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Seafood, including fish, prawns and various marine products, is a critical component of global nutrition 
due to its high protein content, essential fatty acids, vitamins and minerals. Traditional methods 
for assessing seafood freshness such as sensory evaluation and microbiological analysis are labor-
intensive, time-consuming and often require specialized equipment. To address these limitations, 
this research presents an automated freshness detection system for refrigerated fish using machine 
learning and evaluates the effectiveness of different packaging techniques. Six seafood varieties: 
Mackerel, Sardine, Prawn, Pomfret, Red Snapper and Cuttlefish were stored under refrigeration and 
packaged using three methods: vacuum, shrink, and normal packaging. A paper-based pH sensor 
integrated with Methyl Red and Bromocresol Purple was utilized as a freshness indicator. This sensor 
effectively monitored spoilage by capturing L*, a*, and b* color values over time. Key parameters, 
including protein content, lipid content, and Total Volatile Basic Nitrogen (TVB-N) levels, were 
measured throughout the storage period to assess changes in fish quality. These measurements were 
used to train a Random Forest (RF) model, aimed at accurately predicting the pH values of the samples. 
The model’s performance was evaluated using standard metrics such as Mean Absolute Error (MAE), 
Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). Among the tested varieties, Pomfret 
and Mackerel displayed the lowest MSE values (0.004625 and 0.005034, respectively), indicating high 
predictive reliability. The RMSE values, representing average prediction error magnitude, were also 
minimal for Pomfret (0.068007) and Mackerel (0.070949). Furthermore, MAE values confirmed robust 
predictions, with Pomfret (0.065833) and Mackerel (0.062933) achieving the least deviation from actual 
measurements. The study demonstrates the effectiveness of the paper-based pH sensor as a visual 
indicator of spoilage, while the RF-based prediction model offers a reliable method for ensuring food 
safety and quality during cold-chain storage. Integrating sensor-based monitoring with advanced 
packaging presents a viable solution for extending the shelf life of seafood and enhancing consumer 
safety.
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Seafood, including fish, prawns, cuttlefish and other marine products, forms a vital part of the global diet due 
to its high nutritional value. Rich in high-quality proteins, vitamins, minerals and essential fatty acids such as 
Eicosa-Pentaenoic Acid (EPA) and Docosa-Hexaenoic Acid (DHA), seafood offers numerous health benefits. 
These polyunsaturated fatty acids (PUFAs) contribute to improved brain function, cardiovascular health and 
reduced inflammation1,2. In India, the fisheries and aquaculture sector support over 14 million livelihoods and 
contributes significantly to national food security and economic growth through exports.

One of the major challenges in the seafood industry is maintaining product freshness during storage and 
distribution. The quality and shelf life of seafood are greatly influenced by packaging methods. Conventional 
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packaging materials provide limited protection against oxygen, which can accelerate spoilage. In contrast, 
vacuum packaging reduces oxygen exposure, thereby inhibiting the growth of aerobic bacteria and delaying 
oxidative degradation. Similarly, shrink packaging helps retain moisture and forms a tight seal, further reducing 
oxygen penetration. Both vacuum and shrink packaging have proven effective in extending the shelf life of 
perishable seafood products3.

Spoilage in seafood is typically accompanied by biochemical changes, including the release of basic 
nitrogenous compounds like ammonia, which increases the pH of fish tissue. This change in pH can be detected 
using pH-sensitive colorimetric indicators. Methyl Red (MR) changes from red to yellow and Bromocresol 
Purple (BCP) shifts from yellow to purple as pH rises, offering a simple, real-time visual indication of spoilage4. 
These indicators, when embedded in paper-based biosensors, provide a non-invasive and cost-effective method 
for monitoring seafood freshness directly on the product.

In addition to visual indicators, scientific techniques such as Fourier Transform Infrared (FTIR) Spectroscopy 
are employed to analyze the chemical composition of seafood. FTIR can detect molecular changes in proteins 
and lipids that occur during spoilage, offering insights into degradation pathways5. Another widely accepted 
metric is the Total Volatile Basic Nitrogen (TVB-N) level, which measures the concentration of nitrogenous 
compounds like trimethylamine, dimethylamine and ammonia byproducts of microbial and enzymatic activity 
during spoilage6,7.

Despite the accuracy of these analytical methods, they are often time-consuming, require specialized 
equipment and may not be feasible for real-time monitoring across all fish species. Recent advancements in 
non-destructive technologies such as spectral imaging and Nuclear Magnetic Resonance (NMR) spectroscopy 
have addressed some of these limitations, but broad applicability remains a challenge8.

To overcome these barriers, the seafood industry is increasingly exploring the use of Artificial Intelligence 
(AI) and automation. Machine Learning (ML) and Deep Learning (DL) techniques have demonstrated great 
potential in automating food quality assessment, reducing subjectivity and enabling real-time decision-
making9–13. These technologies can improve accuracy and efficiency in detecting seafood freshness while 
minimizing manual intervention14–16.

The novelty of this research lies in the integration of a non-invasive, paper-based pH biosensor system with 
machine learning techniques to enable real-time and accurate assessment of seafood freshness under refrigerated 
conditions. Unlike traditional sensory and microbiological methods, this approach offers a low-cost, rapid and 
scalable solution by using colorimetric indicators (Methyl Red and Bromocresol Purple) and correlating their L*, 
a*, b* color values with spoilage progression. Furthermore, the study systematically compares the effectiveness 
of three different packaging methods namely normal, vacuum and shrink across six commonly consumed 
seafood varieties. By incorporating biochemical markers such as protein, lipid content and TVB-N levels into 
a random forest model to predict freshness, this work presents a comprehensive framework that enhances the 
monitoring of seafood quality. This multifaceted strategy positions the research as a significant advancement in 
the automation and accuracy of seafood quality evaluation.

Materials and methods
Fish sampling
Fresh fish samples, including Mackerel (Scomber scombrus), Sardine (Sardina pilchardus), Prawn (Metapenaeus 
dobsoni), Black Pomfret (Parastromateus niger), Red Snapper (Lutjanus campechanus) and Cuttlefish (Sepiida), 
were collected immediately after harvest from the seashore market in Royapuram, Chennai, Tamil Nadu. The 
samples were transported to the laboratory in an ice box to maintain freshness. Upon arrival, the fish were sliced, 
beheaded, filleted and washed with tap water. The cleaned samples were then divided and packed using three 
different packaging methods: vacuum packaging, shrink packaging and regular packaging with low-density 
polyethylene covers. All samples were stored under refrigeration at 4 °C.

Sensor preparation
The paper-based pH sensor was prepared using two colorimetric dyes—Methyl Red and Bromocresol Purple as 
shown in Fig. 1 ref.17. After preparation, the sensor was placed on the surface of each fish sample. The change in 
color of the paper sensor was measured using a Hunter Lab Colorimeter.

Quality analysis
The six types of fish samples, packed using three different packaging methods, were sampled at intervals of 
3 days from day 0 to day 12. The experiment was conducted in triplicate. Quality parameters were analyzed 
at each interval. The pH of the samples was measured using a pH meter. The color values of the paper-based 
sensors were measured using a HunterLab XE Color Quest and used as the primary dataset. The color attributes 
were expressed in terms of L*, a*, and b* values, representing Lightness, Redness, and Yellowness for positive 
color values, and Blackness, Greenness, and Blueness for negative color values in the dried samples.

Protein content was estimated using Lowry’s method18. Fat content was determined using a Soxhlet apparatus, 
with petroleum ether as the solvent. Fourier Transform Infrared (FTIR) Spectral analysis was performed using a 
Shimadzu Irtracer 100, which has a spectral range of 4400–500 cm⁻1.

Total Volatile Basic Nitrogen (TVB-N) levels were determined using a steam distillation method with 
trichloroacetic acid as the solvent. The distillate was titrated with 0.01 N Hydrochloric Acid using a Rosolic Acid 
indicator, with the endpoint indicated by a pale pink color. TVB-N was calculated using the formula shown in 
Eq. (1):

	
TVBN (mg /100 gm) = (N) 14 (300 + W ) × V1

500
� (1)
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where,
V1 = Volume of standard acid consumed.
W = water content of sample (g / 100 g).

Random forest model
The parameters such as L*, a*, b*, dE, protein, TVB-N, pH and fat content were obtained using the methods 
described above. These measurements were recorded for the different packaging methods over a 12-day period 
with sampling every 3 days. The collected data was used to train a random forest regression model, a powerful 
machine learning technique for predicting pH values.

The methodology for pH value estimation with random forest regression follows several key steps:

1. Data Collection: Gather a comprehensive dataset that includes all relevant features, including color metrics 
(L*, a*, b*, dE), protein content, TVB-N, pH and fat.
2. Data Preprocessing: Clean the dataset by handling missing values and outliers, normalizing numerical var-
iables, and encoding categorical variables appropriately to prepare the data for model training.
3. Dataset Splitting: The dataset was divided into two subsets: a training set and a testing set. The training set 
was used for model training, while the testing set was used for model evaluation.
4. Model Training: The random forest algorithm creates an ensemble of decision trees, where each tree is 
trained on a random subset of the training data with replacement. A random subset of features is considered 
at each split, helping reduce overfitting and improving model generalization.
5. Hyperparameter Tuning: The hyperparameters of the random forest algorithm, such as the number of 
trees, the maximum depth of the trees and the minimum number of samples required to split a node, were 
optimized using techniques like grid search or randomized search to improve model performance.
6. Model Evaluation: The model’s performance was evaluated using appropriate regression metrics, including 
Mean Absolute Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). These met-
rics help assess how well the model predicts the pH values compared to actual values.
7. Model Iteration and Updates: Based on evaluation results, the model was iteratively improved by adjusting 
hyperparameters and feature selection techniques to enhance prediction accuracy. Additionally, the model 
was continuously monitored and updated to maintain its accuracy across different fish varieties, packaging 
methods and storage conditions.

This methodology enables consumers, suppliers and industry professionals to harness the power of machine 
learning for the automatic detection of pH values in seafood samples, thereby facilitating effective freshness 
monitoring and quality control.

Experimental results
Development of paper-based dual sensors
Paper-based sensors using Methyl Red (MR) and Bromocresol Purple (BCP) indicators were successfully 
developed. As shown in Fig. 2a,b, the MR sensors exhibited a pinkish-red coloration, while the BCP sensors 
appeared yellow under initial conditions. These sensors are pH-sensitive: an increase or decrease in pH causes 

Fig. 1.  Preparation of paper based sensors.
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the MR sensor to change from pinkish-red to yellow, whereas the BCP sensor transitions from yellow to purple. 
These color transitions are illustrated clearly in Fig. 3a,b.

Fish packaging with different packaging techniques
After cleaning and filleting, all six varieties of fish were packaged using three different methods: conventional, 
vacuum, and shrink packaging. Low-Density Polyethylene (LDPE) and Polypropylene (PP) pouches were used 
for this purpose. Figure 4a,b,c show the packaging methods implemented.

Colour analysis of the sensors
pH indicators used for monitoring the freshness of food typically alter their color in response to changes in the 
chemical composition of food samples during storage (Listyarini et al., 2018). Similarly, the color of paper-based 
dual sensors prepared using Methyl Red (MR) and Bromocresol Purple (BCP) indicators shifted when placed 
over fish samples stored under three different packaging conditions in refrigeration. To evaluate the effectiveness 
of these sensors, pH buffer solutions ranging from 3 to 7, with an incremental difference of 0.1, were prepared. 
These solutions were used to observe the corresponding color changes.

The results are presented in a graph, where the total color difference (dE) is plotted along the y-axis and the 
three different packaging configurations of the fish samples are plotted along the x-axis. Figure 5 illustrates the 
dE values of the MR sensor across different pH ranges, while Fig. 6 displays the dE values of the BCP sensor for 
the same pH ranges.

As the pH levels in the package headspace increase during storage, volatile gases are released into the 
atmosphere (Fatemeh et al., 2017). Consequently, the color of the sensors changes, indicating the freshness of 
each sample. The findings reveal that the total color difference is more pronounced in the pH range between 4 
and 6 compared to other ranges. The data further suggest that the sensors become darker as the pH approaches 
a more basic state, causing the color of the indicators to change accordingly.

The color of both sensors placed over the fish samples for a period of 12 days, with observations recorded 
at 3-day intervals, indicated that the overall color change in the sensors for Mackerel, Sardine, Cuttlefish, and 
Pomfret samples was relatively higher compared to Prawn and Red Snapper.

Figure 7 presents the dE values against the pH values for the MR and BCP sensors attached to vacuum-packed 
Sardine and Mackerel samples stored at refrigerated temperatures. Figure 8 illustrates the dE values against the 
pH values for MR and BCP sensors attached to vacuum-packed Prawn and Cuttlefish samples under the same 

Fig. 3.  (a) Change in the MR sensor. (b) Change in the BCP sensor.

 

Fig. 2.  (a) Methyl red (MR) sensor. (b) Bromocresol purple (BCP) sensor.
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storage conditions. Similarly, Fig. 9 displays the dE values against the pH values for MR and BCP sensors linked 
to vacuum-packed Red Snapper and Pomfret samples kept at refrigerator temperature.

Estimation of pH
After the death of the fish, blood circulation halts, cutting off its oxygen supply. As a result, enzymes in the 
muscle break down glycogen into its component molecules, producing lactic acid. This process causes a decline 
in the pH of the fish muscle. The production of lactic acid continues until the glycogen supply is completely 
exhausted. Following this stage, rigor mortis sets in, characterized by muscle stiffness, which is then gradually 
followed by a decrease in stiffness and an increase in pH, leading to muscle softening (Tavares et al., 2021).

Data collected and presented in Table 1 shows that on the zeroth day (immediately after harvest), the pH was 
approximately 7, indicating that the fish was freshly caught and retained a high level of nutritional value. Fresh 
fish typically have a pH range of 6.0 to 6.5, characterized by firm flesh and no foul smell. Moderately fresh fish 
exhibit a pH range of 6.5 to 6.8, with a softer texture and mild odor, but are still considered edible. In contrast, 
spoiled fish have a pH greater than 6.8, sometimes exceeding 7.5, accompanied by a slimy texture and a strong 
ammonia-like odor. This correlation between fish freshness and pH during cold storage was also reviewed by 
Abbas et al.19.

Fig. 5.  dE values of MR sensor at different pH range. Mean ± SD at p < 0.05 level for triplicate data.

 

Fig. 4.  (a) Conventional packaging. (b) Vacuum packaging. (c) Shrink packaging.
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As the number of storage days increased, the pH initially decreased but then began to rise gradually. This is 
attributed to the emission of TVB-N, which is accompanied by the production of alkaline bacterial metabolites19.

Estimation of protein
Fish, particularly Mackerel, Sardine, and Pomfret, are well-known for their high protein content. To quantify the 
protein levels in fresh fish samples, Lowry’s method was employed, and the results are presented in Table 2. When 
the experiment was repeated at 3-day intervals, it was observed that the protein content gradually decreased 

Fig. 8.  dE values of MR and BCP sensors attached with prawn and cuttle fish stored at refrigerator 
temperature.

 

Fig. 7.  dE values of MR and BCP sensors attached with sadrine and mackerel stored at refrigerator 
temperature.

 

Fig. 6.  dE values of BCP sensor at different pH range. Mean ± SD at p < 0.05 level for triplicate data.
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Fish sample Days

pH

dE

BCP MR

Regular Vacuum Shrink Regular Vacuum Shrink Regular Vacuum Shrink

Mackerel

0th 6.72 ± 0.04 6.72 ± 0.04 6.72 ± 0.04 45.72 ± 0.08 45.72 ± 0.08 45.72 ± 0.08 23.31 ± 1.94 23.31 ± 1.94 23.31 ± 1.94

3rd 6.46 ± 0.02 6.89 7.01 22.21 ± 0.85 40.92 ± 0.10 35.51 ± 1.66 22.21 ± 0.85 25.65 ± 0.42 32.96 ± 0.98

6th 6.44 ± 0.01 6.56 6.58 31.1 ± 0.49 53.17 ± 1.64 40.28 ± 0.38 31.1 ± 0.49 33.17 ± 1.22 40.53 ± 0.65

9th 6.15 ± 0.01 6.18 6.2 38.4 ± 0.59 62.17 ± 0.57 55.92 ± 2.10 38.4 ± 0.59 41.36 ± 1.67 43.32 ± 1.14

12th 5.97 ± 0.03 5.99 6.01 41.28 ± 0.09 62.53 ± 0.73 58.86 ± 0.20 41.28 ± 0.09 43.61 ± 0.22 45.88 ± 0.10

Sardine

0th 6.78 ± 0.02 6.78 ± 0.052 6.78 ± 0.02 36.36 ± 0.21 36.36 ± 0.21 36.36 ± 0.21 24.31 ± 1.91 24.31 ± 1.91 24.31 ± 1.91

3rd 6.34 ± 0.02 6.66 6.69 28.25 ± 0.39 34.78 ± 0.4 41.61 ± 0.07 28.25 ± 0.39 38.87 ± 0.18 37.39 ± 0.19

6th 6.24 ± 0.02 6.39 6.3 37.47 ± 0.16 41.07 ± 0.63 51.62 ± 0.09 37.47 ± 0.16 43.77 ± 1.27 44.46 ± 0.35

9th 6.22 ± 0.03 6.3 6.10 40.97 ± 0.35 45.48 ± 0.46 55.25 ± 0.91 40.97 ± 0.35 45.39 ± 0.51 50.11 ± 0.58

12th 5.96 ± 0.04 6.10 6.39 41.79 ± 0.44 44.9 ± 0.09 54.43 ± 0.14 41.79 ± 0.44 56.93 ± 0.13 52.01 ± 0.01

Red snapper

0th 6.82 ± 0.05 6.82 ± 0.05 6.82 ± 0.05 39.8 ± 0.15 39.8 ± 0.15 39.8 ± 0.15 23.47 ± 1.42 23.47 ± 1.42 23.47 ± 1.42

3rd 6.075 ± 0.1 6.22 ± 0.22 6.01 ± 0.04 31.02 ± 0.97 20.90 ± 5.12 59.31 ± 0.16 17.01 ± 2.8 17.30 ± 0.35 28.76 ± 0.47

6th 5.95 ± 0.02 6.16 ± 0.01 5.91 ± 0.09 56.7 ± 0.17 26.49 ± 2.21 49.28 ± 1.55 37.49 ± 0.10 30.63 ± 1.69 25.06 ± 0.64

9th 5.65 ± 0.04 6.035 ± 0.02 5.72 ± 0 33.63 ± 1.10 52.85 ± 0.17 39.14 ± 0.75 36.03 ± 1.6 36.11 ± 0.03 34.94 ± 0.86

12th 5.51 ± 0.05 5.97 ± 0.042 5.65 ± 0.04 39.62 ± 1.56 27.55 ± 0.54 37.33 ± 0.57 33.50 ± 0.95 28.27 ± 0.48 50.76 ± 0.14

Cuttlefish

0th 6.26 ± 0.05 6.26 ± 0.05 6.26 ± 0.05 39.76 ± 0.07 39.76 ± 0.07 39.76 ± 0.07 16.6 ± 0.88 16.6 ± 0.88 16.6 ± 0.88

3rd 5.82 ± 0.03 6.15 ± 0.042 6.005 ± 0.03 24.3 ± 1.04 60.14 ± 0.73 49.18 ± 1.14 17.4 ± 0.57 45.55 ± 2.8 35.38 ± 3.17

6th 5.73 ± 0.01 5.575 ± 0.03 5.76 ± 0.03 45.01 ± 3.34 54.75 ± 0.9 45.71 ± 3.2 45.1 ± 2.9 40.35 ± 1.1 35.42 ± 1.88

9th 5.67 ± 0.02 5.10 ± 0.02 5.66 ± 0.04 43.19 ± 0.77 40.83 ± 0.51 33.18 ± 0.38 43.54 ± 0.3 30.26 ± 0.18 35.97 ± 0.25

12th 5.5 ± 0.05 5.01 ± 0.12 5.605 ± 0.10 66.73 ± 2.24 51.83 ± 0.24 49.93 ± 0.68 54.12 ± 0.65 40.47 ± 0.09 54.12 ± 0.65

Pomfret

0th 6.60 ± 0.34 6.60 ± 0.34 6.60 ± 0.34 35.28 ± 1.46 35.28 ± 1.46 35.28 ± 1.46 23.52 ± 0.02 23.52 ± 0.02 23.52 ± 0.02

3rd 5.94 ± 0.03 6.24 ± 0.04 6 ± 0.02 51.9 ± 1.51 33.2 ± 0.5 63.47 ± 1.03 22.52 ± 0.42 34.8 ± 1.98 34.49 ± 1.01

6th 5.855 ± 0.04 6.03 ± 0.02 5.93 ± 0.06 46.26 ± 0.14 49.57 ± 3.1 67.38 ± 0.22 33.02 ± 0.59 42.32 ± 0.3 44.45 ± 2.90

9th 5.71 ± 0.02 5.94 ± 0.03 5.83 ± 0.12 37.84 ± 0.98 35.8 ± 0.42 34.5 ± 0.39 30.91 ± 0.55 28.49 ± 0.19 46.9 ± 0.03

12th 5.58 ± 0.042 5.78 ± 0.08 5.71 ± 0.02 56.85 ± 0.1 44.21 ± 0.19 43.54 ± 0.32 50.67 ± 0.63 41.66 ± 0.07 37.55 ± 0.89

Prawn

0th 6.81 ± 0.02 6.81 ± 0.02 6.81 ± 0.02 32.07 ± 0.18 32.07 ± 0.18 32.07 ± 0.18 21.51 ± 1.78 21.51 ± 1.78 21.51 ± 1.78

3rd 6.49 ± 0.02 6.56 6.67 21.42 ± 0.37 23.17 ± 0.42 36.32 ± 0.86 21.42 ± 0.37 23.58 ± 3.01 23.37 ± 0.75

6th 6.46 ± 0.02 6.54 6.58 40.40 ± 0.46 26.28 ± 0.63 44.41 ± 0.99 40.40 ± 0.46 30.15 ± 0.63 26.11 ± 0.74

9th 6.3 ± 0.03 6.48 6.54 31.96 ± 0.24 49.85 ± 0.39 46 ± 0.46 31.96 ± 0.24 40.18 ± 0.45 27.45 ± 1.01

12th 5.89 ± 0.02 6.31 6.22 29.06 ± 0.07 55.81 ± 0.69 53.53 ± 0.25 29.06 ± 0.07 38.81 ± 0.43 31.68 ± 0.97

Table 1.  pH estimation of fish samples stored under refrigerated temperature (4 °C) using three packaging 
conditions. Mean ± SD at p < 0.05 level for triplicate data.

 

Fig. 9.  dE values of MR and BCP sensors attached with Red snapper and Pomfret stored at refrigerator 
temperature.
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over time. This decline was not abrupt but progressive. The reduction in protein levels is primarily attributed to 
autolysis, an intrinsic breakdown of proteins and fats caused by a series of complex enzyme reactions.

Since the samples were stored under refrigerated conditions, the rate and extent of protein degradation were 
significantly minimized. Shenouda et al. (1980) demonstrated that several factors contribute to protein loss in 
fish during refrigeration, including enzyme-mediated activity of trimethylamine oxide (TMAO), an increase in 
solute concentration, dehydration, the formation of ice crystals, and accretion.

Estimation of fat
Hydrolysis and oxidation are two distinct chemical reactions that occur during the processing and storage of 
fish, both contributing to the reduction of fat content. During lipid hydrolysis, free fatty acids are released, 
leading to the denaturation of proteins as their structure is compromised (Bashir et al., 2021). It was observed 
that the fat content decreased progressively as the storage period increased.

After being refrigerated for 12 days, the fat content in the fatty fish Mackerel and Sardine dropped from 
12 to 9 g and 11 to 9 g, respectively. A similar trend was observed in the other four fish samples: Red Snapper, 
Cuttlefish, Pomfret and Prawn. The results are summarized in Table 3. The reduction in lipid content during 
refrigerated storage is primarily attributed to oxidation. This oxidative reaction generates peroxides, which 
accelerate the degradation of fish quality (A. Keyvan et al., 2008).

Results of random forest model
The random forest model was trained using data collected from six different varieties of fish, each packed using 
different packaging methods. Table 4 presents the observed values for L*, a*, b*, dE, pH, protein and fat over a 
period of 0 to 12 days under refrigerated conditions.

The random forest model was trained separately for each variety of fish. The decision tree generated for 
the Prawn variety is shown in Fig. 10. The decision tree possesses several essential characteristics that define 
its structure and functionality. At the root node, the initial condition is established as protein ≤ 11.775, which 

Fish sample Days

Amount of protein (g/100g)

Regular Vacuum Shrink

Mackerel

0th 18.26 ± 0.35 18.48 ± 0.38 18.34 ± 0.41

3rd 13.92 ± 0.01 17.64 ± 0.004 18.02 ± 0.008

6th 10.47 ± 0.03 15.12 ± 0.03 17.89 ± 0.008

9th 7.45 ± 0.02 12.01 ± 0.008 15.67 ± 0.008

12th 7.01 ± 0.007 9.16 ± 0.02 13.31 ± 0.004

Sardine

0th 13.50 ± 0.21 13.50 ± 0.21 13.50 ± 0.21

3rd 13.06 ± 0.03 12.03 ± 0.43 13.34 ± 0.03

6th 11.15 ± 0.03 10.33 ± 0.03 13.14 ± 0.02

9th 9.88 ± 0.01 9.84 ± 0.01 11.23 ± 0.01

12th 6.60 ± 0.04 14.96 ± 0.30 10.96 ± 0.01

Red snapper

0th 22.39 ± 0.43 22.39 ± 0.43 22.39 ± 0.43

3rd 20.33 ± 0.22 20.44 ± 0.28 18.62 ± 0.25

6th 18.84 ± 0.1212 19.84 ± 0.12 16.34 ± 0.1

9th 17.51 ± 0.23 18.92 ± 0.35 15.35 ± 0.35

12th 17.36 ± 0.05 16.55 ± 0.61 12.48 ± 0.26

Cuttlefish

0th 16.2 ± 0.92 16.2 ± 0.92 16.2 ± 0.92

3rd 14.36 ± 0.32 15.31 ± 0.54 14.22 ± 0.43

6th 12.22 ± 0.11 14.34 ± 0.07 13.33 ± 0.27

9th 10.59 ± 0.21 13 ± 0.62 14.03 ± 1.69

12th 9.41 ± 0.07 12.51 ± 0.44 10.12 ± 0.02

Pomfret

0th 16.4 ± 0.25 16.4 ± 0.25 16.4 ± 0.25

3rd 13.67 ± 0.93 14.25 ± 0.16 12.32 ± 0.91

6th 12.87 ± 0.19 13.48 ± 0.46 10.76 ± 0.48

9th 11.85 ± 0.45 12.81 ± 0.26 10.01 ± 0.47

12th 10.23 ± 0.79 12.48 ± 0.32 8.94 ± 0.588

Prawn

0th 19.30 ± 0.04 19.30 ± 0.04 19.30 ± 0.04

3rd 17.75 ± 0.03 18.02 ± 0.009 19.12 ± 0.008

6th 12.25 ± 0.04 16.15 ± 0.01 18.84 ± 0.008

9th 11.05 ± 0.03 13.63 ± 0.02 15.73 ± 0.008

12th 8.33 ± 0.008 11.26 ± 0.05 13.70 ± 0.04

Table 2.  Protein estimation of fish samples stored under refrigerated temperature using three packaging 
conditions. Mean ± SD at p < 0.05 level for triplicate data.
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splits the dataset into two branches: the left branch if the condition is true, and the right branch if it is false. 
Intermediate nodes further refine the data subsets. For example, in the left subtree, further divisions occur 
based on criteria such as package ≤ 0.5. Similarly, the right subtree branches off according to parameters like 
TVB-N ≤ 11.32 and dE ≤ 34.73.

Leaf nodes, represented as terminal boxes, indicate the final predictions of the tree. Each node in the tree 
displays the number of samples that reach that specific point. Additionally, the squared error at each node serves 
as a measure of predictive accuracy, where smaller values signify better performance.

Methyl red Bromocresol purple

Trail 1 Trail 1

Name dE dE Days Package Protein TVB-N pH Fat

Mackerel 23.31 ± 1.94 45.72 ± 0.08 0 Vacuum 18.75 ± 0.08 9.38 ± 0.48 6.72 20.98 ± 0.02

Sardine 24.31 ± 1.91 36.36 ± 0.21 0 Vacuum 13.50 ± 0.21 12.11 ± 0.51 6.38 5.32 ± 0.03

Pomfret 23.52 ± 0.02 35.28 ± 1.46 0 Vacuum 16.4 ± 0.25 7.23 ± 0.46 6.60 ± 0.34 2.63

Red snapper 23.47 ± 1.42 39.8 ± 0.15 0 Vacuum 22.39 ± 0.43 7.51 ± 0.12 6.82 ± 0.05 3.65

Prawn 21.51 ± 1.78 32.07 ± 0.18 0 Vacuum 19.30 ± 0.04 10.21 ± 0.45 6.81 16.8 ± 0.08

Cuttle fish 16.6 ± 0.88 39.76 ± 0.07 0 Vacuum 16.2 ± 0.92 7.18 ± 0.212 6.26 ± 0.05 3.73

Mackerel 23.31 ± 1.94 45.72 ± 0.08 0 Shrink 18.75 ± 0.08 9.38 ± 0.48 6.72 20.98 ± 0.02

Table 4.  Collected data using six varieties of fishes.

 

Fish sample Days

Amount of fat (g/5g)

Regular Vacuum Shrink

Mackerel

0th 20.98 ± 0.02 20.98 ± 0.02 20.98 ± 0.02

3rd 13.4 ± 0.15 15.1 ± 0.06 15.7 ± 0.06

6th 11.7 ± 0.07 11.6 ± 0.001 12.49 ± 0.02

9th 8 ± 0.002 9 ± 0.002 10 ± 0.04

12th 2 ± 0.02 5.5 ± 0.003 6.7 ± 0.006

Sardine

0th

3rd 11.8 ± 0.03 14.8 ± 0.07 14.98 ± 0.04

6th 11 ± 0.10 12 ± 0.01 13.1 ± 0.02

9th 9 ± 0.001 10.6 ± 0.001 9.75 ± 0.03

12th 8.3 ± 0.03 9.8 ± 0.001 9.03 ± 0.16

Red snapper

0th 3.65 3.65 3.65

3rd 2.93 ± 0.19 3.14 ± 0.11 3.12 ± 0.03

6th 2.28 ± 0.05 2.95 ± 0.04 2.88 ± 0.05

9th 1.77 ± 0.8 2.40 ± 0.21 1.87 ± 0.06

12th 0.76 ± 0.04 1.01 ± 0.05 0.9 ± 0.07

Cuttlefish

0th 3.73 ± 0.92 3.73 ± 0.92 3.73 ± 0.92

3rd 3.11 ± 0.07 3.27 ± 0.04 3.16 ± 0.05

6th 2.75 ± 0.09 2.98 ± 0.01 2.95 ± 0.02

9th 1.92 ± 0.05 2.58 ± 0.03 2.26 ± 0.055

12th 1.57 ± 0.02 2.01 ± 0.066 1.93 ± 0.101

Pomfret

0th 2.63 ± 0.25 2.63 ± 0.25 2.63 ± 0.25

3rd 2.15 ± 0.05 2.28 ± 0.055 2.13 ± 0.03

6th 1.60 ± 0.03 1.7 ± 0.07 1.53 ± 0.12

9th 1.25 ± 0.1 1.2 ± 0.1 1.02 ± 0.04

12th 0.83 ± 0.08 0.99 ± 0.02 0.79 ± 0.44

Prawn

0th 16.8 ± 0.08 16.8 ± 0.08 16.8 ± 0.08

3rd 13 ± 0.08 14.6 ± 0.07 14.85 ± 0.04

6th 11 ± 0.06 12.4 ± 0.01 12.32 ± 0.03

9th 7 ± 0.03 8.9 ± 0.002 8.97 ± 0.03

12th 5.01 ± 0.04 8.03 ± 0.004 8.6 ± 0.06

Table 3.  Fat estimation of fish samples stored under refrigerated temperature using three packaging 
conditions.
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The random forest model was trained separately for each variety of fish. The decision tree generated for 
the fish variety Pomfret is shown in Fig. 11. This decision tree possesses several key characteristics that define 
its structure and functionality. At the root node, the initial condition is established as protein ≤ 14.175, which 
divides the dataset into two branches: the left branch if the condition is true and the right branch if it is false. 
Intermediate nodes further refine the data subsets. For example, in the left subtree, additional splits occur based 
on criteria such as TVB-N ≤ 15.035. Similarly, in the right subtree, divisions are made according to parameters 
like dE ≤ 28.66.

Leaf nodes, represented as terminal boxes, indicate the final predictions of the tree. These leaf nodes mark the 
completion of the decision-making path, where the model assigns a prediction based on the features observed.

The random forest model was trained separately for each variety of fish. The decision tree generated for the 
fish variety Red Snapper is shown in Fig. 12. This decision tree possesses several key characteristics that define 
its structure and functionality. At the root node, the initial condition is established as protein ≤ 21.77, which 

Fig. 11.  Decision tree from random forest for Pomfret.

 

Fig. 10.  Decision tree from random forest for prawn.
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divides the dataset into two branches: the left branch if the condition is true and the right branch if it is false. 
Intermediate nodes further refine the data subsets. For example, in the left subtree, additional splits occur based 
on criteria such as TVB-N ≤ 11.815. Leaf nodes, represented as terminal boxes, indicate the final predictions of 
the tree. These leaf nodes mark the end of the decision-making path, where the model makes its final prediction 
based on the observed features.

The random forest model was trained separately for each variety of fish. The decision tree generated for the 
fish variety Sardine is shown in Fig. 13. This decision tree possesses several key characteristics that define its 
structure and functionality. At the root node, the initial condition is established as fat ≤ 12.545, which divides the 
dataset into two branches: the left branch if the condition is true and the right branch if it is false. Intermediate 
nodes further refine the data subsets. For example, in the left subtree, additional splits occur based on criteria 
such as TVB-N ≤ 23.715. Similarly, the right subtree is divided according to parameters like TVB-N ≤ 18.08. 
Leaf nodes, represented as terminal boxes, indicate the final predictions of the tree. These leaf nodes mark the 
conclusion of decision paths, where the model outputs its final prediction based on the observed features.

Fig. 13.  Decision tree from random forest for sardine.

 

Fig. 12.  Decision tree from random forest for red snapper.

 

Scientific Reports |        (2025) 15:26051 11| https://doi.org/10.1038/s41598-025-08177-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The random forest model was trained separately for each variety of fish. The decision tree generated for the 
fish variety Mackerel is shown in Fig.  14. This decision tree possesses several key characteristics that define 
its structure and functionality. At the root node, the initial condition is established as protein ≤ 9.84, which 
divides the dataset into two branches: the left branch if the condition is true and the right branch if it is false. 
Intermediate nodes further refine the data subsets. For example, in the left subtree, additional splits occur based 
on criteria such as TVB-N ≤ 22.67. Similarly, the right subtree is divided according to parameters like dE ≤ 28.83. 
Leaf nodes, represented as terminal boxes, indicate the final predictions of the tree. These leaf nodes mark the 
end of decision paths, where the model outputs its final prediction based on the observed features.

The random forest model was trained separately for each variety of fish. The decision tree generated for the 
fish variety Cuttlefish is shown in Fig. 15. This decision tree exhibits several key characteristics that define its 
structure and functionality. At the root node, the initial condition is set as TVB-N ≤ 22.23, which divides the 

Fig. 15.  Decision tree from random forest for Cuttle fish.

 

Fig. 14.  Decision tree from random forest for mackerel.
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dataset into two branches: the left branch if the condition is true and the right branch if it is false. Intermediate 
nodes further refine the data subsets. For example, in the left subtree, additional splits occur based on criteria 
such as fat ≤ 3.125. Leaf nodes, represented as terminal boxes, indicate the final predictions of the tree. These 
leaf nodes mark the end of decision paths, where the model outputs its final prediction based on the observed 
features.

The random forest model generates multiple decision trees during the training phase. When testing the model, 
an unknown sample is provided, and the model predicts its pH value. The performance of the random forest 
model is assessed using evaluation metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), 
and Root Mean Squared Error (RMSE). Table 5 presents the predicted pH values alongside the corresponding 
evaluation metrics.

The freshness of the fish is classified into three categories namely Fresh, Moderately Fresh, and Spoiled based 
on the predicted pH values using the trained Random Forest model. The freshness category for each fish type on 
the 15th day of vacuum storage is shown in Table 6.

Conclusion
In conclusion, the paper-based dual sensors were successfully developed, and their efficiency was evaluated by 
comparing the color values obtained from buffer solutions with those of the sensors placed over refrigerated 
fish samples. The total amount of protein and fat in the fish samples stored under refrigeration for an extended 
period showed a gradual decline. This decrease is attributed to the refrigeration process, which, through the 
formation of ice crystals, inhibits the chemical reactions that typically lead to fish spoilage. As a result, the 
depletion of nutrients was less severe.

The rate of spoilage in vacuum packaging was found to be significantly slower compared to conventional and 
shrink packaging. This clearly demonstrated that vacuum packaging is the most effective method for preserving 
fish. After 12 days of storage, there was only about a 2% reduction in the total protein and fat content of the fish 
samples. Following the rigor mortis phase, the pH levels of the samples initially dipped slightly but began to rise 
again after a few days. After being refrigerated at 4 °C (± 3 °C) for a period of 12 days, the fish samples underwent 
TVB-N Estimation. The results indicated that the fish remained safe for consumption, as the level of volatile 
nitrogen in all six fish samples was less than 35 mgN/100 g.

Furthermore, the automation of freshness detection for refrigerated fish using a random forest model was 
successfully developed. The evaluation metrics Mean Absolute Error (MAE), Mean Squared Error (MSE), and 
Root Mean Squared Error (RMSE) demonstrated that the model accurately detected the freshness of the fish. 
This is particularly significant for advancing food processing automation.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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S.No Fish type Predicted pH Value on 15th day of vacuum storage Freshness category

1 Mackerel 5.75768 Fresh

2 Sardine 6.5458 Moderately fresh

3 Prawn 5.85712 Fresh

4 Pomfret 6.5341 Moderately fresh

5 Red snapper 5.97256 Fresh

6 Cuttlefish 6.3252 Fresh

Table 6.  Freshness classification of fish samples based on predicted pH values.

 

S.No Fish type MSE RMSE MAE Predicted pH Values

1 Mackerel 0.005034 0.070949 0.062933 [6.1288 6.3068 6.7436]

2 Sardine 0.052419 0.228953 0.142333 [6.3112 6.4641 6.3999]

3 Prawn 0.021878 0.147912 0.126867 [6.3401 6.3272 6.7821]

4 Pomfret 0.004625 0.068007 0.065833 [5.86612 5.87182 6.5202 ]

5 Red snapper 0.012893 0.113547 0.107973 [5.87892 5.79684 6.732]

6 Cuttlefish 0.104992 0.324024 0.22476 [5.6548 5.7156 6.19612]

Table 5.  MAE, MSE and RMSE values.
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