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This paper proposes a modular Artificial Intelligence (AI)-based routing framework for Wireless Sensor 
Networks (WSNs) that integrates reinforcement learning (RL), supervised learning, and swarm 
intelligence techniques such as genetic algorithms (GA) and particle swarm optimization (PSO). 
Unlike conventional approaches that rely on static or standalone algorithms, the proposed framework 
employs a structured decision-making pipeline that dynamically adapts to real-time changes in 
network topology, traffic, and energy conditions. Each AI module plays a distinct role-RL handles local 
routing decisions, while GA and PSO are invoked for global optimization under resource constraints. 
Simulations conducted in MATLAB R2021b validate the framework’s effectiveness, demonstrating 
improvements in packet delivery ratio, end-to-end latency, and energy efficiency when compared to 
traditional protocols. While this study is based on synthetic evaluations, it outlines the architectural 
groundwork for future real-world implementation and discusses deployment challenges such as 
scalability, resource usage, and security. The results highlight the potential of hybrid AI-based routing 
strategies to enhance the reliability, adaptability, and sustainability of WSNs in dynamic and resource-
limited environments.

Wireless Sensor Networks (WSNs) have become a fundamental technology in various fields such as environmental 
monitoring, healthcare, industrial automation, and smart cities. Many tiny sensor nodes, equipped with sensing, 
processing, and communication capabilities, make up the networks. These nodes collaborate to collect data from 
the surroundings, analyze it in the field, and send it to a central base station or sink node for further examination 
and decision-making1,2.

WSNs collect essential information used in many applications, such as monitoring air and water quality, 
identifying environmental threats, tracking animals, and controlling infrastructure systems3,4. WSNs in 
healthcare provide remote patient monitoring, fall detection for the elderly, and real-time tracking of medical 
assets. Industrial settings use these tools to monitor equipment conditions, estimate maintenance needs, and 
optimize energy use5,6. Figure 1 illustrates the architecture of a WSN with distributed sensor nodes communicating 
with a central base station. It highlights key application areas, including environmental monitoring, healthcare, 
industrial automation, and smart cities. In Fig. 1, arrows represent data flow between nodes and the base station, 
emphasizing real-time sensing, processing, and communication.

But the effective functioning of WSNs presents notable obstacles because of their distinct features7. 
Conventional routing protocols like Ad Hoc On-Demand Distance Vector (AODV) and Dynamic Source 
Routing (DSR) were created for mobile ad hoc networks and may not be ideal for the limited resources and 
changing characteristics of WSNs8,9.

Energy economy is a significant difficulty for standard routing techniques in WSNs. Batteries typically power 
sensor nodes, requiring meticulous control over energy use to prolong the network’s lifespan10. Conventional 
protocols might result in energy inefficiency because of high control overhead, frequent route discoveries, and 
ineffective data forwarding methods11,12.

Scalability is a major challenge with WSNs as the network size increases. Conventional routing methods may 
have challenges in maintaining scalability due to higher control message overhead, larger routing table sizes, and 
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greater latency13,14. Therefore, they may not be appropriate for extensive deployments or concentrated sensor 
installations typical in certain applications15.

WSNs function in dynamic and challenging situations where sensor nodes may experience failures, 
communication interruptions, and unforeseen alterations in network topology16. Conventional routing 
protocols may not have strong methods to adjust to these situations, resulting in decreased network performance 
and dependability17,18.

To address these challenges, this paper proposes a composite AI-driven routing framework that integrates 
reinforcement learning (RL), genetic algorithms (GA), and particle swarm optimization (PSO) to enable adaptive, 
energy-aware, and latency-sensitive routing decisions. Unlike approaches that apply isolated AI techniques, the 
proposed framework is designed to make intelligent, decentralized routing decisions by continuously adapting 
to real-time changes in the network. This integration enhances the ability of the routing protocol to cope with 
network dynamics, resource constraints, and application-specific requirements.

Researchers have used artificial intelligence (AI) approaches to improve routing performance in WSNs and 
tackle associated issues19,20. AI-based routing enhances routing protocols by allowing them to make intelligent 
decisions that can adjust dynamically to changing network circumstances and improve different performance 
metrics.

AI-based routing provides various potential benefits for WSNs: 

	1.	 Adaptive routing: AI routing algorithms can respond to changing network circumstances by constantly 
learning from previous instances and modifying routing choices appropriately. AI algorithms can assess 
network factors, including node mobility, traffic patterns, and connection quality, in real-time using machine 
learning (ML) methods like reinforcement learning (RL) and neural networks21,22. AI-based routing pro-
tocols may dynamically choose the most effective routing pathways, maximizing performance metrics like 
packet delivery ratio (PDR) and end-to-end latency due to their flexibility. Moreover, AI-based routing may 
identify and steer clear of crowded or defective paths, hence improving network performance and dependa-
bility.

	2.	 Adaptive resource allocation: AI routing techniques can improve resource distribution in the network. AI 
algorithms can allocate resources like bandwidth, storage, and processing power to jobs and applications 
by looking at factors like what each node can do, communication limits, and the needs of the applications. 
By adapting resource allocation, network resources are efficiently used, leading to improved system perfor-
mance and scalability23,24.

	3.	 Energy efficiency: Energy consumption is an essential problem in WSNs because of the restricted power 
resources of sensor nodes. AI routing algorithms may greatly enhance energy efficiency by smartly over-
seeing data transport and node operations. AI-based routing protocols may improve routing pathways to 
decrease energy usage by taking into account node energy levels, communication costs, and data aggregation 
possibilities25,26. AI algorithms can adapt transmission power levels, plan data transfers during low energy 
consumption times, and use sleep/wake scheduling strategies to extend node lifespan. AI-based routing may 
optimize data aggregation and processing inside the network, leading to reduced data transmission and en-
ergy conservation.

Fig. 1.  Overview of wireless sensor network applications and architecture.
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	4.	 Fault tolerance: WSNs are vulnerable to node failures, communication interruptions, and fluctuations in the 
environment. AI routing provides enhanced fault detection and recovery features to improve network resil-
ience and dependability. AI-based routing protocols may use ML models to identify and forecast anomalies, 
allowing them to foresee probable failures and take proactive steps to reduce their effect27,28. AI algorithms 
can analyze past data to identify trends that indicate potential failures, allowing nodes to redirect traffic or 
initiate recovery processes in advance. AI-based routing can modify routing patterns in real-time to handle 
network changes, maintaining uninterrupted operation during faults or disturbances.

	5.	 Scalability: Scalability is a major challenge for routing systems as WSNs improve in size and complexity. 
AI-based routing protocols may adapt their routing techniques in real-time to accommodate variations in 
network structure and effectively handle networks of varying sizes29. Swarm intelligence and distributed 
optimization techniques enable AI systems to improve routing choices across extensive networks collectively. 
AI-based routing may facilitate self-organization and self-configuration, enabling nodes to autonomously 
adjust to changes in network circumstances without the need for centralized management30,31. The natural 
ability of AI-based routing to scale makes it ideal for large-scale deployments and various situations where 
conventional routing protocols may face challenges in maintaining performance and efficiency.

	6.	 Dynamic QoS provisioning: Ensuring Quality of Service (QoS) in WSNs is essential to meet various applica-
tion needs, including latency, dependability, and throughput. AI routing algorithms can adapt QoS settings 
in response to fluctuating network circumstances and application requirements. AI-based routing protocols 
use ML models to forecast network performance and traffic patterns, enabling the dynamic allocation of 
resources and prioritization of traffic to fulfill QoS standards32,33. Dynamic QoS provisioning ensures key 
applications obtain required resources and assures performance in dynamic and unexpected circumstances.

	7.	 Security enhancement: Security is an essential concern in WSNs since they are susceptible to many types 
of attacks, such as eavesdropping, manipulation, and node compromise. Utilizing AI-based routing may 
improve network security by integrating intelligent intrusion detection and prevention measures. AI systems 
can identify and address security problems promptly by examining network traffic patterns and unusual 
activity34,35. Additionally, AI-based routing can adapt routing pathways and encryption keys in real-time to 
prevent any assaults and maintain the security and accuracy of data.

	8.	 Adaptation to heterogeneous environments: WSNs generally operate within various situations characterized 
by different communication methods, node capabilities, and surrounding conditions. AI routing algorithms 
can dynamically optimize route choices to handle diversity. AI algorithms may achieve a balance between 
opposing aims and preferences across diverse nodes and networks by using methods like multi-objective 
optimization and ensemble learning36,37. Adapting to diverse contexts allows for the smooth integration of 
WSNs with various communication systems, promoting interoperability and cooperation across multiple 
domains.

	9.	 Self-healing and self-optimization: AI-based routing allows for self-healing and self-optimization features in 
WSNs. AI algorithms can identify network issues and performance bottlenecks by consistently monitoring 
network performance and environmental factors. AI-based routing protocols may automatically alter rout-
ing pathways, settings, and network operations to recover from errors and adapt to changing situations38,39. 
The self-healing and self-optimization features reduce the need for human involvement, lower maintenance 
costs, and guarantee the efficient and dependable functioning of WSNs under evolving and challenging cir-
cumstances.

Unlike previous works that apply individual AI methods in isolation, this paper proposes a unified and modular 
framework that integrates RL, GA, and PSO for adaptive routing. The framework is specifically designed to 
address the trade-offs inherent in WSNs, such as energy constraints, latency sensitivity, and data reliability. Our 
contribution lies in this integrated approach, which offers dynamic decision-making capabilities across varying 
network conditions.

Motivation of paper
This study is motivated by the need to address the inherent issues encountered by conventional routing protocols 
in WSNs and the ability of AI approaches to meet these challenges. Several variables motivate this research: 

	1.	 Limitations of traditional routing protocols: Conventional routing algorithms like AODV and DSR initially 
emerged for mobile ad hoc networks and may not be ideal for the limited resources and constantly changing 
environment of WSNs. These protocols often face challenges in maintaining energy economy, scalability, 
fault tolerance, and adaptation in WSNs circumstances40,41.

	2.	 Critical importance of routing in WSNs: Routing plays an important role in the performance, reliability, and 
efficiency of WSNs. Effective routing methods are essential for maximizing data transmission, saving ener-
gy, extending network lifespan, and guaranteeing prompt and precise data collection from the monitored 
area42,43.

	3.	 Growing interest in AI applications in WSNs: There is an ever-growing curiosity in using AI methods for 
several facets of WSNs, such as data processing, optimization, and decision-making. AI-based methods 
have shown great promise in enhancing the efficiency and functionalities of WSNs in several fields and do-
mains44,45.

	4.	 Need for empirical evaluation and comparative analysis: AI-based routing algorithms show potential, but 
need empirical assessment and comparative analysis to determine their efficacy, scalability, and applicability 
for real-world use46,47. Empirical studies are essential for understanding what AI-based routing methods can 
and cannot do, as well as identifying where they can be improved.

Scientific Reports |        (2025) 15:22292 3| https://doi.org/10.1038/s41598-025-08677-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


This research intends to suggest an AI-based routing algorithm designed for WSNs and thoroughly assess its 
performance using comprehensive simulations48,49. The research wants to study and compare traditional routing 
methods with AI-based routing in WSNs to see how effective, scalable, energy-efficient, and fault-tolerant they 
are. The main goal is to improve routing protocols in WSNs and encourage the use of AI methods to address the 
evolving challenges and requirements of WSN applications.

Objective of the paper
The research aims to introduce, assess, and validate the effectiveness of an AI routing algorithm designed 
particularly for WSNs. The main objectives of the paper are as follows:

•	 Propose an AI-based routing algorithm tailored to overcome the unique obstacles encountered by conven-
tional routing protocols in WSNs. The program should use AI methods, including ML, optimization, and 
adaptive decision-making, to boost routing choices, energy efficiency, and fault tolerance, and adapt to chang-
ing network circumstances.

•	 Perform comprehensive simulations to assess the effectiveness of the suggested AI-based routing algorithm 
when compared to conventional routing protocols often used in WSNs. Evaluate performance parameters, 
including PDR, end-to-end latency, energy consumption, scalability, and fault tolerance under different net-
work circumstances and scenarios.

•	 Perform empirical research and comparative studies to evaluate the AI-based routing algorithm’s strengths 
and drawbacks in contrast to conventional protocols. Identify the main performance metrics and compromis-
es linked to AI-based routing and emphasize its potential advantages for WSN applications.

•	 Verify the efficiency and dependability of the suggested AI-based routing algorithm via thorough testing and 
validation processes. Ensure that the method works correctly and fulfills the specified goals and objectives 
detailed in the article.

•	 Study the necessity and feasibility of using the AI-based routing algorithm in WSN installations. Take into 
account variables like implementation complexity, computational overhead, deployment costs, and compati-
bility with current WSN infrastructure.

•	 Propose an AI-based solution to solve the specific difficulties and needs of WSN applications and provide new 
insights, techniques, and approaches to the subject of routing in WSNs. Contribute significantly to improving 
the performance, reliability, and efficiency of WSNs by developing unique routing protocols for continuous 
research and development.

The research aims to improve routing protocols for WSNs by testing an AI-based solution that works better than 
traditional methods in performance, energy use, reliability, scalability, and adaptability. The research seeks to 
show how AI-based routing may greatly improve the capabilities and efficacy of WSNs in many applications and 
domains via empirical analysis and validation.

Related work
In the related work, multiple routing protocols have been suggested as potential solutions to the distinctive 
obstacles encountered in WSNs50,51. Traditional routing protocols such as LEACH (Low Energy Adaptive 
Clustering Hierarchy), TEEN (Threshold Sensitive Energy Efficient Sensor Network Protocol), and PEGASIS 
(Power-Efficient GAthering in Sensor Information Systems) have been subject to comprehensive evaluation 
by scholars including52. These protocols prioritize scalability, energy efficiency, and network lifetime extension 
through the implementation of hierarchical routing, data aggregation, and clustering53,54.

Researchers such as55,56 have recently examined improvements in routing techniques for WSNs. DEEC 
(Distributed Energy-Efficient Clustering) and EEDR (Energy-Efficient Dynamic Routing) protocols are designed 
to handle the changing characteristics of WSNs by modifying routing choices according to node energy levels 
and network circumstances57.

Researchers have shown substantial interest in using AI approaches in routing for WSNs. Researchers like58,59 
have investigated the use of ML techniques, namely RL and supervised learning, to improve routing choices in 
WSNs. These algorithms dynamically acquire knowledge from previous experiences and network circumstances 
to enhance routing efficiency and dependability.

Researchers like60,61 have utilized GA to enhance routing patterns and minimize energy consumption in 
WSNs. GAs mimic the process of natural selection and evolution to improve routing solutions by continuously 
using selection, crossover, and mutation techniques.

Researchers have studied swarm intelligence methods for routing in WSNs, based on the group behavior 
of social insects. Authors like62,63 have suggested routing protocols using ant colony optimization and particle 
swarm optimization. These protocols provide effective data forwarding and route selection, adjusting to changing 
network circumstances64.

Neural networks have shown potential in improving routing choices and forecasting network behavior 
in WSNs. Yang et al. and Thomas et al.65,66 conducted research on using deep learning methods, including 
convolutional neural networks (CNNs) and recurrent neural networks (RNNs), for predicting routes and 
detecting anomalies in WSNs.

Researchers like67,68 have studied the use of ML methods, particularly decision tree algorithms, for routing 
in WSNs. Decision trees provide a straightforward and easy-to-understand method for choosing the best path 
by considering several network properties, such as node energy levels, distance to sink, and channel conditions.

Evolutionary methods, such as genetic programming, have been studied for improving routing choices in 
WSNs. Authors like69,70 have suggested evolutionary routing algorithms that develop routing techniques over 
many generations to adapt to changing network circumstances and needs.
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Researchers such as71,72 have investigated the use of fuzzy logic-based routing methods in WSNs. Fuzzy 
logic allows for routing choices to be made using imprecise and uncertain information, enabling resilient and 
adaptable routing techniques in dynamic and unpredictable situations.

While AI-based routing methods offer advantages, it’s important to consider their limitations. Researchers 
such as73,74 have examined the advantages and drawbacks of existing AI-based routing methods in WSNs. 
The strengths include adaptive routing choices, enhanced energy efficiency, fault tolerance, and scalability. 
AI-based routing algorithms can adjust to fluctuating network circumstances, improve energy efficiency, and 
boost network dependability. Researchers like75,76 have pointed out the security risks linked to AI-based routing 
algorithms in WSNs. The vulnerabilities include of vulnerability to adversarial attacks, data poisoning, and 
evasion strategies that might jeopardize the integrity and confidentiality of the network77.

Furthermore, the implementation of AI-based routing techniques may need significant computational 
resources and memory allocation, as discussed by scholars like78,79. AI-based routing algorithms face a big 
problem in real-world WSN setups because they need to work well on sensor nodes that have limited resources 
while still performing adequately.

Researchers emphasize the significance of taking into account ethical and societal ramifications while using 
AI-based routing algorithms in WSNs. Authors like80,81 stress the need for open and responsible decision-
making procedures to tackle issues with privacy, fairness, and prejudice in AI-based routing systems. Table 
1 effectively summarizes key research contributions in the area of routing protocols for WSNs. The paper 
provides a methodical summary of the researchers, including their research objectives, proposed solutions, and 
methodologies implemented.

Finally, AI-based routing methods have shown significant potential to improve the efficiency, adaptability, 
and scalability of WSNs98. However, many existing approaches focus narrowly on individual aspects such as 
energy efficiency or reliability, often lacking integration between learning models and optimization strategies. 
Critical challenges-including resource constraints, real-time adaptability, security, and ethical considerations-
remain insufficiently addressed99. To address these gaps, we present a modular AI-based routing framework 
that combines learning and optimization in a resource-efficient design, suitable for dynamic and resource-
constrained WSN environments.

Proposed AI-based routing framework
This section introduces a modular and decentralized AI-based routing framework for WSNs, designed to 
dynamically adapt routing decisions based on real-time network conditions. Unlike conventional approaches 
that rely on static or isolated algorithms, the proposed framework integrates multiple AI techniques-including 
RL, supervised learning, and swarm intelligence methods such as PSO and GA within a unified decision-making 
pipeline.

Each sensor node operates autonomously, continuously collecting information about neighboring nodes, 
network topology, data traffic, and environmental conditions. Lightweight AI models embedded at the node level 

Authors Objective Proposed solution Identified gap or limitation addressed

82 Study the security issues related to AI-based 
routing algorithms in WSNs.

Assesse11027594s weaknesses and suggests 
security protocols.

Lacks real-time AI integration for intrusion response and 
anomaly detection.

83 Evaluate computational burden of AI-based 
routing.

Optimization suggestions for resource 
constraints.

Does not present a full modular framework deployable on 
sensor hardware.

84 Investigate ethical and societal risks of AI 
routing. Ethical principles for fairness and privacy. No operational routing model tested with ethical constraints.

85 Explore RL in adaptive routing. RL-based protocol that learns from network 
states. Does not integrate global optimization or energy balancing.

86 Assess strengths/weaknesses of AI routing 
methods. Thematic review of adaptivity and limitations. Survey only; lacks implementation or hybrid framework 

proposal.

87 Integrate AI-based routing with IoT for 
interoperability. AI protocols for smooth IoT communication. No details on adaptation to constrained energy and QoS needs.

88 Apply DL to detect anomalies in WSNs. DL-powered intrusion detection based on traffic 
patterns. Lacks integration with adaptive routing and lightweight models.

89 Examine environmental impacts on AI routing. Routing adjustments based on environmental 
factors.

No real-time learning mechanism to adapt to volatile 
conditions.

90 Use ensemble learning for routing resilience. Combines classifiers to boost reliability. High complexity; no demonstration on embedded sensor nodes.
91 Combine blockchain with AI-routing for trust. Blockchain-backed secure routing proposals. Introduces latency and computation cost not suitable for WSNs.
92 Examine routing under mobility in WSNs. Mobility-aware protocols with adaptive paths. Lacks use of learning or predictive mobility handling.

93 Apply game theory to reduce selfish routing. Cooperative routing through game-theoretic 
incentives. Does not explore hybrid AI models or security integration.

94 Explore bio-inspired optimization for routing. Firefly and cuckoo-based optimization schemes. Lacks integration with learning models and practical tuning.

95 Use edge computing to support AI routing. Offloads computation to edge nodes for 
scalability.

No joint optimization with local routing decisions or real-time 
learning.

96 Balance energy and delay in routing. Trade-off optimized routing strategies. Does not use adaptive learning or predictive energy modeling.

97 Apply swarm robotics concepts to WSN routing. Self-organizing routing via swarm algorithms. Focused on local behavior; lacks global coordination and 
learning.

Table 1.  Summary of related work on AI-based routing in WSNs with identified gaps.
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process this data to predict optimal routing paths, leveraging both historical patterns and real-time performance 
metrics. RL is employed for local decision-making under stable conditions, while PSO and GA are invoked at 
higher levels for global route optimization when the network experiences fluctuations in energy availability or 
latency.

This structured integration of learning and optimization enables the system to self-adapt and evolve in 
dynamic environments, enhancing energy efficiency, reducing end-to-end delay, and improving data reliability. 
The overall routing process is illustrated in Figure 2, and a detailed algorithmic flow is provided through 
accompanying pseudocode for clarity and reproducibility. The following subsections present the mathematical 
foundations and key equations governing each AI module used in the framework.

Initialization:

Fig. 2.  Flowchart of AI-based routing algorithm in WSNs.
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•	 Initialize the Q-table (for RL) or the classifier (for supervised learning) with random values.
•	 Set the population size and parameters for optimization algorithms (e.g., GA, PSO).

Learning Phase:

•	 Collect network data, including node information, environmental parameters, and historical routing perfor-
mance.

•	 Train the AI models using the collected data:
•	 For RL:
•	 Update the Q-values based on the Bellman equation:

	
Q(st, at) = Q(st, at) + α

(
Rt+1 + γ max

a
Q(st+1, a) − Q(st, at)

)
� (1)

where: Q(st, at) is the Q-value for the state-action pair (st, at), α is the learning rate, Rt+1 is the reward after 
taking action at in state st, γ is the discount factor, and st+1 is the next state.

For supervised learning:

•	 Train the classifier using labeled training data to predict optimal routing paths.
•	 Optimize the routing decisions using optimization algorithms.

For genetic algorithms:

•	 Apply selection, crossover, and mutation operators to evolve routing solutions. For particle swarm optimiza-
tion:

	 Offspring = Mutation(Crossover(Selection(Population)))� (2)

For particle swarm optimization (PSO):

•	 Update particle positions and velocities based on local and global best solutions: 

	 vt+1
i = wvt

i + c1r1(pbesti − xt
i) + c2r2(gbest − xt

i) � (3)

	 xt+1
i = xt

i + vt+1
i � (4)

	 where: vt
i  is the velocity of the particle i at iteration t, xt

i  is the position of the particle i at iteration t, pbesti is 
the personal best position, gbest is the global best position, w, c1, c2 are inertia, cognitive, and social coeffi-
cients, and r1, r2 are random values.

•	 Update the routing decisions based on the trained AI models and optimization results.

Deployment phase:

•	 Deploy the optimized routing protocol in the WSN environment.
•	 Monitor network performance and adapt routing decisions in real-time based on feedback and environmen-

tal changes.

The proposed AI-based routing framework employs a combination of RL, supervised learning, and nature-
inspired optimization techniques to enable context-aware and adaptive routing in WSNs. Instead of relying on a 
single novel algorithm, the framework integrates multiple intelligent methodologies within a modular decision-
making pipeline. RL is utilized to learn optimal routing actions by analyzing historical traffic data and current 
energy levels of sensor nodes. Supervised learning models are trained on environmental and network parameters 
to support informed decision-making. Additionally, optimization techniques such as GA and PSO are applied 
to refine routing paths, minimizing energy consumption and communication overhead. The framework is 
designed for real-time deployment and incorporates continuous feedback mechanisms to dynamically adapt 
to changing network conditions, thereby enhancing the scalability, reliability, and energy efficiency of WSNs in 
practical applications.
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Algorithm 1.  AI-based routing decision pipeline.

AI techniques utilized and integration into the routing protocol
The proposed AI-based routing framework integrates multiple intelligent methodologies, specifically RL, 
supervised learning, and swarm intelligence-based optimization techniques such as GA, PSO, and ACO to 
enable dynamic, efficient, and adaptive routing in WSNs. These components are modular and operate at different 
stages within the routing pipeline, allowing the system to make context-aware decisions in real time.

ML techniques are applied to analyze historical data, detect traffic trends, and anticipate network behavior. 
This predictive capability helps nodes proactively adapt routing strategies to meet application-specific quality-
of-service (QoS) requirements.

•	 Reinforcement learning (RL): RL is employed at the node level using Q-learning to support decentralized, 
experience-based decision-making. Nodes learn optimal forwarding actions by receiving feedback from the 
environment, such as delivery success, energy consumption, and delay, thereby adapting to changing network 
conditions over time.

•	 Supervised learning and decision trees: Supervised learning models are trained using labeled datasets to rec-
ognize routing scenarios based on features such as node energy, hop count, or congestion level. Decision 
trees, in particular, provide lightweight inference mechanisms suitable for embedded WSN platforms and 
help classify routing paths using predefined rules derived from training data.

•	 Optimization algorithms: To complement the learning-based modules, global optimization algorithms such 
as PSO, GA, and ACO are applied periodically to refine the overall routing topology. These metaheuristic 
techniques explore the solution space iteratively to identify routing configurations that minimize energy us-
age, reduce end-to-end delay, and maximize PDR. These optimizers are typically executed at cluster heads or 
sink nodes to conserve computational resources at individual sensor nodes.

Figure 2 illustrates the flow of information and control among these AI components. The structured integration 
of learning and optimization mechanisms enables the framework to intelligently respond to both short-term 
variations and long-term trends in network conditions, thus supporting scalable and energy-efficient operation 
in a wide range of WSN deployments.

Selection criteria for AI models and parameter tuning
The selection criteria for AI models and parameter tuning involve several considerations: 

	1.	 Performance metrics: The AI models and parameters are selected based on their ability to optimize key per-
formance metrics such as PDR, end-to-end delay, energy consumption, and network lifetime. The selected 
models should effectively balance these metrics to ensure efficient and reliable routing in WSNs100.

•	 Packet delivery ratio (PDR): 

	
PDR = Number of successfully delivered packets

Total number of packets transmitted
� (5)

•	 End-to-end delay: 

	
End-to-End Delay =

∑n

i=1(Reception timei − Transmission timei)
n

� (6)

•	 Energy consumption: 
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	 Energy Consumption = Power × Time� (7)

•	 Network lifetime: 

	
Network Lifetime = Total energy available

Average energy consumption per unit time
� (8)

	2.	 Scalability: The scalability of AI models is crucial for large-scale WSN deployments. Models and algorithms 
that can efficiently handle the increasing size of the network while maintaining performance are preferred101. 

	
Scalability Index = Number of nodes

Computational complexity
� (9)

	3.	 Resource constraints: Considering the resource-constrained nature of sensor nodes, the selected AI models 
should be lightweight and computationally efficient. Parameter tuning should take into account the limited 
processing power, memory, and energy resources available on sensor nodes102.

•	 Computational efficiency: 

	
Computational Efficiency = Number of operations

Memory usage
� (10)

•	 Energy efficiency: 

	
Energy Efficiency = Performance

Energy consumption
� (11)

	4.	 Robustness and adaptability: AI models and parameters should be robust to noise, uncertainties, and vari-
ations in network conditions. They should be able to adapt dynamically to changes in the environment and 
network topology to ensure continuous and reliable operation103.

•	 Robustness index: 

	
Robustness Index = Number of successful adaptations

Total number of adaptations attempted
� (12)

•	 Adaptability rate: 

	
Adaptability Rate = Change in routing strategy

Change in network conditions
� (13)

	5.	 Generalization and transferability: The selected AI models should generalize well across different network 
scenarios and environments. Parameter tuning should ensure that the learned routing strategies are transfer-
able and applicable to various WSN applications and deployment scenarios104. 

	
Generalization Error = 1

N

N∑
i=1

(yi − ŷi)2� (14)

	 Where yi is the actual output, ŷi is the predicted output, and N is the number of samples.

By carefully incorporating context-aware learning, optimization strategies, and adaptive feedback mechanisms, 
the proposed AI-based routing framework is well-suited to address the dynamic and resource-constrained 
nature of WSNs. Intelligent parameter tuning further enhances the system’s ability to respond to fluctuating 
network states, ensuring consistent performance across varying deployment scenarios. The layered integration 
of multiple AI techniques spanning RL, supervised learning, and swarm-based optimization enables the 
framework to autonomously fine-tune routing decisions over time. This adaptive capability allows the system to 
continually optimize energy usage, reduce latency, and maintain data delivery reliability, thereby significantly 
improving the overall performance, scalability, and resilience of WSNs.

The overall operational flow of the proposed AI-based routing framework is illustrated in Fig. 2. This 
flowchart outlines the sequential stages involved in adapting routing decisions to dynamic network conditions 
in WSNs. The process begins with the initialization phase, where the system sets up essential parameters and 
data structures required for learning and decision-making. Following initialization, the framework enters the 
learning phase, during which network data, such as node energy levels, environmental parameters, neighboring 
node status, and topology information, is continuously collected. This data is utilized to train AI models using 
RL and supervised learning techniques, enabling predictive and context-aware routing.
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Upon completion of model training, the system proceeds to the deployment phase, where optimized routing 
protocols are implemented within the WSN. The framework operates in a decentralized manner, with individual 
nodes making autonomous routing decisions based on their local observations and the trained AI models. 
During this phase, the routing strategy dynamically adapts to ongoing feedback, maintaining robustness and 
performance under varying network conditions.

A decision-making module continuously evaluates system performance using key metrics such as PDR, 
end-to-end latency, energy consumption, and network lifetime. It also considers broader system attributes 
like scalability, resource constraints, fault tolerance, and generalization capability. If the evaluation indicates 
performance degradation or inefficiency, the framework triggers the optimization phase, where techniques like 
PSO, ACO, or GA are employed to refine routing paths further.

Figure 2 utilizes conventional flowchart symbols, rectangles for operational steps, diamonds for decision 
nodes, and arrows for transitions to visually represent each stage of the process. This structured depiction helps 
illustrate the integration of AI methodologies within the routing protocol. It provides stakeholders with a clear 
understanding of how the framework achieves intelligent, adaptive routing in WSNs.

Experimental setup
We evaluate the AI-based routing method via performance assessment in a simulated environment that replicates 
real-world WSNs. The simulation environment enables evaluating the algorithm’s efficiency in different network 
conditions and circumstances.

Tools used for performance evaluation
All simulations were conducted using MATLAB R2021b. The simulation environment models a WSN consisting 
of 100 sensor nodes randomly deployed within a 100 m × 100 m area. The radio energy consumption follows 
the first-order radio model, with parameters such as energy per bit for transmission (Etx), reception (Erx), and 
amplifier energy (ϵfs, ϵmp) configured as per standard WSN benchmarks. The packet model includes periodic 
data transmissions, and the traffic follows a Poisson arrival pattern. Each node is initialized with a finite energy 
reserve, and routing decisions are simulated under varying traffic and topology conditions to test adaptability. 
These settings are chosen to provide a realistic and reproducible testbed for evaluating the performance of the 
proposed AI-based routing framework.

Metrics used for evaluation
To evaluate the AI-based algorithm’s routing performance, several performance measures are utilized, including 
the following:

•	 Packet delivery ratio (PDR): The proportion of packets that were successfully delivered in comparison to the 
total number of packets that had been transmitted out.

•	 End-to-end delay: The average length of time that a packet takes to go from the node from which it originated 
to the node that it is intended to reach.

•	 Energy consumption: The total amount of energy that was utilized by the network nodes throughout the 
study.

•	 Network lifetime: The amount of time that will pass before the first node in the network runs out of any re-
maining energy and stops functioning.

•	 Scalability index: The AI-based algorithm demonstrates better scalability, accommodating larger networks 
while maintaining performance.

•	 Computational efficiency: Despite its sophisticated nature, the AI-based algorithm maintains high computa-
tional efficiency, ensuring optimal performance with minimal computational resources.

•	 Energy efficiency: The AI-based algorithm is more energy-efficient, effectively utilizing energy resources to 
optimize network performance.

•	 Robustness index: With a higher robustness index, the AI-based algorithm exhibits greater resilience to net-
work failures and fluctuations.

•	 Adaptability rate: The AI-based algorithm adapts quickly to changing network conditions, maintaining high 
adaptability and responsiveness.

•	 Generalization error: The AI-based algorithm achieves a lower generalization error, indicating its ability to 
generalize well across diverse network scenarios.

The simulation parameters that were used in the controlled environment to assess the performance of the 
AI-based routing algorithm in WSNs are summarized in Table 2, which can be found for your convenience. 
Each adjustment of the parameter is designed to evaluate a distinct element of the algorithm’s behavior and to 
determine whether or not it is suitable for various deployment situations.

Computational complexity and resource considerations
The integration of AI-based routing techniques in resource-constrained WSNs requires careful consideration of 
computational complexity and memory overhead. Table 3 summarizes the estimated time and space complexity 
for the core algorithms used in the proposed framework.

RL, particularly Q-learning, introduces a space complexity of O(n · a), where n is the number of network 
states and a is the number of actions (possible next-hop nodes). While this is manageable in small networks, 
for dense WSNs, state-space reduction techniques such as function approximation or state aggregation may be 
necessary to ensure feasibility.
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GA and PSO, used for path optimization, involve iterative computation. The time complexity of GA is 
approximately O(g · p · f), where g is the number of generations, p is the population size, and f is the time 
required to evaluate each fitness function. Similarly, PSO has a complexity of O(i · s · f), with i denoting 
iterations and s the number of particles. In our simulation, both GA and PSO were limited to fewer than 50 
particles and under 100 iterations to maintain practical runtimes.

To ensure compatibility with typical WSN hardware, such as TelosB and MicaZ motes, lightweight versions 
of these algorithms were employed. In particular, nodes perform only local decision-making and exchange 
minimal overhead information to reduce CPU cycles and memory usage. Real-time adaptability is achieved 
through pre-training and on-node inference, rather than continuous retraining.

Overall, the framework balances intelligence and feasibility, making it suitable for real-world deployment on 
energy- and computation-constrained devices.

Results and analysis
Below are the experimental findings that compare the performance of the AI-based routing algorithm with 
present protocols. The performance measures consist of PDR, end-to-end delay, energy consumption, network 
lifetime, scalability index, computational efficiency, energy efficiency, robustness index, adaptability rate, and 
generalization error.

Resource consumption and feasibility on constrained nodes
To assess the feasibility of deploying the proposed AI-based routing framework on real-world WSN platforms, 
we evaluated the approximate resource requirements of its core modules. The RL component, implemented 
using Q-learning with a discrete state-action space, requires minimal computational complexity, approximately 
~8–12 KB of RAM, and under 2,000 CPU cycles per decision update. Optimization techniques such as PSO 
and GA, used in intermittent route refinement stages, are designed to run in low-frequency cycles and can be 
implemented using lightweight metaheuristics, consuming approximately ~10–20 KB of RAM and ~4000–6000 
CPU cycles.

These requirements are well within the capabilities of widely used sensor nodes such as TelosB (10 KB RAM, 
48 KB ROM) and Mica2 (4 KB RAM, 128 KB flash). Furthermore, power profiling using simulation-based 
estimates shows that a full inference and routing cycle consumes less than 5 % of the node’s daily energy budget 
under typical sensing intervals. These findings suggest that the framework can be deployed on constrained 
nodes without compromising core sensing and communication functions. Real-world implementation and 
benchmarking are planned as part of future work to validate these approximations under actual deployment 
conditions.

Security considerations
The integration of AI-based routing in WSNs introduces several security challenges that must be addressed to 
ensure data integrity, confidentiality, and network resilience. Given the decentralized and adaptive nature of 
the proposed framework, potential threats include routing manipulation, eavesdropping, spoofing, and node 
compromise by adversarial entities.

To mitigate these risks, we propose incorporating a lightweight adaptive key management scheme in which 
encryption keys are dynamically updated based on trust scores computed through reinforcement learning. 
Each node can maintain a local trust table informed by observed behaviors (e.g., forwarding rate, response 

Technique Time complexity Space complexity

Q-learning (tabular) O(n · a) O(n · a)

Genetic algorithm (GA) O(g · p · f) O(p)

Particle swarm optimization (PSO) O(i · s · f) O(s)

Table 3.  Estimated computational complexity of AI techniques used.

 

Parameter Value/range Description

Network size 50, 100, 200 nodes Small to large-scale WSN configurations

Node mobility Random waypoint, random walk Common models for mobile node behavior

Traffic patterns Uniform, bursty Simulate constant and event-driven traffic

Transmission range 50 m, 100 m, 200 m Varying communication radius per scenario

Simulation time 1000 s Consistent across all experiments

Routing protocol AI-based routing Proposed modular framework integrating RL, GA, PSO

Comparison protocols DVR, LSR, ACO, PSO Implemented per specifications in cited studies105,106

Metrics PDR, End-to-end delay, energy consumption Standard WSN performance indicators

Table 2.  Simulation parameters and evaluation metrics used in comparative analysis.
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consistency) of neighboring nodes. Nodes with deteriorating trust scores can be isolated from the routing path 
to limit the impact of compromised devices.

Additionally, anomaly detection modules can be integrated into the routing layer, where supervised learning 
models are trained to identify unusual traffic patterns or route deviations that deviate from historical norms. 
Such patterns could signal the presence of a black hole or a selective forwarding attack.

The proposed mechanisms are designed to be computationally lightweight and suitable for constrained 
nodes. Although this study does not implement these components, they form a critical part of our future work 
to develop a holistic, secure, and intelligent routing architecture for WSNs.

Application-specific considerations
The practical deployment of AI-based routing frameworks in real-world WSN applications, such as healthcare 
monitoring, smart cities, and industrial automation, requires careful attention to application-layer constraints 
and quality-of-service (QoS) requirements. In healthcare environments, for instance, real-time transmission of 
physiological signals (e.g., ECG, SpO2, or temperature) demands high reliability and low latency to ensure timely 
medical intervention. The proposed framework can be tuned to prioritize critical data flows by dynamically 
adjusting routing decisions based on data type, urgency, and energy availability.

Similarly, in urban sensing and smart infrastructure systems, responsiveness and scalability are essential. 
WSNs in these settings often operate in dense environments with fluctuating node availability and high 
data volumes. The adaptive nature of our framework, driven by reinforcement learning and swarm-based 
optimization, allows it to adjust routes in real time, minimizing congestion and ensuring consistent performance 
despite topological changes.

The modular architecture also facilitates task-specific policy learning, where nodes can be trained under 
varying operational conditions to align with context-sensitive performance metrics. Such flexibility supports 
application-specific customization without requiring full system redesign. These considerations affirm the 
framework’s potential to support mission-critical deployments while maintaining energy efficiency and network 
resilience.

Analysis of results
The AI-based routing system is much better than the current protocols in several important areas, as seen in 
Table 4 and Figs. 3, 4, 5, and 6 The AI-based solution consistently does better than Protocols DVR, LSR, and 
ACO in PDR, showing it is more effective at sending a larger number of packets through the network. Such 
performance signifies a significant improvement in data transmission reliability and network efficiency in 
comparison to conventional routing techniques. The AI algorithm demonstrates substantial decreases in end-to-
end delay, showcasing its ability to accelerate data transmission in the network. Decreased latency accelerates data 
transfer, enhancing network responsiveness and real-time performance, particularly crucial for time-sensitive 
applications. Also, the AI algorithm demonstrates substantial reductions in energy consumption, resulting in 
prolonged network lifetime. An AI-based approach efficiently handles energy resources and enhances routing 
decisions to significantly extend the operational lifespan of the network. The enhanced sustainability and cost-
effectiveness are particularly advantageous for long-term deployments and use in remote or inaccessible areas. 
The algorithm’s impressive Scalability Index showcases its capacity to efficiently manage larger networks without 
sacrificing speed. This scalability ensures that the routing algorithm remains effective and efficient as the network 
expands, offering flexibility and the ability to react to evolving network requirements. The AI-based technique is 
sophisticated but maintains exceptional computational efficiency, ensuring high performance with few computer 
resources. Efficiency is essential in resource-constrained environments such as WSNs, where maximizing the 
use of computational resources is key. The AI algorithm enhances energy efficiency by optimizing energy use, 
minimizing waste, resulting in extended network operation and less environmental impact. The algorithm exhibits 
a higher Robustness Index and Adaptability Rate, indicating improved capacity to endure network failures and 
fluctuations and quicker response to changing network conditions. This adaptability ensures that the algorithm 
will be effective and reliable in different and constantly evolving network environments. The AI algorithm’s 
low generalization error indicates its remarkable capacity to generalize well across various network setups 
and scenarios. It showcases its robustness and adaptability in handling diverse network conditions, ensuring 

Metric AI-based routing DVR LSR ACO

Packet delivery ratio 0.95 0.85 0.88 0.91

End-to-end delay (ms) 25 40 35 30

Energy consumption (J) 500 600 550 580

Network lifetime (days) 150 120 130 140

Scalability index 0.85 0.75 0.78 0.82

Computational efficiency (ops/J) 120 90 100 95

Energy efficiency 0.90 0.85 0.88 0.86

Robustness index 0.92 0.85 0.87 0.90

Adaptability rate 0.88 0.82 0.85 0.86

Generalization error 0.05 0.08 0.07 0.06

Table 4.  Performance comparison of routing protocols.
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Fig. 5.  Performance comparison of routing protocols for energy consumption (in Joules) in WSNs.

 

Fig. 4.  Performance comparison of routing protocols of end-to-end delay and network Lifetime in WSNs.

 

Fig. 3.  Performance comparison of routing protocols of various metrics in WSNs.
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consistent and reliable performance across different deployment scenarios. The AI-based routing technique has 
significant promise in enhancing the effectiveness, reliability, and eco-friendliness of WSNs. Researchers can 
improve AI-based routing algorithms for WSN applications by analyzing factors such as network size, node 
density, transmission range, and traffic patterns.

Case studies
In exploring the practical applications of our AI-based routing algorithm, we delve into several compelling case 
studies across different sectors.

Environmental monitoring

•	 Scenario: Deploying a network of wireless sensors in a forest to monitor environmental factors including 
temperature, humidity, and air quality.

•	 Application of an AI-based routing algorithm: The AI routing system adapts to environmental variations 
to optimize data transmission channels for reliable and fast delivery of sensor data to the base station. The 
system automatically directs data via the most energy-efficient and reliable channels, taking into account 
things like geographical impediments, weather conditions, and node failures. This feature guarantees effective 
gathering of environmental data, assisting in the prompt identification of forest fires, monitoring animals, and 
conducting ecological research.

Healthcare monitoring

•	 Scenario: Implementing a Wireless Body Area Network (WBAN) for remote health monitoring of patients 
with chronic conditions.

•	 Application of an AI-based routing algorithm: The AI routing system prioritizes the transfer of essential health 
data while reducing latency and energy use. The system efficiently directs medical sensor data to healthcare 
practitioners to guarantee prompt diagnosis and action. The system adjusts to variations in patient movement 
and vital signs, enhancing routing options for immediate monitoring and emergency intervention. This en-
ables ongoing healthcare monitoring, which enhances patient results and decreases hospital readmissions.

Industrial automation

•	 Scenario: Establishing a WSN in a manufacturing facility to monitor equipment performance and optimize 
production processes.

•	 Application of an AI-based routing algorithm: The AI-based routing algorithm dynamically adjusts routing 
paths based on real-time production demands and equipment status. It optimizes data transmission to en-
able predictive maintenance, detecting anomalies and potential failures before they occur. Additionally, the 
algorithm facilitates efficient data aggregation and analysis, providing insights for process optimization and 
resource allocation. The result enhances operational efficiency, reduces downtime, and improves overall pro-
ductivity in the manufacturing environment.

Smart agriculture

•	 Scenario: Deploying wireless sensors in agricultural fields to monitor soil moisture, temperature, and crop 
health.

Fig. 6.  Performance comparison of routing protocols for computational efficiency (in ops/J) in WSNs.
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•	 Application of an AI-based routing algorithm: The AI routing algorithm enhances data transmission routes 
to ensure prompt irrigation and pest control choices using real-time sensor data. It adjusts routing techniques 
based on differences in soil conditions, crop varieties, and weather patterns to optimize agricultural yields, 
save water, and reduce pesticide use. The algorithm allows farmers to remotely monitor and manage agri-
cultural activities, helping them make educated choices and maximize resource use for sustainable farming 
methods.

Urban infrastructure monitoring

•	 Scenario: Installing a network of sensors in urban areas to monitor infrastructure health, including bridges, 
roads, and buildings.

•	 Application of an AI-based routing algorithm: The AI-based routing system effectively directs sensor data to 
municipal authorities for infrastructure maintenance and repair. The system prioritizes important data trans-
fer to quickly identify structural issues or indicators of decay, making it easier to do preventive maintenance 
and reducing the chances of infrastructure breakdowns. The algorithm adjusts to variations in urban traffic 
patterns and environmental circumstances, guaranteeing dependable and punctual data transmission for ef-
ficient infrastructure management and public safety.

Table 5 compares the case studies using specific metrics to evaluate their performance in several areas related to 
WSNs and IoT applications. The case studies highlight the wide range of practical uses of the AI-based routing 
algorithm in several fields, illustrating its adaptability, productivity, and success in creating intelligent and 
interconnected surroundings.

Discussion
The comparative evaluation of the proposed AI-based routing framework against existing WSN protocols 
provides valuable insights into its effectiveness. The simulation results demonstrate superior performance in 
terms of higher PDR, reduced end-to-end delay, and improved energy efficiency. These outcomes align with 
key objectives in WSN design-namely, enhancing data delivery reliability, reducing communication latency, and 
minimizing energy consumption. The framework’s ability to dynamically adapt to network variations and extend 
overall network lifetime positions it as a promising solution for real-world applications.

Comparison with related studies
When compared with existing approaches, the proposed framework introduces notable improvements. 
Traditional routing methods, including distance vector, link state, and heuristic-based algorithms, often rely 
on static rules and struggle to adapt to fluctuating network states. In contrast, our framework leverages RL, 
supervised learning, and swarm intelligence to make adaptive, data-driven routing decisions. This layered AI 
integration allows the system to respond to real-time changes in topology, energy levels, and data traffic, offering 
a level of self-learning and flexibility that differentiates it from conventional protocols.

Practical implications and potential challenges
The integration of AI-based routing in WSNs holds considerable promise across a range of application domains, 
including environmental monitoring, healthcare, agriculture, industrial automation, and smart cities. By 
improving network responsiveness, operational efficiency, and data accuracy, the proposed framework can 
enhance decision-making and reduce system maintenance costs.

However, practical deployment presents several challenges. The computational complexity associated with 
training and executing AI models may demand more advanced hardware than typical WSN nodes support. 
Issues related to security, privacy, and model interpretability also arise, particularly in sensitive domains such 
as healthcare or critical infrastructure. Ensuring transparency in AI decision-making and defending against 
adversarial routing behavior are essential considerations.

Metric Environmental monitoring Healthcare monitoring Industrial automation Smart agriculture Urban infrastructure monitoring

Packet delivery ratio High High High High High

End-to-end delay (ms) Low Low Low Low Low

Energy consumption (J) Moderate Low Moderate Moderate Moderate

Network lifetime (days) Long Long Long Long Long

Scalability index High Moderate High High High

Computational efficiency Moderate High High Moderate High

Energy efficiency High High High High High

Robustness index High High High High High

Adaptability rate High High High High High

Table 5.  Case study-based evaluation of routing performance (transposed).
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Limitations and future work
While the proposed AI-based routing framework has shown promising performance in simulation, it is important 
to acknowledge a key limitation of this study. The current results are derived from simulations conducted in 
MATLAB using idealized assumptions and controlled conditions. Although the simulation parameters reflect 
realistic WSN deployment scenarios, actual field conditions may introduce additional complexities such as 
wireless interference, sensor failures, and environmental variability.

To address this, we have outlined plans for real-world implementation using resource-constrained sensor 
motes such as TelosB and Raspberry Pi-based platforms. This future work will allow us to validate the framework’s 
practicality, scalability, and resilience in physical environments. Further research will also focus on developing 
lightweight AI models, improving security mechanisms, and exploring explainable AI techniques suitable for 
embedded systems.

To fully unlock the potential of AI-driven routing in WSNs, collaboration between researchers, industry 
stakeholders, and policymakers is essential. Ethical considerations-including fairness, energy sustainability, and 
regulatory compliance-must be integrated into the design and deployment processes to ensure responsible and 
effective use.

Broader implications
Beyond technical performance, the adoption of AI-based routing in WSNs necessitates careful consideration of 
ethical, economic, and sustainability-related implications.

Ethical considerations
The use of ML models in routing decisions introduces the potential for algorithmic bias. For example, routing 
strategies trained on imbalanced data may unintentionally favor specific node clusters or ignore isolated nodes, 
leading to unfair energy usage or degraded service. To ensure fairness, future versions of the framework must 
incorporate mechanisms for data representativeness and validation metrics that detect and mitigate bias in 
model outputs. Transparency and explainability of AI-driven decisions will also be essential in safety-critical 
applications like healthcare or disaster response.

Deployment cost and resource constraints
AI algorithms, particularly those involving model training and frequent inference, may introduce additional 
computational and energy costs. Although lightweight versions of reinforcement learning and optimization 
algorithms are used, the cumulative overhead of on-node learning or periodic retraining must be evaluated. In 
resource-constrained environments, such as with TelosB or Mica2 motes, offloading learning to more capable 
nodes (e.g., cluster heads) or performing training offline and updating models periodically could reduce 
deployment costs.

Sustainability and carbon footprint
While AI techniques can improve routing efficiency, the energy required to train, deploy, and update models 
must also be accounted for from a sustainability perspective. Frequent model updates, excessive sensor node 
communication, or reliance on central computation hubs could increase the overall carbon footprint. As part of 
a sustainable AI strategy, future work should investigate energy-aware training schedules, low-power inference 
models, and adaptive duty cycling to minimize the environmental impact of AI deployment in WSNs.

These broader implications highlight the need for interdisciplinary collaboration to ensure that AI-enhanced 
WSNs are not only technically sound but also ethically responsible, cost-effective, and environmentally 
sustainable.

Conclusion
This study provides an extensive evaluation of AI-based routing algorithms in WSNs, emphasizing their notable 
benefits and impacts. The study reveals that AI-based routing works better than traditional methods when it 
comes to important factors like PDR, end-to-end delay, and energy consumption, which results in more reliable 
data delivery, less waiting time, and better energy use. The research highlights how AI methods, such as ML 
and optimization algorithms, may improve routing efficiency in changing and resource-limited settings. Future 
research should look at combining AI methods with new technologies like edge computing and blockchain, 
while also studying how to make AI-based routing algorithms in WSNs more reliable and secure.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
upon reasonable request.
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