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This study aimed to identify and validate prognostic genes associated with polyamine metabolism-
related genes (PMRGs) in hepatocellular carcinoma (HCC), offering potential novel therapeutic targets
and strategies. The HCC-related datasets and 19 PMRGs were included in this study. Prognostic genes
were screened out through differential expression analysis, univariate and multivariate Cox regression
analysis. Subsequently, the construction of the risk model and nomogram, as well as functional
enrichment and immune infiltration analysis were carried out. Ultimately, prognostic gene expression
was further validated by quantitative real-time polymerase chain reaction (QRT-PCR) and enzyme
linked immunosorbent assay (ELISA). SMOX, SRM, and SAT1 were identified as prognostic genes.

risk score and stage were investigated as independent prognostic factors to construct nomogram.
Moreover, the drug metabolism cytochrome p450 pathway was found had a significantly enriched

in different risk groups. After that, 11 immune cells differed significantly across risk groups, with
Eosinophi having the highest positive/negative correlation with SAT1/SRM, respectively. Finally, SMOX
and SRM were highly expressed in the HCC group, while SAT1 showed the opposite pattern. The three
genes linked to PMRGs, were identified as prognostic genes for constructing risk models, which may
provide a basis for understanding HCC pathogenesis.
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Abbreviations

HCC Hepatocellular carcinoma

PMRGs Polyamine metabolism-related genes
qRT-PCR  Quantitative real-time polymerase chain reaction
ELISA Enzyme linked immunosorbent assay

SDI Sociodemographic index

ALD Alcohol related liver disease

NASH Non-alcoholic steatohepatitis

SPM Spermine

SPD Spermidine

TAM Tumor-associated macrophages

AUC Area under the curve

ROC Receiver operating characteristic

PH Proportional hazards

GSEA Gene set enrichment analysis

GO Gene ontology

KEGG Kyoto encyclopedia of genes and genomes
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TFs Transcription factors

SNPs Single nucleotide polymorphisms

CPM Counts per million

DEGs Differentially expressed genes

PPI Protein-protein interaction

HR Hazard ratio

K-M Kaplan-meier

DCA Decision curve analysis

ssGSEA Single sample gene set enrichment analysis
TIDE Tumor immune dysfunction and exclusion
HLA Human leukocyte antigen

1C50 Half maximal inhibitory concentration
MEM Minimum essential medium

SMOX Spermine oxidase

SRM Spermidine synthase

SAT1 Spermidine/spermine N1-acetyltransferase 1

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer. The global incidence
of HCC is rising, primarily due to factors such as hepatitis virus infections, excessive alcohol consumption,
and metabolic syndrome'. Recent meta-analyses estimate that there are approximately 747,000 cases of HCC
worldwide, with global mortality rates ranging from 0.8-0.92%2>.

The prevalence of HCC has shifted from regions with low to moderate sociodemographic index (SDI) to
those with high SDI, with viral hepatitis identified as the primary cause of HCC in Asia and much of Africa.
In contrast, alcohol-related liver disease (ALD) and non-alcoholic steatohepatitis (NASH) are the leading
contributors to HCC in North America, Europe, Latin America, and Australasia®®.

As HCC progresses, tumors often exhibit invasive and metastatic behavior, largely due to immune escape
mechanisms®. This significantly worsens the prognosis of patients with HCC and presents a considerable
challenge for clinicians’. Currently, treatment options for HCC include hepatectomy (the primary therapeutic
approach), liver transplantation, and percutaneous ablation®®. However, these treatments are associated with a
high recurrence rate'?, and liver transplantation is limited by donor availability and extended waiting periods!®.
Once metastasis occurs, the effectiveness of these treatments diminishes or may become unfeasible, severely
compromising patient prognosis. Therefore, there is an urgent need to identify novel prognostic biomarkers
and elucidate the underlying mechanisms, which could enhance our understanding of HCC pathogenesis and
provide new targets for clinical diagnosis and therapy.

Polyamines, including spermine (SPM), spermidine (SPD), and putrescine!?, play pivotal roles in normal
growth, development, and specific pathological conditions, such as tumorigenesis'>. The regulation of
polyamines encompasses their synthesis, transport, and catabolism, and is intricately involved in processes like
cell proliferation, apoptosis, and gene regulation'. Polyamine metabolism is not only a key metabolic pathway in
the development of the immunosuppressive phenotype of tumor-associated macrophages (TAMs) but also plays
a critical role in mitochondrial quality control, signal transduction, and energy metabolism regulation!!,. These
processes are directly linked to cancer initiation and progression. In the context of HCC, polyamine metabolism
not only accelerates tumor progression but also mediates interactions between HCC cells and immune cells'!.
Exosomes derived from HCC can serve as diagnostic and prognostic biomarkers by modulating immune
responses'!. Thus, polyamine metabolism is an attractive target for HCC therapy. Polyamine metabolism-
targeting drugs or analogs have demonstrated efficacy against cancer in experimental animal models and even
in clinical trials!!5.

Despite these advances, the precise molecular mechanisms underlying polyamine metabolism in the
prognosis of HCC remain unclear.

In this study, three prognostic genes associated with polyamine metabolism-related genes (PMRGs) in HCC
were identified using transcriptome data from patients with HCC and normal control samples sourced from the
GEO and UCSC Xena databases. A risk model was then constructed based on these three prognostic genes, and
the expression of these markers was validated through qRT-PCR, ELISA, and in the TCGA-LIHC cohort. Further
analyses, including functional enrichment, immune cell infiltration, and regulatory network exploration, were
conducted. This represents investigation into the role of PMRGs in HCC, providing novel insights into their
potential function and molecular mechanisms in HCC. These findings could serve as a theoretical foundation
for the development of new therapeutic strategies for HCC.

Results

The 8 candidate genes significantly enriched for polyamine metabolic-related signaling
pathways

Following differential expression analysis, 5,492 differentially expressed genes (DEGs, they were all protein-
coding transcripts) were identified, consisting of 3,468 upregulated and 2,024 downregulated genes (Fig. 1A and
B). These DEGs were intersected with 19 PMRGs, resulting in the identification of 8 candidate genes (Fig. 1C).
Functional analyses were then performed to explore the biological functions and pathways associated with these
candidate genes. Gene Ontology (GO) enrichment analysis revealed that the candidate genes were involved in
129 functional entries, including 91 biological processes (BPs), 8 cellular components (CCs), and 30 molecular
functions (MFs), with key processes such as polyamine metabolic process and polyamine biosynthetic process
(Fig. 1D). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis highlighted significant
pathways such as arginine and proline metabolism and ferroptosis (Fig. 1E). The Protein-Protein Interaction
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Fig. 1. Differential expression analysis and candidate gene identification analysis. (A) A volcano plot
illustrating differentially expressed genes (DEGs), highlighting top 5 up-regulated genes and top 5 down-
regulated genes. (B) A heatmap displaying the expression patterns of the top 20 up-regulated and down-
regulated DEGs. (C) Venn diagram between DEGs and PMRGs. (D) GO enrichment analysis of candidate
genes, to elucidate their potential biological roles. (E) Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis of candidate genes. (F) A Protein-Protein Interaction (PPI) network of candidate genes.

Scientific Reports|  (2025) 15:23648 | https://doi.org/10.1038/s41598-025-08496-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

(PPI) network revealed 10 pairs of interactions among the candidate genes, such as AGMAT-SAT1 and SRM-
OAZ3 (Fig. 1F).

SMOX, SRM, and SAT1 were used to construct a risk model

Based on these 8 candidate genes, univariate Cox regression analysis identified 4 genes (SMOX, SRM, SAT]I,
and OAZ3) significantly associated with the survival of patients with HCC (Hazard Ratio (HR)#1, p<0.05)
(Fig. 2A). All 4 genes satisfied the PH hypothesis test (p>0.05) (Table 1). Multivariate Cox regression further
confirmed SMOX, SRM, and SAT1 as prognostic genes for constructing the risk model (HR # 1, p <0.2) (Fig. 2B).
Among these, SAT1 acted as a protective factor, while SMOX and SRM were identified as risk factors for HCC,
consistent with the univariate analysis results.
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Fig. 2. Prognostic risk model construction. (A) A forest plot of univariate Cox regression analysis. (B) A forest
plot of multivariate Cox regression analysis. (C) Kaplan-Meier (K-M) survival curves comparing the survival
outcomes of high-risk and low-risk groups in the training set. (D)The distribution of risk score among patients
in the training set. (E) The Receiver Operating Characteristic (ROC) curve of the risk model. (F) K-M survival
curves comparing the survival outcomes of high-risk and low-risk groups in the validation set. (G) A curve
showing the distribution of risk score among patients in the validation set. (H) ROC curve demonstrating the
predictive performance of the risk model in the validation set.
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Symbol | P value
SMOX | 0.462
SRM 0.100
SAT1 0.080
OAZ3 0.446

Table 1. The results of the proportional hazards (PH) hypothesis testing for the genes (SMOX, SRM, SAT1,
OAZ3) identified through univariate Cox regression analysis indicate that the null hypothesis cannot be
rejected (P>0.05).

The risk score was calculated as follows: risk score = (—0.2865) x SMOX + (0.2319) x SRM + (-0.2882) x
SAT1. Using a minimum proportion threshold of 0.45, TCGA-LIHC samples were categorized into high- and
low-risk groups (high: low=169:194). Patients in the high-risk group exhibited significantly lower survival rates
on the Kaplan-Meier (K-M) survival curve (p <0.0001) (Fig. 2C), with similar results observed in the risk curve
(Fig. 2D). Furthermore, the 1-, 3-, and 5-year Area Under the Curve (AUC) values from the Receiver Operating
Characteristic (ROC) curve were 0.70, 0.69, and 0.64, respectively, all exceeding 0.6, indicating good diagnostic
performance of the risk model for HCC (Fig. 2E).

The risk model was validated in the GSE14520 dataset. In this cohort, patients with HCC in the high-risk
group again demonstrated significantly lower survival rates, both in the K-M curve and risk curve (p=0.016)
(Fig. 2F-G). The AUC values for 1- and 5-year survival were above 0.6, and the 3-year AUC was close to 0.6 in
the ROC curve, further confirming the strong diagnostic performance of the risk model (Fig. 2H).

Constructing a good nomogram

An independent prognostic analysis was performed by combining the risk score from Sect. 3.2 with clinical
characteristics. Univariate Cox analysis revealed that pathologic T stage, stage, risk score, and pathologic M
stage were significantly associated with the survival of patients with HCC (Fig. 3A), with p-values from the
Proportional Hazards (PH) hypothesis test greater than 0.05 for all variables (Table 2). Multivariate Cox
regression identified stage and risk score as independent prognostic factors for HCC (Fig. 3B).

A nomogram model was then constructed based on these independent prognostic factors to predict 1-, 3-,
and 5-year survival rates in patients with HCC (Fig. 3C). The nomogram’s predictive ability was further assessed
using various methods. The calibration curve demonstrated a slope close to 1 (Fig. 3D), and the AUC values
for the nomogram model in the ROC curve at 1, 3, and 5 years were all greater than 0.7 (Fig. 3E). Additionally,
Decision curve analysis (DCA) showed that the nomogram provided significant additional benefit at 1, 3, and 5
years (Fig. 3F), confirming its excellent diagnostic performance.

Next, the relationship between clinical features and the risk score was explored. Significant differences were
observed between risk groups for subgroups of stage, grade, and T stage (Fig. 4A). Specifically, Wilcoxon tests
revealed that the proportions of stages 2-4 in stage (p<0.001), grade (p<0.001), and T stage (p <0.001) were
higher in the high-risk group (Fig. 4B). Additionally, risk scores differed significantly among the subtypes of
stage, grade, and T (p <0.05), with higher risk scores associated with more advanced stages (Fig. 4C).

Pathway enrichment and immune cell expression differed between risk groups

Gene Set Enrichment Analysis (GSEA) was conducted to investigate biological functions across different risk
groups. A total of 46 signaling pathways were significantly enriched, with the top 5 pathways visualized, including
drug metabolism cytochrome P450 and retinol metabolism (Fig. 5A).

Immune infiltration analysis was performed by calculating immune scores for 28 immune cell types across
the different risk groups (Fig. 5B). Significant differences were found for 11 immune cell types between the risk
groups. For instance, Eosinophil expression was significantly lower in the high-risk group, while the remaining
10 cell types, including activated CD4 T cells and activated dendritic cells, were elevated in the high-risk group
(Fig. 5C). Correlation analysis revealed that Eosinophils exhibited the strongest positive correlation with
SAT1 (r=0.41, p<0.001) and the strongest negative correlation with SRM (r = -0.15, p<0.001) (Fig. 5D). The
expression of 8 immune checkpoints was found to be downregulated in the high-risk group (Fig. 5E), with a
significant positive correlation to the risk score. LGALS9 showed the highest correlation with the risk score
(r=0.43, p<0.001) (Fig. 5F). Furthermore, the Tumor Immune Dysfunction and Exclusion (TIDE) score was
significantly higher in the high-risk group (Fig. 5G), suggesting increased immune evasion potential, which
could be linked to a poorer response to immune checkpoint inhibitor (ICI) therapy. Additionally, the TIDE score
exhibited a weak positive correlation with the risk score (r=0.37, p=6.4x 1073), indicating that a higher risk
score may be associated with a less favorable response to immunotherapy (Fig. 5H).

TF-mRNA-miRNA and miRNA-SNP-mRNA networks of prognostic genes were generated

In this study, the regulatory mechanisms of prognostic genes were explored. Initially, 90 miRNAs predicted by
the starBase database were intersected with 59 miRNAs predicted by the miRTarBase database, resulting in 8
targeted miRNAs for the 3 prognostic genes (Fig. 6A). Additionally, 66 Transcription factors (TFs) corresponding
to the prognostic genes were predicted. Subsequently, a TF-mRNA-miRNA network was constructed, consisting
of 85 relationship pairs, such as POU2F2-SAT1-hsa-miR-335-5p, TAL1-SMOX-hsa-let-7d-5p, and others
(Fig. 6B). Furthermore, 11 Single Nucleotide Polymorphisms (SNPs) corresponding to the prognostic genes were
predicted using the miRNASNP database. The miRNA-SNP-mRNA network was composed of 19 nodes and 22
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Fig. 3. Construction of an independent prognostic model. (A) Forest plot of univariate Cox analysis. (B)
Forest plot of multivariate Cox analysis. (C) Nomogram model. (D) Correction curve of nomogram. (E) ROC
curve of nomogram. (F 1-3) The 1, 3, and 5 years decision curves of nomogram.
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id P value
T 0.355
Stage 0.296
riskScore | 0.120
M 0.090

Table 2. The results of the proportional hazards (PH) hypothesis testing for the factors (T stage, stage, risk
score, and M stage) identified through univariate Cox regression analysis indicate that the null hypothesis
cannot be rejected (P>0.05).

relationship pairs, including pairs like hsa-miR-186-5p-rs1445781653-SAT1 and hsa-miR-760-rs569643928-
SMOX (Fig. 6C).

HLA family genes, tumor immune cycle, and IC50 of sensitive drugs were different among
different risk groups

The expression differences of Human leukocyte antigen (HLA) family genes across risk groups were also
examined. The results revealed that the expression of 15 HLA family genes, such as HLA-A, HLA-DMA, and
HLA-DMB, was significantly upregulated in the high-risk group (Fig. 7A). Additionally, tumor immune cycle
analysis identified 10 categories of the immune cycle, including Step 1, Step 4.Th22.cell.recruiting, and Step
4.Neutrophil.recruiting, with significant differences between risk groups (Fig. 7B). Furthermore, 117 drugs
exhibited significant differences in Half maximal inhibitory concentration (IC50) values between the risk
groups, indicating varying therapeutic effects in different stages of HCC progression. Among the top drugs,
Doramapimod_1042 was more effective in the high-risk group, while five other drugs, such as Sepantronium
bromide_1941 and Paclitaxel 1080, showed greater efficacy in the low-risk group (Fig. 7C).

Validation of expression levels of SMOX, SRM, and SAT1

In the TCGA-LIHC dataset, the expression of prognostic genes was further investigated. SMOX and SRM were
significantly overexpressed in the HCC group, while SAT1 displayed the opposite pattern (Fig. 8A). In the
GSE14520 dataset, SRM showed significantly higher expression in HCC samples (p <0.0001), while SAT1 was
significantly more highly expressed in control samples (p <0.0001), consistent with the findings from TCGA-
LIHC. However, the expression of SMOX did not differ significantly between HCC and control samples (p>0.05)
(Supplementary FigureS1).

Similarly, Quantitative real-time polymerase chain reaction (QRT-PCR) experiments showed that SRM
and SAT1 were expressed at higher levels in the HCC group, while SMOX expression was significantly higher
in control samples (Fig. 8B, Supplementary Figure S2). Variability across datasets and qRT-PCR results can
be attributed to differences in sample types and experimental methods. Further validation was performed by
measuring the serum levels of SMOX, SRM, and SAT1 in patients with HCC and healthy individuals, which also
aligned with the qRT-PCR findings (Fig. 8C). Finally, HepG2 and Hep3B cells were treated with Doramapimod,
and changes in the levels of SMOX, SRM, and SAT1 in the cell supernatant were consistent with the above results
(Fig. 8D-E).

Discussion

HCC is the sixth most common cancer in the world, with a high mortality rate!'®. From 2000 to 2016, the 5-year
survival rate of HCC patients in the United States was only 18%!”. Recent studies have found that polyamine
metabolism plays a vital role in changing the tumor immune microenvironment'®. The exploration for potential
regulatory mechanism of polyamine metabolism can provide an important means to understand the process of
tumor evolution!. Therefore, the polyamine metabolic pathway is a new way for anti-HCC treatment.

In this study, prognostic gene related to PMRGs (SMOX, SRM, SAT1) were identified for constructing
risk model, and a nomogram was constructed to predict the prognosis of patients. The identification of three
prognostic genes was based on a series of analyses, making these genes relatively more reliable compared to
other markers, such as AFP.

At the same time, we used TCGA-LIHC, qRT-PCR and ELISA experiments to verify the expression levels of
SMOX, SRM, SAT1 in HCC patients, and explored their prognostic value in HCC patients. We also analyzed the
correlation between polyamine metabolism-related subgroups and immune cells and immune checkpoints in
HCC patients, and screened IC50-sensitive drugs in different subgroups.

Spermine oxidase (SMOX) is an inducible enzyme in the polyamine catabolism pathway, which specifically
oxidizes spermine to spermidine and produces hydrogen peroxide and 3-aminopropanal?*?!. Hu et al.found that
SMOX is highly expressed in HCC cell lines and clinical samples, and can promote the tumor growth of HCC?2.
Targeted SMOX can reduce the progression of liver cancer?”. At the same time, studies have found that SMOX
can promote the inflammatory response and fibrosis of hepatocytes through the p-catenin pathway?’, suggesting
that SMOX may indirectly promote the occurrence and development of HCC by affecting the inflammatory
response and fibrosis process. In addition, SMOX catalyzes the oxidation of polyamines to produce reactive
oxygen species (ROS)?2. Excessive accumulation of ROS may lead to DNA damage, cell apoptosis and gene
mutation, thereby promoting the occurrence and development of HCC. In conclusion, SMOX may synergistically
drive the occurrence and development of HCC by mediating ROS production, activating p-catenin pathway and
promoting fibrosis, and targeting SMOX may become a potential therapeutic strategy.
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Fig. 4. Correlation analysis of clinical features. (A) Heatmap showing the correlation between prognostic
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Spermidine synthase (SRM, also known as SPDS) is an enzyme that is widely present in organisms and is
responsible for catalyzing the synthesis of spermidine?*. Studies have shown that spermidine secreted by tumor
cells can inhibit the aggregation of T cell receptor (TCR), thereby inhibiting the activation of CD8" T cells
in tumors?. This suggests that SRM may inhibit the activation of CD8" T cells in HCC, thereby affecting the
progression of HCC. In addition, SRM is enriched in the extracellular vesicles of HCC cells under hypoxic
conditions. It is an effective regulator of polyamines and energy metabolism in tumor-associated macrophages,
which can promote the progression of liver cancer®. In other words, SRM may inhibit CD8" T cell activation
by regulating spermidine synthesis and mediate tumor-macrophage metabolic interaction, thereby promoting
HCC progression.

Spermidine/spermine N1-acetyltransferase 1 (SAT1) encodes a rate-limiting enzyme in polyamine
metabolism?”-28. SAT1 regulates intracellular polyamine levels by acetylating spermine and spermidine, thereby
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Fig. 7. HLA family gene expression, tumor immune circulation and drug sensitivity analysis. (A) Boxline plot
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of Tumor Immune Cycle (TIP) differences between high- and low-risk groups. (C) Boxline plot illustrating
the differences in IC values of chemotherapeutic drugs between high- and low-risk groups. **** represented
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Scientific Reports|  (2025) 15:23648 | https://doi.org/10.1038/s41598-025-08496-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

A TCGA-LIHC
Group E3 Control B HCC
. . x
E 75
>
2
S50
]
1%
Q
825
x
i}
0.0
SMOX SRM SAT1
15 Ak 2.0 *%
° *% 47
s =
3_ 3 _1s
xZ 10 2= 3 -z
E 58 55 10
25 ® g 2 FE
2805 29 )
5% 5= ] 2% 0s
& & «
0.0 o 0.0
Control HCC Control HCC Control HCC
C . * *
_ 150 * . =00 300+
= E =
5 g £
£ 100 ~ 200 £
= 200
s = 3
74 <
7} [77] 5
£ 50 £ 100 100
- 3 E
= @ 2
] o 8
o 0- 0
Control HCC Control HCC Control HCC
150 *%k
D 20 200
%k Kk KoKk
~ 15+ = = 1504
£ | E 100- g0 |
) 2 ®
£ 10 = £ 400-
= - =
x g 501 g
@ 5 » 50
0- 0- 0-
A Y
& & & &
(44 R ® R
o &
o° °
E 10 * k% 150
8 I = =
B E 100 TE’
N 2 g
= X
s 4 c [°)
< 50
& & z
2
0 0
< &
s & &
&
S
00

Fig. 8. Verification of the expression levels of three prognostic genes. (A) The expression levels of prognostic
genes in the TCGA-LTHC dataset. (B) Prognostic gene expression in quantitative Reverse Transcription
Polymerase Chain Reaction (QRT-PCR) experiments. (C) Prognostic gene expression in serum of HCC
patients and normal people by Elisa experiment. (D) The expression of prognostic genes in the supernatant
of HepG2 cells in the control group and the intervention group was detected by Elisa. (E) The expression

of prognostic genes in the supernatant of Hep3B cells in the control group and the intervention group was
detected by Elisa. **** represented p <0.0001, *** represented p <0.001, ** represented p <0.01, * represented
p<0.05, and ns represented p>0.05.
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affecting various biological processes of cells?®?°. SAT1 can regulate the growth and metastasis of HCC cells
through AKT/B-catenin signaling pathway?. SAT1 can be used as a gene-specific transcriptional regulator to
drive the invasiveness of brain tumors?, suggesting that SAT1 may also drive the invasiveness of HCC through
the same mechanism in HCC. In addition, SAT1 activation is associated with p53-mediated ferroptosis®.
Ferroptosis is an iron-dependent way of cell death. In low-grade gliomas, high expression of SAT1 is associated
with poor prognosis and immune cell infiltration®'. This means that SAT1 may affect the progression of HCC
by affecting ferroptosis. In summary, SAT1 may affect the growth, metastasis and invasion of HCC through
polyamine metabolism, signaling pathways and ferroptosis.

In this study, GSEA found that pathways such as drug metabolism cytochrome P450 and Steroid hormone
biosynthesis were significantly enriched in the low-risk group of HCC. Cytochrome P450 enzymes play a
vital role in drug metabolism, especially in the liver, which is responsible for the oxidative metabolism and
clearance of many clinical drugs. These enzymes affect the body’s response to drugs, safety, bioavailability and
toxicity®2. Cytochrome P450 3A4, a subtype of cytochrome P450, is involved in the metabolism of various
chemotherapeutic drugs. Changes in the expression or activity of cytochrome P450 3A4 in tumor cells can affect
the efficacy of chemotherapeutic drugs®. In other words, by affecting the metabolism of drugs, cytochrome P450
may affect the effective concentration of HCC therapeutic drugs, thus affecting the therapeutic effect. Steroid
hormones, such as estrogen and androgen, are important regulators of cell cycle progression*. These hormones
affect the transcription of target genes by binding to intracellular receptors, thereby regulating cell proliferation
and differentiation®>3¢. Therefore, in HCC, abnormal steroid hormone signal transduction may lead to excessive
proliferation and abnormal differentiation of cancer cells. In summary, the enrichment of drug metabolism
cytochrome P450 and Steroid hormone biosynthesis pathways in the low-risk group of HCC may jointly regulate
the treatment response and malignant progression of HCC by affecting drug metabolism and cell proliferation.

In summary, this study identified three prognostic genes associated with polyamine metabolism in HCC, and
constructed a risk model based on these prognostic genes, and explored their functions and potential regulatory
mechanisms. It provides a new theoretical reference for the in-depth study of the pathogenesis and new
treatment strategies of HCC. In the future, we will focus on studying these prognostic genes, further elucidating
their specific mechanisms in HCC, and optimizing the treatment strategies of HCC.

However, this study has some limitations. First, the clinical application of the prognostic genes we screened
requires more sample data support. Secondly, due to differences in the datasets and gene expression profiles,
the validation results of the risk model in the GSE14520 dataset exhibited lower AUC values. Moving forward,
we plan to expand the sample size and perform additional validations using diverse datasets to enhance the
robustness of the model. Thirdly, given the limited number of clinical samples used in the QRT-PCR and Elisa
validation, it is essential to expand the sample size to enhance the robustness and generalizability of our findings.
Meanwhile, a large number of experimental mechanisms (such as gene knockout, etc.) need to be further studied
to explore the specific functions and mechanisms of these genes related to the prognosis of HCC. We will
continue to pay attention to the role of these genes.

Methods

Data acquisition

The HCC-related dataset TCGA-LIHC with survival information was selected from the UCSC Xena database
(https://xenabrowser.net/datapages/) for analysis. The TCGA-LIHC dataset included 419 tissue samples
(Adjacent control: HCC tumor=50:369). Of these, 363 samples had available overall survival (OS) data. To
process the TCGA-LIHC Counts matrix, several normalization and filtering steps were performed to ensure
high-quality data and reliable results. Initially, a logarithmic transformation was applied to stabilize variance and
mitigate skewness. The data were then normalized using Counts Per Million (CPM), and low-expression genes
were excluded, retaining only those with a CPM value exceeding 0.5 in at least half of the samples. Additionally,
genes with expression levels above zero in more than 80% of the samples were selected. These steps refined the
TCGA-LIHC Counts matrix, ensuring robust and accurate analysis.

Similarly, the HCC-related dataset GSE14520 (GPL3921) with survival information in the GEO database
(https://www.ncbi.nlm.nih.gov/gds) was selected to validate the risk model. GSE14520 dataset included 445
tissue samples (Control: HCC tumor=220:225), with 221 HCC samples possessing OS data. Additionally,
according to the references®’, 19 PMRGs (Supplementary Table 1) were derived from the GOBP_POLYAMINE_
METABOLIC_PROCESS functional entry in the Molecular Signatures Database (MSigDB, https://www.gsea-m
sigdb.org/gsea/msigdb) (accessed on November 27, 2023).

Identification and function exploration of candidate genes

To identify genes with significant expression changes under different conditions, differential expression analysis
was performed on the TCGA-LIHC dataset using the DESeq2 package (v 1.36.0). DEGs between the HCC and
control groups were identified with the following criteria: |log2 fold change (FC)| > 0.5 and p.adjust < 0.05%.
Candidate genes were then identified by intersecting DEGs with PMRGs using the ggvenn package (v 0.1.9)%.
GO and KEGG enrichment analyses were conducted using the clusterProfiler package (v 4.7.1.001) to further
explore the molecular functions of the candidate genes (p<0.05)%0-43. Subsequently, a PPI network for the
candidate genes was constructed using the STRING database (https://string-db.org/), which provided insights
into their protein-level interactions (interaction confidence =0.4).

Risk model construction and verification

Univariate Cox regression analysis was conducted on the candidate genes using the survival package (v 3.4-0) in
the TCGA-LIHC dataset to identify genes associated with survival (HR# 1, p<0.05)*. To screen for prognostic
genes for the risk model, genes that met the PH hypothesis test (p>0.5) were subjected to multivariate Cox
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regression analysis (HR# 1, p<0.2). The resulting risk scores were ranked from low to high, and the optimal
threshold was determined using the surv_cutpoint function in the survminer package (v 0.4.9) to categorize
patients with HCC into high and low-risk groups**. K-M survival curves and risk curves were plotted to visualize
survival differences between the groups. ROC curves were also generated using the survival ROC package (v
1.0.3) to assess the performance of the risk model*. To further evaluate the generalizability of the risk model,
validation was performed using the GSE14520 dataset. A similar risk model was constructed for GSE14520, and
K-M curves, risk curves, and ROC curves were plotted to evaluate the model’s effectiveness.

Construction of the independent prognostic model

To enhance the accuracy of the prognostic model, clinical features (age, stage, grade, pathologic M, N, T, and
gender) along with the risk score were incorporated into the univariate Cox analysis (HR # 1, p <0.05). Notably,
in the TNM staging system for HCC, the T (Tumor), N (Nodes), and M (Metastasis) categories are critical
indicators used to assess tumor progression and guide staging. Following this, the PH hypothesis test was applied
to univariate Cox results (p>0.5). Independent prognostic factors (HR#1, p<0.2) were then identified using
multivariate Cox regression analysis. A nomogram was constructed for independent prognostic factors based on
the rms package (v 6.3-0)*7. The predictive power and validity of the nomogram were further evaluated through
calibration curves, ROC curves, and DCA. Additionally, relationships between risk score, prognostic genes,
and clinical features in TCGA-LIHC were examined by generating heat maps using the pheatmap package (v
1.0.12)". Differences in risk scores across various clinical features were analyzed using the Wilcoxon rank sum
test.

Functional enrichment in high- and low-risk groups

To investigate relevant signaling pathways and potential biological mechanisms between the two risk groups,
differential analysis was performed using the DESeq2 package (v 1.36.0), with log2FC serving as the sorting
criterion. GSEA was then conducted based on the KEGG pathway gene set (c2.cp.kegg.v7.4.symbols.gmt) from the
MSigDB database (https://www.gsea-msigdb.org/gsea/msigdb), using the clusterProfiler package (v 4.7.1.001).
Enrichment was considered significant with a normalized enrichment score (|NES| > 1, p-adjust<0.05)%.

Immune-related analysis

The scores of 28 immune cell types for each sample were calculated using the single sample GESA (ssGSEA)
algorithm from the GSVA package (v 1.44.5)%, and the results were visualized using heat maps generated by the
ggplot2 package (v 3.3.6)%. Differences in immune cell distributions and 12 immune checkpoint molecules®!
between the high- and low-risk groups were assessed using the Wilcoxon rank-sum test. Spearman correlation
analysis was conducted between prognostic genes and differential immune cells as well as differential immune
checkpoints using the psych package (v 2.2.9)°2. To explore the association between risk score and tumor
immune escape, TIDE scores for HCC samples were calculated using the TIDE website, with differences in TIDE
scores across risk groups tested by the Wilcoxon rank-sum test. Additionally, Spearman correlation was applied
to investigate the relationship between risk score and TIDE score.

Construction of regulatory network for prognostic gene

A regulatory network was constructed to explore the potential regulatory mechanisms of the prognostic genes.
Initially, miRNAs targeting the prognostic genes were predicted using the starBase and miRTarBase databases.
The results from these two databases were intersected to identify common target miRNAs. TFs for the prognostic
genes were predicted using the ChEA3 database (https://maayanlab.cloud/chea3/), with TFs supported by
ChIP-seq data from the ENCODE database (https://www.encodeproject.org/) being identified. A TF-mRNA-m
iRNA network was then constructed. To further investigate the impact of Single Nucleotide Polymorphisms
(SNPs) on prognostic gene expression, SNPs within the seed regions of target miRNAs were predicted using the
miRNASNP database (http://www.biobigdata.com/miRNASNP/). The TF-mRNA-miRNA and miRNA-SNP-m
RNA networks were visualized and analyzed using Cytoscape (v 3.8.2)%.

HLA family gene, tumor immune cycle, and drug sensitivity analysis

The HLA genes, which are crucial for initiating cellular and humoral immunity, were compared between high-
and low-risk groups in HCC samples using the Wilcoxon rank-sum test**. Differences in the scores of the 23
subcategories of the seven-step tumor immune cycle® between risk groups were also visualized and analyzed
using the Wilcoxon test. To assess potential therapeutic options, the IC50 for various targeted agents in the
GDSC database (https://www.cancerrxgene.org/) was calculated using the oncoPredict package (v 0.2)°°, and
IC50 differences were compared between risk groups using the Wilcoxon test.

Expression verification of prognostic genes

To validate the expression trends of the prognostic genes, expression differences were analyzed in the TCGA-
LIHC dataset using the Wilcoxon rank-sum test. Additionally, the expression of prognostic genes was also
evaluated in the GSE14520 dataset (p <0.05).

gRT-PCR

This study utilized five paired tissue samples from patients at Zhejiang Provincial People’s Hospital for qRT-PCR
analysis, including five HCC samples and five control samples. The study received approval from the Ethics
Committee of Zhejiang Provincial People’s Hospital (No. QT2024070), and informed consent was obtained from
all patients.
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Total RNA from frozen HCC and control samples was extracted using TRIzol reagent (Ambion, USA)
(Supplementary Table 2), followed by RNA quantification using the NanoPhotometer N50. Equal amounts of
mRNA were reverse transcribed into cDNA using the SureScript First-Strand cDNA Synthesis Kit. The resulting
cDNA was diluted 5-20 times with RNase/DNase-free ddH20 (Sevier). qPCR was performed using the 2 x
Universal Blue SYBR Green qPCR Master Mix Kit under the following conditions: initial denaturation at 95 °C
for 1 min, followed by 40 cycles of denaturation at 95 °C for 20 s, annealing at 55 °C for 20 s, and extension at
72 °C for 30 s. Gene expression levels were calculated using the 2-*4€T method. Primer sequences are provided
in Supplementary Table 3.

cell culture

HepG2 and Hep3B human hepatoma cell lines were purchased from Wuhan Pricella Biotechnology Co., Ltd.
Both cell types were cultured in Minimum Essential Medium (MEM) supplemented with 10% fetal bovine
serum (FBS, Gibco, USA) and maintained in a humidified atmosphere at 37 °C with 5% CO,. CCKS8 experiment
was used to explore Doramapimod, and it was found that 100 nM Doramapimod had a significant inhibitory
effect on proliferation at 24 h. This concentration and time were selected for subsequent studies (Supplementary
Figure S3-S4). The cells were divided into two groups: a control group, which received only medium, and an
intervention group, which was treated with 100 nM Doramapimod (HY-10320, MedChemExpress) for 24 h.

Enzyme-linked immunosorbent assay

Serum and cell supernatant levels of SMOX (ED-201717), SRM (ED-17237), and SAT1 (ED-15124) were
measured using enzyme-linked immunosorbent assay (ELISA) kits according to the manufacturer’s instructions
(AMOY LUNCHANGSHUOBIOTECH, CO., LTD, Xiamen, China).

Statistical analysis
Bioinformatics analyses were conducted using R software (v 4.2.3). Differences were considered statistically
significant at p <0.05.

Data availability

The initial data used to support the findings of this study are available from the corresponding author upon
request.Publicly available datasets were analyzed in this study. This data can be found here: GEO (https://www.n
cbi.nlm.nih.gov/gds) and UCSC Xena databases (https://xenabrowser.net/datapages/).
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