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In this paper, we test the possibility of using Wing Interference Patterns (WIPs) and deep learning (DL) 
for the identification of Culex mosquitoes species to evaluate the extent to which a generic method 
could be developed for surveying Dipteran insects of major importance to human health. Previous 
applications of WIPs and DL have successfully demonstrated their utility in identifying Anopheles, 
Aedes, sandflies, and tsetse flies, providing the rationale for extending this approach to Culex. 
Accurate identification of these mosquitoes is crucial for vector-borne disease control, yet traditional 
methods remain labor-intensive and are often hindered by cryptic species or damaged samples. To 
address these challenges, we applied WIPs, generated by thin-film interference on wing membranes, in 
combination with convolutional neural networks (CNNs) for species classification. Our results achieved 
over 95% genus-level accuracy and up to 100% species-level accuracy. Nonetheless, challenges with 
underrepresented species emphasize the need for larger datasets and complementary techniques 
such as molecular barcoding. This study highlights the potential of WIPs and DL to enhance mosquito 
identification and contribute to scalable tools for broader surveys of health-relevant Dipteran insects.

Pathogens transmitted by arthropods, including viruses, bacteria, and parasites, are among the most destructive 
infectious agents globally. Blood-feeding insects of the Culex genus (Linnaeus, 1758) are recognized vectors of 
significant diseases, such as West Nile virus fever, Japanese encephalitis, Saint Louis encephalitis, or lymphatic 
filariasis as examples (Wuchereria bancrofti)1. The genus encompasses 26 subgenera with over 783 recognized 
species and 55 subspecies, as recorded in the Integrated Taxonomic Information System (last accessed November 
28, 2024, https://www.itis.gov). Many of these species transmit pathogens of medical or veterinary importance 
(see Table 1).

They belong to four subgenera (Culex, Melanoconion, Oculeomyia, and Eumelanomyia), which include 
22 species known to transmit pathogens of medical or veterinary significance. Key species, such as Cx. 
quinquefasciatus and Cx. tritaeniorhynchus, serve as vectors of West Nile virus, Japanese encephalitis virus, 
and other arboviruses. An additional 16 species are suspected vectors based on published data. Traditional 
morphological identification is labor-intensive and relies on diagnostic features and determination keys. This 
method is often challenged by cryptic species, overlapping morphological traits, and damaged specimens17. 
These limitations emphasize the need for innovative identification methods to enhance entomological surveys.

Insects with thin, transparent wing membranes—typically smaller species—can exhibit visible color patterns 
caused by thin-film interference. When these wings are illuminated in a dark, light-absorbing setting (such as 
under direct sunlight), striking interference patterns become visible across the membrane surface. These Wing 
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Interference Patterns (WIPs) show substantial variation between different species, while remaining relatively 
consistent within a species or between sexes. The resulting coloration, reminiscent of the hues seen on soap 
bubbles, is linked to the local thickness of the wing membrane. Unlike conventional iridescence from flat 
films, which changes with viewing angle, the microstructure of insect wings functions as a dioptric system that 
stabilizes the interference pattern, making WIPs largely insensitive to viewing angle18. Because of their species-
specific consistency and interspecific variability, WIPs hold strong potential as morphological markers for insect 
classification, offering a promising alternative or complement to traditional taxonomic traits.

Many research groups are actively developing computer vision and machine learning methods for automated 
insect identification, including techniques based on whole-body images19, geometric morphometrics20. These 
approaches have demonstrated notable success in identifying various taxa across different insect orders. Our 
work complements these broader efforts by focusing specifically on the use of Wing Interference Patterns 
(WIPs) as stable and species-specific markers. By integrating WIPs with CNN-based classification, we provide 
an alternative and robust framework for mosquito identification that could be particularly valuable for species 
with cryptic morphological traits or for damaged specimens. WIPs have been successfully applied to various 

Recognized vector competence Reference

Culex (Culex) antennatus https://wrbu​.si.edu/vect​orspecies/mo​squitoes/an​tennatus

Culex (Culex) fuscocephala https://wrbu​.si.edu/vect​orspecies/mo​squitoes/fu​scocephala

Culex (Culex) gelidus https://www.​wrbu.si.edu/​vectorspecie​s/mosquitoe​s/gelidus

Culex (Culex) nigripalpus https://www.​wrbu.si.edu/​vectorspecie​s/mosquitoe​s/nigripalpus

Culex (Culex) perexiguus https://www.​wrbu.si.edu/​vectorspecie​s/mosquitoe​s/perexiguus

Culex (Culex) pipiens https://wrbu​.si.edu/inde​x.php/vector​species/mos​quitoes/pipiens

Culex (Culex) quinquefasciatus ​h​t​t​p​s​:​​/​/​w​r​b​u​​.​s​i​.​e​d​​u​/​i​n​d​​e​x​.​p​h​p​/​v​e​c​t​o​r​s​p​e​c​i​e​s​/​m​o​s​q​u​i​t​o​e​s​/​q​u​i​n​q​u​e​f​a​s​c​i​a​t​u​s​​

Culex (Culex) restuans https://www.​wrbu.si.edu/​vectorspecie​s/mosquitoe​s/restuans

Culex (Culex) salinarius https://www.​wrbu.si.edu/​vectorspecie​s/mosquitoe​s/salinarius

Culex (Culex) sitiens https://www.​wrbu.si.edu/​vectorspecie​s/mosquitoe​s/sitiens

Culex (Culex) tarsalis https://www.​wrbu.si.edu/​vectorspecie​s/mosquitoe​s/tarsalis

Culex (Culex) theileri https://wrbu​.si.edu/inde​x.php/vector​species/mos​quitoes/theileri

Culex (Culex) tritaeniorhynchus ​h​t​t​p​s​:​​/​/​w​r​b​u​​.​s​i​.​e​d​​u​/​i​n​d​​e​x​.​p​h​p​/​v​e​c​t​o​r​s​p​e​c​i​e​s​/​m​o​s​q​u​i​t​o​e​s​/​t​r​i​t​a​e​n​i​o​r​h​y​n​c​h​u​s​​

Culex (Culex) univittatus ​h​t​t​p​s​:​​/​/​w​r​b​u​​.​s​i​.​e​d​​u​/​i​n​d​e​​x​.​p​h​p​​/​v​e​c​t​o​​r​s​p​e​c​i​​e​s​/​m​o​s​​q​u​i​t​o​e​s​/​u​n​i​v​i​t​t​a​t​u​s

Culex (Culex) vishnui ​h​t​t​p​s​:​​/​/​w​w​w​.​​w​r​b​u​.​s​​i​.​e​d​u​/​​v​e​c​t​o​​r​s​p​e​c​i​​e​s​/​m​o​s​​q​u​i​t​o​e​​s​/​v​i​s​h​n​u​i

Culex (Melanoconion) erraticus https://wrbu​.si.edu/vect​orspecies/mo​squitoes/er​raticus

Culex (Melanoconion) ocossa https://wrbu​.si.edu/vect​orspecies/mo​squitoes/oc​ossa

Culex (Melanoconion) spissipes https://wrbu​.si.edu/vect​orspecies/mo​squitoes/sp​issipes

Culex (Melanoconion) taeniopus https://wrbu​.si.edu/vect​orspecies/mo​squitoes/ta​eniopus

Culex (Melanoconion) vomerifer https://wrbu​.si.edu/vect​orspecies/mo​squitoes/vo​merifer

Culex (Oculeomyia) bitaeniorhynchus https://wrbu​.si.edu/vect​orspecies/mo​squitoes/bi​taeniorhynchus

Culex (Oculeomyia) poicilipes https:​​​//wr​bu​.si​.edu/​ind​ex.php/vector​speci​es/mo​squitoes/poicilipes

Data on vector competence

Culex (Culex) annulus 2

Culex (Culex) australicus 3

Culex (Culex) coronator 4

Culex (Culex) decens 5

Culex (Culex) declarator 6

Culex (Culex) neavei 7

Culex (Culex) pseudovishnui 8

Culex (Culex) saltanensis 9

Culex (Culex) thriambus 10

Culex (Culex) torrentium 11

Culex (Culex) zombaensis 12

Culex (Lophoceraomyia) rubithoracis 13

Culex (Melanoconion) adamesi 14

Culex (Melanoconion) cedecei 15

Culex (Melanoconion) gnomatos 16

Culex (Melanoconion) panacossa 15

Table 1.  Culex species of medical or veterinary interest. The vectorial status of Culex species was collected 
from the Walter Reed Biosystematics Unit research site (last accessed on November 20/ 2024, ​h​t​t​p​s​:​/​/​w​r​b​u​.​s​i​.​e​d​
u​/​​​​​)​, as well as from Google and PubMed (last accessed on November 20/2024)
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insect groups, including Glossina, Aedes, Anopheles, Phlebotomus, and Sergentomyia18,21–26. Building on these 
successes, we investigated the use of WIPs and CNNs for the classification of Culex species, a critical genus for 
vector-borne disease control.

Our approach aims to test whether the combination of WIPs and deep learning can serve as a reliable and 
scalable method for identifying Culex species and explore to what extent this method could be generalized to 
survey a broader range of Dipteran insects of major relevance to human health.

Results
Training and classification
We evaluated the classifier using a dataset of Culex species, non-Culex Culicidae (Psychodidae, Glossinidae, and 
Ceratopogonidae) and other Culicidae (Aedes, Anopheles) as negative controls. The initial database comprised 
572 images of 12 species across 5 subgenera. Only species with at least 10 images were retained, resulting in a 
refined dataset of 553 images representing WIPs from 7 species (Table 2) for training purposes.

Classification performance
The CNN achieved genus-level classification accuracy exceeding 95.00%( Table 3).

At the species level, performance varied, with perfect accuracy (100.00%) for Cx. neavei and high accuracy 
(75.00% to 94.00%) for Cx. insignis, Cx. quinquefasciatus, and Cx. tritaeniorhynchus. Misclassification occurred 
for Cx. thalassius and (accuracy 0.00%), while low 40.00% or moderate accuracy (50.00%) were recorded for 
Cx. univittatus and Cx. nebulosus respectively 4.

In a multi-country external quality assessment conducted within the MediLabSecure Network, morphological 
identification of mosquitoes achieved an average species-level accuracy of 64%, with considerable variability 
observed across participating laboratories27. Our CNN-based method achieved species-level accuracy 
ranging from 40 to 100%, depending on the Culex species. While these results can surpass the performance 
of morphological identification reported in that assessment, accuracy varies depending on the dataset, 
methodological approach, and study context. Considering this baseline, we interpret species identification 
accuracy above 65% as indicative of good performance, as it exceeds the mean accuracy achieved by trained 
entomologists in the referenced assessment. Notably, while our model’s performance in recognizing samples 
belonging to the Culex genus was variable, it remained above 65% for 4 species, and below < 65% for 3 species 
tested. For these latter species, the accuracy achieved by our model was nonetheless lower than that reported in 
other AI/ML-based studies28.

Discussion
This study demonstrates the potential of integrating Wing Interference Patterns (WIPs) with deep learning 
models for classifying Culex species. By combining the distinct, species-specific patterns of WIPs with the 

Predicted

Culex spp Other Nb of pictures

Truth Culex spp 108 (95.6%) 5 113

Other 8 897 (99.1%) 905

Table 3.  Test for accuracy of the DL (deep learning) process for the Culex (Linnaeus, 1758) genus 
identification.

 

Culex in our database Med/vet int Country code Expert/year Nb

Culex (Culex) brumpti No 504 Bailly-Choumara/1965 2

Culex (Culex) decens** Yes 854 J Hamon/1959 9

Culex (Culex) quinquefaciatus Yes 250, 638 A Cannet, Ph Bousses/2012 68

Culex (Culex) neavei Yes 638 Ph Bousses/2012 259

Culex (Culex) pipiens** Yes ND ARIM 1

Culex (Culex) thalassius No 24 G Legoff/2010 10

Culex (Culex) tritaenhiorhynchus Yes 638 Ph Bousses/2012 166

Culex (Culex) univitattus Yes 638, 450 Ph. Bousses/2012 22

Culex (Culiciomyia) nebulosus** No ND ARIM 10

Culex (Eumelanomyia) insignis No 638 Ph Bousses/2012 18

Culex (Maillotia) hortensis** No ND ARIM 6

Culex (Neoculex) territans No ND ARIM 1

Table 2.  Culex included in the dataset. ** Samples not identified at the subspecies level. ARIM, sample 
deposited in the collection after identification. ARIM, specimen identified at the species level and deposited in 
the ARIM collection without further information
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analytical capabilities of CNNs, we achieved high genus-level classification accuracy and variable species-level 
performance.

Species-level accuracy varied due to dataset limitations, particularly for poorly represented species like Cx. 
thalassius and Cx. univittatus or Cx nebulosus. Expanding the dataset to include more specimens and diverse 
conditions–such as age, preservation state, and environmental origin–could improve accuracy. Integrating 
complementary techniques like molecular barcoding29 or protein profiling30 can enhance dataset robustness 
and address cryptic species identification.

This approach holds significant promise for improving vector surveillance. Accurate identification of key 
vector species, such as Cx. quinquefasciatus and Cx. tritaeniorhynchus, supports efforts to monitor and control 
vector-borne diseases. The scalable and cost-effective nature of WIP imaging makes it suitable for large-scale 
biodiversity monitoring and entomological surveys. By standardizing imaging protocols and providing user-
friendly tools for field researchers, this method can become a practical asset for global health initiatives.

Several areas require further exploration to enhance the reliability of this approach on Culex, including 
dataset expansion, integration of molecular techniques, and standardization of imaging. Expanding the dataset 
by increasing species representation and capturing greater variability in specimen conditions is crucial for 
improving classification accuracy. Incorporating molecular techniques, such as DNA barcoding and proteomic 
profiling, can help resolve cryptic species and provide additional discriminatory features to complement Wing 
Interference Patterns (WIPs). Additionally, standardizing imaging protocols is essential to minimize variability 
and ensure consistent image quality, which will ultimately enhance the performance and robustness of deep 
learning models. Another critical consideration for future research is the establishment of standardized criteria 
for evaluating the accuracy of AI/ML-based mosquito identification systems. Currently, differences in dataset 
composition, feature sets, and methodological approaches can hinder direct comparisons across studies. Defining 
consistent evaluation frameworks, such as accuracy thresholds, dataset curation guidelines, and performance 
metrics, will facilitate reliable benchmarking and enhance the reproducibility of AI/ML applications in 
entomological surveillance. By harmonizing these criteria, future studies can provide clearer insights into the 
true strengths and limitations of methods, to drive progress in mosquito vector identification.

The misclassification of Culex. nebulosus, Cx. thalassius and Cx. univittatus underscores the need to reassess 
diagnostic criteria and expand molecular datasets for these species. Such efforts would improve model robustness 
and generalizability, enabling broader applications across taxa and geographic regions.

This study demonstrates the effectiveness of combining Wing Interference Patterns (WIPs) with deep 
learning models for identifying important Culex vectors. High genus-level accuracy and reliable species-level 
results demonstrate the effectiveness of WIP-based classification for taxonomic applications, highlighting its 
potential as a scalable and cost-effective tool for Culex vector surveillance. By enhancing species identification 
capabilities, this method can significantly contribute to global health efforts in mitigating vector-borne diseases.

Furthermore, the combination of WIPs and deep learning-based identification presents a promising avenue 
for enhancing large-scale entomological surveys of Dipteran insects with medical or veterinary relevance. Its 
minimally invasive and high-throughput potential could offer an innovative tool for biodiversity monitoring, 
supporting more efficient species identification at broader scales.

To fully realize this potential, the system must now be rigorously challenged by incorporating additional 
family member species, aiming to include the highest biodiversity possible across Dipteran insects. Expanding 
datasets to encompass greater taxonomic diversity and ecological variability will not only strengthen model 
robustness but also ensure its applicability across a wide range of species and geographic contexts.

Future research should also integrate complementary approaches, such as molecular barcoding and proteomic 
profiling, to resolve challenges posed by cryptic species and underrepresented taxa. Refining imaging protocols 
and classification algorithms will further enhance the accuracy and generalizability of this method.

By bridging cutting-edge machine learning with innovative imaging techniques, the WIPs and DL method 
has the potential to become a transformative tool for vector surveillance and biodiversity research, advancing 
global health and ecological conservation efforts.

Predicted

Species ins neav neb quinq thal trit univ Others Nb

ins 75.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 4

T neav 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 52

r neb 0.0 0.0 50.0 0.0 0.0 0.0 0.0 50.0 2

u quinq 0.0 7.1 0.0 92.9 0.0 0.0 0.0 0.0 14

t thal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 2

h trit 0.0 0.0 0.0 2.9 0.0 94.1 0.0 2.9 34

Univ 0.0 40.0 0.0 0.0 0.0 20.0 40.0 0.0 5

Others 0.0 0.6 0.1 0.1 0.0 0.1 0.0 99.1 905

Table 4.  Test for accuracy of the DL (deep learning) process for the Culex (Linnaeus, 1758) species 
identification, in percentage of accuracy. Cx. insignis; neav, Cx. neavei; neb, Cx. nebulosus; quinq, Cx. 
quinquefaciatus; thal, Cx. thalassius; trit, Cx tritaenorhynchus; univ, Cx. univittatus; Others, other culicidae 
species not belonging to the Culex genus; Nb, number of pictures tested.
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Methods
Culex collection and storage
The reference collection of Culex for this study includes samples from the ARIM collection ​(​h​t​t​p​s​:​/​/​a​r​i​m​.​
i​r​d​.​f​r​/​) maintained by the Institut de Recherche pour le Développement (IRD). Furthermore, field-collected 
specimens, initially identified through regional morphological keys at the time of capture and included in the 
ARIM collection, were also incorporated into the database. A detailed description of these samples is provided 
in Table 2.

Image acquisition and database construction
The same standard operating procedures (SOP) previously employed for capturing WIPs of Glossina, Anopheles, 
Aedes and Psychodidae were applied to Culex as described in reference31. The procedure involved dissecting the 
wings and mounting them on glass slides. A coverslip was applied, and the specimens were photographed using 
an xVH-Z20r camera with a VH K20 adapter (KeyenceT M ) set to a 10◦ illumination angle. The High Dynamic 
Range (HDR) function was utilized for all images. Each photograph was cropped to standardize the size and 
exclude wing dimensions as a factor in species identification for deep learning applications. Metadata, including 
geographical origin, collection date, species identity, specimen sex, and the entomologist’s name who identified 
the sample, were recorded. The camera settings were: white balance 3200 K, shutter speed 1/15 sec, gain 0db, 
frame rate 15F/s, brightness 15%, texture 15%, contrast 45%, and color 100%. Adjustments for luminosity, 
contrast, shadows, reflection, and saturation were set to 80%, 100%, 0%, 0%, and 100%, respectively, using 
Windows 7 Home Edition. Before finalizing the images in the database, dust removal was performed manually.

Collected dataset, image pre-processing, and dataset splitting for training/learning and 
validation
An annotated image dataset was created, comprising 572 images representing 12 species, for use in Culex 
classification. For model generalization purposes, variables such as sex, geographic origin, age, and physiological 
state (whether blood-fed or not) were excluded from consideration. Specimens genus was not considered to 
build the training and test datasets. In addition, 4,944 images of WIPs from various Diptera families, excluding 
Culex members, were incorporated. Species with fewer than ten images were omitted from species-level training 
to avoid overfitting . All images were resized to 256 x 116 pixels, and pixel values were normalized within the 
range of (0,1) as previously published31.

A range of image augmentation methods was employed, including vertical and horizontal flips, random 
rotations, and zoom transformations. The primary goal of these techniques was to enhance the robustness of 
the WIPs dataset by introducing randomized variations, thereby increasing the diversity of training examples 
without collecting new data. The dataset underwent k-fold cross-validation (k=5), a widely used method to assess 
the robustness of machine learning techniques, including deep learning. This process was conducted similarly 
to the previous analyses of Glossina WIPs in reference32 and illustrated in the Fig. 1. The dataset was randomly 
shuffled and divided into k equal-sized subsets with similar class distributions. For each fold, a classifier was 
trained on k-1 subsets and validated using the remaining kth subset, allowing for the calculation of the mean 
accuracy across the five generated classifiers.

Among all machine learning approaches, Deep Convolutional Neural Networks (CNNs) and their architectural 
variations have proven to be the most effective for image classification in recent years. Unlike traditional shallow 
methods (such as Support Vector Machines, Random Forests, and Boosting-based approaches), CNNs do not 

Input
WIP Processing Deep Learning

CNN

Culex�tritaenorhynchus

Prediction
Culex classification

Culex quiquefaciatus

Culex�neavei

Culex�insignis

Figure 1.  Upper panel: schematic representation of the classification pipeline; lower panel: WIP images of 
selected Culex species. The pipeline illustrates the Convolutional Neural Network (CNN)-based approach used 
for species identification. The classification process involves two main steps: extraction of hierarchical features 
via convolutional layers, followed by classification using fully connected and softmax layers. Feature maps are 
visualized by weighting them with channel-wise averaged gradients.

 

Scientific Reports |        (2025) 15:21548 5| https://doi.org/10.1038/s41598-025-08667-y

www.nature.com/scientificreports/

https://arim.ird.fr
https://arim.ird.fr
http://www.nature.com/scientificreports


require hand-crafted features as input. Instead, the method automatically selects the optimal features during the 
learning process, making it particularly suitable for WIP classification tasks.

Training of the convolutional neural network (CNN)
The original CNN architectures, including MobileNet, ResNet, and YOLOv2, were selected for automatic 
classification using the dataset described above. In contrast to conventional deep learning models, our approach 
is more compact, designed specifically to handle the smaller size of our dataset. To address this, we developed 
streamlined image recognition and classification architectures. The first architecture draws inspiration from 
MobileNet, leveraging depth-wise convolution33. Our model employs only a single depth-wise convolution per 
layer to reduce complexity and the number of extracted features. Batch normalization was applied to expedite 
and stabilize the training process34. This compact CNN architecture, based on MobileNet, incorporates two 
interconnected layers similar to VGG40, as used in YOLOv2, with a DarkNet-1938 architecture. Since such 
deep architectures often tend to overfit the training data (limiting generalization to new datasets), we tested two 
simplified architectures with fewer scales than the original. These were designated DarkNet-9 (with 8 convolution 
layers and one classification layer) and DarkNet-14 (with 13 convolution layers and one classification layer). 
Additionally, we replicated the ResNet18 architecture37, initializing it from scratch. Despite its depth, which 
may increase the risk of overfitting, the residual connections in ResNet35 facilitated successful convergence of 
the training process.

We also implemented a traditional approach based on extracting SURF descriptors (an efficient variant 
of SIFT descriptors), employing a Bag of Features (BoF) representation with a dictionary of 4000 codewords, 
and using an SVM with a polynomial kernel. For each task, we utilized a single fully connected layer with 
softmax activation to predict the probability of an image belonging to the correct class. The networks were 
trained using Stochastic Gradient Descent (SGD) with a learning rate of 10e2 and a momentum of 0.9 for 30 
epochs. The method was implemented on a workstation equipped with a quad-core CPU at 3.0 GHz and 16 GB 
of RAM. Further details on training options, accuracy, sensitivity, and the code can be found at ​(​h​t​t​p​s​​:​/​/​g​i​t​​h​u​
b​.​c​o​​m​/​m​a​r​c​​e​n​s​e​a​/​d​i​p​t​e​r​a​-​w​i​p​s​/​c​o​m​m​i​t​/​1​2​f​3​9​a​b​5​0​0​a​3​f​8​2​0​c​f​b​ 8​1​7​c​6​7​e​f​2​5​c​5​8​0​9​4​2​3​0​1​d​)​. Combining the dataset 
repositories36,37 allows for the collection of 5,516 pictures from 7 families (Culicidae, Calliphoridae, Muscidae, 
Glossinidae, Tabanidae, Ceratopogonidae, and Psychodidae) and 21 genera, from which the analysis of Culex 
was performed.

Data availability
Combining the dataset repositories (https://doi.org/10.6084/m9.figshare.24444937.v2) and ​(​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​
6​0​8​4​/​m​9​.​f​i​g​s​h​a​r​e​.​2​2​0​8​3​0​5​0​.​v​4​) allows for the collection of 5,516 pictures from 7 families (Culicidae, ​C​a​l​l​i​p​h​o​
r​i​d​a​e​, Muscidae, Glossinidae, Tabanidae, Ceratopogonidae, and Psychodidae) and 21 genera, from which the 
analysis of Culex was performed. Accession codes: The source code is publicly available on GitHub, with a direct 
https://github.com/marcensea/diptera-wips.git.

Received: 28 November 2024; Accepted: 23 June 2025

References
	 1.	 Madhav, M., Blasdell, K. R., Trewin, B., Paradkar, P. N. & López-Denman, A. J. Culex-transmitted diseases: Mechanisms, impact, 

and future control strategies using Wolbachia. Viruses 16, 1134 (2024).
	 2.	 Cates, M. D. & Detels, R. Japanese encephalitis virus in Taiwan: Preliminary evidence for Culex annulus Theob. as a vector. J. Med. 

Entomol. 6, 327–328. https://doi.org/10.1093/jmedent/6.3.327 (1969).
	 3.	 Azuolas, J. K., Wishart, E., Bibby, S. & Ainsworth, C. Isolation of ross river virus from mosquitoes and from horses with signs of 

musculo-skeletal disease. Aust. Vet. J. 81, 344–7. https://doi.org/10.1111/j.1751-0813.2003.tb11511.x (2003).
	 4.	 Turell, M. J., Dohm, D. J., Fernandez, R. & Klein, T. A. Vector competence of Peruvian mosquitoes for two orthobunyaviruses 

isolated from mosquitoes captured in Peru. J. Med. Entomol. 58, 1384–1388. https://doi.org/10.1093/jme/tjaa252 (2021).
	 5.	 Fontenille, D. et al. transmission cycles of the west-Nile virus in Madagascar, Indian Ocean. Ann. Soc. Belge Med. Trop. 69, 233–243 

(1989).
	 6.	 Vieira, C. J. D. S. P. et al. Detection of ilheus virus in mosquitoes from southeast Amazon, Brazil. Trans. R. Soc. Trop. Med. Hyg. 113, 

424–427. https://doi.org/10.1093/trstmh/trz031 (2019).
	 7.	 Jupp, P. G., McIntosh, B. M. & Blackburn, N. K. Experimental assessment of the vector competence of Culex (Culex) neavei 

Theobald with west Nile and Sindbis viruses in south africa. Trans. R. Soc. Trop. Med. Hyg. 80, 226–30. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​0​0​
3​5​-​9​2​0​3​(​8​6​)​9​0​0​1​9​-​2​​​​ (1986).

	 8.	 Naik, P. S., Ilkal, M. A., Pant, U., Kulkarni, S. M. & Dhanda, V. Isolation of Japanese encephalitis virus from Culex pseudovishnui 
Colless, 1957 (Diptera: Culicidae) in Goa. Indian J. Med. Res. 91, 331–3 (1990).

	 9.	 Beranek et al. Culex saltanensis and Culex interfor (Diptera: Culicidae) are susceptible and competent to transmit St. Louis 
encephalitis virus (Flavivirus: Flaviviridae) in central Argentina. bioRxiv (2019).

	10.	 Reisen, W. K., Fang, Y. & Martinez, V. M. Vector competence of Culiseta incidens and Culex thriambus for west Nile virus. J. Am. 
Mosq. Control Assoc. 22, 662–5. ​h​t​t​p​s​:​​/​/​d​o​i​.​​o​r​g​/​1​0​​.​2​9​8​7​/​​8​7​5​6​-​9​7​1​x​(​2​0​0​6​)​2​2​[​6​6​2​:​V​c​o​c​i​a​]​2​.​0​.​C​o​;​2 (2006).

	11.	 Holicki, C. M. et al. German Culex pipiens biotype molestus and Culex torrentium are vector-competent for Usutu virus. Parasit 
Vectors 13, 625. https://doi.org/10.1186/s13071-020-04532-1 (2020).

	12.	 Turell, M. J. et al. Vector competence of Kenyan Culex zombaensis and Culex quinquefasciatus mosquitoes for rift valley fever virus. 
J. Am. Mosq. Control Assoc. 23, 378–82. https://doi.org/10.2987/5645.1 (2007).

	13.	 Weng, M. H., Lien, J. C. & Ji, D. D. Monitoring of Japanese encephalitis virus infection in mosquitoes (Diptera: Culicidae) at 
Guandu Nature Park, Taipei, 2002–2004. J. Med. Entomol. 42, 1085–8. https://doi.org/10.1093/jmedent/42.6.1085 (2005).

	14.	 Ferro, C. et al. Natural enzootic vectors of Venezuelan equine encephalitis virus, Magdalena valley, Colombia. Emerg. Infect. Dis. 9, 
49–54. https://doi.org/10.3201/eid0901.020136 (2003).

	15.	 Hoyer, I. J., Acevedo, C., Wiggins, K., Alto, B. W. & Burkett-Cadena, N. D. Patterns of abundance, host use, and everglades virus 
infection in Culex (melanoconion) Cedecei mosquitoes, Florida, USA. Emerg. Infect. Dis. 25, 1093–1100. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​3​2​0​1​/​
e​i​d​2​5​0​6​.​1​8​0​3​3​8​​​​ (2019).

Scientific Reports |        (2025) 15:21548 6| https://doi.org/10.1038/s41598-025-08667-y

www.nature.com/scientificreports/

https://github.com/marcensea/diptera-wips/commit/12f39ab500a3f820cfb817c67ef25c580942301d
https://github.com/marcensea/diptera-wips/commit/12f39ab500a3f820cfb817c67ef25c580942301d
https://doi.org/10.6084/m9.figshare.24444937.v2
https://doi.org/10.6084/m9.figshare.22083050.v4
https://doi.org/10.6084/m9.figshare.22083050.v4
https://github.com/marcensea/diptera-wips.git
https://doi.org/10.1093/jmedent/6.3.327
https://doi.org/10.1111/j.1751-0813.2003.tb11511.x
https://doi.org/10.1093/jme/tjaa252
https://doi.org/10.1093/trstmh/trz031
https://doi.org/10.1016/0035-9203(86)90019-2
https://doi.org/10.1016/0035-9203(86)90019-2
https://doi.org/10.2987/8756-971x(2006)22[662:Vcocia]2.0.Co;2
https://doi.org/10.1186/s13071-020-04532-1
https://doi.org/10.2987/5645.1
https://doi.org/10.1093/jmedent/42.6.1085
https://doi.org/10.3201/eid0901.020136
https://doi.org/10.3201/eid2506.180338
https://doi.org/10.3201/eid2506.180338
http://www.nature.com/scientificreports


	16.	 Turell, M. J., Dohm, D. J., Fernandez, R. & Klein, T. A. Vector competence of Peruvian mosquitoes for two Orthobunyaviruses 
isolated from mosquitoes captured in Peru. J. Med. Entomol. 58, 1384–1388. https://doi.org/10.1093/jme/tjaa252 (2021).

	17.	 Aardema, M. L., Olatunji, S. K. & Fonseca, D. M. The enigmatic Culex pipiens (Diptera: Culicidae) species complex: Phylogenetic 
challenges and opportunities from a notoriously tricky mosquito group. Ann. Entomol. Soc. Am. 115, 95–104. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​
0​9​3​/​a​e​s​a​/​s​a​a​b​0​3​8​​​​ (2021).

	18.	 Shevtsova, E., Hansson, C., Janzen, D. H. & Kjærandsen, J. Stable structural color patterns displayed on transparent insect wings. 
Proc. Natl. Acad. Sci. USA 108, 668–73. https://doi.org/10.1073/pnas.1017393108 (2011).

	19.	 Goodwin, A. et al. Mosquito species identification using convolutional neural networks with a multitiered ensemble model for 
novel species detection. Sci. Rep. 11, 13656. https://doi.org/10.1038/s41598-021-92891-9 (2021).

	20.	 Nolte, K. et al. Comprehensive mosquito wing image repository for advancing research on geometric morphometric- and AI-
based identification. Sci. Data 12, 715. https://doi.org/10.1038/s41597-025-05043-3 (2025).

	21.	 Shevtsova, E. & Hansson, C. Species recognition through wing interference patterns (WIPS) in Achrysocharoides Girault 
(hymenoptera, Eulophidae) including two new species. Zookeys 9–30. https://doi.org/10.3897/zookeys.154.2158 (2011).

	22.	 Butterworth, N. J., White, T. E., Byrne, P. G. & Wallman, J. F. Love at first flight: Wing interference patterns are species-specific and 
sexually dimorphic in blowflies (Diptera: Calliphoridae). J. Evol. Biol. 34, 558–570. https://doi.org/10.1111/jeb.13759 (2021).

	23.	 Cannet, A. et al. Species identification of phlebotomine sandflies using deep learning and wing interferential pattern (WIP). Sci. 
Rep. 13, 21389. https://doi.org/10.1038/s41598-023-48685-2 (2023).

	24.	 Sereno, D., Cannet, A., Akhoundi, M., Romain, O. & Histace, A. Système et procédé d’identification automatisée de Diptères 
hématophages (2015).

	25.	 Cannet, A. et al. Deep learning and wing interferential patterns identify anopheles species and discriminate amongst Gambiae 
complex species. Sci. Rep. 13, 13895. https://doi.org/10.1038/s41598-023-41114-4 (2023).

	26.	 Cannet, A. et al. Wing interferential patterns (WIPS) and machine learning for the classification of some Aedes species of medical 
interest. Sci. Rep. 13, 17628. https://doi.org/10.1038/s41598-023-44945-3 (2023).

	27.	 Jourdain, F. et al. Identification of mosquitoes (Diptera: Culicidae): An external quality assessment of medical entomology 
laboratories in the Medilabsecure network. Parasites Vectors 11, 553. https://doi.org/10.1186/s13071-018-3127-7 (2018).

	28.	 Genoud, A. P., Gao, Y., Williams, G. M. & Thomas, B. P. A comparison of supervised machine learning algorithms for mosquito 
identification from backscattered optical signals. Ecol. Inform. 58, 101090. https://doi.org/10.1016/j.ecoinf.2020.101090 (2020).

	29.	 Jeon, J. et al. Wing geometric morphometrics and COI barcoding of Culex pipiens subgroup in the Republic of Korea. Sci. Rep. 14, 
878. https://doi.org/10.1038/s41598-024-51159-8 (2024).

	30.	 Fall, F. K., Diarra, A. Z., Bouganali, C., Sokhna, C. & Parola, P. Using Maldi-TOF MS to identify mosquitoes from Senegal and the 
origin of their blood meals. Insects 14. https://doi.org/10.3390/insects14100785 (2023).

	31.	 Cannet, A. et al. An annotated wing interferential pattern dataset of dipteran insects of medical interest for deep learning. Sci. Data 
11, 4. https://doi.org/10.1038/s41597-023-02848-y (2024).

	32.	 Cannet, A. et al. Wing interferential patterns (WIPS) and machine learning, a step toward automatized tsetse (Glossina spp.) 
identification. Sci. Rep. 12, 20086. https://doi.org/10.1038/s41598-022-24522-w (2022).

	33.	 Howard, A. G. et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv:abs/1704.04861 
(2017).

	34.	 Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. 
arXiv:abs/1502.03167 (2015).

	35.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR). 770–778 (2015).

	36.	 Sereno, D. An exhaustive dataset of Diptera wing interferential patterns (WIPS). figshare ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​6​0​8​4​/​m​9​.​f​i​g​s​h​a​r​e​.​2​4​4​4​
4​9​3​7​.​v​2​​​​ (2023).

	37.	 Sereno, D. et al. Listing and pictures of Diptera WIPS. figshare https://doi.org/10.6084/m9.figshare.22083050.v4 (2023).

Acknowledgements
We thank Pr. P. Marty and P. Delaunay (CHU Nice) for gaining access to the microscopic facility of the CHU. 
Dr. D. Fontenille (UMR MIVEGEC, Montpellier, France) for his support and fruitfully scientific discussions on 
medical entomology aspects. Mr JP Commes, former CEO of 2CSI, for his enthusiasm and advice on the digital 
aspect of the project.

Author contributions
Conceptualisation De.S., A.C., M.A., A.H., C.S.C., O.R., M.S. Data acquisition De.S., A.C., M.S., A.H., Da.S. 
Database construction De.S., Da.S., A.H., P.J., M.S., O.R. Sample collection and arthropod management A.C., 
De.S., P.B Project management De.S., A.H., C.S.C. Writing first draft A.H., De.S., A.C. Writing and editing De.S., 
A.C., M.A., C.S.C., A.H.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to D.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Scientific Reports |        (2025) 15:21548 7| https://doi.org/10.1038/s41598-025-08667-y

www.nature.com/scientificreports/

https://doi.org/10.1093/jme/tjaa252
https://doi.org/10.1093/aesa/saab038
https://doi.org/10.1093/aesa/saab038
https://doi.org/10.1073/pnas.1017393108
https://doi.org/10.1038/s41598-021-92891-9
https://doi.org/10.1038/s41597-025-05043-3
https://doi.org/10.3897/zookeys.154.2158
https://doi.org/10.1111/jeb.13759
https://doi.org/10.1038/s41598-023-48685-2
https://doi.org/10.1038/s41598-023-41114-4
https://doi.org/10.1038/s41598-023-44945-3
https://doi.org/10.1186/s13071-018-3127-7
https://doi.org/10.1016/j.ecoinf.2020.101090
https://doi.org/10.1038/s41598-024-51159-8
https://doi.org/10.3390/insects14100785
https://doi.org/10.1038/s41597-023-02848-y
https://doi.org/10.1038/s41598-022-24522-w
http://arxiv.org/1704.04861
http://arxiv.org/1502.03167
https://doi.org/10.6084/m9.figshare.24444937.v2
https://doi.org/10.6084/m9.figshare.24444937.v2
https://doi.org/10.6084/m9.figshare.22083050.v4
http://www.nature.com/scientificreports


Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025 

Scientific Reports |        (2025) 15:21548 8| https://doi.org/10.1038/s41598-025-08667-y

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Application of wings interferential patterns (WIPs) and deep learning (DL) to classify some ﻿Culex﻿. spp (Culicidae) of medical or veterinary importance
	﻿Results
	﻿Training and classification
	﻿Classification performance

	﻿Discussion
	﻿Methods
	﻿﻿Culex﻿ collection and storage
	﻿Image acquisition and database construction
	﻿Collected dataset, image pre-processing, and dataset splitting for training/learning and validation
	﻿Training of the convolutional neural network (CNN)

	﻿References


