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In this paper, we test the possibility of using Wing Interference Patterns (WIPs) and deep learning (DL)
for the identification of Culex mosquitoes species to evaluate the extent to which a generic method
could be developed for surveying Dipteran insects of major importance to human health. Previous
applications of WIPs and DL have successfully demonstrated their utility in identifying Anopheles,
Aedes, sandflies, and tsetse flies, providing the rationale for extending this approach to Culex.
Accurate identification of these mosquitoes is crucial for vector-borne disease control, yet traditional
methods remain labor-intensive and are often hindered by cryptic species or damaged samples. To
address these challenges, we applied WIPs, generated by thin-film interference on wing membranes, in
combination with convolutional neural networks (CNNs) for species classification. Our results achieved
over 95% genus-level accuracy and up to 100% species-level accuracy. Nonetheless, challenges with
underrepresented species emphasize the need for larger datasets and complementary techniques
such as molecular barcoding. This study highlights the potential of WIPs and DL to enhance mosquito
identification and contribute to scalable tools for broader surveys of health-relevant Dipteran insects.

Pathogens transmitted by arthropods, including viruses, bacteria, and parasites, are among the most destructive
infectious agents globally. Blood-feeding insects of the Culex genus (Linnaeus, 1758) are recognized vectors of
significant diseases, such as West Nile virus fever, Japanese encephalitis, Saint Louis encephalitis, or lymphatic
filariasis as examples (Wuchereria bancrofti)!. The genus encompasses 26 subgenera with over 783 recognized
species and 55 subspecies, as recorded in the Integrated Taxonomic Information System (last accessed November
28, 2024, https://www.itis.gov). Many of these species transmit pathogens of medical or veterinary importance
(see Table 1).

They belong to four subgenera (Culex, Melanoconion, Oculeomyia, and Eumelanomyia), which include
22 species known to transmit pathogens of medical or veterinary significance. Key species, such as Cx.
quinquefasciatus and Cx. tritaeniorhynchus, serve as vectors of West Nile virus, Japanese encephalitis virus,
and other arboviruses. An additional 16 species are suspected vectors based on published data. Traditional
morphological identification is labor-intensive and relies on diagnostic features and determination keys. This
method is often challenged by cryptic species, overlapping morphological traits, and damaged specimens'’.
These limitations emphasize the need for innovative identification methods to enhance entomological surveys.

Insects with thin, transparent wing membranes—typically smaller species—can exhibit visible color patterns
caused by thin-film interference. When these wings are illuminated in a dark, light-absorbing setting (such as
under direct sunlight), striking interference patterns become visible across the membrane surface. These Wing
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Recognized vector competence

Reference

Culex (Culex) antennatus

https://wrbu.si.edu/vectorspecies/mosquitoes/antennatus

Culex (Culex) fuscocephala

https://wrbu.si.edu/vectorspecies/mosquitoes/fuscocephala

Culex (Culex) gelidus

https://www.wrbu.si.edu/vectorspecies/mosquitoes/gelidus

Culex (Culex) nigripalpus

https://www.wrbu.si.edu/vectorspecies/mosquitoes/nigripalpus

Culex (Culex) perexiguus

https://www.wrbu.si.edu/vectorspecies/mosquitoes/perexiguus

Culex (Culex) pipiens

https://wrbu.si.edu/index.php/vectorspecies/mosquitoes/pipiens

Culex (Culex) quinquefasciatus

https://wrbu.si.edu/index.php/vectorspecies/mosquitoes/quinquefasciatus

Culex (Culex) restuans

https://www.wrbu.si.edu/vectorspecies/mosquitoes/restuans

Culex (Culex) salinarius

https://www.wrbu.si.edu/vectorspecies/mosquitoes/salinarius

Culex (Culex) sitiens

https://www.wrbu.si.edu/vectorspecies/mosquitoes/sitiens

Culex (Culex) tarsalis

https://www.wrbu.si.edu/vectorspecies/mosquitoes/tarsalis

Culex (Culex) theileri

https://wrbu.si.edu/index.php/vectorspecies/mosquitoes/theileri

Culex (Culex) tritaeniorhynchus

https://wrbu.si.edu/index.php/vectorspecies/mosquitoes/tritaeniorhynchus

Culex (Culex) univittatus

https://wrbu.si.edu/index.php/vectorspecies/mosquitoes/univittatus

Culex (Culex) vishnui

Culex (Melanoconion) erraticus

https://www.wrbu.si.edu/vectorspecies/mosquitoes/vishnui

https://wrbu.si.edu/vectorspecies/mosquitoes/erraticus

Culex (Melanoconion) ocossa https://wrbu.si.edu/vectorspecies/mosquitoes/ocossa

Culex (Melanoconion) spissipes https://wrbu.si.edu/vectorspecies/mosquitoes/spissipes

Culex (Melanoconion) taeniopus https://wrbu.si.edu/vectorspecies/mosquitoes/taeniopus

Culex (Melanoconion) vomerifer https://wrbu.si.edu/vectorspecies/mosquitoes/vomerifer

Culex (Oculeomyia) bitaeniorhynchus | https://wrbu.si.edu/vectorspecies/mosquitoes/bitaeniorhynchus

Culex (Oculeomyia) poicilipes https://wrbu.si.edu/index.php/vectorspecies/mosquitoes/poicilipes

Data on vector competence

Culex (Culex) annulus

Culex (Culex) australicus

Culex (Culex) coronator

Culex (Culex) decens

Culex (Culex) declarator 6

Culex (Culex) neavei 7

Culex (Culex) pseudovishnui

Culex (Culex) saltanensis

Culex (Culex) thriambus 10

Culex (Culex) torrentium

Culex (Culex) zombaensis

Culex (Lophoceraomyia) rubithoracis

Culex (Melanoconion) adamesi

Culex (Melanoconion) cedecei

Culex (Melanoconion) gnomatos

Culex (Melanoconion) panacossa

Table 1. Culex species of medical or veterinary interest. The vectorial status of Culex species was collected
from the Walter Reed Biosystematics Unit research site (last accessed on November 20/ 2024, https://wrbu.si.ed
u/), as well as from Google and PubMed (last accessed on November 20/2024)

Interference Patterns (WIPs) show substantial variation between different species, while remaining relatively
consistent within a species or between sexes. The resulting coloration, reminiscent of the hues seen on soap
bubbles, is linked to the local thickness of the wing membrane. Unlike conventional iridescence from flat
films, which changes with viewing angle, the microstructure of insect wings functions as a dioptric system that
stabilizes the interference pattern, making WIPs largely insensitive to viewing angle'8. Because of their species-
specific consistency and interspecific variability, WIPs hold strong potential as morphological markers for insect
classification, offering a promising alternative or complement to traditional taxonomic traits.

Many research groups are actively developing computer vision and machine learning methods for automated
insect identification, including techniques based on whole-body images!®, geometric morphometrics®. These
approaches have demonstrated notable success in identifying various taxa across different insect orders. Our
work complements these broader efforts by focusing specifically on the use of Wing Interference Patterns
(WIPs) as stable and species-specific markers. By integrating WIPs with CNN-based classification, we provide
an alternative and robust framework for mosquito identification that could be particularly valuable for species
with cryptic morphological traits or for damaged specimens. WIPs have been successfully applied to various
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Culex in our database Med/vet int | Country code | Expert/year Nb
Culex (Culex) brumpti No 504 Bailly-Choumara/1965 2
Culex (Culex) decens** Yes 854 ] Hamon/1959 9
Culex (Culex) quinquefaciatus Yes 250, 638 A Cannet, Ph Bousses/2012 | 68
Culex (Culex) neavei Yes 638 Ph Bousses/2012 259
Culex (Culex) pipiens*™* Yes ND ARIM 1
Culex (Culex) thalassius No 24 G Legof/2010 10
Culex (Culex) tritaenhiorhynchus | Yes 638 Ph Bousses/2012 166
Culex (Culex) univitattus Yes 638, 450 Ph. Bousses/2012 22
Culex (Culiciomyia) nebulosus** | No ND ARIM 10
Culex (Eumelanomyia) insignis | No 638 Ph Bousses/2012 18
Culex (Maillotia) hortensis*™* No ND ARIM 6
Culex (Neoculex) territans No ND ARIM 1

Table 2. Culex included in the dataset. ** Samples not identified at the subspecies level. ARIM, sample
deposited in the collection after identification. ARIM, specimen identified at the species level and deposited in
the ARIM collection without further information

Predicted
Culex spp Other Nb of pictures
Truth | Culex spp | 108 (95.6%) | 5 113
Other 8 897 (99.1%) | 905

Table 3. Test for accuracy of the DL (deep learning) process for the Culex (Linnaeus, 1758) genus
identification.

insect groups, including Glossina, Aedes, Anopheles, Phlebotomus, and Sergentomyia'®*'-26. Building on these
successes, we investigated the use of WIPs and CNNss for the classification of Culex species, a critical genus for
vector-borne disease control.

Our approach aims to test whether the combination of WIPs and deep learning can serve as a reliable and
scalable method for identifying Culex species and explore to what extent this method could be generalized to
survey a broader range of Dipteran insects of major relevance to human health.

Results

Training and classification

We evaluated the classifier using a dataset of Culex species, non-Culex Culicidae (Psychodidae, Glossinidae, and
Ceratopogonidae) and other Culicidae (Aedes, Anopheles) as negative controls. The initial database comprised
572 images of 12 species across 5 subgenera. Only species with at least 10 images were retained, resulting in a
refined dataset of 553 images representing WIPs from 7 species (Table 2) for training purposes.

Classification performance
The CNN achieved genus-level classification accuracy exceeding 95.00%( Table 3).

At the species level, performance varied, with perfect accuracy (100.00%) for Cx. neavei and high accuracy
(75.00% to 94.00%) for Cx. insignis, Cx. quinquefasciatus, and Cx. tritaeniorhynchus. Misclassification occurred
for Cx. thalassius and (accuracy 0.00%), while low 40.00% or moderate accuracy (50.00%) were recorded for
Cx. univittatus and Cx. nebulosus respectively 4.

In a multi-country external quality assessment conducted within the MediLabSecure Network, morphological
identification of mosquitoes achieved an average species-level accuracy of 64%, with considerable variability
observed across participating laboratories’”’. Our CNN-based method achieved species-level accuracy
ranging from 40 to 100%, depending on the Culex species. While these results can surpass the performance
of morphological identification reported in that assessment, accuracy varies depending on the dataset,
methodological approach, and study context. Considering this baseline, we interpret species identification
accuracy above 65% as indicative of good performance, as it exceeds the mean accuracy achieved by trained
entomologists in the referenced assessment. Notably, while our model’s performance in recognizing samples
belonging to the Culex genus was variable, it remained above 65% for 4 species, and below < 65% for 3 species
tested. For these latter species, the accuracy achieved by our model was nonetheless lower than that reported in
other AI/ML-based studies?.

Discussion
This study demonstrates the potential of integrating Wing Interference Patterns (WIPs) with deep learning
models for classifying Culex species. By combining the distinct, species-specific patterns of WIPs with the
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Predicted
Species | ins | neav | neb | quing thal | trit | univ | Others | Nb
ins 75.0 | 0.0 00 |0.0 00 |00 |0.0 25.0 4
T | neav 0.0 100.0 [ 0.0 | 0.0 0.0 |0.0 |0.0 0.0 52
r | neb 0.0 |0.0 50.0 | 0.0 00 |00 |0.0 50.0 2
u |quingq |00 |7.1 0.0 |929 00 |00 |0.0 0.0 14
t | thal 0.0 |0.0 0.0 |0.0 0.0 {00 |0.0 100.0 |2
h | trit 00 |0.0 00 |29 00 |94.1 |0.0 2.9 34
Univ 0.0 |40.0 |00 |0.0 0.0 |20.0 |40.0 | 0.0 5
Others | 0.0 | 0.6 0.1 0.1 0.0 |0.1 0.0 |99.1 905

Table 4. Test for accuracy of the DL (deep learning) process for the Culex (Linnaeus, 1758) species
identification, in percentage of accuracy. Cx. insignis; neav, Cx. neavei; neb, Cx. nebulosus; quing, Cx.
quinquefaciatus; thal, Cx. thalassius; trit, Cx tritaenorhynchus; univ, Cx. univittatus; Others, other culicidae
species not belonging to the Culex genus; Nb, number of pictures tested.

analytical capabilities of CNNs, we achieved high genus-level classification accuracy and variable species-level
performance.

Species-level accuracy varied due to dataset limitations, particularly for poorly represented species like Cx.
thalassius and Cx. univittatus or Cx nebulosus. Expanding the dataset to include more specimens and diverse
conditions—such as age, preservation state, and environmental origin-could improve accuracy. Integrating
complementary techniques like molecular barcoding®® or protein profiling®® can enhance dataset robustness
and address cryptic species identification.

This approach holds significant promise for improving vector surveillance. Accurate identification of key
vector species, such as Cx. quinquefasciatus and Cx. tritaeniorhynchus, supports efforts to monitor and control
vector-borne diseases. The scalable and cost-effective nature of WIP imaging makes it suitable for large-scale
biodiversity monitoring and entomological surveys. By standardizing imaging protocols and providing user-
friendly tools for field researchers, this method can become a practical asset for global health initiatives.

Several areas require further exploration to enhance the reliability of this approach on Culex, including
dataset expansion, integration of molecular techniques, and standardization of imaging. Expanding the dataset
by increasing species representation and capturing greater variability in specimen conditions is crucial for
improving classification accuracy. Incorporating molecular techniques, such as DNA barcoding and proteomic
profiling, can help resolve cryptic species and provide additional discriminatory features to complement Wing
Interference Patterns (WIPs). Additionally, standardizing imaging protocols is essential to minimize variability
and ensure consistent image quality, which will ultimately enhance the performance and robustness of deep
learning models. Another critical consideration for future research is the establishment of standardized criteria
for evaluating the accuracy of AI/ML-based mosquito identification systems. Currently, differences in dataset
composition, feature sets, and methodological approaches can hinder direct comparisons across studies. Defining
consistent evaluation frameworks, such as accuracy thresholds, dataset curation guidelines, and performance
metrics, will facilitate reliable benchmarking and enhance the reproducibility of AI/ML applications in
entomological surveillance. By harmonizing these criteria, future studies can provide clearer insights into the
true strengths and limitations of methods, to drive progress in mosquito vector identification.

The misclassification of Culex. nebulosus, Cx. thalassius and Cx. univittatus underscores the need to reassess
diagnostic criteria and expand molecular datasets for these species. Such efforts would improve model robustness
and generalizability, enabling broader applications across taxa and geographic regions.

This study demonstrates the effectiveness of combining Wing Interference Patterns (WIPs) with deep
learning models for identifying important Culex vectors. High genus-level accuracy and reliable species-level
results demonstrate the effectiveness of WIP-based classification for taxonomic applications, highlighting its
potential as a scalable and cost-effective tool for Culex vector surveillance. By enhancing species identification
capabilities, this method can significantly contribute to global health efforts in mitigating vector-borne diseases.

Furthermore, the combination of WIPs and deep learning-based identification presents a promising avenue
for enhancing large-scale entomological surveys of Dipteran insects with medical or veterinary relevance. Its
minimally invasive and high-throughput potential could offer an innovative tool for biodiversity monitoring,
supporting more efficient species identification at broader scales.

To fully realize this potential, the system must now be rigorously challenged by incorporating additional
family member species, aiming to include the highest biodiversity possible across Dipteran insects. Expanding
datasets to encompass greater taxonomic diversity and ecological variability will not only strengthen model
robustness but also ensure its applicability across a wide range of species and geographic contexts.

Future research should also integrate complementary approaches, such as molecular barcoding and proteomic
profiling, to resolve challenges posed by cryptic species and underrepresented taxa. Refining imaging protocols
and classification algorithms will further enhance the accuracy and generalizability of this method.

By bridging cutting-edge machine learning with innovative imaging techniques, the WIPs and DL method
has the potential to become a transformative tool for vector surveillance and biodiversity research, advancing
global health and ecological conservation efforts.
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Figure 1. Upper panel: schematic representation of the classification pipeline; lower panel: WIP images of
selected Culex species. The pipeline illustrates the Convolutional Neural Network (CNN)-based approach used
for species identification. The classification process involves two main steps: extraction of hierarchical features
via convolutional layers, followed by classification using fully connected and softmax layers. Feature maps are
visualized by weighting them with channel-wise averaged gradients.

Methods

Culex collection and storage

The reference collection of Culex for this study includes samples from the ARIM collection (https://arim.
ird.fr/) maintained by the Institut de Recherche pour le Développement (IRD). Furthermore, field-collected
specimens, initially identified through regional morphological keys at the time of capture and included in the
ARIM collection, were also incorporated into the database. A detailed description of these samples is provided
in Table 2.

Image acquisition and database construction

The same standard operating procedures (SOP) previously employed for capturing WIPs of Glossina, Anopheles,
Aedes and Psychodidae were applied to Culex as described in reference’!. The procedure involved dissecting the
wings and mounting them on glass slides. A coverslip was applied, and the specimens were photographed using
an xVH-Z20r camera with a VH K20 adapter (Keyence” ™) set to a 10° illumination angle. The High Dynamic
Range (HDR) function was utilized for all images. Each photograph was cropped to standardize the size and
exclude wing dimensions as a factor in species identification for deep learning applications. Metadata, including
geographical origin, collection date, species identity, specimen sex, and the entomologist’s name who identified
the sample, were recorded. The camera settings were: white balance 3200 K, shutter speed 1/15 sec, gain 0db,
frame rate 15F/s, brightness 15%, texture 15%, contrast 45%, and color 100%. Adjustments for luminosity,
contrast, shadows, reflection, and saturation were set to 80%, 100%, 0%, 0%, and 100%, respectively, using
Windows 7 Home Edition. Before finalizing the images in the database, dust removal was performed manually.

Collected dataset, image pre-processing, and dataset splitting for training/learning and
validation

An annotated image dataset was created, comprising 572 images representing 12 species, for use in Culex
classification. For model generalization purposes, variables such as sex, geographic origin, age, and physiological
state (whether blood-fed or not) were excluded from consideration. Specimens genus was not considered to
build the training and test datasets. In addition, 4,944 images of WIPs from various Diptera families, excluding
Culex members, were incorporated. Species with fewer than ten images were omitted from species-level training
to avoid overfitting . All images were resized to 256 x 116 pixels, and pixel values were normalized within the
range of (0,1) as previously published?!.

A range of image augmentation methods was employed, including vertical and horizontal flips, random
rotations, and zoom transformations. The primary goal of these techniques was to enhance the robustness of
the WIPs dataset by introducing randomized variations, thereby increasing the diversity of training examples
without collecting new data. The dataset underwent k-fold cross-validation (k=5), a widely used method to assess
the robustness of machine learning techniques, including deep learning. This process was conducted similarly
to the previous analyses of Glossina WIPs in reference®? and illustrated in the Fig. 1. The dataset was randomly
shuffled and divided into k equal-sized subsets with similar class distributions. For each fold, a classifier was
trained on k-1 subsets and validated using the remaining kth subset, allowing for the calculation of the mean
accuracy across the five generated classifiers.

Amongall machinelearning approaches, Deep Convolutional Neural Networks (CNNs) and their architectural
variations have proven to be the most effective for image classification in recent years. Unlike traditional shallow
methods (such as Support Vector Machines, Random Forests, and Boosting-based approaches), CNNs do not
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require hand-crafted features as input. Instead, the method automatically selects the optimal features during the
learning process, making it particularly suitable for WIP classification tasks.

Training of the convolutional neural network (CNN)

The original CNN architectures, including MobileNet, ResNet, and YOLOV2, were selected for automatic
classification using the dataset described above. In contrast to conventional deep learning models, our approach
is more compact, designed specifically to handle the smaller size of our dataset. To address this, we developed
streamlined image recognition and classification architectures. The first architecture draws inspiration from
MobileNet, leveraging depth-wise convolution®. Our model employs only a single depth-wise convolution per
layer to reduce complexity and the number of extracted features. Batch normalization was applied to expedite
and stabilize the training process®’. This compact CNN architecture, based on MobileNet, incorporates two
interconnected layers similar to VGG40, as used in YOLOv2, with a DarkNet-1938 architecture. Since such
deep architectures often tend to overfit the training data (limiting generalization to new datasets), we tested two
simplified architectures with fewer scales than the original. These were designated DarkNet-9 (with 8 convolution
layers and one classification layer) and DarkNet-14 (with 13 convolution layers and one classification layer).
Additionally, we replicated the ResNet18 architecture37, initializing it from scratch. Despite its depth, which
may increase the risk of overfitting, the residual connections in ResNet* facilitated successful convergence of
the training process.

We also implemented a traditional approach based on extracting SURF descriptors (an efficient variant
of SIFT descriptors), employing a Bag of Features (BoF) representation with a dictionary of 4000 codewords,
and using an SVM with a polynomial kernel. For each task, we utilized a single fully connected layer with
softmax activation to predict the probability of an image belonging to the correct class. The networks were
trained using Stochastic Gradient Descent (SGD) with a learning rate of 10e2 and a momentum of 0.9 for 30
epochs. The method was implemented on a workstation equipped with a quad-core CPU at 3.0 GHz and 16 GB
of RAM. Further details on training options, accuracy, sensitivity, and the code can be found at (https://githu
b.com/marcensea/diptera-wips/commit/12f39ab500a3{820ctb817c67ef25¢580942301d). Combining the dataset
repositories36'37 allows for the collection of 5,516 pictures from 7 families (Culicidae, Calliphoridae, Muscidae,
Glossinidae, Tabanidae, Ceratopogonidae, and Psychodidae) and 21 genera, from which the analysis of Culex
was performed.

Data availability

Combining the dataset repositories (https://doi.org/10.6084/m9.figshare.24444937.v2) and (https://doi.org/10.
6084/m9.figshare.22083050.v4) allows for the collection of 5,516 pictures from 7 families (Culicidae, Callipho
ridae, Muscidae, Glossinidae, Tabanidae, Ceratopogonidae, and Psychodidae) and 21 genera, from which the
analysis of Culex was performed. Accession codes: The source code is publicly available on GitHub, with a direct
https://github.com/marcensea/diptera-wips.git.
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