to be significantly slower compared to conventional and
shrink packaging. This clearly demonstrated that vacuum packaging is the most effective method for preserving
fish. After 12 days of storage, there was only about a 2% reduction in the total protein and fat content of the fish
samples. Following the rigor mortis phase, the pH levels of the samples initially dipped slightly but began to rise
again after a few days. After being refrigerated at 4 °C (+ 3 °C) for a period of 12 days, the fish samples underwent
TVB-N Estimation. The results indicated that the fish remained safe for consumption, as the level of volatile
nitrogen in all six fish samples was less than 35 mgN/100 g.

Furthermore, the automation of freshness detection for refrigerated fish using a random forest model was
successfully developed. The evaluation metrics Mean Absolute Error (MAE), Mean Squared Error (MSE), and
Root Mean Squared Error (RMSE) demonstrated that the model accurately detected the freshness of the fish.
This is particularly significant for advancing food processing automation.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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