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This paper addresses the problem of detecting money laundering in the Bitcoin network. Money 
laundering is the process of handling the proceeds of crime to conceal their illegal source, these 
illicit transactions have complex features, similar to those of legal transactions. It is well known that 
transactions can be represented as topological graph structure data, and many GCN-based methods 
have been developed for Anti-Money Laundering (AML) tasks. However, existing methods have not 
performed as well in dynamically assigning weights to neighboring nodes and extracting information 
from global nodes in the Bitcoin network. Therefore, we identify three major challenges: Firstly, 
GCNs can be misled by concealed illegal transactions due to uniform node representation weights. 
Secondly, current node-level GCNs cannot handle varied methods of concealing illegal transactions 
because they fail to extract global information. Thirdly, the costliness of data labelling necessitates 
the effective use of limited but rich domain-specific labelled data. To address these challenges, we 
propose the Transformer-enhanced Graph Attention Network (TFGAT) with a Global-Local Attention 
Mechanism (GLATM) that uses Transformers to extract global information and selectively focus on 
local information from connected nodes. Due to the limited availability of labelled data from expensive 
data labelling processes, we introduce a Deep Cyclic Pseudo-Label Updating Mechanism (DCPLU) 
to enhance data distribution and model robustness, which does not rely on manifold structure or 
Euclidean distance assumptions. DCPLU can enhance model performance while preserving the model’s 
existing parameters, enabling it to maintain its current faster response time in the application scenario. 
Experimental results show that our methods outperform existing models across various metrics.

Keywords  Anti-money laundering, Graph attention networks, Transformer, Global-local attention 
mechanism, Deep cyclic pseudo-label updating mechanism

In recent years, money laundering has become one of the major threats to national public security (Labib et 
al.1). This process involves concealing the illicit origins of criminal proceeds, enabling offenders to enjoy their 
gains without revealing the source (Force et al.2). The amount of money susceptible to laundering is estimated 
to range between 2% and 5% of the global Gross Domestic Product (GDP). However, a significant portion of 
this sum is difficult to trace and never enters the banking system (Dumitrescu et al.3). Therefore, cryptocurrency 
has become one of the favoured tools for money laundering, criminals employ various techniques to obfuscate 
the source of funds (Fletcher et al.4). In the area of Bitcoin, Bitcoin mixes, Bitcoin exchanges and the use of both 
methods are common methods of money laundering (Beessoo et al.5), as depicted in Fig. 1. Moreover, the above 
methods have many different types (Ziegeldorf et al.6). This complexity renders money laundering transactions 
akin to legal ones, deliberately concealed and possessing intricate features. The Anti-Money Laundering (AML) 
system is deployed by financial institutions including banks and other credit-providing entities. As a result, anti-
money laundering (AML) laws have begun to focus on combating the laundering of Bitcoin as an important 
branch. (Guo et al.7).

Anti-Money Laundering (AML) tasks constitute a systematic framework for identifying potential illicit 
financial activities through the integration of multi-source data. This encompasses client profiling data (including 
identity verification and transactional histories), external risk indicators (such as sanctions lists and politically 
exposed person databases), alongside predefined detection rules and machine learning models. The analytical 
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process focuses on detecting anomalous transactional patterns, high-risk client associations, and behavioural 
deviations that may indicate money laundering or terrorist financing activities8,9.

The Bitcoin transaction system is a rare example of a large-scale global payment system in which all 
transactions are publicly accessible (though anonymously) (Ron et al.10). This means that anyone can view the 
transaction records on the blockchain, enabling them to construct topological graphs to analyse the flow of 
Bitcoin. Therefore, our research primarily focuses on graph-based approaches. Based on the raw Bitcoin data, 
a graph can be constructed and labelled where nodes represent transactions and edges represent the flow of 
Bitcoin currency (BTC) from one transaction to the next (Weber et al.11). The flow of Bitcoin is expressed using 
a topological graph, making tracking and capture more efficient.

Many models based on Graph Convolutional Networks (GCN) have recently achieved significant success 
in AML tasks. Weber et al.11 designed the Elliptic dataset and conducted experiments using various machine 
learning models, including GCN and Skip-GCN. This research serves as a crucial baseline study. Mohan et al.12 
presented an innovative approach that combines the strengths of random forest with dynamic graph learning 
methods. Alarab et al.13 underscored the significance of incorporating temporal correlation into models and 
contracted classification models involving Long Short-Term Memory (LSTM) and GCN. Yang et al.14 introduced 
an integrated model combining LSTM and GCN, employing a hard voting mechanism to enhance the detection 
of laundering techniques by synergising multiple anomaly detection classifiers such as Histogram-Based Outlier 
Scoring (HBOS) and Isolation Forest (Karim et al.15).

However, most existing GCN-based methods face three major challenges:

•	 Firstly, in industry, illegal transactions are concealed within legal transaction chains, forming an interleaved 
transaction graph with millions of isolated user groups, which intensifies the presence of noise in the data 
(Force et al.2, Li et al.16). This characteristic degrades the embedding quality of GCN-based methods, which 
assign the same weight to all neighbouring nodes; they prefer data formats that are more regular and less noisy 
(Zhou et al17).

•	 Secondly, extracting global information helps capture the varied methods of money laundering (Jensen et 
al.18). In addition, most existing GCN-based models primarily focus on extracting local information within 
static graphs (Yun et al.19), which is infeasible to extract global information.

•	 Thirdly, conventional money laundering data labelling often requires professionals to screen the data. Labelled 
data incorporates insights from diverse professional domains, rendering data labelling prohibitively expen-
sive within authentic financial institutions (Luo et al.20, Karim et al.15, Lorenz et al.21, Lo et al.22). Therefore, 
most data remains unlabeled, presenting a dual challenge: harnessing the specialised knowledge embedded 
in labelled data while mitigating the scarcity of labels. However, traditional label propagation assumes that 
similar samples in the feature space should have the same label as shown in Fig. 2, invalid in the AML task.

To deal with these challenges, in this paper, we propose the Transformer-enhanced Graph Attention Network 
(TFGAT) for money laundering detection in Bitcoin networks. Unlike other GCN-based methods, our proposed 
model can extract global information from various money laundering methods embedded in nodes and 
dynamically assign weights. Specifically, we first mine global information from the entire graph and embed it 
into graph nodes by Transformer. Then we utilize GAT’s graph attention mechanism to dynamically assign node 
weights (i.e., the features of the graph nodes contain global information). Due to the scarcity of labelled data 

Fig. 1.  The global information extraction of various money laundering methods.
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resulting from expensive labelling processes, we introduce a Deep Cyclic Pseudo-Label Updating Mechanism 
(DCPLU) to augment data distribution and fortify the model’s robustness. Concretely, we train a supervised 
TFGAT model to generate pseudo labels for unlabeled data. A semi-supervised TFGAT model is then trained 
using the entire graph (i.e., including original labels and pseudo-labels) to update the pseudo-labels, cycling 
until the training effect converges. The flowchart of our method is shown in Fig. 3. The main contributions are 
summarized as follows:

•	 We propose the TFGAT model for money laundering detection in Bitcoin networks, which aims to uncover 
illegal transactions concealed by various money laundering methods. This is the first attempt to introduce a 
Global-Local Attention Mechanism (GLATM) involving a Transformer to extract global transaction informa-
tion to enrich the GAT’s dynamic local money laundering information transmission.

•	 We propose a Deep Cyclic Pseudo-Label Updating Mechanism (DCPLU) for addressing anti-money laun-
dering issues with limited labelled data. In addition, we mine pseudo-labels and update them for unlabeled 

Fig. 3.  The flowchart of the proposed method.

 

Fig. 2.  The mechanism of traditional label propagation.
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transactions using a TFGAT model to better utilize both unlabeled data and expert knowledge-rich labelled 
data. DCPLU optimises the data distribution of the pseudo-label enriched training set, improves model per-
formance, and keeps the model parameters unchanged, allowing the model to maintain its existing faster 
response time in the application scenario.

•	 This is the first time that the use of feature-level global attention to improve the performance of the GAT mod-
el has been proposed for the anti-money laundering task. The GAT model typically focuses on the interac-
tions between nodes and often neglects feature extraction, as shown in Fig. 4. In the context of the anti-money 
laundering task, each feature holds significant practical importance. If feature extraction is overlooked, a 
substantial amount of valuable information may be lost.

•	 We extensively experiment and conduct ablation studies to evaluate the proposed approach, comparing it 
with the existing baseline on the Elliptic dataset, and achieving state-of-the-art performance.

We organize the remainder of the paper as follows.  “Related work” presents the related work.  “Method” 
describes our proposed method in detail. The experimental results are presented in “Experiment”. Finally, the 
main conclusions are discussed in  “Conclusion”.

Related work
In financial institutions, traditional anti-money laundering practices rely heavily on legal and regulatory 
frameworks (Zagaris et al.23). However, as money laundering techniques evolve, machine learning has emerged 
as a powerful tool in combating financial crime (Yousse et al.9). Many machine learning approaches have been 
designed to identify money laundering activities effectively, including GCN-based deep learning methods (Han 
et al.8). In this section, we mainly overview the literature about GCN-based methods in the AML area, and we 
conclude the summary of different approaches at the end of this section. We categorise the major solutions into 
two branches:

•	 (1) The GCN-based supervised methods.
•	 (2) The GCN-based semi-supervised methods.

The GCN-based supervised methods
Weber et al.24 constructed the AMLSim dataset and used GCN and FastGCN for training and prediction. Weber 
et al.11 constructed the Elliptic dataset for training and prediction using different machine-learning methods. 
The experimental results showed that GCN performed impressively. Huang et al.25 presented the TemporalGAT 
model, which utilises temporal and spatial attention mechanisms to improve AML task performance. Wei et al.26 
introduced a Dynamic Graph Attention Network (DynGAT), that captures the dynamics of the graph sequence 
through a multi-head self-attention block on the sequence of concatenations of node embeddings and time 
embeddings. Ouyang et al.27 proposed a novel subgraph-based contrastive learning algorithm for heterogeneous 

Fig. 4.  The local attention of transaction relationships.
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graphs, named Bit-CHetG, that employs supervised contrastive learning to reduce the effect of noise, which pulls 
together the transaction subgraphs with the same class while pushing apart the subgraphs with different classes.

Existing supervised GCN-based methods in AML have made significant progress in AML tasks. However, 
their robustness is insufficient due to the sparse distribution of effectively labelled transactions. Therefore, 
GCN-based semi-supervised methods are attracting the interest of the AML industry as they can improve the 
distribution of labels and strengthen the robustness of the model.

The GCN-based semi-supervised methods
Wang et al.28 constructed an integrated model based on GCN and LPA for node classification. Bellei et al.29 
showed that a modification of the first layer of a GCN can be used to propagate label information across neighbour 
nodes effectively. Ghayekhloo et al.30 introduced CLP-GCN to propagate the confidence scores of the labels and 
assign pseudo-labels to nodes. Zhang et al.31 utilised the GCN and unified the LPA to provide regularisation 
of training edge weights in recommendation tasks. Xie et al.32 designed a Label Efficient Regularization and 
Propagation (LERP) framework for graph node classification and introduced an optimization procedure to 
replace GraphHop. Tan et al.33 showed a LE algorithm based on GCN, called LE-GCN, which extends GCN 
to the LE field based on the smoothness assumption of the manifold to fully exploit the hidden relationships 
between nodes and labels.

Traditional label propagation typically involves the following three model assumptions:

•	 Label similarity assumption If two samples have the same or similar labels, then their Euclidean distance in 
feature space should be small.

•	 Smoothness assumption If two samples are adjacent in the feature space, then their labels should also be simi-
lar, which is very practical for the manifold structure.

•	 Consistency assumption The label of a sample is greatly affected by the labels of samples in its local neigh-
bourhood. Label propagation mainly takes place in the local neighbourhood. This idea is also applied to the 
K-Nearest Neighbors (KNN) algorithm.

However, these assumptions are invalid for AML tasks because illegal transactions can be influenced by human 
factors and hidden among legal transactions. This is why we use the Deep Cyclic Pseudo-Label Updating 
Mechanism (DCPLU).

Xiang et al.34 designed a Gated Temporal Attention Network (GTAN), a semi-supervised method that passes 
messages among the nodes in a temporal transaction graph. Karim et al.15 presented a semi-supervised graph 
learning approach in pipeline and end-to-end settings to identify nodes involved in potential money laundering 
transactions. Luo et al.20 constructed a transaction relationship network based on node similarity (TRNNS) for 
semi-supervised decoupling training. Li et al.16 introduced the innovative Diga model, the first Graph-based 
semi-supervised method to apply the diffusion probabilistic model in AML tasks. Navarro et al.35 constructed 
an easy way to fuse information from model performance and cost risks to establish the corresponding threshold 
for the output model to distinguish between licit and illicit transactions. Tang et al.36 designed the pretext task 
for the node embedding module so that their model can learn the appropriate node embedding by using a large 
amount of unlabeled node data. Zhang et al.37 constructed a dynamic embedding method, DynGraphTrans, 
which leverages the powerful modelling capability of a universal transformer for temporal evolutionary patterns 
of financial transaction graphs.

However, existing node-level models are ineffective in capturing the complexities of real-world money 
laundering methods, as unconnected nodes may contain valuable information (Yun et al.19). Moreover, money 
laundering activities concealed within legal transactions are difficult to identify using a single weight in GCN. 
Our work exploits a global-local attention mechanism and a Deep Cyclic Pseudo-Label Updating Mechanism 
(DCPLU) to detect more money laundering patterns and make the model more robust, significantly improving 
performance in AML tasks.

Method
In this section, we will introduce the transaction graph, the global-local attention mechanisms and the Deep 
Cyclic Pseudo-Label Updating Mechanism (DCPLU).

The graph-structured data of the transaction is an isomorphic graph of the Bitcoin transaction network 
based on the Elliptic dataset. The goal of the global-local attention mechanisms is to extract global transaction 
information to embed node features and dynamically select local information about the neighbouring transaction. 
In contrast to most GCN-based methods for graphs with only local information, TFGAT searches the entire 
transaction graph using a Transformer to extract global information. At the same time, the dynamic selection of 
local information is more useful for connected metapaths, i.e. paths that are connected with isomorphic edges. 
The Deep Cyclic Pseudo-Label Updating Mechanism (DCPLU) aims to assign pseudo-labels to unlabelled data 
while iteratively refining these estimations during semi-supervised training, thereby guiding the model towards 
convergence through an early stopping-determined termination criterion.

The transaction graph
The transaction graph G = (U, R) consists of the set of transactions U = {ui | i = 1, 2, ..., n} as the nodes 
and the flow of BTC R as the edges. The node attribute matrix X = Xl ∪ Xl̃ represents the features of the 
transactions U, including the basic information and the aggregated features. Here, Xl stands for the features of 
the labelled transactions and Xl̃ for the features of the unlabelled transactions. The binary label y is defined by 
the experts of the Elliptic Cryptocurrency Intelligence Company and indicates whether the labelled transactions 
are suspicious of money laundering or not.
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The supervised TFGAT with global-local attention mechanisms (GLATM)
First, the supervised TFGAT is trained for the pseudo-labelling process to improve performance through global-
local attention mechanisms in AML tasks. The TransformerEncoder uses a self-attention mechanism with three 
weight matrices: Query (Q), Key (K) and Value (V). By comparing Q and K, a score (indicating correlation or 
similarity) is calculated. This score is then multiplied by the corresponding V to obtain the final result. The linear 
mappings for Q, K, and V are represented by the weight matrices WQ, WK , and WV , respectively, where WQ, 
WK , and WV  denote the weights for the Q, K, and V components.

	 Q = XWQ� (1)

	 K = XWK � (2)

	 V = XWV � (3)

The three weight matrices here are all square, which means that the dimensions of Q, K and V are the same 
as those of X. Essentially, ”multi-head” is about partitioning the matrix from the dimension of X into several 
segments, each of which represents a head. The dimensions after the partitioning of Q, K and V are referred to 
as M:

	 M = MX/MH � (4)

Here, MX  stands for the dimensionality of X, and MH  for the number of heads. Then Q, K and V represent 
the linear mapping results of the one head and utilise the idea that a larger dot product of two vectors implies a 
larger similarity, and then obtain the attention matrix by QKT . Based on the attention matrix, weighted values 
are then calculated, which are expressed as follows:

	
Attention(Q, K, V ) = softmax(QKT

√
dk

)V � (5)

Here, the symbol 
√

dk  stands for a normalization operation that aims to transform the attention matrix into a 
standard normal distribution. This operation ensures that the embedding of information for each transaction 
contains the information from all transactions in the entire graph structure. Subsequently, the final output of the 
multi-head attention mechanism is achieved by applying the operation Add & Norm, the operation Feedforward 
and another operation Add & Norm:

	 XAttention = X + Attention(Q, K, V )� (6)

	 X ′
Attention = ReLU(XAttentionω1ω2) + XAttention� (7)

Here ω stands for the weight of the linear layer and Relu is the activation function.
Then A shared weight matrix W ∈ Rn×m is trained for all nodes to obtain weights for each neighbouring 

node. This weight matrix represents the relationship between the n input features and m output features, 
serving as a mapping. When computing attention values, the features of nodes X ′(u)

Attention and X ′(v)
Attention 

are separately mapped using W, and the resulting vectors are concatenated (note that due to the concatenation 
operation, the attention values between nodes are asymmetric). Subsequently, a feedforward neural network ãT  
is exercised to map the concatenated vector to a real number, followed by LeakyReLU activation. After softmax 
normalization, the final attention coefficients are obtained. The || symbol denotes vector concatenation:

	
euv = LeakyReLU

(
ãT

[
W X ′(u)

Attention∥W X ′(v)
Attention

])
� (8)

	 αuv = softmaxv

(
euv

)
� (9)

Here, X(u)
Attention denotes the features of the u-th node after feature extraction by TransformerEncoder (analogous 

for X(v)
Attention). euv  stands for the attention values obtained, and αuv  denotes the attention coefficients. After 

obtaining the attention coefficients, a weighted sum over the neighbours is formed to derive the output features 
for the node u:

	
X ′′(u)

Attention = σ

( ∑
v∈Nu

αuvW X ′(v)
Attention

)
� (10)

The multi-head attention mechanism is introduced to increase the representational capacity of the model and 
stabilize the self-attention for node representation. In the intermediate layer, the self-attention is calculated using 
k different weight matrices W, and the results of the attention heads are combined into an output vector. For the 
final result, an averaging strategy is applied to the output vectors of the different attention heads:
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X ′′(u)

Attention = ||kt=1σ

( ∑
v∈Nu

αt
uvW tX ′(v)

Attention

)
� (11)

Next, the deep neural network layer maps the attentional information onto a two-dimensional probability 
distribution and then classifies it through the softmax layer:

	 P = ReLU(X ′′
Attentionω3ω4)� (12)

	 ŷ = softmax(P )� (13)

Here, ω denotes the weights of the linear layer, and ReLU serves as the activation function. The output ŷ = ŷl ∪ ŷl̃ 
comprises two components: predictions for labelled transactions ŷl and pseudo-labels for unlabelled transactions 
ŷl̃, where the union operator ∪ indicates the combined set of supervised predictions and unsupervised 
estimations. The supervised TFGAT training only considers labelled transaction nodes when calculating the loss 
function. At the same time, the weighted cross-entropy loss function can address the underfitting of minority 
class samples caused by data imbalance, enabling the model to focus more on illegal transactions:

	
Loss = 1

L

L∑
i=1

(
−w

(i)
legaly

(i) log(ŷ(i)
l ) − w

(i)
illegal(1 − y(i)) log(1 − ŷ

(i)
l )

)
� (14)

Here, L is the number of labelled transactions. wlegal and willegal denote the weight assigned to the categories 
of legal and illegal transactions, respectively, for the i-th labelled transaction.

The semi-supervised TFGAT With deep cyclic pseudo-label updating mechanism (DCPLU)
Besides the different data distribution between Bitcoin transactions and others (e.g., natural language and 
image domain), the technical challenge of the pseudo-labelling process in such an unexplored domain is how to 
distinguish the error in concealed transactions, which has a nonlinear complex structure that cannot be solved 
by Euclidean distance. Therefore, we develop the semi-supervised TFGAT with a Deep Cyclic Pseudo-Label 
Updating Mechanism (DCPLU):

•	 Through the supervised TFGAT get pseudo-labels ŷl̃ on each unlabeled transaction node.
•	 Then, cyclic semi-supervised training aims to continuously update pseudo-labels for each unlabeled node 

until the model’s performance converges.

First, ynew  is the new label, which is the combination of the pseudo-label ŷl̃ and the original true label y. 
During subsequent training, the training process from the  “The supervised TFGAT with global-local attention 
mechanisms (GLATM)”:

	 ŷσ = T F GAT (X, ynew)� (15)

Here,ŷσ = ŷσl ∪ ŷσl̃
, ŷσ  includes the prediction of the labeled transactions ŷσl  and the new pseudo-labels of 

the unlabeled transactions ŷσl̃
. It is worth noting that the loss function will change at this point:

	
Loss = 1

L

L∑
i=1

(
−w

(i)
legaly

(i)
new log(ŷ(i)) − w

(i)
illegal(1 − y(i)

new) log(1 − ŷ(i))
)

� (16)

Next, the new pseudo-labels ŷσl̃
 are combined with the original true labels y to form a new label set y∗

new , and 
another round of semi-supervised training is performed with the updated labels y∗

new . In this iterative process, 
the pseudo-labels are refined until the model converges to the validation set. Specific details on the training 
iterations can be found in Algorithm 1.
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Algorithm 1.  The deep cyclic pseudo-label updating mechanism (DCPLU).

	 ŷ∆ = T F GAT∆(X)� (17)

Finally, the converged model T F GAT∆ and the final prediction result ŷ∆ can be obtained by the Deep Cyclic 
Pseudo-Label Updating Mechanism (DCPLU).

 

Experiment
This section evaluates the TFGAT model, which has been optimised using the Deep Cyclic Pseudo-Label 
Updating Mechanism (DCPLU) mechanism. The experimental results show that our proposed DCPLU 
effectively captures money laundering transactions hidden within legitimate transactions. These transactions 
typically exhibit non-manifold structures and extremely unbalanced label distributions, rendering Euclidean 
distance-based methods ineffective. DCPLU can effectively extract information from these structures without 
relying on model assumptions outlined in Section 4.1, which are inherent in traditional methods. To conclude, 
we conducted an ablation study to evaluate the effectiveness of each component of the model.

Datasets
The Elliptic dataset was constructed by Weber et al.11, which is a topological graph dataset with temporal 
correlations. It comprises over 200,000 Bitcoin transaction nodes, 234,000 transaction edges and 49 different 
timestamps. Each timestamp is about 2 weeks apart, and each transaction node is labelled as ”licit”, ”illicit” or 
”unknown”.

Concealed illegal transaction: Based on our observations, we find that illegal transactions and legal transactions 
in the Bitcoin network have surprisingly similar features, making the entire dataset non-manifold and non-
linearly separable. This and the extremely unbalanced data distribution make the modelling assumptions of 
traditional label propagation completely invalid. Figure 5 presents the results of five dimensionality reduction 
methods.

From Figure 5, it is clear that transaction nodes with different labels are closely intertwined. At the same time, 
the transaction data does not exhibit a manifold structure or a linearly separable state, invalidating traditional 
label propagation assumptions, as shown in Table 2. Therefore, we propose the TFGAT model, which can 
recognise the self-concealment of money laundering transactions.

Settings
In the experimental settings, we build a TFGAT model based on a Deep Cyclic Pseudo-Label Updating Mechanism 
(DCPLU) to detect money laundering based on the graph structure of Bitcoin transactions. Through rigorous 
Bayesian hyperparameter optimisation, we systematically determined the optimal architectural configuration: 2 
TransformerEncoder layers with 4 parallel attention heads per layer, employing 512-dimensional representations 
(d-model) for latent transaction pattern encoding. This parameter selection – refined from candidate ranges 
of 1  4 encoder layers, 2  8 attention heads, and d-model dimensions {192, 256, 512, 1024}. The finalised 
architecture maintained these optimised parameters throughout both initial supervised training and subsequent 
pseudo-label refinement phases of our dual-stage learning protocol.

•	 The supervised TFGAT training We employ the weighted cross-entropy loss function with alpha (legal transac-
tions) set to 1.0. The beta parameter (illegal category) is obtained through rigorous Bayesian hyperparameter 
optimisation, with a parameter search range of 2 to 15, ultimately determined to be 10. The model demon-
strating the highest F1-score on the validation set is selected as the final implementation. For training config-
uration, we implement 1000 epochs using the Adam optimiser, while the L2 loss weight is derived through 
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rigorous Bayesian hyperparameter optimisation across a parameter search range of 1e−4 to 1e−6, ultimately 
set to 5e−5. The learning rate undergoes a 20% reduction every 100 training iterations.

•	 The deep cyclic pseudo-label updating mechanism We employ the weighted cross-entropy loss function with 
alpha (legal transactions) set to 1.0. The beta parameter (illegal category) is obtained through rigorous Bayes-
ian hyperparameter optimisation, with a parameter search range of 2 to 15, ultimately determined to be 6. 
The model demonstrating the highest F1-score on the validation set is selected as the final implementation. 
For training configuration, we implement 1000 epochs using the Adam optimiser, while the L2 loss weight 
is derived through rigorous Bayesian hyperparameter optimisation across a parameter search range of 1e−4 
to 1e−6, ultimately set to 5e−5. The learning rate undergoes a 10% reduction every 100 training iterations.

Parameter sensitivity analysis
A systematic Bayesian hyperparameter optimisation process reveals the robustness of our TFGAT-DCPLU 
framework.

Shallow 2-layer encoder configurations (selected from 1-4 candidates) show remarkable resilience; deeper 
architectures yield diminishing returns (+0.8% F1 gain per additional layer) while exponentially increasing 
computational complexity. This suggests that our model can effectively capture key transaction patterns without 
over-engineering. A 512-dimensional latent space (selected from 192,  256,  512,  1024) appears to strike an 
optimal balance, providing sufficient representational capacity while avoiding overfitting, as evidenced by a less 
than 2% difference in F1 scores between training and validation sets.

Notably, the framework maintains consistent performance despite significant differences in class weight 
parameters. beta=10 (illegal class weight) in the supervised stage and beta=6 in the semi-supervised stage 
demonstrate the adaptability of our model to different learning mechanisms, and the precision-recall curve 
remains stable (F1 score variance ±2%) in the search range of 2-15 beta. The L2 regularisation (5e−5) shared by 
both training stages further demonstrates its inherent structural stability.

Our model maintains detection efficacy under different parameter configuration scenarios–a key advantage 
in real-world financial anomaly detection systems where trading patterns evolve dynamically.

Evaluation metrics
For the sake of fairness, we leveraged the experimental results from Weber et al.11, Vassallo et al.38 and Lo et al.22, 
using the same metrics to evaluate our model. This included precision, recall, and F1-score for the ”Illicit” class.

	
P recisionillegal = T Pillegal

T Pillegal + F Pillegal
� (18)

	
Recallillegal = T Pillegal

T Pillegal + F Nillegal
� (19)

	
F 1illegal = P recisionillegal × Recallillegal

P recisionillegal + Recallillegal
� (20)

Fig. 5.  Label distribution using PCA for dimensionality reduction.
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The T Pillegal( true positive for illicit transactions) denotes the correct identification of unlawful transactions 
as ”illegal”, while F Pillegal( false positive for illicit transactions) refers to the erroneous classification of 
legitimate transactions as ”illegal”. Conversely, F Nillegal( false negative for illicit transactions) represents 
the misclassification of unlawful transactions as ”legal”. These specifically tailored metrics for illicit financial 
activities offer granular analytical capabilities, thereby enabling targeted refinement of detection models when 
applied to anti-money laundering case samples.

TFGAT with traditional label propagation
We designed a semi-supervised training experiment for TFGAT using the traditional label propagation 
method and compared it with our proposed TFGAT via DCPLU. Furthermore, the experiment includes four 
label propagation methods: Label Propagation Algorithm (LPA), Heat Kernel Label Propagation (HKLP), 
Normalized Label Propagation (NLP) and Personalized PageRank Label Propagation (PPLP). The results are 
shown in Table 2, which illustrates that traditional label propagation methods prove ineffective in AML tasks, 
while our proposed method demonstrates significant superiority across various metrics.

Ablation study
The proposed method contains some key components, and we verify their effectiveness by ablating each 
component. Our ablation study is based on the Elliptic dataset. The influencing factors of our method include 
the Transformer layer, the GAT layer and the deep cyclic pseudo-label updating mechanism. The results are 
shown in Table 3. From Table 3, it is clear that the loss of any of these factors leads to performance degradation, 
with the performance degradation being most severe when no Transformer layer is present. With the same 
number of parameters (about 6.7M), the training time of TFGAT is between the standard GAT implementation 
(3.2 hours) and the pure Transformer architecture (4.7 hours). It is worth noting that although the training cycle 
incurs an additional 25% time overhead (from 4.1 hours to 5.1 hours) after adding DCPLU integration, it can 
improve the recognition performance of illegal transactions and maintain the original number of parameters of 
the model, which can keep the original faster response speed of the model in actual application scenarios.

Performance
We selected 21 representative baseline methods, including classic models, current best-performing models, and 
domain-specific methods related to this study. These include the graph convolutional network (GCN) used in 
the study of Weber et al.11 and its variant Skip-GCN, as well as EvolveGCN combined with temporal modelling 
and its baseline models: logistic regression, random forest, and multi-layer perceptron (MLP), XGBoost used in 
the study of Vassallo et al.38, GraphSAGE used in the study of arasi et al.39 and the Inspection-L model used in 
the study of Lo et al.22 AF refers to the use of all features (all 166 features), LF refers to the use of local features 
(the first 94 features), NE denotes computed node embeddings, and DNE indicates node embeddings generated 
solely using DGI. The specific parameter configuration is shown in the following Table 4:

Table 1 shows the performance of our proposed method and other anti-money laundering baseline methods 
on the Elliptic dataset. The results show that our TFGAT model and the model optimized by the deep cyclic 
pseudo-label updating mechanism outperform other methods. After optimization by the deep cyclic pseudo-
label updating mechanism, the performance of TFGAT is improved and the precision reaches 0.9814, the recall 
reaches 0.8390, and the F1 score reaches 0.9046.

Table 2 shows the performance of TFGAT with traditional label propagation methods. The results show that 
our deep cyclic pseudo-label updating mechanism outperforms other methods.

Table 3 shows the performance of TFGAT on the Elliptic dataset after deleting each component of TFGAT 
in turn.

The results show that the performance loss of the model without the Transformer component is the most 
serious. After DCPLU optimization, the Transformer can achieve 0.9789 precision, 0.8412 recall and 0.9048 f1.

Figures 6 and 7 respectively show each experiment’s ROC curves and confusion matrices. It can be observed 
that our proposed method outperforms other methods in terms of both performance and robustness, achieving 
an AUC of 0.9187.

Conclusion
In this paper, we propose a TFGAT model with a deep cyclic pseudo-label update mechanism (DCPLU) to 
capture hidden illegal Bitcoin transactions through various money laundering techniques and mitigate the 
impact of the sparse distribution of labelled transactions in the financial industry. To address the limitations 
of GAT node-level information extraction, our proposed TFGAT model extracts global information through 
a Transformer to enrich the extracted local information. To deal with the limited availability of labelled data 
in the expensive data labeling process, we introduce a deep cyclic pseudo-label update mechanism (DCPLU) 
to enhance the label distribution. DCPLU bypasses the model assumptions based on manifold structure or 
Euclidean distance, making pseudo-labels more suitable for AML tasks while enhancing model performance 
and maintaining the number of parameters of the existing model, so that the model can maintain the existing 
fast response time in the application scenario. Experimental results show that our model achieves state-of-the-
art results.
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 Model

Performance

Prec. Rec. F1.

T F GAT LP A 0.2141 0.9206 0.3474

T F GAT NLP 0.3152 0.8821 0.4645

T F GAT P P LP 0.3105 0.8776 0.4588

T F GAT HKLP 0.3125 0.8866 0.4622

Our

T F GAT 0.9813 0.8322 0.9006

T F GAT DCP LU 0.9814 0.8390 0.9046

Table 2.  Label propagation results (illicit category performance metrics). Significant values are in bold.

 

Model

Performance

Prec. Rec. F1.

LogisticRegrAF 11 0.404 0.593 0.481

LogisticRegrAF +GNE 11 0.537 0.528 0.533

LogisticRegrLF 11 0.348 0.668 0.457

LogisticRegrLF +GNE 11 0.518 0.571 0.543

RandomF orestAF 11 0.956 0.670 0.788

RandomF orestAF +GNE 11 0.971 0.675 0.796

RandomF orestLF 11 0.803 0.611 0.694

RandomF orestLF +GNE 11 0.878 0.668 0.759

XGBAF 38 0.921 0.732 0.815

XGBAF +GNE 38 0.986 0.692 0.813

MLP AF 11 0.694 0.617 0.653

MLP AF +GNE 11 0.780 0.617 0.689

MLP LF 11 0.637 0.662 0.649

MLP LF +GNE 11 0.681 0.578 0.625

GCN11 0.899 0.678 0.773

GraphSAGE39 0.950 0.765 0.848

Skip − GCN 11 0.812 0.623 0.705

EvolveGCN11 0.850 0.624 0.720

Inspection − LDNE(RF )22 0.593 0.032 0.061

Inspection − LLF +DNE(RF )22 0.850 0.624 0.720

Inspection − LAF +DNE(RF )22 0.972 0.721 0.828

Our

T F GAT 0.9813 0.8322 0.9006

T F GAT DCP LU 0.9814 0.8390 0.9046

Table 1.  TFGAT experiment results (illicit category performance metrics), with ”Semi” indicating that the 
model has been optimized via the deep cyclic pseudo-label updating mechanism. Significant values are in bold.
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Fig. 6.  The ROC curve for the experiment.

 

 Model Params (M) Training time (h)

Performance

Prec. Rec. F1

Transformer 6.8 4.5 0.9557 0.7823 0.8603

TransformerDCPLU 6.8 5.7 0.9563 0.7937 0.8674

GAT 6.6 3.2 0.9369 0.7074 0.8062

GATDCPLU 6.6 4.1 0.9381 0.7211 0.8154

Ours

TFGAT 6.7 4.1 0.9813 0.8322 0.9006

TFGATDCPLU 6.7 5.1 0.9814 0.8390 0.9046

Table 3.  Ablation study results (illicit category performance metrics). Significant values are in bold.
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Model Configuration

Logistic Regression11 scikit-learn default parameters

Random Forest11 50 estimators, 50 largest features

XGBoost38 Default parameters

MLP11 1 hidden layer (50 neurons), Adam optimiser, learning rate 0.001, 200 epochs

GCN11 2-layer GCN (embedding dimension 100), Adam optimiser, learning rate 0.001, 1000 epochs

GraphSAGE39 3 layers (256 units each), mean aggregator, Adam optimizer, learning rate 0.0001, 2000 
epochs, batch normalization

Inspection-L22 GIN encoder: 2-layer MLP (128 units/layer), ReLU activation, batch normalization, learning 
rate 0.0001, 300 epochs, Adam optimizer, node feature shuffling corruption

Table 4.  Baseline model configurations

 

Fig. 7.  The confusion matrix for the experiment.
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Data availability

The sequence data supporting the results of this study are referenced from the 
Alibaba Tianchi public dataset and are available at the following link: ​h​t​t​p​s​:​/​/​t​i​a​n​c​h​i​.​
a​l​i​y​u​n​.​c​o​m​/​d​a​t​a​s​e​t​/​1​1​0​8​9​2​.​​
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