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Fifth generation (5G) networks are desired to offer improved data rates employed for enhancing 
innovations of device-to-device (D2D) communication, small base stations densification, and multi-tier 
heterogeneous networks. In relay-assisted D2D communication, relays are employed to minimize data 
rate degradation when D2D users are distant from one another. However, resource sharing between 
relay-based and cellular D2D connections often results in mutual interferences, reducing the system 
sum rate. Moreover, traditional relay nodes consume their own energy to support D2D communication 
without gaining any benefit, affecting network sustainability. To address these challenges, this work 
proposes an efficient relay selection and resource allocation using the novel hybrid manta ray foraging 
with chef-based optimization (HMRFCO). The relay selection process considers parameters like spectral 
efficiency, energy efficiency, throughput, delay, and network capacity to attain effectual performance. 
Then, the data provided as the input to the adaptive residual gated recurrent unit (AResGRU) model 
for the automatic prediction of an optimal number of relays and allocation of resources. Here, the 
AResGRU technique’s parameters are optimized by the same HMRFCO for improving the prediction 
task. Finally, the designed AResGRU model offered the predicted outcome.

Keywords  Adaptive residual gated recurrent unit, Device-to-device communication, Hybrid manta-ray 
foraging with chef based optimization, Joint relay selection and resource allocation

Wireless communication networks should start the evolution to maintain the emerging requirement of large data 
rates because of growing mobile communication applications. With the enhancement of wireless communication, 
the spectrum resource requirement is developing1. With the development of 5G wireless devices, the wide-scale 
intelligent system’s access relatively results in the spectrum resource shortage. With artificial intelligence (AI), 
virtual reality, the medical sector, and voice detection applications in the sector of mobile communication, the 
computation operations result in much demand on the smart system’s data access and computation capacity2. 
But, restricted by the finite amount of spectrum resources, sending directly the offloading approach to the edge 
server leads to an enhancement in the smart system’s transmission energy in terms of transmission distance, 
bandwidth, and other attributes such as computation offloading cannot obtain higher energy efficacy3. The wide 
scale of transmission information cannot be ended because of the lower transmission rate of the data and latency 
factor, though mobile edge computing (MEC) offers high potential computational ability. Hence, edge caching is 
recommended to prevent unwanted redundant tasks and data transmission4. But the mobile application’s input 
data is continuously upgraded and the continuous information caching enhances the communication overhead 
hence the high energy utilization problem cannot be rectified the sustainability. Enhancing the transmission 
ability is a significant solution5. Thus, the D2D communication innovation is recommended to mitigate the issue 
properly. To enable the distance smart systems to employ the MEC server’s computational resource, a powerful 
relay must be supported for achieving the computing data’s transmission6.

In recent days, the communication in D2D has become highly popular because of its significant merits, 
numerous of that have been examined in research works7. The communication in D2D defines the direct 
communication technology among two cellular systems without subjecting via the base station. This assists to 
tune some cellular traffic to the D2D frameworks, improving the capacity of the network, enhancing the efficacy 
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of spectrum, decreasing the latency, and scaling coverage8. These merits make D2D communication highly 
applicable for the applications of social networking such as media sharing and wireless video streaming. Effective 
resource allocation offers a significant part in understanding the merits of D2D communications in improving 
spectral efficacy9. Most importantly, it is suitable to enable efficient D2D transmissions while ensuring the Quality 
of Service (QoS) of conventional cellular communications. The D2D communication’s direct model cannot be 
reliable because of the channel interferences and fading from cellular connections. Hence, it is significant to 
utilize the D2D relaying transmissions or the D2D connections in undesired transmission situations to improve 
the rates and reliability of the communication10. In addition, the D2D transmission’s resource allocation has 
attained high focus in the research sector11.

But, the D2D communications gives several limitations including energy consumption and spectrum 
sharing. Thankfully, the research sector is addressing these limitations12. With the relationship of wide-scale 
wireless systems, the consumption of global energy is enhanced further, and various experiments have been 
conducted to enhance energy efficacy and minimize consumption13. The resource allocation and selection 
of mode for the D2D connections is implemented; however, it does not focus on the mode of relay14. There 
are some other conventional techniques concentrating on the resource allocation for communication of 
D2D utilizing relays. However, the conventional techniques force the D2D connections to transmit via relays 
that cannot lead to better network functionality since the straight mode is a good option for effective D2D 
connections15. Nowadays, machine learning strategies have been employed to choose the relays with good 
functionality rates. According to the relay sources, nodes, and secrecy rates of the destination, machine learning 
strategies are largely employed16. But, the strategies of machine learning employ the evaluation factors such 
as bit-error probability, outage likelihood, and capacity to estimate the functionality are not focussed here17. 
As an outcome, energy efficacy is one of the numerous complexities in the future generation communication 
models. D2D communication enhances spectrum efficiency and reduces the latency in 5G networks. But it faces 
key challenges such as unreliable direct links and severe interference due to spectrum sharing. So, the relay 
assisted communication and resource allocation are useful to address this issue. However, the joint optimization 
of relay selection and resource allocation is a complex, multi-objective problem. It requires adaptive and scalable 
solutions. This paper proposes a hybrid optimization algorithm to improves the overall system performance in 
relay assisted D2D communication.

The implemented joint relay selection and resource allocation task includes the following contributions.

•	 To construct the joint relay selection and resource allocation task by utilizing hybrid heuristic-based deep 
learning that helps the D2D communication systems to perform error-free and rapid data transmissions.

•	 To design an AResGRU technique for performing the automatic prediction of an optimal number of relays 
and resource allocation. Here, the HMRFCO is supported for tuning the AResGRU technique parameters.

•	 To select the relays and resources optimally by utilizing the recommended HMRFCO approach that maximiz-
es the energy and spectral efficiency, and minimizes the delay. Moreover, it supports to improve the network 
capacity and throughput.

•	 To generate a new HMRFCO approach by hybridizing the conventional CBOA and MRFO approaches that 
help to optimally choose the relays, and resources in the D2D communication system.

•	 To examine the robustness and efficacy of the suggested approach by employing various performance metrics, 
traditional techniques, and algorithms.

The rest of the presented work is organized as given. Module II offers the literature works on the presented 
joint relay selection and resource allocation task in a D2D communication system. Module III elucidates the 
HMRFCO approach for parameter tuning in the D2D model. Module IV offers the system model of D2D 
communication and the description of sum rate and energy efficiency. Module V forecasting the resource and 
relay in the D2D model employing AResGRU and multi-objective function.

Existing works
Related works
Chen et al.18 have analyzed the issue of energy-efficient resource allocation in D2D communication. This work 
concentrated on improving the overall energy efficiency in entire D2D pairs while ensuring the secrecy rates and 
QoS demands. Dinkelbach’s algorithm was employed to convert the real fractional programming issue into a 
subtractive form. The simulation outcomes displayed that the model displayed superior functionality contrasted 
with other approaches.

Lee and Schober19 have suggested a deep learning mechanism for resource allocation optimization in D2D 
communication. Instead of resolving the resource allocation issue for each channel, the deep learning model was 
suggested, where the optimal resource allocation mechanism was suggested by employing deep neural network 
(DNN) techniques. The simulation outcomes ensured that the near-optimal performance was attained with 
minimal computational period.

Zhang et al.20 have suggested a system to decrease the overall transmission power utilization of the D2D 
connections. Experts derived the optimization issues and further implemented a distributed mechanism on the 
basis of game theory to rectify them. The simulation outcomes illustrated that the author’s task could highly 
minimize the transmission energy utilization contrasted with conventional tasks.

Salim et al.21 have recommended a low-complexity approach that estimated the reuse partners and offered 
two distinct mechanisms for selecting the optimal relay. The experiments displayed the suggested model’s 
behaviour under diverse attributes and its promising functionality when contrasted to one of the modern 
techniques concerning the energy efficacy of the relay and the sum rate of the links.
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Wang et al.22 have implemented a multi-relay technique and further evaluated the cooperation behaviours. 
Next, a simple mechanism was recommended to rectify the issue of relay selection, and further effective resource-
sharing issues were derived. The fairness and the system efficacy were ensured by several simulation outcomes.

Gu et al.23 have discussed the real-aided D2D communication from two views. At first, the relay selection 
issue was analyzed. A two phase’s relay selection as well as resource allocation mechanism was implemented. 
In the second phase, this work discovered that the two stages approach created a throughput unbalance issue. 
Hence, a throughput balance mechanism was implemented. The simulations displayed that the two-stage 
mechanism could improve the throughput of the relay-aided D2D communication.

Tian et al.24 have validated the joint relay selection as well as the resource allocation mechanism for the 
relay-based D2D communication models. The goal of this work was to improve the system’s overall transmission 
rate while ensuring the QoS demands. A social-aware relay selection method was implemented with minimum 
computational burdens for achieving the proper relay nodes to the D2D connections. The numerical solutions 
demonstrated that this mechanism was capable of enhancing the functionality of the system contrasted to other 
approaches.

Lyu et al.25 have concentrated on the resource allocation issue during the power transfer operation and the 
issue of resource allocation during the operation of data transmission. A credit approach was suggested for the 
resource allocation issue. Moreover, a Stackelberg differential game-aided approach was suggested for the issue 
of resource allocation. Through extensive validations, the efficacy of the model was validated.

Gui et al.26 have recommended an energy-efficient resource allocation mechanism for estimating the power 
allocation and channel selection by suggesting the non-cooperative game theory and a relay-oriented D2D 
communication system. This work mitigated the inter-cell interference and also reduced the interfering signal 
processing load. The energy efficiency was enhanced because of the transmission power minimization. The 
developed model achieved higher performance.

Ali et al.27 have derived the issue of energy efficiency maximization concerning the cell selection and 
resource allocation of the HetNet’s. The goal was to increase the throughput. This work recommended an 
Outer Approximation Algorithm (OAA) to rectify the issue of converted concave optimization. The model 
was estimated by extensive simulation tasks. The high functionality was achieved with the presence of distinct 
network parameters.

Feng et al.28 have discovered a new mechanism that integrated with the energy harvesting technology and 
D2D communication. The author’s objectives were to examine the enhancement of energy efficacy of the model 
by selecting relays and jointly allocating time. Hence, by employing the fractional programming theory, experts 
recommended the iterative optimization mechanism to rectify the convex optimization issue for attaining a 
better outcome. The outcomes displayed that the designed approach was highly enhanced contrasted with the 
baseline techniques.

Salim et al.29 have examined the Energy Harvesting (EH)-assisted two-way relaying (TWR) D2D 
communication distributing the conventional cellular network’s spectrum. This work recommended an energy 
efficiency (EE) trade-off EH-aided model (REET-EH). This model could do the resource allocation, relay 
selection, and power allocation optimally. The numerical outcomes displayed that the model enhanced the 
system functionality with other approaches.

Pasha et al.30 have presented a deep learning-based hybrid resource allocation framework that combines 
a metaheuristic hybrid particle swarm technique with a modified long short-term memory (LSTM) model. 
This strategy seeks to enhance the system capacity and optimize power control while taking quality of service 
limitations into accounts.

Liu et al.31 have suggested a joint resource allocation and the selection of a drone’s relay framework 
concentrating to enhance the sum rate of the D2D device while confirming the QoS demands for the D2D and 
cellular candidates. This work utilized a new approach for minimizing the computational complexity and offered 
an in-depth evaluation of the recommended work. The experimental solutions portrayed that the suggested 
framework enhanced the system functionality.

Li and Chen32 have presented a new resource allocation scheme for the D2D networks on the basis of 
enhanced Monte Carlo Tree Search (MCTS). In this work, optimal classification theory was employed to rectify 
the transmit power of the user. The simulation experiments explained that the suggested work offered better 
solutions than the conventional techniques.

Chauhan and Gupta33 have analysed the conventional approaches for D2D transmission pairs. By analysing 
these approaches, the authors implemented a new technique for the D2D networks. The recommended work 
enhanced the performance rates in any situation and then the authors performed the resource allocation. The 
experiments were carried out and realized that the model offered higher throughputs.

Li et al.34 have recommended a resource allocation and mode selection mechanism for D2D communication 
networks concentrating to attain a balance of user satisfaction and throughput. In order to store the offline 
channel state information, a technique was implemented on the basis of geographic location. The differential 
evolution approach was utilized in this work and estimated the user satisfaction. The outcomes explained that 
the recommended framework attained satisfactory outcomes.

Hussain et al.35 have implemented a new algorithm for rectifying the issues in the resource allocation in D2D 
networks. The research experiments displayed that the recommended approach outperformed the conventional 
techniques in estimating the specific power levels while facing the corresponding constraints, highly enhancing 
the capacity of the system and minimizing the interference.

Gopal36 has offered a sequential mechanism to reutilize the cellular-category resources and reduce the delay 
for the D2D users. This work presented a new optimization approach to enhance the throughput of the network. 
The presented work concentrated to improve the entire spectrum efficacy and throughput of the network. The 
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simulation experiments were carried out and outcomes illustrated that the recommended work attained higher 
efficiency.

Gopal and Velmurugan37 have implemented a hybrid mechanism for joint uplink and downlink to improve 
the throughput and allocate the resources. The optimization issue was derived as a mixed-integer non-linear 
issue that was normally NP-hard. The recommended technique could enhance the spectrum efficiency and 
throughput. The numerical analysis implied that the recommended task effectively outperformed the traditional 
techniques.

An et al.38 have modelled a resource allocation for the D2D device as a constrained optimization issue. 
Further, the suggested technique’s variable-coupling relationship was evaluated and the mathematical proof 
was provided. The effectiveness of the recommended task was validated and the experiments ensured that the 
suggested system provided the accurate solutions for the resource allocation tasks.

Jin et al.39 have explained about Unmanned Aerial vehicles (UAEs) for the next generation of wireless 
networks 5G/6G. Unfortunately, the low-power batteries that power the UAVs that are now in use severely 
restrict their operating life, leading to different degrees of communication disruptions and increased costs. As 
a result, increasing UAV communication’s energy efficiency (EE) has emerged as a critical issue that requires 
immediate attention. This article provides a thorough analysis of techniques to increase UAV energy efficiency 
(EE), including resource allocation and management, energy-saving communication protocol design, and UAV 
trajectory planning and deployment.

Gouda et al.40 suggested a subchannel assignment method to enhance the dynamic UAV-assisted cellular 
networks performance. By utilizing the dynamic hypergraph colouring, this method provides the best subchannel 
assignment while considering the social ties and interference into account. The simulations results showed that 
the suggested method has provided the better system throughput, energy efficiency and interference efficiency.

Austine and Pramila41 have implemented a hybrid approach combining flow direction algorithm (FDA) 
and chameleon swarm algorithm (CSA) to optimize the relay selection and resource allocation in D2D 
communication. The simulation results shows that the suggested algorithm enhances the sum rate and minimizes 
the mutual interference.

Austine, et al.42 have explained a genetic algorithm-adaptive bat optimization (GA-ABO) model for efficient 
resource allocation in cellular networks with D2D communication. The methods aims to enhance the throughput 
and reduce the interference.

Austine et al.43, in order to maximize spectrum allocation, power control, and link matching in cooperative 
D2D communications, this study investigates a hybrid strategy that combines centralized and distributed systems 
with deep reinforcement learning. The technique seeks to improve network performance and energy efficiency.

Research gaps and challenges
Joint optimization of relay selection and resource allocation can result in improved overall effectiveness in 
D2D communication. By synchronizing the allocation of assets and choosing the best relays, the network may 
make better use of the resources at hand, leading to improved efficiency and faster data rates. However, it adds 
intricacy to the whole thing, necessitating more advanced methods and processing resources. This variety can 
make systems more difficult to design and upkeep, which could lead to greater expenses and efficiency concerns, 
as well as increased communication and management overhead when exchanging data among equipment and 
the network as a whole. The features and changes of the existing joint optimization of relay selection and resource 
allocation models are given in Table 1. The section as shown below offers the research gaps.

•	 There is a need for more efficient algorithms that can handle the complexity of joint optimization in relay 
selection and resource allocation.

•	 Research is needed to develop energy-effective resource allocation techniques that consider the limited ener-
gy resources of D2D devices.

•	 There is a requirement to address the limitations encountered by dynamic network conditions, such as vary-
ing channel conditions and user mobility, in the joint optimization process.

•	 Research is needed to develop scalable solutions that can handle a large number of D2D users and optimize 
resource allocation and relay selection in such scenarios.

•	 More research is needed to incorporate different Quality of Service (QoS) demands of D2D candidates into 
the joint optimization process, considering factors like latency, reliability, and throughput.

Thus, effective joint optimization of relay selection and resource allocation is provided in this work for 
communication in D2D, and Table 1 offers the advantages and limitations of conventional joint optimization of 
relay selection and resource allocation approaches in D2D communication.

Hybrid manta-ray foraging with chief-based algorithm for parameter tuning used in 
D2D model
Conventional algorithm: MRFO
Numerous real-world optimization issues are relatively becoming difficult. Meta-heuristic approaches for 
managing the complexity of optimization issues are highly becoming famous. One of the nature-motivated 
optimization mechanisms is MRFO14, which offers a different optimization strategy for rectifying real-world 
optimization limitations. The intelligence of manta rays is considered in the existing MRFO. The manta rays have 
special foraging properties to resolve diverse optimization limitations. The MRFO’s functionalities are given as 
mathematically here.

The foraging properties including “chain foraging, cyclone foraging, and somersault foraging” are considered 
in this strategy.
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“Chain foraging” The manta rays are capable to monitor the plankton’s regions and going towards them. The 
plankton’s concentration decides the particular region’s effectiveness. Automatically, the MRFO takes the best 
outcome obtained so far. This phase is expressed in Eqs. (1) and (2).

	
lp
m (a + 1) =

{
lp
m (a) + j · (lp

bt (a) − lp
m (a)) + α · (lp

bt (a) − lp
m (a)) m = 1

lp
m (a) + j ·

(
lp
m−1 (a) − lp

m (a)
)

+ α · (lp
bt (a) − lp

m (a)) m = 2, . . . , X
� (1)

	 α = 2 · j ·
√

|log (j)|� (2)

In this, the weight coefficient is defined by α and the mth manta ray’s region at a time a is specified by lp
m (a) in 

pth dimension. The highly concentrated plankton is taken as lp
bt (a) and the random vector is taken as j in the 

limit of 0 and 1.
“Cyclone foraging” If the plankton is found underwater, the manta rays swim toward it in a spiral form. The 

groups of manta rays are designing spirals to conduct the foraging. The cyclone foraging is expressed in Eq. (3) 
for the 2D space.

	

{
Lm (a + 1) = Lbt + j · (Lm−1 (a) − Lm (a)) + exc · cos (2πc) · (Lbt − Lm (a))
Km (a + 1) = Kbt + j · (Km−1 (a) − Km (a)) + exc · sin (2πc) · (Kbt − Km (a)) � (3)

In this, in the boundary of 0 and 1, the selected arbitrary variable is taken as c.
The motion property is enlarged to the n-D space and it is simply shown in Eqs. (4) and (5).
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References Methodology Features Challenges

Chen et al.18 Dinkelbach’s 
algorithm

It helps to discover the optimal solution and enhance the performance of the overall 
system
It is robust to variations in the system parameters such as the number of systems, and 
interference levels

It increases the computational complexity and processing 
time
Its scalability is limited and sensitive to initial conditions

Lee and 
Schober19 DNN It can understand the difficult patterns and allocate the resources robustly

It has high flexibility and handles large-scale systems effectively

It requires more computational resources for effective 
training
It has limited interpretability and generalization 
capability

Zhang et 
al.20 TRSPC

Increases spectrum and energy conservation in D2D interactions
Allows for adaptive transmission pace choice and energy regulation, which improves 
the allocation of resources and relaying choice

Needs correct channel status data and complex 
computations for rate choice and control of power

Salim et al.21 RPRS-EH Enhances resource allocation and battery management simultaneously to increase 
system efficiency

Necessitate advanced strategies for optimization and 
actual time network data, which may increase computing 
costs

Wang et 
al.22

Multi-relay 
system model

Allows for more freedom in relay selection according to network circumstances and the 
needs of users
Offers for collaborative interaction across several relays, improving range and 
dependability in D2D systems

A drawback is the greater difficulty in relay choice and 
cooperation that may result in higher signaling overhead

Gu et al.23 Throughput 
balance scheme

It increases each system’s throughput and minimizes the interference among the 
systems
It enhances the QoS of each system and has high scalability

It is not optimal for all scenarios and demands additional 
hardware resources
It is not robust to channel variations, which affects the 
accuracy

Tian et al.24
Social-aware 
relay selection 
algorithm

By choosing the optimal relays, this model improves the energy efficiency and 
throughput of the system
It improves the relay selection process by focusing on the social relationships and the 
trust among the systems

It is not suitable for real time applications and is prone to 
social engineering threats
It demands additional information that is hard to achieve

Lyu et al.25

Stackelberg 
differential 
game-based 
model

It can be utilized in distinct scenarios and provides high efficiency
It improves resource allocation by concentrating on the strategic interactions among 
the systems

It is not robust to variations in the network topology
It gives poor performance when processing large scale 
systems

Gui et al.26
Non-
cooperative 
game theory

It helps to make decisions on the basis of its own self-interest thus improving the 
system’s performance
It minimizes the system overhead complexities

It takes more computational time to perform the 
resource allocation
It demands additional strategies to guarantee fairness

Ali et al.27 OAA It reduces the computational burdens and is robust to noise
It can converge faster to the optimal outcome contrasted to other algorithms

It fell into the local optimum trap and utilized more time 
to complete the iteration
It has limited scalability

Feng et al.28 EHA-CRD
Cognitive abilities allow smart allocation of resources and relay choice in response to 
supply and network circumstances
Uses methods of energy harvesting for powering D2D gadgets, decreasing reliance on 
outside power supplies

Climatic conditions may limit power collection, resulting 
in inconsistent power supply and communications 
problems

Salim et al.29 REET-EH
It enhances the energy efficiency and network lifetime
It improves the QoS by guaranteeing that the systems have the proper energy to 
transmit the data

It is not applicable to systems with limited EH capabilities
It struggles to provide better solutions with the system 
interferences

Table 1.  Features and challenges of the joint optimization of resource allocation and relay selection in D2D 
communication.
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	 β = 2ej1
A−a+1

A · sin (2πj1)� (5)

In this, the highest iteration is declared by A and the weight coefficient is indicated by β. The selected arbitrary 
factor in the range of 0 and 1 is shown as j1.

Entire manta rays searching for food sources as its reference region, therefore the cyclone foraging stage 
attained good exploitation. This strategy enables the MRFO task to gain an effective global search and it is given 
in Eqs. (6) and (7).

	 lp
rn = gp + j · (dp − gp)� (6)

	
lp
m (a + 1) =

{
lp
rn (a) + j · (lp

rn (a) − lp
m (a)) + β · (lp

rn (a) − lp
m (a)) m = 1

lp
rn (a) + j ·

(
lp
m−1 (a) − lp

m (a)
)

+ β · (lp
rn (a) − lp

m (a)) m = 2, . . . , X
� (7)

In this, the arbitrary boundary generated arbitrarily in the search area is taken as lp
rn and for the pth dimension’s 

upper bound is given by dp. For the pth dimension’s lower bound is declared by gp.
Somersault foraging Here, the food’s area is referred to as a pivot. All manta rays swim front and back near the 

pivot. Hence, the region is updated. This strategy is derived in Eq. (8).

	 lp
m (a + 1) = lp

m (a) + Z · (j2 · lp
bt − j3 · lp

m (a)) , m = 1, . . . , X � (8)

In this, the attribute of somersault is declared as Z . It controls the manta ray’s somersault limit. Further, the two 
arbitrary factors in the range of 0 and 1 are taken as j2 and j3. Algorithm 1 elucidates the pseudo-code for MRFO.

Population initialization, set maximum iteration

calculate the fitness function

For 

For 

Conduct cyclone foraging phase employing 

Eq. (6) and Eq. (7)

Conduct cyclone foraging phase using Eq. (4)

Conduct chain foraging phase employing Eq. (1)

Estimate the fitness of all manta rays

Conduct somersault foraging state employing Eq. (8)

End for

End for

Return best solution

A

Atoa 1

Xtom 1

5.0rnif

rn
A
aif

else

ifend
else

ifend

Algorithm 1.  Existing MRFO.

Conventional algorithm: CBOA
The CBOA15 is another meta-heuristic approach by inspiring the strategy of learning the cooking expertise in 
the training classes. The young and the cooking students are involved in the training classes to improve their 
cooking expertise and become chefs. This is employed in the CBOA concept.

Initialization The CBOA’s candidates are partitioned into two groups “chef instructors and cooking students”. 
T﻿he candidates of CBOA are shown in a matrix based on Eq. (9).
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


L1
...

Lm

...
LX




X×v

=




l1,1 · · · l1,s · · · l1,v

...
. . .

... . .
. ...

lm,1 · · · lm,s · · · lm,v

...
. . .

... . .
. ...

lX,1 · · · lX,s · · · lX,v




X×v

� (9)

The population matrix is specified as L. The mth candidate of CBOA is denoted as Lm and its sth dimension is 
lm,s. The size of the population and the issue factor’s count for the objective function are X and s.

At first, the CBOA’s region is arbitrarily initialized employing Eq. (10).

	 lm,s = gs + j · (ds − gs)� (10)

Here, for the sth issue factor’s upper bound is declared by ds. For the sth issue factor’s lower bound is declared by 
gs. The chosen arbitrary variable among 0 and 1 is specified as j.

In CBOA, the objective function is evaluated for each member employing Eq. (11).

	

Q =




Q1
...

Qm

...
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Q (L1)
...

Q (Lm)
...

Q (LX)




X×1

� (11)

In this, the fitness function’s vector is denoted as Q, and the mth member’s fitness function is specified as Qm.
After initialization, the CBOA moves to enhance the member outcome. The updating task of each group 

(chef and cooking student) is distinct. The arranged population matrix and fitness function are given in Eqs. (12) 
and (13).

	

LA =




LA1
...

LANC

LANC+1
...

LSX




X×v

=




la1,1 · · · la1,s · · · la1,v

...
. . .

... . .
. ...

laNC,1 · · · laNC,s · · · laNC,v

laNC+1,1 · · · laNC+1,s · · · laNC+1,v

...
. . .

... . .
. ...

laX,1 · · · laX,s · · · laX,v




X×v

� (12)

	

QA =




QA1
...

QANC

QANC+1
...

qSX




X×v

� (13)

Here, the chief instructor’s count is given as NC and the arranged CBOA’s population matrix is LA. The ordered 
objective function is QA. In the matrix LA, the candidates from LA1 to LANC   define the chef instructors, 
whereas the candidates from LANC+1 to LAX   define the cooking students.

Updating the chef instructor group The chef instructors are highly accountable for instructing the cooking 
skills to the students who exist in school. In this mechanism, the best instructor is selected and tries to teach the 
technique to the instructor. According to this, the chef instructor’s region is upgraded by employing Eq. (14).

	 laC/B1
m,s = lam,s + j · (Hs − M · lsm,s)� (14)

Here, the newly validated status of the arranged mth candidate is laC/B1
m  on the basis of the initial mechanism 

C/B1 and its sth dimension is laC/B1
m,s . The better instructor is provided as H and its sth dimension is Hs. 

From the set {1, 2}, the selected arbitrary variable is M. The updated region is accepted only if the fitness value is 
enhanced. It is derived in Eq. (15).

	
LAm =

{
LA

C/B1
m , QA

C/B1
m < Qm;

LAm else,
� (15)

Here, the LA
C/B1
m  candidate’s fitness function is taken as QA

C/B1
m .

In the next mechanism, the instructor concentrates to enhance her/his cooking skills on the basis of 
independent activities. Based on this strategy, for each instructor in the search region, an arbitrary region is 
produced employing Eqs. (16) to (18). If the arbitrary region enhances the fitness function, it is applicable for 
position updating employing Eq. (19)
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glcl

s = gs

a
� (16)

	
dlcl

s = ds

a
� (17)

	 laC/B2
m,s = lam,s + glcl

s + j ·
(
dlcl

s − glcl
s

)
, m = 1, 2, . . . , NC, j = 1, 2, . . . , v� (18)

	
LAm =

{
LA

C/B2
m , QA

C/B2
m < Qm;

LAm else,
� (19)

Here, the issue factor’s “upper and lower” regions are given as dlcl
s  and glcl

s . The iteration counter is indicated as 
a. Here, the newly validated status of the arranged mth candidate is laC/B2

m  on the basis of the initial mechanism 
C/B2 and its sth dimension is laC/B2

m,s . Here, the LA
C/B2
m  candidate’s fitness function is taken as QA

C/B2
m .

Updating the cooking student’s group The students participated in the school to understand the skills of 
cooking and become chefs. Based on this mechanism, the student is arbitrarily selected in a class taught by the 
chef. This mechanism estimated the new region utilizing Eq. (20).

	 laS/B1
m,s = lam,s + j ·

(
Kim,s − M · lam,s

)
� (20)

Here, the newly validated status of the arranged mth candidate is laS/B1
m  on the basis of the initial mechanism 

S/B1 and its sth dimension is laS/B1
m,s . The chosen chef instructor is provided as Kim,s  by mth the student is 

Hs. From the set {1, 2, …, NC}, the selected arbitrary variable is im,s.
The updated region is exchanged for the existing region, it enhances the fitness function and it is designed 

using Eq. (21).

	
LAm =

{
LA

S/B1
m , QA

S/B1
m < Qm;

LAm else,
� (21)

Here, the LA
S/B1
m  candidate’s fitness function is taken as QA

S/B1
m .

In the second mechanism, each issue factor is considered to be a cooking expertise, and the student 
concentrates to learn any one chef instructor’s skill entirely. Based on this idea, a new region is estimated by 
employing Eq. (22).

	
laS/B2

m,s =
{

Kim,s , s = n;
lam,s, else, � (22)

Further, it is exchanged with the traditional region on the basis of Eq. (23), if it enhances the fitness function.

	
LAm =

{
LA

S/B2
m , QA

S/B2
m < Qm;

LAm else,
� (23)

Here, the newly validated status of the arranged mth candidate is laS/B2
m  on the basis of the initial mechanism 

S/B2 and its sth dimension is laS/B2
m,s . Here, the LA

S/B2
m  candidate’s fitness function is taken as QA

S/B2
m .

In the third mechanism, each student concentrates to enhance his/her cooking skills on the basis of 
independent skills. Based on this idea, for each student in the search region, an arbitrary region is produced by 
Eqs. (16) and (17). Then, a new region is estimated by Eq. (24).

	
laS/B3

m,s =
{

lam,s + glcl
s + j.

(
dlcl

s − glcl
s

)
, s = f ;

lam,s, s ̸= f,
� (24)

Here, the newly validated status of the arranged mth candidate is laS/B3
m  on the basis of the initial mechanism 

S/B3 and its sth dimension is laS/B3
m,s . The variable f is selected from {1, 2, …, v}. Further, it is exchanged with 

the traditional region on the basis of Eq. (25), if it enhances the fitness function.

	
LAm =

{
LA

S/B3
m , QA

S/B3
m < Qm;

LAm else,
� (25)

Here, the LA
S/B3
m  candidate’s fitness function is taken as QA

S/B3
m . Algorithm 2 shows the pseudo-code of 

existing CBOA.

Scientific Reports |        (2025) 15:25179 8| https://doi.org/10.1038/s41598-025-08290-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Population initialization, set maximum iteration

Estimate the fitness function

For 

For 

Stage 1: Updating task of chef instructors

Estimate  employing Eq. (14)

Upgrade  employing Eq. (15)

Upgrade the issue variable’s “lower and upper bound” employing 

Eq. (16) and Eq. (17)

Estimate  employing Eq. (18)

Upgrade  employing Eq. (19)

Stage 2: Updating task of cooking students

Arbitrarily select the chef instructor 

Estimate  employing Eq. (20)

Upgrade  employing Eq. (21)

Estimate  employing Eq. (22)

Upgrade  employing Eq. (23)

Estimate  employing Eq. (16), Eq. (17), and Eq. (24)

Upgrade  employing Eq. (25)

End for

End for

Return best solution

A

Atoa 1

Xtom 1

1/ BC
mLA

mLA

2/ BC
mLA

mLA

1/ BS
mLA

mLA
2/ BS

mLA

mLA
3/ BS

mLA

mLA

Algorithm 2.  Existing CBOA.

Proposed hybrid algorithm: HMRFO
The HMRFCO is implemented for optimizing the resource allocation, relay selection, and also the parameters 
such as steps per epoch, size of epoch, and the count of hidden neurons that exist in the ResGRU technique. 
Generally, resource allocation faces issues such as poor communication, and resource underutilization. Likewise, 
the relay selection has several limitations such as inference issues and higher energy consumption. In addition 
to that, though the deep learning techniques offer promising outcomes, it may face computational complexities. 
In order to prevent these problems, an effective optimization approach is necessary. Hence, the HMRFCO is 
introduced for this purpose.

The HMRFCO is the hybrid algorithm, where the CBOA and MRFO algorithms are integrated due to these 
algorithm’s improved performance rates. The CBOA provides better outcomes for optimization issues and 
dealing with real-time applications. Similarly, the MRFO can handle complex optimization issues and has better 
convergence values. However, the CBOA has lower convergence rates, and MRFO struggles to perform well in 
real time applications. Therefore, these two modern algorithms are integrated and supported in this work. The 
recommended HMRFCO works on the basis of fitness values and the arbitrary variable in the boundary of 0 and 
1. The HMRFCO’s function is mathematically shown in Eq. (26).

	

if j >
crft

wrft

Update CBOA

else

Update MRF O

� (26)

Here, the random integer from the limit of 0 and 1 is pointed as j, and the worst fitness is declared as wrft. The 
current fitness is given as crft. If the selected random integer from 0 to 1 is greater than the value of crft

wrft  is then 
the CBOA algorithm is executed or else the MRFO algorithm is executed. Thus, the HMRFCO is implemented 
for optimization purposes. The pseudo-code of the recommended HMRFCO approach is given in Algorithm 3 
and Fig. 1 depicts the HMRFCO approach’s flowchart.
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Population initialization, set maximum iteration

Estimate the fitness function

For 

For 

Execute CBOA 

Stage 1: Updating task of chef instructors

Stage 2: Updating task of cooking students

Execute MRFO

Conduct cyclone foraging employing Eq. (4)

Conduct chain foraging employing Eq. (1)

Conduct somersault foraging employing Eq. 

(8)

End for

End for

Return best solution

A

Atoa 1

Xtom 1

wrft
crftjif

else

ifend

Algorithm 3.  Proposed HMRFCO.

Fig. 1.  Flowchart of recommended HMRFCO approach for optimization purpose.
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System model of device-to-device communication and description of sum rate and 
energy efficiency
System view of D2D model
The system view of the D2D28 device is shown in Fig. 2. An independent Cellular user (CU) is presented in the 
double-layered mobile network and that is denoted as B and the destination is referred to as D. Moreover, an 
individual RN is specified as Em; m = 1, 2, . . . , M . An individual source specified as C and is taken for this 
work. The base stations (BS)’s function specified as Q is to send power to the candidates of the D2D device 
on downlink transmission, and to obtain data from CU using the uplink transmission operation. The uplink 
task is only performed by the BS and it can obtain information via CU. Hence, a “frequency division duplex 
system” is taken. The allocated resource to the CU B concerning the uplink network is reemployed with the aid 
of the recommended RA-D2D device to one number as maximum. By the spectrum sharing underlay task, the 
candidates of D2D are enabling to utilize the resources continuously in the cellular uplink network. Hence, the 
variables Em and D are related to B. In the data transmission task, there is an impact on the variable Q because 
of C  amd Em. In this, it is taken that both the RA-D2D and the B connections are offered by the resources from 
the task of uplink communication. But this task can result in interferences. Hence, reasonable inference handling 
and power control techniques are necessary to rectify the mutual interference. Thus, the RA-D2D transmission 
link SINR and the obtained SINR at the BS are desired to rectify the mentioned issues.

The device is considered a “harvest-and-then-transmit”. The overall period desired for the transmission 
task is segmented into Wireless Energy Transmission (WET) and Wireless Information Transmission (WIT) 
modules. Further, the WIT is partitioned into two sections, where one sends the information from C to the relay 
at the region m in the impact of the interference signal from B. The other one sends the information to the relay 
m to D in the existence of interference. From the radio frequency (RF) signals, the power is produced by the BS 
in the WET module. In this protocol, the amplify-and-forward (AF) is employed. In this, a consideration is taken 
such that always the BS attains the signal achieved from B on the module of WIT. The power of the signal K0 is 
more than the noise power in the WET module as the D2D systems attain the signals of RF from the BS. Hence, 
no power is generated from the noise that exists in the channels. The energy produced in the WET module is 
formulated in Eqs. (27), (28), and (29).

	 WC = l0ηK0eQ,C � (27)

	 WDm = l0ηK0eQ,Cm � (28)

	 WD = l0ηK0eQ,C � (29)

In the above expressions, the variable η ∈ (0, 1) refers to the energy conversion’s efficacy. The variable l0 indicates 
the time utilized for the WET module and the energy gain is referred to as e. The SINR γ of data transferred from 
C  to Em in the WIT stage is expressed in Eqs. (30) and (31).

	
γC,Em = KCEC,Em

KBeB,Em + X0
� (30)

	
γEm,D = KEm eEm,D

KBeB,D + X0
� (31)

Here, the noise variance is specified as X0.
The joint achieved SINR at D is shown in Eq. (32).

	 γCCEEmm,DD = min {γCEl , γEmD}� (32)

Fig. 2.  System view of the D2D system.
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The data rate of the RA-D2D connection is given in Eq. (33).

	 EECEmDC = lcL log2 (1 + γCEmD) ; d = 1, 2� (33)

Here, the L specifies the bandwidth (fixed) that is offered in the system. The network faced two interferences 
one was data transmission from C  to , Em and the other was data transmission from Em to D. Hence, the BS 
attained SINR as derived in Eq. (34).

	
γB,Q =

{
KBeB,Q

KEm eQ,Em +X0
at l2

KBeB,Q

KC eQ,C +X0
at l1

� (34)

The information rate is formulated in Eq. (35)

	 EY = ldL log2 (1 + γB,Q) ; d = 1, 2� (35)

The overall energy employed in this module is shown in Eq. (36).

	
W = l1

KC

β
+ l2

KEm

β
� (36)

Here, the variable β ∈ (0, 1) specifies the power amplifier’s efficacy. The attributes l1 and l2 are the time 
employed for the WIT module.

Definition of sum rate
The variable SE (Y, L) refers to the sum rate in that, the attribute Y specifies the matrix illustration of the 
variable gv,b. In addition, the matrix illustration of the variable L is indicated as sv,b. Equation (37) derives the 
sum rate estimation.

	
SE (Y, L) =

∑
v∈D

∑
b∈X

gv,bSEb (gv,b, sv,b)� (37)

The pairs of the D2D system are given as Xv  and this pair of D2D Xv  distributes the resource equal to the 
variable. The variable’s Xv  value is hence offered as Xv = {b|gv,b = 1, ∀b ∈ X}. The communication device 
of D2D’s sum rate is concentrated to maintain at highest value. Equation (38) offers the mathematical format of 
this objective.

	
ob1 = arg min

{gv,b,sv,b}

(
1

SE (Y, L)

)
� (38)

The upcoming criteria are employed for achieving the above objective. To make the D2D pair connect with the 
individual CU in the resource module, the factor is employed gv,b, sv,b ∈ {0, 1} , ∀v ∈ D; b ∈ X .

The CU is assigned to most individual D2D pairs by the factor’s utilization  
∑

e∈U
gv,b ≤ 1, ∀b ∈ X  and ∑

bXv
sv,b ≤ 1, ∀v ∈ D such that sv,b = 0, ∀b /∈ Xv; v ∈ D.

The needed rate by each D2D pair is defined in terms of factor SEb (gv,b, sv,b) ≥ SEb.
In the entire optimization issue, there are no concave features are displayed toward the factors gv,b or sv,b. 

Hence, the above issue is considered a binary integer, non-linear, and non-convex issue with the 2DX attributes. 
The factor is reduced to an “NP-hard issue or 0–1 Knapsack issue”. The goal of achieving a high sum rate is 
accomplished by tuning the resource allocated OP F C

op  in the D2D system and transmission power T RF C
tr  by 

employing the HMRFCO approach to optimally choose the relay amounts along with conducting the joint 
resource allocation in the D2D system.

Definition of energy efficiency
The ratio among the data rate in the AR-D2D and the energy utilized by the D2D device is explained by the 
variable in this process. Equation (39) derived the EE.

	
EE = GCEm,I

j
� (39)

Here, the data rate is indicated as G, and the utilized energy is taken as j. The D2D system’s destination is given 
as I and the D2D system’s source is declared as C. The D2D system’s relay is specified as Em.

Enhancing the EE in the D2D transmission device by referring to the rate of data, SINR attained at E, time 
distribution l, and power control K is the primary objective of the optimal relay selection task. Equation (40) 
shows the objective of this task.

	
ob2 = arg min

{l,Kk,KEm }

( 1
EE

)
= l1KC + l2KEmm

GCEm,I
� (40)
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Here, the variable C · l · j1 : 0 < l1KC ≤ Jk, 0 < l2KEm ≤ JEm . The variable j1 specifies the utilized energy 
by the D2D system in the WIT module. The variable’s j1 value must not become higher than the energy that 
is produced in the WER module of the D2D device. The attributes that are needed to fulfill the lower SINR are 
denoted as j2 and j3.

These attributes are in the boundary presented as j2 →
(
γCEm ≥ γmin

Em

)
 and j3 →

(
γEm ≥ γmin

I

)
. The 

boundary provided to the information rate that has to be attained with the aid of DS in the D2D transmission 
device is specified as j4. The variable’s j4 value is in the boundary j4 →

[
L log2 (1 + γB,Q) ≥ Emin

B,Q

]
. This 

boundary allotment for the data transmission is indicated as j5. The variable’s j5 value exists in the bound 
l2 + l0 + l1 ≤ 1. The non-negative limit set to the assigned time and power is indicated as j6. The variable’s 
j6 value is in l2 + l0 + l1, KCC , KEm > 1. The objective ob2 is neither convex nor concave. Hence, fractional 
programming is employed to transmit it to an effective form. The goal of achieving higher EE is obtained with 
the transmission power T RF C

tr  optimization in the D2D system by employing the recommended HMRFCO to 
optimally choose the relays in the D2D system.

Forecasting the resource and relay in D2D model using residual GRU and multi-
objective function
Adaptive residual GRU for prediction
The AResGRU technique is supported in this work for performing the joint prediction. The ResGRU44 is an 
effective and recent deep learning approach. The ResNet can rectify the issue of system functionality degradation 
and the non-convergence issue created by the depth of the network. In the framework of the residual accumulation 
layer, it is considered that the input y is and the features learned with the aid of the network are denoted as I (y). 
It is expected that the network can understand the residual G (y) = I (y) − y, hence that the network’s real 
learning feature is enhanced to G (y) + y. The accumulation layer performs the identity mapping when the 
residual value is zero to prevent the redundancy created by the layer of the redundant network. The gradient is 
also rectified by this network. But, practically, the residual is not equal to zero. It makes the accumulation layer 
learn the new attributes of the given features, hence having better functionality.

A normal GRU can rectify the issue of gradient explosion effectively. But, when the input amount gets 
enhanced, the GRU causes network degradation, leading to the loss of several features of input data. To rectify 
this issue, a ResGRU is introduced. The GRU approach is employed in the residual block to draw out the time 
series features. In the ResGRU network, the residual module’s outcome is identical to the total of the GRU 
technique’s last layer’s outcome and the input y. Considering that the final layer of the GRU is z and the outcome 
zR of the residual module is derived in Eq. (41).

	 zR = ReLU (BNα,β (z) + h (yf ))� (41)

Here, ReLU (·) is the activation function, and the batch normalization is indicated as BN (·). In the function, 
the two learnable attributes are given as α and β. The adjustment function is denoted as h (·), making yf  and if   
with equal dimensions. Through the residual link, the ResGRU technique can remember the correlation among 
the data after and before the data and enhance the prediction functionality of the network while retaining the 
original data’s characteristic information.

AResGRU As mentioned earlier, the ResGRU is employed for performing the joint prediction task. However, 
the ResGRU can face computational burdens because of the network parameter’s high count. Hence, optimizing 
the network parameters such as steps per epoch, size of epoch, and the counts of hidden neurons are very 
significant in the prediction task. Because of this optimization process, the system errors are also reduced. For 
this objective, the HMRFCO is recommended. This is a hybrid algorithm with effective functionalities. Based 
on this algorithm, the mentioned network parameters are optimized. Equation (42) offers the objective function 
of this operation.

	
ob3 = arg min

{hnResGRU ,epResGRU ,seResGRU }
[RMSE + MSE + MAE]� (42)

Here, the ResGRU’s hidden neuron count is hnResGRU  and varies from [5–255]. The ResGRU’s epoch size is 
epResGRU  and varies from [5–50]. The ResGRU’s steps per epoch count are seResGRU  and vary from  [5–50]. 
In addition to that, the “root mean square error (RMSE), mean square error (MSE), and mean absolute error 
(MAE)” are minimized in the network by the suggested HMRFCO. These performance metrics are explained 
as follows.

RMSE: It is the performance signal that validates the difference among the actual and predicted values. It is 
expressed in Eq. (43)

	
RMSE =

√√√√∑V

h=1

∥∥∥s (f) − ⌢
s (f)

∥∥∥
2

V

� (43)

MSE: It is a statistical factor of how effectively an estimator works. It is formulated in Eq. (44).
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MSE = 1

V

V∑
h=1

(
s (f) − ⌢

s (f)
)2

� (44)

MAE: It is the factor of the mean size of faults in a group of predictions without considering directly. It is derived 
in Eq. (45).

	
MAE =

∑V

h=1

∣∣∣s (f) − ⌢
s (f)

∣∣∣
V

� (45)

Here, the amount of data points is denoted as V . The variable s (f) is the fth measurement and its related prediction 
is specified as ⌢s (f). Thus, the AResGRU is constructed for the prediction purpose using the HMRFCO approach. 
Here, the attributes such as “network size, number of D2D relays, mobility static, D2D source coordinates, the 
distance between D2D users, cellular user coordinates, cellular user base station coordinates, bandwidth, D2D 
destination coordinates, minimum decodable SINR at the D2D relay, minimum data rate requirement of the 
cellular user, minimum decodable SINR at the D2D destination, power amplifier efficiency, noise spectral 
density, the transmission power of the BS, the power conversion efficiency, the transmission power of the cellular 
user, and path gain for each link” are employed as the primary system configurations that are employed as input 
for the suggested optimal resource allocation and joint relay selection. These significant attributes are denoted 
as Syip

sy  and are given as input for the designed AResGRU network for making predictions. Finally, an accurate 
predicted outcome is achieved by the designed AResGRU approach and its structural diagram is shown in Fig. 3.

Joint approach of resource and relay selection using HMRFCO
Optimal relay selection and resource allocation are significant concepts in the D2D communication system. 
Resource allocation is the task of detecting and assigning the resources to the network to support the data 
transmission. Similarly, the relay selection is the operation of selecting the delay to better system reliability and 
performance. However, these two tasks may face limitations such as high-power consumption, interferences, 
and so on. These limitations must be resolved to perform error-free data transmission. Therefore, the attributes 
such as allocated resources for the channel and the transmission power must be optimized. For this objective, the 
suggested HMRFCO is supported due to its better functionalities. These attributes are optimally tuned to select 
the optimal number of relays for performing the data transmission in the network.

The transmission power optimization supports to improve the network lifespan and assists to manage the 
device connectivity in the D2D system. This is also supporting to minimize the energy consumption. Therefore, 
the network EE is increased. Moreover, to improve the spectral efficacy without affecting the Quality of Service 
(QoS), the D2D system resources have to be selected optimally. The improvement in spectral efficiency is 
supportive of minimizing the SNR and improving the capacity of the channel to perform the data transmission. 
The pictorial representation of HMRFCO-based optimal resource allocation and relay selection is given in Fig. 4.

Derivation of multi-objective function
As explained before, the HMRFCO is utilized for optimizing the allocated resources for the channel and the 
transmission power. By this process, the network complexities are prevented and the network’s efficiency is 
improved. This maximizes the network EE, spectral efficiency, network capacity, and throughput. Moreover, it 
minimizes the network delay. The objective function of this process is given in Eq. (46).

	
ob4 = arg max

{T RF C
tr

,OP F C
op }

[
SE + EE + T P + NC + 1

DY

]
� (46)

Here, the optimized transmission power is indicated as T RF C
tr , which varies from [2–128]. Further, the optimally 

selected resource is specified asOP F C
op  it ranges from [1-no of the channel]. Further, the network EE, spectral 

efficiency, network capacity, delay, and throughput are indicated as EE, SE, NC, DY, and TP respectively.

Results and discussions
Simulation setup
The implemented joint optimal relay selection and the resource allocation mechanism for the D2D 
communication device were implemented by employing the platform named MATLAB 2020a. Here, the 
HMRFCO approach utilized 10 populations, 250 highest iterations, and 3 as chromosome length. The synthetic 
simulation was used to generate dataset based on 3GPP TR 38.901 Urban Macrocell standard channel model by 
varying parameters. It includes relay node, mobility, noise, resource allocation, and interference, etc. The dataset 
includes 20,000 samples, split into 80% for training and 20% for testing of the AresGRU model across variable 
node densities (50–500), sub-channels (1–5), and relay positions. Hyperparameters were optimized by using the 
proposed HMRFCO algorithm to achieve minimal prediction error. Simulation and system parameter values 
and ranges have been mentioned in the Tables 2 and 3. The offered mechanism’s performance was validated by 
comparing it with conventional algorithms and techniques such as “Sand Cat Swarm Optimization (SCO)45, 
Flow Direction Algorithm (FDA)46, MRFO47, CBOA9, TRSPC20, RPRS-EH21, Multi-relay system model22, and 
EHA-CRD28”. Moreover, some of the conventional prediction techniques such as “deep neural network (DNN)48, 
support vector machine (SVM)49, long short-term memory (LSTM)30, ResGRU44 and and hybrid flow direction 
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with chameleon swarm algorithm-adaptive multi-layer perceptron (HFDCSA-AMLP)41” were employed for 
analyzing the recommended prediction approach.

Convergence evaluation of recommended HMRFCO
The recommended HMRFCO approach’s convergence assessment is carried out in Fig. 5 over various 
conventional optimization algorithms with the support of iteration counts. By varying the iteration counts, the 
convergence assessment is performed for the nodes 50, 100, 150, 200, and 250 in Fig. 5a–e, respectively. This 
evaluation has helped to validate the performance rates of the presented HMRFCO approach over conventional 
algorithms. When taking the 200th iteration in Fig. 5a, it has been shown that the suggested HMRFCO attained 
2%, 1.8%, 1%, and 1% higher convergence rates than the traditional algorithms such as SCO, FDA, MRFO, and 
CBOA respectively. This assessment has shown that, for all nodes the recommended HMRFCO achieving 95% of 
the optimal fitness within 180 iterations, but MRFO required 208 iterations, which is 13.35% faster than MRFO. 
Thus, it has been ensured that the presented HMRFCO approach is highly suitable for the recommended joint 
optimal resource allocation and relay selection mechanism in the D2D communication model.

Statistical evaluation of recommended HMRFCO
The statistical validation of the presented HMRFCO is carried out over conventional optimization approaches 
and presented in Tables 4 and 5. Here, the statistical metrics including “best, worst, mean, median, and standard 
deviation” are considered in this evaluation. This evaluation supports to validate whether the presented HMRFCO 
approach can able to choose the optimal relay, parameters, and resources for the D2D communication system. 
When considering the worst factor in the 250th node, the designed HMRFCO approach attained 17.97%, 
8.01%, 2.67%, and 2.19% better solutions than the traditional algorithms such as SCO, FDA, MRFO, and CBOA 
accordingly. These findings show that the suggested HMRFCO approach is more effective than the classical 

Fig. 3.  Structural diagram of recommended AResGRU for prediction.
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algorithms for achieving optimal solutions. For other node values also the presented HMRFCO showed better 
outcomes.

The following statistical analysis was carried out to guarantee the reliability and validity of the results obtained:
Each simulation was repeated 30 times with different random initializations to account for randomness in 

optimization and prediction processes.
For each performance metric (EE, Delay, Throughput, and RMSE), we calculated the mean, median, best 

value, worst value, and standard deviation over the 30 times.
To validate whether the proposed method (HMRFCO and AresGRU) was significantly outperformed by 

baseline methods.
We have checked the normality of the data distribution. If the data were normally distributed—a paired t-test 

was used (parametric test). Energy efficiency and RMSE are used in a paired t-test.

Parameter Description

Cell size 500 m × 500 m

Nodes [50, 100, 150, 200, 250]

Mobility Static

Number of CUEs 10–20

Number of DUEs 15–30

Number of relays 5–25

Number of resource blocks 1–5

Carrier frequency 2.1 GHz

Bandwidth per RB 180 kHz

Minimum data rate requirements 20–30 kbps

Transmission power (BS) 45–55 dBm

Transmission power (D2D) 23 dBm or 0.2 W

Transmission power (Relay) 20 dBm or 0.1 W

SINR threshold 5 dB

Channel model Rayleigh fading + Log-normal shadowing

Pathloss model 3GPP urban macrocell (TR 38.901)

Noise power density − 174 dBm/Hz

Mobility model Random waypoint model

Table 2.  System parameters.

 

Fig. 4.  Pictorial representation of HMRFCO-based optimal resource allocation and relay selection.
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If the data was not normally distributed, a Wilcoxon signed rank test (non-parametric test) was used. Delay 
is not normally distributed; a Wilcoxon test was used. For each comparison, 95% confidence intervals were 
calculated.

Therefore, the suggested HMRFCO for relay selection and resource allocation was confirmed by its consistent 
statistical superiority (p < 0.05) across all the node densities.

Number of nodes-based performance estimation of suggested joint optimal resource 
allocation and relay selection mechanism in the D2D communication system
The performance of the recommended approach is evaluated over conventional optimization algorithms and 
techniques by varying the number of nodes. Figure 6 shows the number of nodes-based performance validations 
of the recommended approach with relay over conventional optimization algorithms. Figure  6a shows that 
HMRFCO achieves superior resource utilisation by allocating power and channels. Figure 6b indicates delay, 
Fig. 6c depicts the energy efficiency, Fig. 6d shows the execution time, Fig. 6e represents the make span, Fig. 6f–j 
explore the network capacity, success rate, sum rate, throughput and average transmission power, respectively. 
Figure  7 (Fig. 7a–j, same as Fig. 6) depicts the number of nodes-based performance validations of the 
recommended approach with relay over conventional techniques. This evaluation has shown that the presented 
work is capable of working better with and without relays than the conventional algorithms and techniques. 
When considering the relay-based analysis, the energy efficiency of the presented scheme is increased by 40%, 
27.27%, 1.81%, and 3.63% higher than the conventional algorithms such as SCO, FDA, MRFO, and CBOA 
accordingly in Fig. 6c for 250th node. Moreover, it has been shown that the recommended scheme attained an 
energy efficiency of 0.764 bps/J, which is 5.95% more energy efficiency than the traditional algorithms. Also, 
it is same for the method analysis. When considering the without relay-based analysis, the suggested scheme’s 
throughput is highly enhanced by 33.82%, 19.11%, 8.23%, 19.11%, and 4.41% than the traditional techniques 
such as TRSPC, RPRS-EH, Multi-relay system model, EHA-CRD, and HFDCSA-AMLP appropriately in Fig. 7i 
for 200th node. This analysis has guaranteed that the suggested approach achieved 33.82% higher throughput 
than TRSPC, if there is no relay. Moreover, it has shown that the presented work attained 8.14% reducing delay 
than the conventional models. This is similar to the algorithm-based experiments also.

Number of subchannels based performance estimation of suggested joint optimal resource 
allocation and relay selection mechanism in the D2D communication system
The performance of the recommended joint optimal relay selection and resource allocation mechanism’s 
performance is analyzed using the various numbers of sub-channels over existing optimization techniques 
and techniques. Figure  8 displays the number of sub-channel-based performance analyses of recommended 
mechanisms with and without relays over conventional optimization approaches. Subgraphs from Fig.  8a–j 
show that the HMRFCO will gain with an increase in the number of subchannels, delay and makespan were 
decreased, network capacity, success rate were maximized, and adaptive power control also efficiently reduces 
the transmission. Figure 9 (Subgraphs from Fig. 9a–j) shows the number of sub-channel-based performance 
analyses of recommended mechanisms with and without relays over conventional techniques. When considering 
the relay-based analysis, it has been shown that the recommended scheme’s delay is minimized by 20% of 
TRSPC, 6.66% of RPRS-EH, 66.6% of Multi-relay system model, 24% of EHA-CRD and 2.66% of HFDCSA-
AMLP respectively in Fig. 9b for 3rd sub-channel. It is similar to the optimization algorithm-based analysis also. 
Moreover, while considering other performance metrics also, it has been portrayed that the suggested approach 
attained lower execution time and higher throughput than the conventional algorithms and techniques. When 
considering the without relay-based analysis, the suggested mechanism’s network capacity is enhanced by 4.76% 

Parameter Description

Simulation tool MATLAB R2020a

Number of simulation runs 30

Random seed 42

HMRFCO population size 10

HMRFCO max iterations 250

Chromosome length 3(sun-channel selection, power allocation, relay index)

HMRFCO convergence threshold 1e−5

AResGRU optimizer Adam

Learning rate 0.001

Batch size 32 [5–50]

Epochs 25 [5–50]

Hidden layers (AResGRU) 2 GRU layers
[128 and 64 neurons] [5–255]

Activation function ReLU

Loss function Mean square error (MSE)

Evaluation metrics EE, Delay, Throughput, RMSE, MAE, Success rate

Table 3.  Simulation and model parameters.
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Metric Compared methods Mean difference p value 95% confidence interval Test used

Energy efficiency (EE) (bits/joule) HMRFCO vs. MRFO + 0.043 0.0031 [0.0031, 0.0058] Paired t-test

Delay (ms) HMRFCO vs. MRFO − 4.3 0.0125 [− 6.8, − 1.1] Wilcoxon signed rank

Throughput (Mbps) HMRFCO vs. TRSPC + 6.3 0.0018 [4.0, 8.7] Paired t-test

RMSE AResGRU vs. ResGRU − 6.98 0.0028 [− 9.5. − 3.1] Paired t-test

Table 4.  Statistical significance of the proposed method.

 

Fig. 5.  Convergence validation of suggested HMRFCO approach over traditional optimization algorithms in 
terms of “(a) Node-50, (b) Node-100, (c) Node-150, (d) Node-200, and (e) Node-250”.

 

Scientific Reports |        (2025) 15:25179 18| https://doi.org/10.1038/s41598-025-08290-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


of SCO, 7.14% of FDA, 5% of MRFO, and 7.38% of CBOA respectively in Fig. 8f for the 5th sub-channel. This 
is similar to the method-based analysis also. Thus, it has been confirmed that the recommended mechanism 
showed higher optimization capabilities at node 250, increasing energy efficiency by 40% than SCO and 27.27% 
than FDA even if there is no relay. Also, the other performance metrics also elucidated that the presented work 
provided better outcomes than the conventional algorithms and techniques.

Performance estimation of the suggested prediction approach
The suggested prediction technique’s performance estimation is conducted in Fig. 10 over traditional algorithms 
and techniques by employing the activation function. Some of the effective activation functions such as “ReLU, 
linear, softmax, Tanh, and sigmoid” are considered in this analysis. Moreover, error measures such as MAE, 
MSE, and RMSE are supported for validating the recommended HMRFCO-AResGRU approach. This error-
based analysis shows that the suggested HMRFCO-AResGRU mechanism attained very low error rates than 
the conventional techniques. In Fig. 10a, the HMRFCO-AResGRU model has lowest prediction error and it 
achieves 43% lower MAE compared to DNN. Figure 10b, shows the MSE. When taking the linear activation 
function in Fig. 10c, the RMSE of the presented prediction task is reduced by 9.54% of SCO-AResGRU, 1.14% 
of FDA-AResGRU, 13.35% of MRFO-AResGRU, and 3.05% of CBOA-AResGRU respectively. Thus, it has been 
confirmed that the presented higher prediction accuracy was demonstrated by the AResGRU based prediction 
model, which reduced RMSE by 24.96% when compared to ResGRU and by 33.5% when compared to LSTM. 
Moreover, the analysis shows that the suggested prediction mechanism has shown improved performance rates 
than the conventional prediction techniques. It has been proved that the offered work can support the D2D 
communication system without any errors.

Overall performance estimation of the suggested prediction approach
Overall performance validation is performed for the suggested prediction technique over traditional algorithms 
and techniques. This analysis is shown in Table 6. By employing the error measures, this validation is conducted 
and the estimation showed that the recommended prediction mechanism attained very low error values than the 

Terms SCO45 FDA46 MRFO47 CBOA50 HMRFCO

“Node-50”

 “Best” 50.985 50.866 50.571 50.558 50.077

 “Worst” 57.276 56.437 56.485 54.347 55.486

 “Mean” 51.625 51.283 51.642 50.604 51.56

 “Median” 51.075 50.917 50.974 50.558 51.49

 “Standard deviation” 1.4938 1.0115 1.343 0.41332 1.5646

“Node-100”

 “Best” 51.292 50.352 50.49 50.641 50.348

 “Worst” 59.561 66.946 64.472 64.889 57.63

 “Mean” 51.978 50.902 51.007 51.703 50.959

 “Median” 52.201 50.352 50.49 51.277 50.348

 “Standard deviation” 0.98083 1.6165 1.4594 1.5156 1.6809

“Node-150”

 “Best” 51.361 50.899 50.42 50.829 50.413

 “Worst” 68.131 58.942 57.023 58.846 58.216

 “Mean” 52.341 51.081 51.381 51.492 51.184

 “Median” 52.309 50.899 51.177 50.829 51.191

 “Standard deviation” 1.4128 0.99278 1.4759 1.146 0.72187

“Node-200”

 “Best” 50.538 51.31 50.922 50.513 50.499

 “Worst” 57.017 59.653 56.433 54.062 56.4

 “Mean” 51.146 52.218 51.16 50.72 50.697

 “Median” 50.538 52.261 50.922 50.513 50.593

 “Standard deviation” 0.89678 1.3722 0.93672 0.58812 0.75118

“Node-250”

 “Best” 51.282 50.711 50.552 50.574 50.306

 “Worst” 66.883 52.149 58.211 57.939 56.393

 “Mean” 51.817 51.175 50.75 50.691 50.909

 “Median” 51.468 51.046 50.552 50.574 50.306

 “Standard deviation” 1.2612 0.4919 1.0008 0.82305 1.3473

Table 5.  Statistical evaluation of recommended HMRFCO algorithm over traditional optimization 
approaches.
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Fig. 6.  Number of nodes-based performance analysis of recommended joint optimal relay selection and 
resource allocation mechanism over traditional algorithms concerning “(a) Average resource utilization, (b) 
Delay, (c) Energy efficiency, (d) Execution time, (e) Makespan, (f) Network capacity, (g) Success rate, (h) Sum 
rate, (i) Throughput”, and (j) Average transmission power”.
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Fig. 7.  Number of nodes-based performance analysis of recommended joint optimal relay selection and 
resource allocation mechanism over traditional techniques concerning “(a) Average resource utilization, (b) 
Delay, (c) Energy efficiency, (d) Execution time, (e) Makespan, (f) Network capacity, (g) Success rate, (h) Sum 
rate, (i) Throughput”, and (j) Average transmission power”.
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Fig. 8.  Number of subchannels-based performance analysis of recommended joint optimal relay selection and 
resource allocation mechanism over traditional algorithms concerning “(a) Average resource utilization, (b) 
Delay, (c) Energy efficiency, (d) Execution time, (e) Makespan, (f) Network capacity, (g) Success rate, (h) Sum 
rate, (i) Throughput, and (j) Average transmission power”.
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Fig. 9.  Number of subchannels-based performance analysis of recommended joint optimal relay selection and 
resource allocation mechanism over traditional techniques concerning “(a) Average resource utilization, (b) 
Delay, (c) Energy efficiency, (d) Execution time, (e) Makespan, (f) Network capacity, (g) Success rate, (h) Sum 
rate, (i) Throughput, and (j) Average transmission power”.
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conventional approaches. The suggested prediction technique’s MAE is relatively minimized by 43% of DNN, 
41% of SVM, 27.75% of LSTM and 54.25% of ResGRU and 2.75% of HFDCSA-AMLP correspondingly. Thus, 
it has been ensured that the presented prediction mechanism is highly supportive of the D2D communication 
system than the other conventional approaches.

Time complexity analysis of recommended system over conventional algorithms
The suggested scheme’s time complexity is evaluated over conventional algorithms and presented in Table 7. 
From nodes 50–250 this estimation is conducted for verifying the time complexity of the suggested system. This 
analysis clearly shows that the recommended scheme utilizes much less amount of time for computation than 
the other techniques. This increases the efficacy of the suggested framework. Moreover, it has been proved that 
the presented work overcame the conventional techniques in terms of time and increased the reliability of the 
system. The peak memory consumption during training of the AResGRU model is approximately 240 MB. The 
performance tested up to 250 nodes and 5 subchannels (Figs. 6 and 9), for ultra dense 5G/6G networks, we can 
extend up to 1000+ nodes also.

Algorithm complexity:
HMRFCO: O (Population × Iteration × Dimensions).
AResGRU: O (Layers × neurons).

Conclusion
A robust and effective system has implemented in this paper for performing the optimal relay selection and 
resource allocation in the D2D communication device by utilizing the hybrid heuristic approach-based deep 
learning. This work concentrated to enhance the efficiency and sum rate of the entire D2D system and cellular 
links. For this objective, a new HMRFCO was developed, where the conventional CBOA and MRFO techniques 
were integrated. Moreover, the suggested HMRFCO was employed for optimizing the multi-objective functions 
such as throughput, delay and network capacity, EE, and spectral efficiency to attain better network functionality. 
In this task, the dataset was created from numerous scenarios that were given to the AResGRU technique for 
predicting the optimal relay selection and resource allocation techniques. Here, the parameters in the AResGRU 
approach were optimally determined by the same HMRFCO approach. The final prediction of the optimal 
resource allocation and relay selection was obtained by the AResGRU approach. The experiments were carried 
out to validate the functionality rate of the presented system. The recommended joint optimal relay selection 
and resource allocation approach’s success rate was highly enhanced by 4.12% of TRSPC, 9.27% of RPRS-EH, 
3.09% of Multi-relay system model, 7.21% of EHA-CRD, and 2.06% of HFDCSA-AMLP correspondingly when 
considering the number of sub-channels is 5 in the relay-based analysis. Thus, it has been confirmed that the 
presented joint optimal resource allocation and relay selection scheme attained 9.27% improvement in success 
rate and 6.66% reduction in delay than the conventional mechanisms such as RPRS-EH and the Multi-relay 
system. The presented work applies to numerous real-time transmission devices including 5G communication 
systems, multimedia and content sharing, E-health, gaming, local social networking, etc. Though the presented 
work provides very promising solutions, the prediction network may encounter poor generalization capabilities. 
Hence, in future work, a very effective hybrid or ensemble-based deep learning approach will be introduced to 
provide more generalization. UAV assisted D2D Communication can extend the coverage area, increase the 
Energy Efficiency, and throughput. Integrate D2D communication with RIS (Reconfigurable Intelligent Surface) 
to increase the EE and link reliability, and Multi-access Edge Computing (MEC) to reduce the load on central 
base station and low latency. The Reinforcement learning-based policy tuning to enable real-time adaptation of 
these parameters for even greater flexibility and responsiveness.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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