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Towards energy-efficient joint
relay selection and resource
allocation for D2D communication
using hybrid heuristic-based deep
learning

C. H. Ramesh Babu & S. Nandakumar®™®

Fifth generation (5G) networks are desired to offer improved data rates employed for enhancing
innovations of device-to-device (D2D) communication, small base stations densification, and multi-tier
heterogeneous networks. In relay-assisted D2D communication, relays are employed to minimize data
rate degradation when D2D users are distant from one another. However, resource sharing between
relay-based and cellular D2D connections often results in mutual interferences, reducing the system
sum rate. Moreover, traditional relay nodes consume their own energy to support D2D communication
without gaining any benefit, affecting network sustainability. To address these challenges, this work
proposes an efficient relay selection and resource allocation using the novel hybrid manta ray foraging
with chef-based optimization (HMRFCO). The relay selection process considers parameters like spectral
efficiency, energy efficiency, throughput, delay, and network capacity to attain effectual performance.
Then, the data provided as the input to the adaptive residual gated recurrent unit (AResGRU) model
for the automatic prediction of an optimal number of relays and allocation of resources. Here, the
AResGRU technique’s parameters are optimized by the same HMRFCO for improving the prediction
task. Finally, the designed AResGRU model offered the predicted outcome.

Keywords Adaptive residual gated recurrent unit, Device-to-device communication, Hybrid manta-ray
foraging with chef based optimization, Joint relay selection and resource allocation

Wireless communication networks should start the evolution to maintain the emerging requirement of large data
rates because of growing mobile communication applications. With the enhancement of wireless communication,
the spectrum resource requirement is developing!. With the development of 5G wireless devices, the wide-scale
intelligent system’s access relatively results in the spectrum resource shortage. With artificial intelligence (AI),
virtual reality, the medical sector, and voice detection applications in the sector of mobile communication, the
computation operations result in much demand on the smart system’s data access and computation capacity?.
But, restricted by the finite amount of spectrum resources, sending directly the offloading approach to the edge
server leads to an enhancement in the smart system’s transmission energy in terms of transmission distance,
bandwidth, and other attributes such as computation offloading cannot obtain higher energy efficacy®. The wide
scale of transmission information cannot be ended because of the lower transmission rate of the data and latency
factor, though mobile edge computing (MEC) offers high potential computational ability. Hence, edge caching is
recommended to prevent unwanted redundant tasks and data transmission®. But the mobile application’s input
data is continuously upgraded and the continuous information caching enhances the communication overhead
hence the high energy utilization problem cannot be rectified the sustainability. Enhancing the transmission
ability is a significant solution®. Thus, the D2D communication innovation is recommended to mitigate the issue
properly. To enable the distance smart systems to employ the MEC server’s computational resource, a powerful
relay must be supported for achieving the computing data’s transmission®.

In recent days, the communication in D2D has become highly popular because of its significant merits,
numerous of that have been examined in research works’. The communication in D2D defines the direct
communication technology among two cellular systems without subjecting via the base station. This assists to
tune some cellular traffic to the D2D frameworks, improving the capacity of the network, enhancing the efficacy
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of spectrum, decreasing the latency, and scaling coverage®. These merits make D2D communication highly
applicable for the applications of social networking such as media sharing and wireless video streaming. Effective
resource allocation offers a significant part in understanding the merits of D2D communications in improving
spectral efficacy®. Most importantly, it is suitable to enable efficient D2D transmissions while ensuring the Quality
of Service (QoS) of conventional cellular communications. The D2D communication’s direct model cannot be
reliable because of the channel interferences and fading from cellular connections. Hence, it is significant to
utilize the D2D relaying transmissions or the D2D connections in undesired transmission situations to improve
the rates and reliability of the communication'®. In addition, the D2D transmission’s resource allocation has
attained high focus in the research sector!!.

But, the D2D communications gives several limitations including energy consumption and spectrum
sharing. Thankfully, the research sector is addressing these limitations!?. With the relationship of wide-scale
wireless systems, the consumption of global energy is enhanced further, and various experiments have been
conducted to enhance energy efficacy and minimize consumption'®. The resource allocation and selection
of mode for the D2D connections is implemented; however, it does not focus on the mode of relay'. There
are some other conventional techniques concentrating on the resource allocation for communication of
D2D utilizing relays. However, the conventional techniques force the D2D connections to transmit via relays
that cannot lead to better network functionality since the straight mode is a good option for effective D2D
connections'”. Nowadays, machine learning strategies have been employed to choose the relays with good
functionality rates. According to the relay sources, nodes, and secrecy rates of the destination, machine learning
strategies are largely employed!®. But, the strategies of machine learning employ the evaluation factors such
as bit-error probability, outage likelihood, and capacity to estimate the functionality are not focussed here!”.
As an outcome, energy efficacy is one of the numerous complexities in the future generation communication
models. D2D communication enhances spectrum efficiency and reduces the latency in 5G networks. But it faces
key challenges such as unreliable direct links and severe interference due to spectrum sharing. So, the relay
assisted communication and resource allocation are useful to address this issue. However, the joint optimization
of relay selection and resource allocation is a complex, multi-objective problem. It requires adaptive and scalable
solutions. This paper proposes a hybrid optimization algorithm to improves the overall system performance in
relay assisted D2D communication.

The implemented joint relay selection and resource allocation task includes the following contributions.

« To construct the joint relay selection and resource allocation task by utilizing hybrid heuristic-based deep
learning that helps the D2D communication systems to perform error-free and rapid data transmissions.

« To design an AResGRU technique for performing the automatic prediction of an optimal number of relays
and resource allocation. Here, the HMRFCO is supported for tuning the AResGRU technique parameters.

« To select the relays and resources optimally by utilizing the reccommended HMRFCO approach that maximiz-
es the energy and spectral efficiency, and minimizes the delay. Moreover, it supports to improve the network
capacity and throughput.

« To generate a new HMRFCO approach by hybridizing the conventional CBOA and MRFO approaches that
help to optimally choose the relays, and resources in the D2D communication system.

« To examine the robustness and efficacy of the suggested approach by employing various performance metrics,
traditional techniques, and algorithms.

The rest of the presented work is organized as given. Module II offers the literature works on the presented
joint relay selection and resource allocation task in a D2D communication system. Module III elucidates the
HMRFCO approach for parameter tuning in the D2D model. Module IV offers the system model of D2D
communication and the description of sum rate and energy efficiency. Module V forecasting the resource and
relay in the D2D model employing AResGRU and multi-objective function.

Existing works

Related works

Chen et al.!® have analyzed the issue of energy-efficient resource allocation in D2D communication. This work
concentrated on improving the overall energy efficiency in entire D2D pairs while ensuring the secrecy rates and
QoS demands. Dinkelbach’s algorithm was employed to convert the real fractional programming issue into a
subtractive form. The simulation outcomes displayed that the model displayed superior functionality contrasted
with other approaches.

Lee and Schober!® have suggested a deep learning mechanism for resource allocation optimization in D2D
communication. Instead of resolving the resource allocation issue for each channel, the deep learning model was
suggested, where the optimal resource allocation mechanism was suggested by employing deep neural network
(DNN) techniques. The simulation outcomes ensured that the near-optimal performance was attained with
minimal computational period.

Zhang et al.?® have suggested a system to decrease the overall transmission power utilization of the D2D
connections. Experts derived the optimization issues and further implemented a distributed mechanism on the
basis of game theory to rectify them. The simulation outcomes illustrated that the author’s task could highly
minimize the transmission energy utilization contrasted with conventional tasks.

Salim et al.?! have recommended a low-complexity approach that estimated the reuse partners and offered
two distinct mechanisms for selecting the optimal relay. The experiments displayed the suggested model’s
behaviour under diverse attributes and its promising functionality when contrasted to one of the modern
techniques concerning the energy efficacy of the relay and the sum rate of the links.
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Wang et al.?? have implemented a multi-relay technique and further evaluated the cooperation behaviours.
Next, a simple mechanism was recommended to rectify the issue of relay selection, and further effective resource-
sharing issues were derived. The fairness and the system efficacy were ensured by several simulation outcomes.

Gu et al.2? have discussed the real-aided D2D communication from two views. At first, the relay selection
issue was analyzed. A two phase’s relay selection as well as resource allocation mechanism was implemented.
In the second phase, this work discovered that the two stages approach created a throughput unbalance issue.
Hence, a throughput balance mechanism was implemented. The simulations displayed that the two-stage
mechanism could improve the throughput of the relay-aided D2D communication.

Tian et al.? have validated the joint relay selection as well as the resource allocation mechanism for the
relay-based D2D communication models. The goal of this work was to improve the system’s overall transmission
rate while ensuring the QoS demands. A social-aware relay selection method was implemented with minimum
computational burdens for achieving the proper relay nodes to the D2D connections. The numerical solutions
demonstrated that this mechanism was capable of enhancing the functionality of the system contrasted to other
approaches.

Lyu et al.?> have concentrated on the resource allocation issue during the power transfer operation and the
issue of resource allocation during the operation of data transmission. A credit approach was suggested for the
resource allocation issue. Moreover, a Stackelberg differential game-aided approach was suggested for the issue
of resource allocation. Through extensive validations, the efficacy of the model was validated.

Gui et al.¢ have recommended an energy-efficient resource allocation mechanism for estimating the power
allocation and channel selection by suggesting the non-cooperative game theory and a relay-oriented D2D
communication system. This work mitigated the inter-cell interference and also reduced the interfering signal
processing load. The energy efficiency was enhanced because of the transmission power minimization. The
developed model achieved higher performance.

Ali et al.¥” have derived the issue of energy efficiency maximization concerning the cell selection and
resource allocation of the HetNets. The goal was to increase the throughput. This work recommended an
Outer Approximation Algorithm (OAA) to rectify the issue of converted concave optimization. The model
was estimated by extensive simulation tasks. The high functionality was achieved with the presence of distinct
network parameters.

Feng et al.?® have discovered a new mechanism that integrated with the energy harvesting technology and
D2D communication. The author’s objectives were to examine the enhancement of energy efficacy of the model
by selecting relays and jointly allocating time. Hence, by employing the fractional programming theory, experts
recommended the iterative optimization mechanism to rectify the convex optimization issue for attaining a
better outcome. The outcomes displayed that the designed approach was highly enhanced contrasted with the
baseline techniques.

Salim et al?® have examined the Energy Harvesting (EH)-assisted two-way relaying (TWR) D2D
communication distributing the conventional cellular network’s spectrum. This work recommended an energy
efficiency (EE) trade-off EH-aided model (REET-EH). This model could do the resource allocation, relay
selection, and power allocation optimally. The numerical outcomes displayed that the model enhanced the
system functionality with other approaches.

Pasha et al.’® have presented a deep learning-based hybrid resource allocation framework that combines
a metaheuristic hybrid particle swarm technique with a modified long short-term memory (LSTM) model.
This strategy seeks to enhance the system capacity and optimize power control while taking quality of service
limitations into accounts.

Liu et al.’! have suggested a joint resource allocation and the selection of a drones relay framework
concentrating to enhance the sum rate of the D2D device while confirming the QoS demands for the D2D and
cellular candidates. This work utilized a new approach for minimizing the computational complexity and offered
an in-depth evaluation of the recommended work. The experimental solutions portrayed that the suggested
framework enhanced the system functionality.

Li and Chen* have presented a new resource allocation scheme for the D2D networks on the basis of
enhanced Monte Carlo Tree Search (MCTS). In this work, optimal classification theory was employed to rectify
the transmit power of the user. The simulation experiments explained that the suggested work offered better
solutions than the conventional techniques.

Chauhan and Gupta® have analysed the conventional approaches for D2D transmission pairs. By analysing
these approaches, the authors implemented a new technique for the D2D networks. The recommended work
enhanced the performance rates in any situation and then the authors performed the resource allocation. The
experiments were carried out and realized that the model offered higher throughputs.

Li et al.** have recommended a resource allocation and mode selection mechanism for D2D communication
networks concentrating to attain a balance of user satisfaction and throughput. In order to store the offline
channel state information, a technique was implemented on the basis of geographic location. The differential
evolution approach was utilized in this work and estimated the user satisfaction. The outcomes explained that
the recommended framework attained satisfactory outcomes.

Hussain et al.*® have implemented a new algorithm for rectifying the issues in the resource allocation in D2D
networks. The research experiments displayed that the recommended approach outperformed the conventional
techniques in estimating the specific power levels while facing the corresponding constraints, highly enhancing
the capacity of the system and minimizing the interference.

Gopal® has offered a sequential mechanism to reutilize the cellular-category resources and reduce the delay
for the D2D users. This work presented a new optimization approach to enhance the throughput of the network.
The presented work concentrated to improve the entire spectrum efficacy and throughput of the network. The

Scientific Reports |

(2025) 15:25179 | https://doi.org/10.1038/s41598-025-08290-x nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

simulation experiments were carried out and outcomes illustrated that the recommended work attained higher
efficiency.

Gopal and Velmurugan®” have implemented a hybrid mechanism for joint uplink and downlink to improve
the throughput and allocate the resources. The optimization issue was derived as a mixed-integer non-linear
issue that was normally NP-hard. The recommended technique could enhance the spectrum efficiency and
throughput. The numerical analysis implied that the recommended task effectively outperformed the traditional
techniques.

An et al.’® have modelled a resource allocation for the D2D device as a constrained optimization issue.
Further, the suggested technique’s variable-coupling relationship was evaluated and the mathematical proof
was provided. The effectiveness of the reccommended task was validated and the experiments ensured that the
suggested system provided the accurate solutions for the resource allocation tasks.

Jin et al*® have explained about Unmanned Aerial vehicles (UAEs) for the next generation of wireless
networks 5G/6G. Unfortunately, the low-power batteries that power the UAVs that are now in use severely
restrict their operating life, leading to different degrees of communication disruptions and increased costs. As
a result, increasing UAV communication’s energy efficiency (EE) has emerged as a critical issue that requires
immediate attention. This article provides a thorough analysis of techniques to increase UAV energy efficiency
(EE), including resource allocation and management, energy-saving communication protocol design, and UAV
trajectory planning and deployment.

Gouda et al.** suggested a subchannel assignment method to enhance the dynamic UAV-assisted cellular
networks performance. By utilizing the dynamic hypergraph colouring, this method provides the best subchannel
assignment while considering the social ties and interference into account. The simulations results showed that
the suggested method has provided the better system throughput, energy efficiency and interference efficiency.

Austine and Pramila*! have implemented a hybrid approach combining flow direction algorithm (FDA)
and chameleon swarm algorithm (CSA) to optimize the relay selection and resource allocation in D2D
communication. The simulation results shows that the suggested algorithm enhances the sum rate and minimizes
the mutual interference.

Austine, et al.*? have explained a genetic algorithm-adaptive bat optimization (GA-ABO) model for efficient
resource allocation in cellular networks with D2D communication. The methods aims to enhance the throughput
and reduce the interference.

Austine et al.¥3, in order to maximize spectrum allocation, power control, and link matching in cooperative
D2D communications, this study investigates a hybrid strategy that combines centralized and distributed systems
with deep reinforcement learning. The technique seeks to improve network performance and energy efficiency.

Research gaps and challenges

Joint optimization of relay selection and resource allocation can result in improved overall effectiveness in
D2D communication. By synchronizing the allocation of assets and choosing the best relays, the network may
make better use of the resources at hand, leading to improved efficiency and faster data rates. However, it adds
intricacy to the whole thing, necessitating more advanced methods and processing resources. This variety can
make systems more difficult to design and upkeep, which could lead to greater expenses and efficiency concerns,
as well as increased communication and management overhead when exchanging data among equipment and
the network as a whole. The features and changes of the existing joint optimization of relay selection and resource
allocation models are given in Table 1. The section as shown below offers the research gaps.

o There is a need for more eflicient algorithms that can handle the complexity of joint optimization in relay
selection and resource allocation.

« Research is needed to develop energy-effective resource allocation techniques that consider the limited ener-
gy resources of D2D devices.

o There is a requirement to address the limitations encountered by dynamic network conditions, such as vary-
ing channel conditions and user mobility, in the joint optimization process.

 Research is needed to develop scalable solutions that can handle a large number of D2D users and optimize
resource allocation and relay selection in such scenarios.

» More research is needed to incorporate different Quality of Service (QoS) demands of D2D candidates into
the joint optimization process, considering factors like latency, reliability, and throughput.

Thus, effective joint optimization of relay selection and resource allocation is provided in this work for
communication in D2D, and Table 1 offers the advantages and limitations of conventional joint optimization of
relay selection and resource allocation approaches in D2D communication.

Hybrid manta-ray foraging with chief-based algorithm for parameter tuning used in
D2D model
Conventional algorithm: MRFO
Numerous real-world optimization issues are relatively becoming difficult. Meta-heuristic approaches for
managing the complexity of optimization issues are highly becoming famous. One of the nature-motivated
optimization mechanisms is MRFO'4, which offers a different optimization strategy for rectifying real-world
optimization limitations. The intelligence of manta rays is considered in the existing MRFO. The manta rays have
special foraging properties to resolve diverse optimization limitations. The MRFO’s functionalities are given as
mathematically here.

The foraging properties including “chain foraging, cyclone foraging, and somersault foraging” are considered
in this strategy.
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system efficiency

References | Methodology | Features Challenges
It helps to discover the optimal solution and enhance the performance of the overall Iti h ional lexi d .
Dinkelbach’s system t increases the computational complexity and processing
Chen etal.’® : ; o time
algorithm It is robust to variations in the system parameters such as the number of systems, and lability is limited and . initial conditi
interference levels Its scalability is limited and sensitive to initial conditions
It requires more computational resources for effective
Lee and DNN It can understand the difficult patterns and allocate the resources robustly training
Schober®® It has high flexibility and handles large-scale systems effectively It has limited interpretability and generalization
capability
Zhang et Increases spectrum and energy conservation in D2D interactions S Needs correct channel status data and complex
1.20 TRSPC Allows for adaptive transmission pace choice and energy regulation, which improves ions fe hoi d 1 of
a the allocation of resources and relaying choice computations for rate choice and control of power
Enhances resource allocation and battery management simultaneously to increase Necessitate advanced strategies for optimization and
Salim et al.?! | RPRS-EH Y i v actual time network data, which may increase computing

costs

Allows for more freedom in relay selection according to network circumstances and the

balance scheme It enhances the QoS of each system and has high scalability

Wang et Multi-rela needs of users A drawback is the greater difficulty in relay choice and
g y g Y Y
al.?? system model | Offers for collaborative interaction across several relays, improving range and cooperation that may result in higher signaling overhead
dependability in D2D systems
It increases each system’s throughput and minimizes the interference among the Itis not optimal for all scenarios and demands additional
23 Throughput hardware resources
Guetal. systems

It is not robust to channel variations, which affects the
accuracy

By choosing the optimal relays, this model improves the energy efficiency and
throughput of the system
It improves the relay selection process by focusing on the social relationships and the

Social-aware

Tian etal.? | relay selection

It is not suitable for real time applications and is prone to
social engineering threats

It can converge faster to the optimal outcome contrasted to other algorithms

algorithm It demands additional information that is hard to achieve
trust among the systems

Stackelberg I be utilized in disti . d ides hich effici Iti b ations in th K 1

differential t can be utilized in distinct scenarios and provides high efficiency t is not robust to variations in the netwqr topology
Lyu etal.®® ame-based It improves resource allocation by concentrating on the strategic interactions among It gives poor performance when processing large scale

§ the systems systems

model

Non- It helps to make decisions on the basis of its own self-interest thus improving the It takes more computational time to perform the
Guietal® | cooperative system’s performance resource allocation

game theory It minimizes the system overhead complexities It demands additional strategies to guarantee fairness

. . . 1t fell into the local optimum trap and utilized more time

Ali et al?? OAA It reduces the computational burdens and is robust to noise to complete the iteration

It has limited scalability

Cognitive abilities allow smart allocation of resources and relay choice in response to
supply and network circumstances

Uses methods of energy harvesting for powering D2D gadgets, decreasing reliance on
outside power supplies

Fengetal?® | EHA-CRD

Climatic conditions may limit power collection, resulting
in inconsistent power supply and communications
problems

It enhances the energy efficiency and network lifetime
It improves the QoS by guaranteeing that the systems have the proper energy to
transmit the data

Salim et al.? | REET-EH

It is not applicable to systems with limited EH capabilities
It struggles to provide better solutions with the system
interferences

Table 1. Features and challenges of the joint optimization of resource allocation and relay selection in D2D

communication.

“Chain foraging” The manta rays are capable to monitor the plankton’s regions and going towards them. The

plankton’s concentration decides the particular region’s effectiveness. Automatically, the MRFO takes the best
outcome obtained so far. This phase is expressed in Egs. (1) and (2).

» ] B(a) 4+ (1, (a) =15 (@) + - (I}, (a) — 15, (a)) m=1
b (““){ B (a)+5- (10 (@) 18, (@) +a- (2 (@) -1 (@) m=2...x O
a=2-j5-+/[log(j)] )

In this, the weight coefficient is defined by o and the mth manta ray’s region at a time a is specified by {7, (a) in
pth dimension. The highly concentrated plankton is taken as I}, (a) and the random vector is taken as j in the
limit of 0 and 1.

“Cyclone foraging” If the plankton is found underwater, the manta rays swim toward it in a spiral form. The
groups of manta rays are designing spirals to conduct the foraging. The cyclone foraging is expressed in Eq. (3)
for the 2D space.

{ %{Tn(a—i-l)*

(a+1)
In this, in the boundary of 0 and 1, the selected arbitrary variable is taken as c.
The motion property is enlarged to the n-D space and it is simply shown in Egs. (4) and (5).
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A—a+1

B =2 - sin (27j1) (5)
In this, the highest iteration is declared by A and the weight coefficient is indicated by f8. The selected arbitrary
factor in the range of 0 and 1 is shown as j;.

Entire manta rays searching for food sources as its reference region, therefore the cyclone foraging stage
attained good exploitation. This strategy enables the MRFO task to gain an effective global search and it is given
in Egs. (6) and (7).

FPn=g"+37-(d"—g") (6)
, [ B@t i @@ B @) 48 @ @) - m=]
lm@“)—{wnmw (B (@)~ B (@) + 8- (B (@)~ B () m=2...x @

In this, the arbitrary boundary generated arbitrarily in the search area is taken as [%,, and for the pth dimension’s
upper bound is given by dP. For the pth dimension’s lower bound is declared by ¢”.

Somersault foraging Here, the foods area is referred to as a pivot. All manta rays swim front and back near the
pivot. Hence, the region is updated. This strategy is derived in Eq. (8).

Plat)y=0(a)+Z (G2 -8, —js- 18, (a)), m=1,...,X (8)

In this, the attribute of somersault is declared as 7. It controls the manta ray’s somersault limit. Further, the two
arbitrary factors in the range of 0 and 1 are taken as j, and j,. Algorithm 1 elucidates the pseudo-code for MRFO.

Population initialization, set maximum iteration 4
calculate the fitness function

Fora=1l to A
For m=1to X
if rn<0.5

. a
] —<rn
i =

Conduct cyclone foraging phase employing
Eq. (6) and Eq. (7)
else

Conduct cyclone foraging phase using Eq. (4)
end if
else
Conduct chain foraging phase employing Eq. (1)
end if
Estimate the fitness of all manta rays
Conduct somersault foraging state employing Eq. (8)
End for
End for

Return best solution

Algorithm 1. Existing MRFO.

Conventional algorithm: CBOA
The CBOA is another meta-heuristic approach by inspiring the strategy of learning the cooking expertise in
the training classes. The young and the cooking students are involved in the training classes to improve their
cooking expertise and become chefs. This is employed in the CBOA concept.

Initialization The CBOA’ candidates are partitioned into two groups “chef instructors and cooking students”.
The candidates of CBOA are shown in a matrix based on Eq. (9).
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L i li,s l1
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The population matrix is specified as L. The mth candidate of CBOA is denoted as L., and its sth dimension is
Im,s. The size of the population and the issue factor’s count for the objective function are X and s.
At first, the CBOA' region is arbitrarily initialized employing Eq. (10).

lm,s = gs +] . (ds - gs) (10)

Here, for the sth issue factor’s upper bound is declared by d. For the sth issue factor’s lower bound is declared by
gs. The chosen arbitrary variable among 0 and 1 is specified as j.
In CBOA, the objective function is evaluated for each member employing Eq. (11).

Q1 Q (L)
Q= Qum = | QLm) (11)
Q.X Xx1 Q(LX) Xx1

In this, the fitness function’s vector is denoted as Q, and the mth member’s fitness function is specified as Q..

After initialization, the CBOA moves to enhance the member outcome. The updating task of each group
(chef and cooking student) is distinct. The arranged population matrix and fitness function are given in Egs. (12)
and (13).

LA, lai e la,s e lai v
_ LAnc _ la!\;C,l la}\}c,s laN.C,v
LA= LANc+1 | lanc+11 s lanc+1,s s lanc+1,v (12)
LSX X Xv laX’l laX’S l(lX,v X Xv
QA1
_ QAnc
QA= QANC1 (13)
qSX X Xv

Here, the chief instructor’s count is given as NC and the arranged CBOA’s population matrix is LA. The ordered
objective function is QA. In the matrix LA, the candidates from LA; to LAnc define the chef instructors,
whereas the candidates from LAnc 41 to LAx define the cooking students.

Updating the chef instructor group The chef instructors are highly accountable for instructing the cooking
skills to the students who exist in school. In this mechanism, the best instructor is selected and tries to teach the
technique to the instructor. According to this, the chef instructor’s region is upgraded by employing Eq. (14).

165/ BY =l + 5 (Hy — M - lsm,5) (14)

Here, the newly validated status of the arranged mth candidate is laﬁ/ B 4n the basis of the initial mechanism
C/B1 and its sth dimension is laTCn,fl. The better instructor is provided as H and its sth dimension is H.
From the set {1, 2}, the selected arbitrary variable is M. The updated region is accepted only if the fitness value is
enhanced. It is derived in Eq. (15).

_J nAS/P QAT < Qs
LAm = { LA, else, (15)

Here, the LAS/ Bl candidate’s fitness function is taken as QATC,/ Bl

In the next mechanism, the instructor concentrates to enhance her/his cooking skills on the basis of
independent activities. Based on this strategy, for each instructor in the search region, an arbitrary region is
produced employing Egs. (16) to (18). If the arbitrary region enhances the fitness function, it is applicable for
position updating employing Eq. (19)
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lel

_ 9
s . (16)
dy = % (17)
lag/?? =lams+ g +j- (d' —gi"), m=1,2,...,NC, j=1,2,...,v (18)
_ 1 nAS/P QAN < Qs
LAm = { LA, else, (19)

Here, the issue factor’s “upper and lower” regions are given as d." and g, The iteration counter is indicated as
ciB2’ .
a. Here, the newly validated status Cgf the arranged mth candldate islaw ~~ on the basis of the initial mecchamsm
C'/B2 and its sth dimension is lam/ 52 Here, the LAS/”? candidate’ fitness function is taken as Q A/
Updating the cooking students group The students participated in the school to understand the skills of
cooking and become chefs. Based on this mechanism, the student is arbitrarily selected in a class taught by the

chef. This mechanism estimated the new region utilizing Eq. (20).

lag/St =lam o +j - (Kip, — M lam) (20)

Here, the newly validated status of the arranged mth candidate is laysn/ Bl 4n the basis of the initial mechanism
S/B1 and its sth dimension is lan{s . The chosen chef instructor is provided as K;,, , by mth the student is
H,. From the set {1, 2, ..., NC}, the selected arbitrary variable is 7., s.

The updated region is exchanged for the existing region, it enhances the fitness function and it is designed
using Eq. (21).

m,s

_ oAyt QAN < Qs
LAm = { LA, else, 1)

Here, the LAS/ Bl andidate’s fitness function is taken as QAgL/Bl.

In the second mechanism, each issue factor is considered to be a cooking expertise, and the student
concentrates to learn any one chef instructor’s skill entirely. Based on this idea, a new region is estimated by
employing Eq. (22).

lafn/SB2 = { Ki'm,b" s =n;

lam,s, else, (22)

Further, it is exchanged with the traditional region on the basis of Eq. (23), if it enhances the fitness function.

_ LAy QAN < Qu;
LAm = { LA,, else, (23)

Here, the newly validated status of the arranged mth candidate is lam 2 on the basis of the initial mechanism
S/ B2 and its sth dimension is lafn/, ?2 Here, the LAm/ B2 Candidate’s fitness function is taken as QAiL/BQ.

In the third mechanism, each student concentrates to enhance his/her cooking skills on the basis of
independent skills. Based on this idea, for each student in the search region, an arbitrary region is produced by
Egs. (16) and (17). Then, a new region is estimated by Eq. (24).

S/B3: lamg—|—gld (dl(’l l(‘l)7 Szf,
lay) s { lapn . s 4. (24)
Here, the newly validated status of the arranged mth candidate is la/ ®? on the basis of the initial mechanism
S/ B3 and its sth dimension is lam/ s . The variable fis selected from {1, 2, ..., v}. Further, it is exchanged with
the traditional region on the basis of Eq. (25), if it enhances the fitness functlon.

LA QAN < Qs
LAm = { LA, else, (25)
Here, the LAS/”? candidate’s fitness function is taken as QAn/ °°. Algorithm 2 shows the pseudo-code of

existing CBOA.
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Population initialization, set maximum iteration 4
Estimate the fitness function

Fora=l to A
For m=1to X
Stage 1: Updating task of chef instructors
Estimate LAS/ Bl employing Eq. (14)

Upgrade L4, employing Eq. (15)

Upgrade the issue variable’s “lower and upper bound” employing
Eq. (16) and Eq. (17)

Estimate LAS/B2 employing Eq. (18)
Upgrade LAm employing Eq. (19)

Stage 2: Updating task of cooking students
Arbitrarily select the chef instructor
Estimate LA 5 'l employing Eq. (20)
Upgrade LA,, employing Eq. (21)
Estimate LAi/BZ employing Eq. (22)
Upgrade LA4,, employing Eq. (23)
Estimate LA,i/B3 employing Eq. (16), Eq. (17), and Eq. (24)
Upgrade LA, employing Eq. (25)
End for
End for

Return best solution

Algorithm 2. Existing CBOA.

Proposed hybrid algorithm: HMRFO

The HMRFCO is implemented for optimizing the resource allocation, relay selection, and also the parameters
such as steps per epoch, size of epoch, and the count of hidden neurons that exist in the ResGRU technique.
Generally, resource allocation faces issues such as poor communication, and resource underutilization. Likewise,
the relay selection has several limitations such as inference issues and higher energy consumption. In addition
to that, though the deep learning techniques offer promising outcomes, it may face computational complexities.
In order to prevent these problems, an effective optimization approach is necessary. Hence, the HMRFCO is
introduced for this purpose.

The HMRFCO is the hybrid algorithm, where the CBOA and MRFO algorithms are integrated due to these
algorithm’s improved performance rates. The CBOA provides better outcomes for optimization issues and
dealing with real-time applications. Similarly, the MRFO can handle complex optimization issues and has better
convergence values. However, the CBOA has lower convergence rates, and MRFO struggles to perform well in
real time applications. Therefore, these two modern algorithms are integrated and supported in this work. The
recommended HMRFCO works on the basis of fitness values and the arbitrary variable in the boundary of 0 and
1. The HMRFCO’s function is mathematically shown in Eq. (26).

., . crft
if 3> wr ft

Update CBOA (26)
else

Update MRFO

Here, the random integer from the limit of 0 and 1 is pointed as j, and the worst fitness is declared as wrft. The

current fitness is given as crft. If the selected random integer from 0 to 1 is greater than the value of Sfrift

the CBOA algorithm is executed or else the MRFO algorithm is executed. Thus, the HMRFCO is implemented
for optimization purposes. The pseudo-code of the recommended HMRFCO approach is given in Algorithm 3
and Fig. 1 depicts the HMRFCO approach’s flowchart.

is then
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End
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Fig. 1. Flowchart of reccommended HMRFCO approach for optimization purpose.

Population initialization, set maximum iteration 4
Estimate the fitness function

Fora=1 to A
For m=1to X

Execute CBOA

Stage 1: Updating task of chef instructors

Stage 2: Updating task of cooking students
else

Execute MRFO

Conduct cyclone foraging employing Eq. (4)

Conduct chain foraging employing Eq. (1)

Conduct somersault foraging employing Eq.
®
end if
End for

End for

Return best solution

Algorithm 3. Proposed HMRFCO.
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System model of device-to-device communication and description of sum rate and
energy efficiency

System view of D2D model

The system view of the D2D?8 device is shown in Fig. 2. An independent Cellular user (CU) is presented in the
double-layered mobile network and that is denoted as B and the destination is referred to as D. Moreover, an
individual RN is specified as Ep,; m = 1,2,..., M. An individual source specified as C and is taken for this
work. The base stations (BS)’s function specified as Q is to send power to the candidates of the D2D device
on downlink transmission, and to obtain data from CU using the uplink transmission operation. The uplink
task is only performed by the BS and it can obtain information via CU. Hence, a “frequency division duplex
system” is taken. The allocated resource to the CU B concerning the uplink network is reemployed with the aid
of the recommended RA-D2D device to one number as maximum. By the spectrum sharing underlay task, the
candidates of D2D are enabling to utilize the resources continuously in the cellular uplink network. Hence, the
variables E,, and D are related to B. In the data transmission task, there is an impact on the variable Q because
of C'amd E)y,. In this, it is taken that both the RA-D2D and the B connections are offered by the resources from
the task of uplink communication. But this task can result in interferences. Hence, reasonable inference handling
and power control techniques are necessary to rectify the mutual interference. Thus, the RA-D2D transmission
link SINR and the obtained SINR at the BS are desired to rectify the mentioned issues.

The device is considered a “harvest-and-then-transmit” The overall period desired for the transmission
task is segmented into Wireless Energy Transmission (WET) and Wireless Information Transmission (WIT)
modules. Further, the WIT is partitioned into two sections, where one sends the information from C to the relay
at the region m in the impact of the interference signal from B. The other one sends the information to the relay
m to D in the existence of interference. From the radio frequency (RF) signals, the power is produced by the BS
in the WET module. In this protocol, the amplify-and-forward (AF) is employed. In this, a consideration is taken
such that always the BS attains the signal achieved from B on the module of WIT. The power of the signal Ko is
more than the noise power in the WET module as the D2D systems attain the signals of RF from the BS. Hence,
no power is generated from the noise that exists in the channels. The energy produced in the WET module is
formulated in Egs. (27), (28), and (29).

We = lonKoeq,c (27)
Wbp,, = lonKoeq,c,, (28)
Wp = lonKoeq,c (29)

In the above expressions, the variable € (0, 1) refers to the energy conversion’s efficacy. The variable [y indicates
the time utilized for the WET module and the energy gain is referred to as e. The SINR y of data transferred from
C to B, in the WIT stage is expressed in Eqgs. (30) and (31).

KcEc g,

=G 30
ve.s Kgeg g, +Xo (30)
Kg,,eE,,.D
mo = = e 31
TEm.D Kpgep,p + Xo (1)
Here, the noise variance is specified as X.
The joint achieved SINR at D is shown in Eq. (32).
YCCEEmm,pD = Min{YCE,, YEnD} (32)

-D2D lnk e -Interference
Q -Base Station B -Cellular user

D -D2D destination Eu -D2Drelay nodes

Fig. 2. System view of the D2D system.
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The data rate of the RA-D2D connection is given in Eq. (33).

EEcg,,pc =l.Llog, (1+cE,p); d=1,2 (33)

Here, the L specifies the bandwidth (fixed) that is offered in the system. The network faced two interferences
one was data transmission from C' to , I, and the other was data transmission from E,, to D. Hence, the BS
attained SINR as derived in Eq. (34).

Kpep,Q
—_— at o
Kg,, cq By, +X
YB,Q = ey lom 0 il (34)
Kceq,c+Xo 1

The information rate is formulated in Eq. (35)
Ey :ldLlog2 (1+’YB,Q)§ d= 1,2 (35)
The overall energy employed in this module is shown in Eq. (36).

K K
W:h?c + 12 gm

(36)

Here, the variable 5 € (0,1) specifies the power amplifiers efficacy. The attributes [; and I are the time
employed for the WIT module.

Definition of sum rate

The variable SE (Y, L) refers to the sum rate in that, the attribute Y specifies the matrix illustration of the
variable g, 5. In addition, the matrix illustration of the variable L is indicated as s,,. Equation (37) derives the
sum rate estimation.

SE (Ya L) = Z Z gv,bSEb (gv,b, Sv,b) (37)

veD beX

The pairs of the D2D system are given as X, and this pair of D2D X, distributes the resource equal to the
variable. The variable’s X, value is hence offered as X, = {b|g,,» = 1,Vb € X }. The communication device
of D2D’s sum rate is concentrated to maintain at highest value. Equation (38) offers the mathematical format of
this objective.

. 1
ob = {z:rgb Ignlil} <SE 7 L)) (38)

The upcoming criteria are employed for achieving the above objective. To make the D2D pair connect with the
individual CU in the resource module, the factor is employed g5, sv, € {0,1},Vv € D;b € X.

The CU is assigned to most individual D2D pairs by the factor’s utilization ) _,, gvp < 1, Vb € X and
Zva Sup <1, Yo € Dsuchthats,, =0, Vb ¢ X,;v € D. .

The needed rate by each D2D pair is defined in terms of factor SEb (gu,b, Sv,5) > SEp.

In the entire optimization issue, there are no concave features are displayed toward the factors g, , or sy,p.
Hence, the above issue is considered a binary integer, non-linear, and non-convex issue with the 2DX attributes.
The factor is reduced to an “NP-hard issue or 0-1 Knapsack issue”. The goal of achieving a high sum rate is
accomplished by tuning the resource allocated OPZ%" in the D2D system and transmission power TR{," by
employing the HMRFCO approach to optimally choose the relay amounts along with conducting the joint
resource allocation in the D2D system.

Definition of energy efficiency
The ratio among the data rate in the AR-D2D and the energy utilized by the D2D device is explained by the
variable in this process. Equation (39) derived the EE.

G
EE = Z¢Eml (39)
J
Here, the data rate is indicated as G, and the utilized energy is taken as j. The D2D system’s destination is given
as I and the D2D system’s source is declared as C. The D2D system’s relay is specified as E,,,.
Enhancing the EE in the D2D transmission device by referring to the rate of data, SINR attained at E, time

distribution /, and power control K is the primary objective of the optimal relay selection task. Equation (40)
shows the objective of this task.

_ LWKc +1:Kg,,,

1
obs = arg min (—)_4
2 {l‘ng’KE } EE Gop,, .1 (40)
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Here, the variable C' - [ - j1 : 0 < 1 K¢ < Ji,0 < 12KE,, < JE,,. The variable ji specifies the utilized energy
by the D2D system in the WIT module. The variable’s j; value must not become higher than the energy that
is produced in the WER module of the D2D device. The attributes that are needed to fulfill the lower SINR are
denoted as j2 and js.

These attributes are in the boundary presented as j2 — (’yc Em = fyrE“r‘:) and j3 — (’yEm > ’y}“i“). The

boundary provided to the information rate that has to be attained with the aid of DS in the D2D transmission
device is specified as js. The variable’s j4 value is in the boundary j4 — [L log, (14+vB,0) > EE‘%} This

boundary allotment for the data transmission is indicated as js. The variable’s j5 value exists in the bound
l2 4+ lo + 11 < 1. The non-negative limit set to the assigned time and power is indicated as je. The variable’s
je valueisinla +lo + 11, Kcc, Kk, > 1. The objective obs is neither convex nor concave. Hence, fractional
programming is employed to transmit it to an effective form. The goal of achieving higher EE is obtained with
the transmission power T Rf,C optimization in the D2D system by employing the reccommended HMRFCO to
optimally choose the relays in the D2D system.

Forecasting the resource and relay in D2D model using residual GRU and multi-
objective function

Adaptive residual GRU for prediction

The AResGRU technique is supported in this work for performing the joint prediction. The ResGRU** is an
effective and recent deep learning approach. The ResNet can rectify the issue of system functionality degradation
and the non-convergence issue created by the depth of the network. In the framework of the residual accumulation
layer, it is considered that the input y is and the features learned with the aid of the network are denoted as I (y).
It is expected that the network can understand the residual G (y) = I (y) — y, hence that the networK’s real
learning feature is enhanced to G (y) + y. The accumulation layer performs the identity mapping when the
residual value is zero to prevent the redundancy created by the layer of the redundant network. The gradient is
also rectified by this network. But, practically, the residual is not equal to zero. It makes the accumulation layer
learn the new attributes of the given features, hence having better functionality.

A normal GRU can rectify the issue of gradient explosion effectively. But, when the input amount gets
enhanced, the GRU causes network degradation, leading to the loss of several features of input data. To rectify
this issue, a ResGRU is introduced. The GRU approach is employed in the residual block to draw out the time
series features. In the ResGRU network, the residual module’s outcome is identical to the total of the GRU
technique’s last layer’s outcome and the input y. Considering that the final layer of the GRU is z and the outcome
zr of the residual module is derived in Eq. (41).

2r = ReLU (BNa g (2) + h (yy)) (41)

Here, ReLU () is the activation function, and the batch normalization is indicated as BN (-). In the function,
the two learnable attributes are given as o and /3. The adjustment function is denoted as A (-), making y and i ¢
with equal dimensions. Through the residual link, the ResGRU technique can remember the correlation among
the data after and before the data and enhance the prediction functionality of the network while retaining the
original data’s characteristic information.

AResGRU As mentioned earlier, the ResGRU is employed for performing the joint prediction task. However,
the ResGRU can face computational burdens because of the network parameter’s high count. Hence, optimizing
the network parameters such as steps per epoch, size of epoch, and the counts of hidden neurons are very
significant in the prediction task. Because of this optimization process, the system errors are also reduced. For
this objective, the HMRFCO is recommended. This is a hybrid algorithm with effective functionalities. Based
on this algorithm, the mentioned network parameters are optimized. Equation (42) offers the objective function
of this operation.

obs = arg min [RMSE + MSE + MAE]

{hnResGRU’EpResGRU7seResGRU} (42)

Here, the ResGRU’s hidden neuron count is An**®V and varies from [5-255]. The ResGRU’s epoch size is
ResGRU 414 varies from [5-50]. The ResGRU’s steps per epoch count are seResGRY and vary from [5-50].
In addition to that, the “root mean square error (RMSE), mean square error (MSE), and mean absolute error
(MAE)” are minimized in the network by the suggested HMRFCO. These performance metrics are explained
as follows.
RMSE: 1t is the performance signal that validates the difference among the actual and predicted values. It is
expressed in Eq. (43)

(43)

RMSE =

MSE: 1t is a statistical factor of how effectively an estimator works. It is formulated in Eq. (44).
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MSE = o i (sth-5 (f))2 (44)

MAE: Tt is the factor of the mean size of faults in a group of predictions without considering directly. It is derived
in Eq. (45).

s(h)=5 () )

MAE =

Here, theamount of data pointsis denoted as V. The variable s ( f) is the fth measurement and its related prediction
isspecifiedas s (f). Thus, the AResGRU is constructed for the prediction purpose using the HMRFCO approach.

Here, the attributes such as “network size, number of D2D relays, mobility static, D2D source coordinates, the
distance between D2D users, cellular user coordinates, cellular user base station coordinates, bandwidth, D2D
destination coordinates, minimum decodable SINR at the D2D relay, minimum data rate requirement of the
cellular user, minimum decodable SINR at the D2D destination, power amplifier efficiency, noise spectral
density, the transmission power of the BS, the power conversion efficiency, the transmission power of the cellular
user, and path gain for each link” are employed as the primary system configurations that are employed as input
for the suggested optimal resource allocation and joint relay selection. These significant attributes are denoted
as Sy.b and are given as input for the designed AResGRU network for making predictions. Finally, an accurate
predicted outcome is achieved by the designed AResGRU approach and its structural diagram is shown in Fig. 3.

Joint approach of resource and relay selection using HMRFCO

Optimal relay selection and resource allocation are significant concepts in the D2D communication system.
Resource allocation is the task of detecting and assigning the resources to the network to support the data
transmission. Similarly, the relay selection is the operation of selecting the delay to better system reliability and
performance. However, these two tasks may face limitations such as high-power consumption, interferences,
and so on. These limitations must be resolved to perform error-free data transmission. Therefore, the attributes
such as allocated resources for the channel and the transmission power must be optimized. For this objective, the
suggested HMRFCO is supported due to its better functionalities. These attributes are optimally tuned to select
the optimal number of relays for performing the data transmission in the network.

The transmission power optimization supports to improve the network lifespan and assists to manage the
device connectivity in the D2D system. This is also supporting to minimize the energy consumption. Therefore,
the network EE is increased. Moreover, to improve the spectral efficacy without affecting the Quality of Service
(QoS), the D2D system resources have to be selected optimally. The improvement in spectral efficiency is
supportive of minimizing the SNR and improving the capacity of the channel to perform the data transmission.
The pictorial representation of HMRFCO-based optimal resource allocation and relay selection is given in Fig. 4.

Derivation of multi-objective function

As explained before, the HMRFCO is utilized for optimizing the allocated resources for the channel and the
transmission power. By this process, the network complexities are prevented and the network’s efficiency is
improved. This maximizes the network EE, spectral efficiency, network capacity, and throughput. Moreover, it
minimizes the network delay. The objective function of this process is given in Eq. (46).

1
oby = arg max [SE+EE+TP+NC+— 46
{TRFC 0PEC} DY (46)
Here, the optimized transmission power is indicated as T'R},~ , which varies from [2-128]. Further, the optimally
selected resource is specified asO PLC it ranges from [1-no of the channel]. Further, the network EE, spectral
efficiency, network capacity, delay, and throughput are indicated as EE, SE, NC, DY, and TP respectively.

Results and discussions

Simulation setup

The implemented joint optimal relay selection and the resource allocation mechanism for the D2D
communication device were implemented by employing the platform named MATLAB 2020a. Here, the
HMRFCO approach utilized 10 populations, 250 highest iterations, and 3 as chromosome length. The synthetic
simulation was used to generate dataset based on 3GPP TR 38.901 Urban Macrocell standard channel model by
varying parameters. It includes relay node, mobility, noise, resource allocation, and interference, etc. The dataset
includes 20,000 samples, split into 80% for training and 20% for testing of the AresGRU model across variable
node densities (50-500), sub-channels (1-5), and relay positions. Hyperparameters were optimized by using the
proposed HMRFCO algorithm to achieve minimal prediction error. Simulation and system parameter values
and ranges have been mentioned in the Tables 2 and 3. The offered mechanism’s performance was validated by
comparing it with conventional algorithms and techniques such as “Sand Cat Swarm Optimization (SCO)*,
Flow Direction Algorithm (FDA)*, MRFO*’, CBOA®, TRSPC%, RPRS-EH?!, Multi-relay system model??, and
EHA-CRD?”. Moreover, some of the conventional prediction techniques such as “deep neural network (DNN)*3,
support vector machine (SVM)*, long short-term memory (LSTM)?’, ResGRU*! and and hybrid flow direction
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Fig. 3. Structural diagram of reccommended AResGRU for prediction.

with chameleon swarm algorithm-adaptive multi-layer perceptron (HFDCSA-AMLP)*!”

analyzing the recommended prediction approach.

were employed for

Convergence evaluation of recommended HMRFCO

The recommended HMRFCO approach’s convergence assessment is carried out in Fig. 5 over various
conventional optimization algorithms with the support of iteration counts. By varying the iteration counts, the
convergence assessment is performed for the nodes 50, 100, 150, 200, and 250 in Fig. 5a-e, respectively. This
evaluation has helped to validate the performance rates of the presented HMRFCO approach over conventional
algorithms. When taking the 200th iteration in Fig. 5a, it has been shown that the suggested HMRFCO attained
2%, 1.8%, 1%, and 1% higher convergence rates than the traditional algorithms such as SCO, FDA, MRFO, and
CBOA respectively. This assessment has shown that, for all nodes the recommended HMRFCO achieving 95% of
the optimal fitness within 180 iterations, but MRFO required 208 iterations, which is 13.35% faster than MRFO.
Thus, it has been ensured that the presented HMRFCO approach is highly suitable for the recommended joint
optimal resource allocation and relay selection mechanism in the D2D communication model.

Statistical evaluation of recommended HMRFCO

The statistical validation of the presented HMRFCO is carried out over conventional optimization approaches
and presented in Tables 4 and 5. Here, the statistical metrics including “best, worst, mean, median, and standard
deviation” are considered in this evaluation. This evaluation supports to validate whether the presented HMRFCO
approach can able to choose the optimal relay, parameters, and resources for the D2D communication system.
When considering the worst factor in the 250th node, the designed HMRFCO approach attained 17.97%,
8.01%, 2.67%, and 2.19% better solutions than the traditional algorithms such as SCO, FDA, MRFO, and CBOA
accordingly. These findings show that the suggested HMRFCO approach is more effective than the classical
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Fig. 4. Pictorial representation of HMRFCO-based optimal resource allocation and relay selection.

Parameter Description
Cell size 500 mx 500 m
Nodes [50, 100, 150, 200, 250]
Mobility Static
Number of CUEs 10-20
Number of DUEs 15-30
Number of relays 5-25

Number of resource blocks 1-5

Carrier frequency 2.1 GHz
Bandwidth per RB 180 kHz
Minimum data rate requirements | 20-30 kbps
Transmission power (BS) 45-55 dBm

Transmission power (D2D)

23 dBmor 0.2 W

Transmission power (Relay)

20 dBmor 0.1 W

SINR threshold

5dB

Channel model

Rayleigh fading + Log-normal shadowing

Pathloss model

3GPP urban macrocell (TR 38.901)

Noise power density

—174 dBm/Hz

Mobility model

Random waypoint model

Table 2. System parameters.

algorithms for achieving optimal solutions. For other node values also the presented HMRFCO showed better
outcomes.

The following statistical analysis was carried out to guarantee the reliability and validity of the results obtained:

Each simulation was repeated 30 times with different random initializations to account for randomness in
optimization and prediction processes.

For each performance metric (EE, Delay, Throughput, and RMSE), we calculated the mean, median, best
value, worst value, and standard deviation over the 30 times.

To validate whether the proposed method (HMRFCO and AresGRU) was significantly outperformed by
baseline methods.

We have checked the normality of the data distribution. If the data were normally distributed—a paired t-test
was used (parametric test). Energy efficiency and RMSE are used in a paired t-test.

Scientific Reports|  (2025) 15:25179 | https://doi.org/10.1038/s41598-025-08290-x nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Parameter Description

Simulation tool MATLAB R2020a

Number of simulation runs 30

Random seed 42

HMREFCO population size 10

HMRFCO max iterations 250

Chromosome length 3(sun-channel selection, power allocation, relay index)
HMREFCO convergence threshold | le-5

AResGRU optimizer Adam

Learning rate 0.001

Batch size 32 [5-50]

Epochs 25 [5-50]

Hidden layers (AResGRU) %1(2}3 ;Jnl;};}r;eurons] [5-255]

Activation function ReLU

Loss function Mean square error (MSE)

Evaluation metrics EE, Delay, Throughput, RMSE, MAE, Success rate

Table 3. Simulation and model parameters.

If the data was not normally distributed, a Wilcoxon signed rank test (non-parametric test) was used. Delay
is not normally distributed; a Wilcoxon test was used. For each comparison, 95% confidence intervals were
calculated.

Therefore, the suggested HMRFCO for relay selection and resource allocation was confirmed by its consistent
statistical superiority (p <0.05) across all the node densities.

Number of nodes-based performance estimation of suggested joint optimal resource
allocation and relay selection mechanism in the D2D communication system

The performance of the recommended approach is evaluated over conventional optimization algorithms and
techniques by varying the number of nodes. Figure 6 shows the number of nodes-based performance validations
of the recommended approach with relay over conventional optimization algorithms. Figure 6a shows that
HMRFCO achieves superior resource utilisation by allocating power and channels. Figure 6b indicates delay,
Fig. 6¢ depicts the energy efficiency, Fig. 6d shows the execution time, Fig. 6e represents the make span, Fig. 6f-j
explore the network capacity, success rate, sum rate, throughput and average transmission power, respectively.
Figure 7 (Fig. 7a—j, same as Fig. 6) depicts the number of nodes-based performance validations of the
recommended approach with relay over conventional techniques. This evaluation has shown that the presented
work is capable of working better with and without relays than the conventional algorithms and techniques.
When considering the relay-based analysis, the energy efficiency of the presented scheme is increased by 40%,
27.27%, 1.81%, and 3.63% higher than the conventional algorithms such as SCO, FDA, MRFO, and CBOA
accordingly in Fig. 6¢ for 250th node. Moreover, it has been shown that the recommended scheme attained an
energy efficiency of 0.764 bps/J, which is 5.95% more energy efficiency than the traditional algorithms. Also,
it is same for the method analysis. When considering the without relay-based analysis, the suggested scheme’s
throughput is highly enhanced by 33.82%, 19.11%, 8.23%, 19.11%, and 4.41% than the traditional techniques
such as TRSPC, RPRS-EH, Multi-relay system model, EHA-CRD, and HFDCSA-AMLP appropriately in Fig. 7i
for 200th node. This analysis has guaranteed that the suggested approach achieved 33.82% higher throughput
than TRSPGC, if there is no relay. Moreover, it has shown that the presented work attained 8.14% reducing delay
than the conventional models. This is similar to the algorithm-based experiments also.

Number of subchannels based performance estimation of suggested joint optimal resource
allocation and relay selection mechanism in the D2D communication system

The performance of the recommended joint optimal relay selection and resource allocation mechanism’s
performance is analyzed using the various numbers of sub-channels over existing optimization techniques
and techniques. Figure 8 displays the number of sub-channel-based performance analyses of recommended
mechanisms with and without relays over conventional optimization approaches. Subgraphs from Fig. 8a-j
show that the HMRFCO will gain with an increase in the number of subchannels, delay and makespan were
decreased, network capacity, success rate were maximized, and adaptive power control also efficiently reduces
the transmission. Figure 9 (Subgraphs from Fig. 9a-j) shows the number of sub-channel-based performance
analyses of recommended mechanisms with and without relays over conventional techniques. When considering
the relay-based analysis, it has been shown that the recommended scheme’s delay is minimized by 20% of
TRSPC, 6.66% of RPRS-EH, 66.6% of Multi-relay system model, 24% of EHA-CRD and 2.66% of HFDCSA-
AMLP respectively in Fig. 9b for 3rd sub-channel. It is similar to the optimization algorithm-based analysis also.
Moreover, while considering other performance metrics also, it has been portrayed that the suggested approach
attained lower execution time and higher throughput than the conventional algorithms and techniques. When
considering the without relay-based analysis, the suggested mechanism’s network capacity is enhanced by 4.76%
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Fig. 5. Convergence validation of suggested HMRFCO approach over traditional optimization algorithms in
terms of “(a) Node-50, (b) Node-100, (c) Node-150, (d) Node-200, and (e) Node-250".

Metric Compared methods | Mean difference | p value | 95% confidence interval | Test used

Energy efficiency (EE) (bits/joule) | HMRFCO vs. MRFO | +0.043 0.0031 | [0.0031, 0.0058] Paired t-test

Delay (ms) HMREFCO vs. MRFO | —4.3 0.0125 | [-6.8,-1.1] Wilcoxon signed rank
Throughput (Mbps) HMRECO vs. TRSPC | +6.3 0.0018 | [4.0, 8.7] Paired t-test

RMSE AResGRU vs. ResGRU | —6.98 0.0028 | [-9.5.-3.1] Paired t-test

Table 4. Statistical significance of the proposed method.
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Terms |sco® [FDA* [MRFO¥ [CBOA® | HMRFCO
“Node-50"

“Best” 50.985 |50.866 |50.571 50.558 50.077
“Worst” 57.276 |56.437 | 56.485 54.347 55.486
“Mean” 51.625 | 51.283 | 51.642 50.604 51.56
“Median” 51.075 | 50.917 |50.974 50.558 51.49
“Standard deviation” | 1.4938 | 1.0115 | 1.343 0.41332 | 1.5646
“Node-100"

“Best” 51.292 | 50.352 | 50.49 50.641 50.348
“Worst” 59.561 | 66.946 | 64.472 64.889 57.63
“Mean” 51.978 |50.902 | 51.007 51.703 50.959
“Median” 52.201 |50.352 | 50.49 51.277 50.348
“Standard deviation” | 0.98083 | 1.6165 | 1.4594 1.5156 1.6809
“Node-150"

“Best” 51.361 |50.899 |50.42 50.829 50.413
“Worst” 68.131 |58.942 |57.023 58.846 58.216
“Mean” 52.341 51.081 51.381 51.492 51.184
“Median” 52.309 |50.899 |51.177 50.829 51.191
“Standard deviation” | 1.4128 | 0.99278 | 1.4759 1.146 0.72187
“Node-200”

“Best” 50.538 |51.31 50.922 50.513 50.499
“Worst” 57.017 | 59.653 | 56.433 54.062 56.4
“Mean” 51.146 |52.218 |51.16 50.72 50.697
“Median” 50.538 | 52.261 |50.922 50.513 50.593
“Standard deviation” | 0.89678 | 1.3722 | 0.93672 0.58812 0.75118
“Node-250"

“Best” 51.282 | 50.711 | 50.552 50.574 50.306
“Worst” 66.883 | 52.149 |58.211 57.939 56.393
“Mean” 51.817 |51.175 |50.75 50.691 50.909
“Median” 51.468 | 51.046 | 50.552 50.574 50.306
“Standard deviation” | 1.2612 | 0.4919 | 1.0008 0.82305 | 1.3473

Table 5. Statistical evaluation of reccommended HMRECO algorithm over traditional optimization
approaches.

of SCO, 7.14% of FDA, 5% of MRFO, and 7.38% of CBOA respectively in Fig. 8f for the 5th sub-channel. This
is similar to the method-based analysis also. Thus, it has been confirmed that the recommended mechanism
showed higher optimization capabilities at node 250, increasing energy efficiency by 40% than SCO and 27.27%
than FDA even if there is no relay. Also, the other performance metrics also elucidated that the presented work
provided better outcomes than the conventional algorithms and techniques.

Performance estimation of the suggested prediction approach

The suggested prediction technique’s performance estimation is conducted in Fig. 10 over traditional algorithms
and techniques by employing the activation function. Some of the effective activation functions such as “ReLU,
linear, softmax, Tanh, and sigmoid” are considered in this analysis. Moreover, error measures such as MAE,
MSE, and RMSE are supported for validating the recommended HMRFCO-AResGRU approach. This error-
based analysis shows that the suggested HMRFCO-AResGRU mechanism attained very low error rates than
the conventional techniques. In Fig. 10a, the HMRFCO-AResGRU model has lowest prediction error and it
achieves 43% lower MAE compared to DNN. Figure 10b, shows the MSE. When taking the linear activation
function in Fig. 10c, the RMSE of the presented prediction task is reduced by 9.54% of SCO-AResGRU, 1.14%
of FDA-AResGRU, 13.35% of MRFO-AResGRU, and 3.05% of CBOA-AResGRU respectively. Thus, it has been
confirmed that the presented higher prediction accuracy was demonstrated by the AResGRU based prediction
model, which reduced RMSE by 24.96% when compared to ResGRU and by 33.5% when compared to LSTM.
Moreover, the analysis shows that the suggested prediction mechanism has shown improved performance rates
than the conventional prediction techniques. It has been proved that the offered work can support the D2D
communication system without any errors.

Overall performance estimation of the suggested prediction approach

Overall performance validation is performed for the suggested prediction technique over traditional algorithms
and techniques. This analysis is shown in Table 6. By employing the error measures, this validation is conducted
and the estimation showed that the recommended prediction mechanism attained very low error values than the
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Fig. 6. Number of nodes-based performance analysis of reccommended joint optimal relay selection and
resource allocation mechanism over traditional algorithms concerning “(a) Average resource utilization, (b)
Delay, (c) Energy efficiency, (d) Execution time, (e) Makespan, (f) Network capacity, (g) Success rate, (h) Sum
rate, (i) Throughput”, and (j) Average transmission power”.
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Fig. 7. Number of nodes-based performance analysis of reccommended joint optimal relay selection and
resource allocation mechanism over traditional techniques concerning “(a) Average resource utilization, (b)
Delay, (c) Energy efficiency, (d) Execution time, (e) Makespan, (f) Network capacity, (g) Success rate, (h) Sum
rate, (i) Throughput”, and (j) Average transmission power”.
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Fig. 9. Number of subchannels-based performance analysis of recommended joint optimal relay selection and
resource allocation mechanism over traditional techniques concerning “(a) Average resource utilization, (b)
Delay, (c) Energy efficiency, (d) Execution time, (e) Makespan, (f) Network capacity, (g) Success rate, (h) Sum
rate, (i) Throughput, and (j) Average transmission power”.
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conventional approaches. The suggested prediction technique’s MAE is relatively minimized by 43% of DNN,
41% of SVM, 27.75% of LSTM and 54.25% of ResGRU and 2.75% of HFDCSA-AMLP correspondingly. Thus,
it has been ensured that the presented prediction mechanism is highly supportive of the D2D communication
system than the other conventional approaches.

Time complexity analysis of recommended system over conventional algorithms
The suggested scheme’s time complexity is evaluated over conventional algorithms and presented in Table 7.
From nodes 50-250 this estimation is conducted for verifying the time complexity of the suggested system. This
analysis clearly shows that the recommended scheme utilizes much less amount of time for computation than
the other techniques. This increases the efficacy of the suggested framework. Moreover, it has been proved that
the presented work overcame the conventional techniques in terms of time and increased the reliability of the
system. The peak memory consumption during training of the AResGRU model is approximately 240 MB. The
performance tested up to 250 nodes and 5 subchannels (Figs. 6 and 9), for ultra dense 5G/6G networks, we can
extend up to 1000+ nodes also.

Algorithm complexity:

HMRFCO: O (Population x Iteration x Dimensions).

AResGRU: O (Layers x neurons).

Conclusion

A robust and effective system has implemented in this paper for performing the optimal relay selection and
resource allocation in the D2D communication device by utilizing the hybrid heuristic approach-based deep
learning. This work concentrated to enhance the efficiency and sum rate of the entire D2D system and cellular
links. For this objective, a new HMRFCO was developed, where the conventional CBOA and MRFO techniques
were integrated. Moreover, the suggested HMRFCO was employed for optimizing the multi-objective functions
such as throughput, delay and network capacity, EE, and spectral efficiency to attain better network functionality.
In this task, the dataset was created from numerous scenarios that were given to the AResGRU technique for
predicting the optimal relay selection and resource allocation techniques. Here, the parameters in the AResGRU
approach were optimally determined by the same HMRFCO approach. The final prediction of the optimal
resource allocation and relay selection was obtained by the AResGRU approach. The experiments were carried
out to validate the functionality rate of the presented system. The recommended joint optimal relay selection
and resource allocation approach’s success rate was highly enhanced by 4.12% of TRSPC, 9.27% of RPRS-EH,
3.09% of Multi-relay system model, 7.21% of EHA-CRD, and 2.06% of HFDCSA-AMLP correspondingly when
considering the number of sub-channels is 5 in the relay-based analysis. Thus, it has been confirmed that the
presented joint optimal resource allocation and relay selection scheme attained 9.27% improvement in success
rate and 6.66% reduction in delay than the conventional mechanisms such as RPRS-EH and the Multi-relay
system. The presented work applies to numerous real-time transmission devices including 5G communication
systems, multimedia and content sharing, E-health, gaming, local social networking, etc. Though the presented
work provides very promising solutions, the prediction network may encounter poor generalization capabilities.
Hence, in future work, a very effective hybrid or ensemble-based deep learning approach will be introduced to
provide more generalization. UAV assisted D2D Communication can extend the coverage area, increase the
Energy Efficiency, and throughput. Integrate D2D communication with RIS (Reconfigurable Intelligent Surface)
to increase the EE and link reliability, and Multi-access Edge Computing (MEC) to reduce the load on central
base station and low latency. The Reinforcement learning-based policy tuning to enable real-time adaptation of
these parameters for even greater flexibility and responsiveness.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on
reasonable request.

Received: 21 March 2025; Accepted: 20 June 2025
Published online: 12 July 2025

References

1. Li, B. et al. Relay selection in network coding assisted multi-pair D2D communications. Ad Hoc Netw. 107, 102259 (2020).

2. Wang, R,, Liu, J., Zhang, G., Huang, S. & Yuan, M. Energy efficient power allocation for relay-aided D2D communications in 5G
networks. China Commun. 14, 54-64 (2017).

3. Dutta, R. N. & Ghosh, S. C. Mobility aware resource allocation for millimeter-wave D2D communications in presence of obstacles.
Comput. Commun. 200, 54-65 (2023).

4. Xu, D, Li, Y, Li, J., Ahmed, M. & Hui, P. Joint topology control and resource allocation for network coding enabled D2D traffic
offloading. IEEE Access 5, 2291622926 (2017).

5. Hakami, V., Barghi, H., Mostafavi, S. & Arefinezhad, Z. A resource allocation scheme for D2D communications with unknown
channel state information. Peer Peer Netw. Appl. 15, 1189-1213 (2022).

6. Ali, S., Ahmad, A., Faheem, Y., Altaf, M. & Ullah, H. Energy-efficient RRH-association and resource allocation in D2D enabled
multi-tier 5G C-RAN. Telecommun. Syst. 74, 129-143 (2020).

7. Dai, Y. et al. Joint mode selection and resource allocation for D2D-enabled NOMA cellular networks. IEEE Trans. Veh. Technol. 68,
6721-6733 (2019).

8. Gao, H., Zhang, S., Su, Y. & Diao, M. Joint resource allocation and power control algorithm for cooperative D2D heterogeneous
networks. IEEE Access 7, 20632-20643 (2019).

9. Islam, T., Kwon, C. & Noh, Y. Transmission power control and relay strategy for increasing access rate in device to device
communication. IEEE Access 10, 49975-49990 (2022).

Scientific Reports |

(2025) 15:25179 | https://doi.org/10.1038/s41598-025-08290-x nature portfolio


http://www.nature.com/scientificreports

www.nature.

com/scientificreports/

Heuristic-based Evaluation

T ’ B SCO-AResGRU :x:SCO-AResGRU
_ FDA-AResGRU FDA-AResGRU
— = MRFO-AResGRU 0.16 —  —MRFO-AResGRU
—i— CBOA-AResGRU —i— CBOA-AResGRU
6 —— HMRFCO-AResGRU —f— HMRFCO-AResGRU
w qu 0.14
s 2
5; 0.12
S I S F oF &
NV @ LSO ARSI
Q¥ & & <2 & <2
Activation Function Activation Function
(a) (b)
30 v
I e
= =—MRFO-AResGRU
28 CBOA-AResGRU
HMRFCO-AResGRU
w 26
0
=
X 24
22
P
d oF &
. o 6{b S O
<& \r\(\c_)c‘)(‘ < ‘-O\Q&
Activation Function
(©
State-of-the-Art evaluation
by 02
I svm
6 st
I ResGRU 0.15 |
[ HFDCSA-AMLP . [E=JHFDCSA-AMLP
[CIHMRFCO-AResGRU [CCIHMRFCO-AResGRU
g° 3 o1
= =
2 0.05
0 0 N
3 N ST N » §F
@ S 3 N SR G
N ) Qo &
() . > ¥ . & 2
SN S g TS
Activation Function Activation Function
(a) (b)
I DNN
] svm
30 | [CLs™
I ResGRU
[EEEJHFDCSA-AMLP
[CIHMRFCO-AResGRU
L
» 20
=
@
10
0 O
N N
& QO o
o’ ¢ & >
S LS A 6@6\

Activation Function

©

Fig. 10. Performance estimation of recommended prediction mechanism over conventional heuristic
algorithms and state-of-the-art techniques concerning “(a) MAE, (b) MSE, and (c) RMSE”.
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Terms ‘SCO—AResGRU“S FDA-AResGRU*® | MRFO-AResGRU* | CBOA-AResGRU*® | HMRFCO-AResGRU

Heuristic algorithm-based evaluation

MAE | 6.0814 5.1554 5.5754 6.8636 4.114

MSE | 0.14055 0.14528 0.12388 0.14521 0.10672

RMSE | 26.29 28.494 24.853 21.994

Terms | DNN* SVM* LSTM?* ResGRU* HMRFCO-AResGRU
State-of-the-art-based evaluation

MAE | 5.7253 5.6407 5.1116 6.1788 4.0002

MSE | 0.15706 0.17888 0.16365 0.1544 0.14055

RMSE | 31.4 26.045 26.29 27.859 20.882

Table 6. Overall performance estimation of suggested prediction mechanism over traditional algorithms and

techniques.

Terms Time complexity (sec)
“Node-50"

Neleld 0.1274
FDAY 0.0986
MRFO™" 0.1002
CBOA"™ 0.0911
HFDCSA* 0.0923
Recommended HMRFCO | 0.0878
“Node-100"

scov 0.2163
FDAY 0.2244
MRFO™ 0.2097
CBOA" 0.1989
HFDCSA% 0.1952
Recommended HMRFCO | 0.1865
“Node-150"

SCov 0.2897
FDAY 0.3183
MRFO" 0.3003
CBOA" 0.2798
HFDCSA%* 0.2743
Recommended HMRFCO | 0.1865
“Node-200"

SCov 0.3976
FDAY 0.3462
MRFO™ 0.3542
CBOA® 0.3442
HFDCSA% 0.3364
Recommended HMRFCO | 0.3109
“Node-250”

SCov 0.4082
FDAY 0.4322
MRFO™" 0.4211
CBOA"”® 0.3811
HFDCSA% 0.4021
Recommended HMRFCO | 0.3672

Table 7. Time complexity analysis of recommended system over traditional algorithms.
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