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Small intracranial aneurysms (SIAs) (< 5 mm) are increasingly detected due to advanced imaging, but 
predicting rupture risk remains challenging. Rupture, though rare, can cause devastating subarachnoid 
hemorrhage. This study analyzed 141 SIAs (101 unruptured, 40 ruptured) using semi-automatic 
morphological analysis and high-resolution, image-based blood flow simulations from 3D rotational 
angiography. Advanced morphological and hemodynamic parameters were extracted, with clustering 
applied to address multicollinearity. Univariate logistic regression identified cluster representatives, 
and forward selection highlighted the maximum height, Neck inflow rate, and Non-sphericity 
index as rupture predictors, though only the latter two were significant. Clinical variables like age, 
sex, and comorbidities were also assessed but failed to predict rupture risk. The full model showed 
overfitting, with a pseudo-R2 of 0.142 on the training set but only 0.032 on the test set. A simplified 
model using just Neck inflow rate and Non-sphericity index performed similarly poorly (pseudo-R2 of 
0.034). Multiple machine learning classifiers were evaluated, with similar performance across models, 
supporting the model-independence of the results. Overall, neither morphological, hemodynamic, 
nor clinical variables reliably predicted rupture risk, highlighting the limitations of current methods 
and underscoring the need for prospective studies and multimodal approaches that integrate imaging 
biomarkers and compare small and large aneurysms for better risk stratification.
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The widespread availability of advanced neuroimaging has significantly increased the detection of unruptured 
intracranial aneurysms (IAs), including small, asymptomatic aneurysms1,2 with a diameter of less than 5 mm. 
They have an estimated prevalence of approximately 3–5% in the general population3,4encompassing both 
ruptured and unruptured cases. The rupture of an aneurysm can result in devastating subarachnoid hemorrhage 
(SAH), with morbidity and mortality rates reaching 25% and 40%, respectively4. These clinical challenges 
highlight the need for precise rupture risk stratification, balancing the potential benefits of intervention against 
the procedural risks associated with microsurgical clipping or endovascular treatment5.

While aneurysm size has traditionally been regarded as a primary determinant of rupture risk6,7 discrepancies 
between observational studies and clinical findings challenge this view. Small aneurysms frequently appear 
in ruptured cases8–12 suggesting that size alone is insufficient to predict rupture. Additionally, morphological 
features offered a clearer indication of aneurysm disease status in some studies, with shape-related parameters—
particularly those reflecting irregularity—emerging as more reliable predictors than size alone13. This has driven 
the exploration of additional factors, including clinical, morphological, and hemodynamic parameters, to 
refine risk assessment. Several risk factors for the rupture of small IAs (SIAs), defined as those with a diameter 
ranging from 5 to 7 mm according to different studies, have been identified. These include younger age (< 50 
years)8,14 aneurysm diameter ≥ 4.0mm8, hypertension8,12,14 and the presence of multiple aneurysms8. A recently 
published meta-analysis by Pettersson et al., focusing on SIAs smaller than 7 mm, also highlighted patient age as 
a significant predictor in univariate analysis15. However, through multivariable analysis, the study identified four 
morphological parameters (size ratio16,17 aspect ratio16 bifurcation point, and aneurysm irregularity) and two 
hemodynamic parameters (pressure loss coefficient and wall shear stress (WSS)) as independent predictors of 
rupture15. Pettersson et al. concluded that morphology-related predictors outperform traditional demographic 
predictors commonly used in scoring systems. These findings underscore the critical role of aneurysm 
morphology in rupture risk assessment15.

Accurate morphological evaluation is further important because it directly impacts the reliability 
of hemodynamic simulations, which are essential for understanding aneurysm pathophysiology17–22. 
Hemodynamic forces play a pivotal role in the initiation, growth, and rupture of aneurysms23–25. Image-
based blood flow simulations based on computational fluid dynamics (CFD) studies have highlighted WSS, 
the tangential force of blood flow on vessel walls, as a key factor driving aneurysm progression26–30. Emerging 
evidence supports a dual-pathway hypothesis: low WSS combined with a high oscillatory shear index induces 
inflammatory-cell-mediated remodeling, typically associated with larger, atherosclerotic aneurysms, whereas 
high WSS and a positive WSS gradient trigger mural-cell-mediated remodeling, more often linked to smaller, 
thin-walled aneurysms31. This hemodynamic heterogeneity underscores the need for comprehensive evaluation, 
integrating clinical, morphological, and hemodynamic data for a more accurate rupture risk assessment.

This study builds on these findings, focusing on SIAs (with an aneurysm size < 5 mm as defined by the SUAVe 
study8) and their rupture risk. By integrating clinical, morphological, and hemodynamic data, we aim to refine 
our understanding of the risk factors driving rupture in SIAs.

Materials and methods
For this study, we analyzed a retrospective database comprising 300 patients with 512 IAs treated at the 
Department of Neurosurgery, Otto-von-Guericke University Hospital, Magdeburg, Germany, between 2006 
and 2020. Each patient in the database had undergone 3D rotational angiography, which allowed for the semi-
automatic reconstruction and segmentation of individual 3D surface models of the aneurysms and their parent 
vessels. The cohort was refined based on the following inclusion criteria:

	1.	 Aneurysm size < 5 mm.
	2.	 Compatibility of the 3D surface model for semi-automatic reconstruction of the SIA morphological features 

and for hemodynamic analysis using CFD.

In accordance with the inclusion criteria, 261 IAs with a diameter > 5 mm and 110 SIAs with insufficient quality 
in the extracted 3D surface models were excluded, leaving a total of 141 SIAs for analysis (Fig. 1). Insufficient 
quality of the 3D surface model was defined by the presence of low spatial resolution, motion or imaging 
artifacts, or incomplete or inaccurate segmentation in the 3D rotational angiography data, all of which could 
compromise reliable morphological assessment and the accuracy of subsequent hemodynamic simulations. 
Quality assessment was performed by two experienced researchers—one from the Department of Fluid 
Dynamics and Technical Flows and one neurosurgeon—ensuring both technical and clinical perspectives. Only 
models deemed compatible with semi-automatic postprocessing and CFD pipeline requirements were included 
in the final analysis. The Ethics Committee of the Medical Faculty of the Otto-von-Guericke University reviewed 
and approved the analysis of this retrospective data, confirming that all procedures were conducted as part of 
standard clinical care.

Data acquisition
The clinical data for this study were retrospectively obtained through a comprehensive review of patient records, 
including detailed medical histories, medication profiles, and pre-existing diagnostic imaging. Epidemiological 
parameters, such as age at diagnosis, sex, comorbidities, and modifiable risk factors, including nicotine abuse, 
alcohol consumption, and obesity, were systematically evaluated. To investigate the natural history and clinical 
management of SIA, detailed data were extracted on the rupture status of the SIA, from diagnostic imaging, on 
aneurysm-specific risk profiles, and on patient outcomes. The epidemiological, clinical, and aneurysm-specific 
characteristics of the here analyzed SIAs are summarized in Table 1.
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Morphological analysis
Three-dimensional surface models were reconstructed using 3D rotational angiography datasets and the inhouse 
software MERCIA, implemented in MeVisLab© (MeVis Medical Solutions AG). The segmentation was carefully 
refined through manual editing in Blender 2.93.4 (The Blender Foundation, Amsterdam, Netherlands) to ensure 
the removal of any artifacts and improve overall accuracy. Additionally, the peripheral regions were trimmed, 
and the inlets and outlets were adjusted to align approximately perpendicular to the vessel centerline. Lastly, 
the mesh was manually smoothed using the sculpting workspace in Blender (Fig. 2a)32. Figure 3a illustrates the 
surface of four representative SIAs. The centerline was extracted using the Vascular Modeling Toolkit (VMTK) 
version 1.4.033. Further processing of the centerline was performed in MATLAB R2021a (The MathWorks Inc., 
Natick, MA, USA), where a specialized algorithm was applied for the semi-automatic detection of the aneurysm 
neck curve (Fig.  2b)34. This approach facilitated the precise automated extraction of 23 key morphological 
parameters, which are presented in Table 2.

Unruptured (n = 101) Ruptured (n = 40) p-value

Epidemiological data

 Sex m = 24 (23.8%); f = 77 (76.2%) m = 12 (30.0%); f = 28 (70.0%) 0.6

 Mean age at diagnosis (± σ, years) 54.55 (± 11.13) 52.0 (± 13.48) 0.2

Comorbidities and risk factors

 Arterial hypertension 67 (66.3%) 30 (75%) 0.5

 Diabetes mellitus type 2 0 (0%) 0 (0%) 0.4

 Hypercholesterolemia 27 (26.7%) 7 (17.5%) 0.5

 Nicotine abuse 64 (63.4%) 12 (30.0%) 0.0008

 Alcohole abuse 11 (10.9%) 2 (5.0%) 0.1

 Obesity 23 (22.8%) 14 (35.0%) 0.2

Aneurysm localization

 Anterior cerebral artery 7 (6.9%) 0 (0%) 0.003

 Anterior communicating artery 13 (12.9%) 17 (42.5%)

 Pericallosal artery 3 (3.0%) 1 (2.5%)

 Internal carotid artery 25 (24.8%) 6 (15.0%)

 Middle cerebral artery 39 (38.6%) 10 (25.0%)

 Posterior communicating artery 0 (0%) 1 (2.5%)

 Basilar artery 9 (8.9%) 0 (0%)

 Posterior inferior cerebellar artery 1 (1%) 2 (5.0%)

Others 1 (1%) 0 (0%)

 Aneurysm multiplicity 91 (90.1%) 12 (30%) < 0.001

Table 1.  Epidemiological and clinical characteristics as well as aneurysm specific information of unruptured 
(n = 101) and ruptured (n = 40) sias. The table presents patient demographics, comorbidities, risk factors, and 
aneurysm localization, highlighting differences between the two groups.

 

Fig. 1.  Flowchart illustrating the selection process for SIAs included in the study. Out of 512 IAs identified in 
300 patients, 261 were excluded due to a diameter > 5 mm, and 110 were excluded due to insufficient quality of 
the extracted 3D surface model. The final analysis included 141 SIAs with a diameter < 5 mm and sufficient 3D 
surface model quality.
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Hemodynamic analysis
The three-dimensional surface models of the lumen geometry were used for highly resolved, time-dependent 
blood flow simulations. Computational fluid dynamics computations based on the software Simcenter STAR-
CCM + 17.06 (Siemens PLM Software Inc., Plano, TX, USA) were conducted within a semi-automatic workflow 
developed in accordance with the guidelines of Berg et al. (Fig. 2b)17. Blood was modeled as incompressible fluid 
(constant density of 1056 kg/m3) with non-Newtonian viscosity behavior (Carreau-Yasuda model parameters 
taken from Robertson et al.35) assuming laminar flow conditions. The choice of boundary conditions has a 
significant influence on the accuracy of aneurysm hemodynamics. In particular, the inflow boundary condition 
can lead to considerable deviations36,37. As no subject-specific flow waveforms are available, and given the 
inherently variable nature of such waveforms, a representative inflow curve38 is employed and scaled to the local 
vessel diameter. A representative inflow curve was taken by Cebral et al.38 and scaled to the local vessel diameter. 
At the outlets, an area-weighted outflow splitting technique was applied to distribute the flow appropriately39. 
This approach yields results comparable to those of more complex methods36,40. Vessel walls were modeled as 

Fig. 2.  Schematic representation of the stepwise workflow for generating high-fidelity three-dimensional 
surface models from 3D rotational angiography datasets. The reconstruction was performed using the inhouse 
software MERCIA within MeVisLab©, followed by manual refinement in Blender to remove artifacts, adjust 
inlets and outlets, and smooth the mesh. The vascular centerline was extracted using the Vascular Modeling 
Toolkit (VMTK), and further processing in MATLAB enabled semi-automatic detection of the aneurysm neck 
curve.
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rigid. A time step of 0.5 ms was employed. Two cardiac cycles were simulated to ensure accurate and stable flow 
patterns. The first cardiac cycle served as an initialization phase and the second was used for data acquisition 
and subsequent analysis. 25 hemodynamic parameters25,41 were calculated to characterize the patient-specific 
blood flow, see Table 3. In addition, Fig. 3 illustrates underlying hemodynamic data for four representative SIAs.

Statistical analysis
The dataset was pseudo-randomly divided into a training/validation set and a test set, using sklearn.model_
selection. train_test_split() function, and maintaining a size ratio of 2:1. The clinical and demographic 

Fig. 3.  Four representative aneurysms from the study cohort are presented, illustrating morphological and 
hemodynamic characteristics: (a) aneurysm location (blue) at the parent vessel; (b) the ostium delineating 
the aneurysm lumen from the parent vessel (blue) along with the velocity iso-surface; (c) streamlines of the 
temporally averaged flow field color-coded by local blood velocity; (d) temporally averaged wall shear stress 
induced by frictional forces of blood flow; and (e) the oscillatory shear index, which describes directional 
changes in shear forces throughout the cardiac cycle. Aneurysms 1 and 2 are ruptured, whereas Aneurysms 3 
and 4 are unruptured. Images were screenshoted from Blender 4.4 (https://www.blender.org), from the inhouse 
software MERCIA within MeVisLab© (https://www.mevislab.de/de/), the VMTK 1.4.0 ​(​​​h​t​t​p​:​/​/​w​w​w​.​v​m​t​k​.​o​r​
g​​​​​)​, the inhouse software for semi-automatic detection of the aneurysm neck curve implemented in MATLAB 
R2022a (​h​t​t​p​s​:​​/​/​w​w​w​.​​m​a​t​h​w​o​​r​k​s​.​c​o​​m​/​p​r​o​​d​u​c​t​s​/​​m​a​t​l​a​b​​.​h​t​m​l​?​​s​_​t​i​d​=​h​p​_​f​f​_​p​_​m​a​t​l​a​b) and 2024 Simcenter 
STAR-CCM+ (​h​t​t​p​s​:​​​/​​/​p​l​​m​.​s​​w​.​s​i​e​m​e​​n​s​​.​c​​o​m​​/​​e​n​​-​U​S​​/​s​i​m​c​e​​​n​t​e​r​/​​f​l​​u​i​d​​s​-​t​h​​e​r​​m​a​l​-​s​i​​m​u​l​​a​t​​i​o​​n​/​s​t​a​r​-​c​c​m​/).
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parameters were assessed for equal distribution across the two sets and no significant differences were observed. 
The training and validation set was used for model development, while the test set was assigned exclusively for 
the final evaluation of the model’s performance on unseen data.

To address non-normal distributions, the Yeo-Johnson transformation42—an extension to the perhaps better 
known Box-Cox transformation, but capable of handling negative numbers – was applied to the morphological 
and hemodynamic variables. To mitigate multicollinearity and reduce dimensionality, complete-linkage 
agglomerative clustering was performed to group highly correlated variables, with the clustering threshold set at 
Pearson’s r2 > 0.25, i.e. |r| > 0.5. Vessel parameters were excluded from this analysis. Within each cluster, simple 
logistic regression was conducted using cluster members as independent variables (predictors) and rupture 
status as the dependent variable (outcome). The cluster member with the lowest p-value was selected as the 
representative for the cluster. Only representatives with p < 0.05 were retained for further analysis.

Multiple logistic regression with forward selection and five-fold cross-validation was employed to determine 
the optimal predictor combination, maximizing McFadden’s pseudo-R2. McFadden’s pseudo-R243 is a proper 
scoring rule based on the log-likelihood of observing the data, given the model parameters, and defined 
analogously to the better-known original R2, which is used in linear regression. In contrast to metrics like 
accuracy, AUC, or F1, which are based on discrete predictions (classes) for the data points, McFadden’s pseudo-R2 
works with continuous, real-valued likelihoods. The process started with the most significant predictor from the 
previous step, sequentially adding variables that improved the pseudo-R2. The final model’s performance was 
evaluated on the test set. A similar forward selection process was applied to demographic and clinical variables, 
including sex, age, arterial hypertension, diabetes, hypercholesterolemia, smoking, alcohol consumption, and 
obesity. In addition to logistic regression, a selection of machine learning classifiers, including AdaBoost and 
support vector machines, was applied to assess model robustness. Hyperparameters were optimized through 
cross-validated grid search to ensure fair comparison across models and configurations.

All statistical computations were carried out using Python, specifically the scipy, scikit-learn, and statsmodels 
libraries.

Results
Demographics
The study cohort comprised 141 patients, of whom 101 (71.6%) had unruptured SIAs and 40 (28.4%) had 
ruptured SIAs. Women were predominant in both groups, accounting for 76.2% of patients with unruptured 
SIAs and 70.0% of those with ruptured SIAs. The mean age at diagnosis was slightly higher in the unruptured 
group (54.55 ± 11.13 years) compared to the ruptured group (52.0 ± 13.48 years).

Morphological parameters Unit Unruptured (n = 101) Ruptured (n = 40) p-value

Maximum diameter mm 3.73 (± 0.82) 4.11 (± 0.76) 0.01

Maximum height mm 2.53 (± 0.77) 2.91 (± 0.75) 0.009

Maximum height 2 mm 2.53 (± 0.77) 2.91 (± 0.75) 0.009

Perpendicular height mm 2.15(± 0.8) 2.27 (± 0.74) 0.4

Perpendicular height 2 mm 2.92 (± 0.81) 2.59 (± 0.75) 0.05

Perpendicular maximum width mm 3.12 (± 0.76) 3.23 (± 0.69) 0.07

Parallel maximum width mm 3.33 (± 0.78) 3.59 (± 0.76) 0.4

Average neck diameter mm 2.79 (± 0.67) 2.81 (± 0.66) 0.8

Maximum neck diameter mm 3.15 (± 0.73) 3.21 (± 0.76) 0.7

Aneurysm area mm2 22.12 (± 11.07) 25.11 (± 9.75) 0.1

Aneurysm volume mm3 12.73 (± 8.88) 14.18(± 7.6) 0.4

Ostium area 1 mm2 6.88 (± 3.04) 7.06(± 3.2) 0.8

Ostium area 2 mm2 6.35(± 2.83) 6.35(± 2.78) 1

Aspect ratio 1 – 0.76 (± 0.35) 0.85(± 0.3) 0.2

Aspect ratio 2 – 0.86(± 0.39) 0.96 (± 0.35) 0.1

Convex hull volume mm3 14.26(± 9.53) 16.24 (± 8.33) 0.3

Convex hull surface mm2 29.41 (± 13.08) 32.82 (± 11.46) 0.2

Ellipticity index – 0.28 (± 0.04) 0.28 (± 0.02) 0.5

Non-sphericity index – 0.1 (± 0.06) 0.13(± 0.06) 0.01

Undulation index – 0.13(± 0.06) 0.13 (± 0.07) 0.6

Alpha degree 64.32 (± 17.55) 72.59 (± 18.68) 0.5

Beta degree 56.06(± 17.86) 55.37(± 14.0) 0.06

Gamma degree 59.62 (± 21.60) 52.04 (± 19.3) 0.06

Table 2.  Comparison of 23 semiautomatically extracted morphological parameters between unruptured 
(n = 101) and ruptured (n = 40) sias. The table presents the mean values and standard deviations (± σ) for each 
of the analyzed morphological parameters34.
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Aneurysm localization varied markedly between the two groups. In the unruptured group, the middle cerebral 
artery (MCA) was the most common site (38.6%), followed by the internal carotid artery (24.8%). In contrast, 
ruptured aneurysms were predominantly located in the anterior communicating artery (ACOM, 42.5%), while 
MCA aneurysms accounted for only 25.0%. Aneurysm multiplicity was significantly more frequent among 
patients with unruptured SIAs (90.1%) compared to those with ruptured SIAs (30.0%).

Predictive modeling
Predictive models were developed exclusively on the training/validation dataset, while the test set was used for 
evaluation. The clusters of related morphological and hemodynamic parameters, obtained through agglomerative 
clustering, are shown in Fig. 4. The cluster representatives which in simple logistic regression were shown to be 
significant predictors of the rupture status (p < 0.05) are listed in Table 4. A more lenient selection, using p < 0.1 
as the inclusion criterion, included two additional cluster representatives, the Pulsatility Index for Neck Inflow 
rate (p = 0.08) and Shear Concentration Index (p = 0.09), but their inclusion didn’t change the subsequent results. 
Due to the wide variety of possible aneurysm locations and high imbalance in their presence, in combination 
with a relatively small data set (“curse of dimensionality”), we couldn’t investigate the predictive power of the 
location on the rupture.

In further analysis, forward selection based on improving pseudo-R2applied to morphological and 
hemodynamic variables, produced a model with predictors including the maximum height, the Neck inflow rate, 
and the Non-sphericity index. The latter two showed to be significant predictors, while the maximum height was 
not. This model achieved a pseudo-R2 of 0.142 on the training and validation set but only 0.032 on the test set. 
For comparison, a simpler model using only the Neck inflow rate and the Non-sphericity index as the predictors 
yielded the same pseudo-R2 on the training and validation set and a slightly better value of 0.034 on the test set. 
A binary classifier based on the logistic regression achieves an accuracy of 0.745 on the test set, which is lower 
than the fraction of unruptured aneurysm in the set (0.766) (Fig. 5). These findings suggest that morphological 
and hemodynamic parameters are not reliable predictors of rupture in small aneurysms. The strong performance 
of the complex model on the training and validation set likely reflects overfitting, underscoring the importance 
of validating models on an independent test set.

Hemodynamic parameters Unit Unruptured (n = 101) Ruptured (n = 40) p-value

Maximum WSS Pa 71.55 (± 62.39) 85.23 (± 53.47) 0.2

Mean WSS Pa 8.00 (± 6.82) 10.09 (± 7.65) 0.05

Minimum WSS Pa 3.47E−01 (± 0.71) 2.71E−01 (± 0.37) 0.5

Normalized WSS – 7.41E−01 (± 0.49) 7.34E−01 (± 0.46) 0.9

Mean WSS of parent artery Pa 11.89 (± 10.74) 15.59 (± 11.19) 0.04

Flow rate of parent artery Kg/m3 2.63E−03 (± 1.57E−03) 2.99E−03 (± 1.69E−03) 0.2

Neck inflow rate Kg/m3 6.45E−04 (± 5.42E−04) 8.70E−04 (± 6.28E−04) 0.03

Inflow concentration index – 6.73E−01 (± 0.51) 7.12E−01 (± 0.42) 0.7

Maximum oscillatory shear index – 3.88E−01 (± 0.12) 4.06E−01 (± 0.09) 0.3

Mean oscillatory shear index – 1.69E−02 (± 0.02) 1.74E−02 (± 0.02) 0.9

Maximum velocity m/s 6.33E−01 (± 0.32) 7.38E−01 (± 0.29) 0.03

Mean velocity m/s 2.21E−01 (± 0.14) 2.66E−01 (± 0.15) 0.06

Pulsatility index of velocity – 1.65 (± 0.38) 1.55 (± 0.27) 0.08

Pulsatility index of neck inflow rate – 1.38 (± 0.27) 1.31 (± 0.20) 0.03

Pulsatility index of WSS – 2.38 (± 0.42) 2.29 (± 0.31) 0.1

Kinetic energy µJ 5.49E−01 (± 8.64E−01) 8.51E−01 (± 9.59E−01) 0.06

Kinetic energy of parent artery µJ 2.13E−00 (± 1.97E−00) 2.84E−00 (± 2.28E−00) 0.01

Kinetic energy ratio – 3.46E−01 (± 0.45) 3.80E−01 (± 0.34) 0.9

High shear area – 1.35E−01 (± 0.16) 1.38E−01 (± 0.17) 0.8

Low shear area 1* – 5.13E−01 (± 0.3) 5.05E−01 (± 0.3) 0.7

Low shear area 2* – 1.52E−01 (± 0.25) 1.20E−01 (± 0.21) 0.6

Low shear area 3* – 7.74E−02 (± 0.17) 9.95E−02 (± 0.21) 0.4

Shear concentration index – 3.94 (± 3.57) 3.12 (± 2.06) 0.2

Low shear index – 2.28E−01 (± 0.25) 2.30E−01 (± 0.28) 0.7

High shear index – 7.25E−02 (± 0.13) 7.36E−02 (± 0.13) 0.7

Table 3.  Comparison of 25 hemodynamic parameters between unruptured (n = 101) and ruptured (n = 40) 
sias. The table presents the mean values and standard deviations (± σ) for each of the analyzed hemodynamic 
parameters. *Low shear area follows three different definitions: (1) aneurysm area with WSS less than one 
standard deviation below the mean WSS of the parent artery divided by the total aneurysm area, (2) aneurysm 
area with WSS less 1.5 pa divided by the total aneurysm area and (3) aneurysm area with WSS less 10% of the 
mean WSS of the parent artery divided by the total aneurysm area.
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Fig. 5.  Presentation of the results of the binary classifier based on logistic regression for the simplified model 
using neck inflow rate and non-sphericity index, applied to the training and validation dataset (a) and the test 
dataset (b), with respective accuracies of 0.787 and 0.745.

 

Cluster representative Parameter class p-value

Maximum height 1 Morphological (Fig. 4a) 0.011

Maximum diameter Morphological (Fig. 4a) 0.016

Non-sphericity index Morphological (Fig. 4a) 0.049

Neck inflow rate Hemodynamic (Fig. 4b) 0.016

Table 4.  Cluster representatives identified through simple logistic regression, where each cluster member 
was used as an independent variable (predictor) and rupture status as the dependent variable (outcome). The 
variable with the lowest p-value in each cluster was selected as the representative, and only those with p < 0.05 
were retained for further analysis. Representatives of each cluster, selected based on simple logistic regression, 
are shown alongside their corresponding p-values. The cluster representatives are chroma-coded, as in Fig. 4.

 

Fig. 4.  Clustering of morphological (a) and hemodynamic (b) parameters to avoid multicollinearity in the 
regression analysis. Highly correlated variables were grouped into clusters, and for each cluster, the variable 
with the smallest and significant p-value in the univariate regression was selected as the representative. The 
clustering was performed based on the squared Pearson correlation coefficient (r2), using a cut-off of r2 > 0.25.
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For clinical variables, none emerged as significant predictors of rupture. Obesity exhibited a weak trend on 
the training and validation set (p = 0.095, pseudo-R2 = 0.024), but its performance on the test set dropped to a 
pseudo-R2 of − 0.047, confirming that obesity is not a reliable predictor of SIA rupture.

The prediction performance of various machine learning classifiers trained on the three key predictors—
Maximum Height, Neck Inflow Rate, and Non-sphericity Index—is summarized in Table  5. The results 
demonstrate that none of the classifiers achieved reliably high predictive performance, highlighting the challenge 
of rupture risk prediction in SIA.

Discussion
The management of SIAs remains a clinical challenge, as their low estimated rupture risk must be weighed 
against the significant morbidity and mortality associated with aneurysmal SAH. This study builds on previous 
investigations, identifying increased rupture risks in patients with SIAs who are younger than 50 years, have 
aneurysm diameters ≥ 4 mm, hypertension, or multiple aneurysms8,14. The distribution of unruptured (71.6%) 
and ruptured (28.4%) SIAs in this study is consistent with previous findings44,45. The predominance of female 
patients (76.2% unruptured, 70.0% ruptured) also aligns with earlier reports46–48. Aneurysm localization differed 
between groups, with MCA being most common in unruptured cases (38.6%), while ruptured aneurysms were 
predominantly found in the ACOM (42.5%). This supports prior studies identifying ACOM aneurysms as the 
most rupture-prone49–51 likely due to their unique hemodynamic conditions. Notably, the rate of aneurysm 
multiplicity was substantially higher in the unruptured group (90%) compared to the ruptured group (30%). 
This discrepancy likely reflects a selection bias, as many unruptured aneurysms were identified in patients 
undergoing treatment for another aneurysm. This limitation is common in retrospective aneurysm datasets.

Recent evidence underscores the pivotal role of morphological and hemodynamic factors in rupture 
risk assessment for SIAs. Morphological predictors, including size ratio, aspect ratio, bifurcation location, 
aneurysm irregularity, and hemodynamic parameters such as WSS, have been shown to outperform traditional 
demographic predictors15. This paradigm shift highlights the importance of integrating detailed morphological 
and hemodynamic analyses into clinical decision-making, offering a more robust and personalized approach to 
risk stratification and management. The dual-pathway hypothesis proposed for aneurysm progression suggests 
a link between low WSS and high oscillatory shear index and inflammatory-cell-mediated remodeling, often 
observed in larger, atherosclerotic aneurysms31. Conversely, high WSS and positive WSS gradients might be 
associated with mural-cell-mediated remodeling, a mechanism prevalent in small, thin-walled aneurysms31. 
This hypothesis suggest that smaller aneurysms may follow distinct biological pathways compared to their larger 
counterparts, necessitating a tailored approach in rupture risk stratification.

Our analysis of SIAs initially identified three morphological and one hemodynamic parameter as cluster 
representatives. Through a forward selection process, maximum aneurysm height, Neck inflow rate, and Non-
sphericity index emerged as predictors of aneurysm rupture. However, only the Neck inflow rate and the Non-
sphericity index demonstrated statistical significance. Despite this, neither the complete model incorporating 
all predictors nor the simplified model relying solely on the Neck inflow rate and the Non-sphericity index 
provided reliable performance. While the full model showed marginally acceptable fit on the training set, it 
performed poorly on the test set. Similarly, the simplified model also failed to generalize, reinforcing concerns 
about overfitting. Contrary to findings from previous studies8,15–17 our cohort analysis revealed that none of 
the investigated morphological or hemodynamic parameters, including the maximum aneurysm height, 
achieved sufficient predictive accuracy for rupture status. This finding underscores the complexity of rupture 
risk assessment in SIA and suggests that traditional predictors may not be universally applicable across cohorts. 
We can only partially address the dual-pathway hypothesis in our study. Since our analysis focused exclusively 
on SIAs without comparison to larger aneurysms, establishing a definitive link is challenging. Nevertheless, 
our findings indicate that neither high nor low WSS contributed significantly to the rupture of SIAs within our 
cohort.

In numerous previous studies, arterial hypertension has been identified as a significant risk factor for the 
rupture of SIAs8,12,14. Since our analysis of the morphological and hemodynamic characteristics of SIAs did 
not yield conclusive results, we subsequently investigated established comorbidities and risk factors in patients 
with SIAs. This included age, sex, arterial hypertension, diabetes, hypercholesterolemia, smoking, alcohol 
consumption, and obesity. However, these factors similarly failed to reliably predict rupture risk, highlighting 
the need for a more nuanced approach that incorporates multiple factors beyond the morphological and clinical 
domains to improve predictive modeling for SIA rupture. The comparable performance of different classifiers 
points to the complexity of rupture risk as a key limiting factor, rather than the modeling technique itself.

Classifier Accuracy Precision Sensitivity Specificity F1-score

AdaBoost classifier 0.631 0.339 0.359 0.359 0.347

Support vector machine 0.752 0.556 0.154 0.154 0.229

K-nearest neighbors 0.702 0.398 0.231 0.231 0.287

Stochastic gradient descent 0.695 0.265 0.205 0.205 0.224

Table 5.  Performance of different machine learning classifiers on the independent test set using the three key 
predictors (Maximum height, neck inflow rate, and Non-sphericity Index). Shown are the values for accuracy, 
precision, sensitivity, specificity, and F1-score.
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This study has several limitations that should be acknowledged. First, as a retrospective analysis, there is an 
inherent bias in the data, particularly for unruptured aneurysms. Many of these aneurysms may have undergone 
treatment during follow-up, leaving the natural progression of the disease unknown. This limits the ability to 
fully understand the natural history of SIAs and their rupture risk. Second, the patient cohort analyzed in this 
study was relatively limited in size, which may impact the generalizability of the findings and the statistical power 
of the predictive models. Importantly, for ruptured aneurysms, the imaging data used for analysis were acquired 
after the rupture event. As rupture may alter aneurysm morphology, this introduces a potential confounder, 
as the extracted geometries and derived hemodynamic parameters may not accurately represent pre-rupture 
conditions. Methodological limitations include potential variability in morphological reconstructions due to 
imaging quality and manual refinements. Hemodynamic modeling relies on assumptions such as rigid vessel 
walls and idealized inflow conditions, which may not fully reflect in vivo dynamics.

To address these limitations, future studies should focus on the prospective enrollment of patients to provide 
a more accurate understanding of the natural history of SIAs. Furthermore, the analysis could be enhanced 
by employing patient-specific boundary conditions and focusing on hemodynamic parameters that are less 
sensitive to systemic flow variability. Additionally, establishing a comparative analysis between small and 
large aneurysms could offer valuable insights into the mechanistic differences in rupture risk and enhance 
the development of tailored predictive models. The application of AI could help overcome some limitations 
by improving segmentation accuracy, automating feature selection, and enhancing predictive modeling for 
rupture risk assessment. Such approaches could improve the clinical management of SIA and support more 
individualized treatment decisions.

Conclusion
This study underscores the challenges in predicting rupture risk for SIAs. While the Neck inflow rate and the 
Non-sphericity index were the only significant predictor among morphological and hemodynamic parameters, 
the size, the simplified model nor the full model demonstrated reliable performance on independent test data. 
Clinical variables such as age, sex, and hypertension also failed to predict rupture risk reliably. The consistency 
of results across multiple classification algorithms further reinforces that the observed limitations are unlikely 
to be method-dependent. These findings suggest that traditional predictors alone are insufficient for accurate 
risk stratification in SIAs. Future research should focus on prospective studies with larger datasets, integrating 
multimodal approaches and comparative analyses between small and large aneurysms to refine predictive 
models and improve clinical decision-making.

Data availability
The data supporting the findings of this study are not openly available due to reasons of sensitivity and are avail-
able from the corresponding author upon reasonable request.
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