
Graph representation learning via
enhanced GNNs and transformers
Hongrui Mu1,3, Chengchen Zhou1,3, Qiancheng Yu1,2 & Qunyue Mu1

In recent years, graph transformers (GTs) have captured increasing attention within the graph domain.
To address the prevalent deficiencies in local feature learning and edge information utilization inherent
to GTs, we propose EHDGT, a novel graph representation learning method based on enhanced graph
neural networks (GNNs) and Transformers. Initially, considering that edges encapsulate structural
information, we enhance the original graph by superimposing edge-level positional encoding based
on node-level random walk positional encoding, thus optimizing the utilization of this information.
Subsequently, enhancements are applied to both GNNs and Transformers: for GNNs, we employ
encoding strategies on subgraphs of the original graph, thereby augmenting their proficiency to
process local information. For Transformers, we incorporate edges into the attention calculation and
introduce a linear attention mechanism, significantly reducing the model’s complexity. Ultimately,
to exploit the synergies between GNNs and Transformers while maintaining a balance between
local and global features, we propose a gate-based fusion mechanism for the dynamic integration of
their outputs. Experimental results across multiple datasets demonstrate that EHDGT significantly
outperforms traditional message-passing networks and achieves strong performance compared to
several existing GTs. This paper further explores the application of the proposed model to improving
the quality of the wine industry knowledge graph, experiments show that using link prediction as a
downstream task of graph representation learning based on Graph Transformer achieves excellent
results, significantly enhancing the completeness and semantic quality of the wine industry knowledge
graph, thereby increasing its practical value in digitalization of the wine industry.

Graph-structured data consists of nodes and edges, where nodes represent objects or entities, and edges denote
the relationships or connections between these objects. Such data is ubiquitous in the real world, appearing in
domains like social networks, knowledge graphs, and more1. The complexity and richness of graph-structured
data provide unique advantages for understanding and analyzing intricate relationships.

Graph representation learning aims to transform complex graph data into low-dimensional vector
representations to enable effective analysis and mining. Unlike traditional manual feature engineering, it can
automatically extract key features from graphs, significantly improving efficiency while reducing computational
complexity. Moreover, the learned representations exhibit strong generality and flexibility, making them
compatible with various machine learning and deep learning algorithms. This has led to their widespread
application in tasks such as link prediction2, graph classification3, and graph clustering4. However, existing
graph representation learning methods often struggle to effectively integrate both structural and semantic
information when constructing node-level or graph-level representations. Generating more comprehensive
vector representations remains one of the core focuses of graph representation learning.

GNNs5 represent formidable and widely acknowledged tools for graph representation learning. As illustrated
in Fig. 1, GNNs progressively aggregate neighborhood information and refine node representations through
multi-layer message passing6. Despite the innovation within message-passing strategies, GNNs grapple with
inherent limitations including limited expressive power7,8, propensity for over-smoothing9–11, and tendencies
towards over-squashing12. Over-smoothing manifests as node representations becoming excessively similar and
difficult to distinguish after multiple layers. Over-squashing reflects the challenge that messages from distant
nodes encounter ineffective transmission, as excessive data is condensed into limited vector space. To mitigate
these constraints, the development of architectures that surpass conventional neighborhood aggregation
strategies has become imperative13.

Over the years, Transformers14 have been successfully applied across three of the most significant domains in
artificial intelligence: natural language processing, computer vision, and audio processing. Transformers enable
efficient processing of large-scale data through parallel computation and excel at capturing global information

1School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China. 2The Key Laboratory
of Images and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan
750021, China. 3Hongrui Mu and Chengchen Zhou contributed equally to this work. email: 1999019@nmu.edu.cn

OPEN

Scientific Reports | (2025) 15:28758 1| https://doi.org/10.1038/s41598-025-08688-7

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-08688-7&domain=pdf&date_stamp=2025-11-11

with reduced inductive bias, which has led to their widespread adoption15. Additionally, recent advancements
have seen the development of numerous Transformer variants tailored for processing graph data, collectively
known as Graph Transformers (GTs). In many cases, these variants have demonstrated performance that
matches or even surpasses that of GNNs16.

Inspired by the work of Rampás̆ek et al.17, this paper adopts a parallelized architecture, which sums the
output of each GNN layer with that of the Transformer layer, and updates the features through multiple layers of
iteration. Generally, GNNs can only aggregate messages from local neighbors, while Transformers can directly
model the long-range dependencies between nodes through the attention mechanism. Combining the two in a
parallel manner helps to balance the local and global features. For GNNs, this combination enables the aggregation
of messages from distant nodes in each iteration, thus alleviating the problems of over-smoothing and over-
squashing to a certain extent. Traditional GNNs exhibit limited expressive power and present opportunities for
further enhancement in local information processing. However, standard Transformers typically fail to consider
the incorporation of edge information, which is crucial for effective graph representation and understanding.
This paper introduces enhancements to both components, and the main contributions are as follows:

	(a)	 Edge-level positional encoding is introduced based on node-level random walk positional encoding. How-
ever, there may be scenarios where such encodings exist while the corresponding initial edge features are
absent. To address this, two augmentation strategies are proposed to enhance the original graph, which are
then used as inputs for GNNs and Transformers, respectively.

	(b)	 GNNs typically only aggregate messages from direct neighbors, and this aggregation method limits their
expressive power. To learn better local features, subgraphs centered around each node are extracted from
the original graph, and each subgraph is encoded using GNNs. Since there may be the same nodes in differ-
ent subgraphs, these encodings will be further integrated to obtain the final node representations.

	(c)	 Edge features are incorporated into standard Transformers to enable more accurate modeling of node re-
lationships during attention computation. Additionally, a dynamic fusion mechanism is designed to opti-
mize the integration of outputs from both GNN layers and Transformer layers, harnessing the combined
strengths of these models to enhance the overall output quality.

	(d)	 In standard Transformer architectures, the complexity of the attention mechanism grows quadratically with
the number of inputs. To address this challenge, a linear attention mechanism specifically tailored for graph
data is introduced.

Related work
Graph transformers (GTs) have emerged as a new type of architecture for the modeling of graph-structured data,
attracting significant interest and attention. Existing GTs can be broadly classified into two categories: The first
category focuses on integrating graph information into Transformers, enhancing their ability to understand and
process graph data, allowing them to achieve superior performance in the graph domain. The second category
aims to combine GNNs with Transformers, leveraging the strengths of both to achieve a more comprehensive
analysis and modeling of graph data.

Incorporating graph information into transformers
Transformers were initially designed for processing sequential data, but graph-structured data presents greater
complexity. Directly applying Transformers to graph-structured data can result in information loss and reduced
model performance. To address this, incorporating additional graph-based positional and structural information
into transformers is crucial. Absolute encoding (AE) and relative encoding (RE) are two key techniques that
effectively integrate this information into Transformers, enhancing their ability to understand and process graph
data.

Absolute encoding is a relatively simple and effective encoding method widely used in models such as GNNs
and Transformers. Common forms of absolute encoding include Laplacian eigenvectors and node degrees, which
are added or concatenated to the initial node features to provide key information about the graph. Chen et al.18
used eigenvectors of the graph Laplacian matrix to capture node structural information. However, when dealing

Fig. 1.  Message-passing networks.

Scientific Reports | (2025) 15:28758 2| https://doi.org/10.1038/s41598-025-08688-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

with directed graphs, Laplacian eigenvectors may include complex numbers, adding additional complexity and
constraints. Hussain et al.19 proposed a positional encoding based on Singular Value Decomposition (SVD) of
the graph adjacency matrix, which can be applied to different types of graphs. Ying et al.20 introduced a centrality
encoding, which assigns two real-valued embedding vectors to each node based on its in-degree and out-degree,
and adds these vectors to the node features as the input. This encoding captures the importance of nodes within
the graph, further enriching the node features.

Many GTs also employ relative encoding. Unlike absolute encoding, which is applied to the initial node
features only once, relative encoding dynamically adjusts node features based on the relative relationships
between nodes13. This dynamic approach allows relative encoding to more accurately capture information
and associations within the graph, addressing the limitations of absolute encoding, which compresses the
graph structure into fixed-size vectors16. Kuang et al.21 used Personalized PageRank (PPR) as a bias term for
the attention weight matrix. This method effectively utilizes the graph’s topology, allowing the model to focus
more on neighbors that are more closely associated with the current node. Park et al.22 introduced two sets of
learnable positional encoding vectors: topological encoding and edge encoding, to represent relative positional
relationships. When constructing the attention matrix, node features interact with these two encoding vectors,
allowing for the integration of node-topology and node-edge interactions.

Combining GNNs with transformers
The combination of GNNs and Transformers leverages the sensitivity of GNNs to local information and the ability
of Transformers to handle global information and long-range dependencies, resulting in superior performance
across various tasks. Based on the relative positions of GNN and Transformer blocks, their combination can be
categorized into three types, as shown in Fig. 2: (a) stacking Transformer blocks on top of GNN blocks in a serial
manner; (b) parallelizing GNN and Transformer blocks; (c) alternately stacking GNN and Transformer blocks.

Stacking Transformer blocks on top of GNN blocks is one of the most common integration methods. Mialon
et al.23 employ Graph Convolutional Kernel Networks (GCKNs) to enumerate the local sub-structures of each
node, encode these sub-structures through kernel embeddings, and then perform aggregation. The initial node
features and the outputs of the GCKNs are then concatenated and fed into the Transformer model. A similar
two-stage strategy has been successful in computer vision, largely due to the high expressive power of CNNs
on grids. However, unlike CNNs, GNNs are constrained by issues such as over-smoothing and over-squashing,
which means that even with more expressive message-passing networks, some information may still be lost at
early stages.

Parallelized architectures can mitigate some limitations of two-stage strategies, as the message passing in
GNNs is no longer independent but influenced by Transformers. Rampás̆ek et al.17 proposed a general, powerful,
and scalable architecture that updates the features by summing the outputs of local message-passing layers
with those from global attention layers. However, this approach only incorporates edge features into the local
message-passing layers. Performance could be further improved by integrating edge features into the global
attention layers. The combination of convolution and self-attention in a Transformer encoder is helpful to
improve representation learning. Lin et al.24 adopted an alternating stacking strategy and proposed a graph-
convolution-reinforced Transformer encoder to capture both local and global interactions for 3D human mesh
reconstruction.

This paper combines the strengths of both GNNs and Transformers through a parallelized architecture that
dynamically merges their outputs. In order to make better use of the edges, edge-level relative position encoding
is introduced on the basis of node-level random walk position encoding to further enhance the edge features.

Background
Graph-structured data
A graph G is typically denoted as G = (V, E), where V = {v1, v2, · · · , vn} represents the set of nodes and
E = {e1, e2, · · · , em} represents the set of edges. For each node v, its k-hop neighborhood is defined as
Nk(v) = {u ∈ V | d(v, u) ≤ k}. A general graph representation is a five-tuple: G(V, E, A, X, D), where
A ⊆ Rn×n denotes the adjacency matrix, X ⊆ Rn×d represents the feature matrix of the nodes, D ⊆ Rn×n
is the degree matrix. Here, n and d denote the number of nodes and the dimensionality of the node features,
respectively1.

Fig. 2.  The combination of GNNs and transformers.

Scientific Reports | (2025) 15:28758 3| https://doi.org/10.1038/s41598-025-08688-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Transformer architecture
The Transformer architecture, initially introduced by Google, leverages multi-head self-attention (MHA) and
feedforward networks (FFNs) to build its encoder and decoder. Let X = [x1, x2, · · · , xn] ⊆ Rn×d be the input
to each Transformer layer, where xi represents the feature of the i-th node. The computation of a single self-
attention head is as follows:

	
α = QKT

√
dk

, Attn(X) = softmax
(

QKT

√
dk

)
V � (1)

	 Q = XWQ, K = XWK , V = XWV � (2)

In this context, WQ, WK , and WV are trainable parameters used to linearly transform the input X into the
query matrix (Q), key matrix (K), and value matrix (V). dk represents the dimension of Q and K , and is used
to scale the attention scores, thereby improving the stability of model training.

Multi-head self-attention is an effective strategy that enhances the model’s ability to capture and represent
information. It achieves this by computing self-attention for each head in parallel and then concatenating the
outputs from all heads. The computation of multi-head self-attention is defined by the following formula:

	
MHA(X) =

∥∥∥∥
H

h=1

(
Attn(h)(X)

)
� (3)

	
Attn(h)(X) =softmax

(
Q(h)(K(h))T

√
dk

)
V (h) � (4)

Improved model
This paper introduces edge-level positional encoding in addition to the traditional node-level random walk
positional encoding and proposes two methods to enhance the edges in the original graph. The enhanced graphs
are then used as input to both GNNs and Transformers. For GNNs, message passing on subgraphs improves the
model’s ability to capture local information. For Transformers, the incorporation of edges enables the attention
mechanism to more comprehensively account for the relationships between nodes. Finally, to better leverage the
strengths of both GNNs and Transformers while balancing local and global features, the outputs of both models
are dynamically fused. The overall architecture of the model is illustrated in Fig. 3.

Random walk positional encoding
Initialize a random walk positional encoding P = [M1, M2, · · · , MK], and use this encoding to enhance the
initial node and edge features. Here, K is a hyperparameter representing the maximum length of the random

Fig. 3.  Model overall architecture.

Scientific Reports | (2025) 15:28758 4| https://doi.org/10.1038/s41598-025-08688-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

walk, and M = D−1A is the probability transition matrix, where Mk
ij denotes the probability of node i

transitioning to node j in k steps. The components of P contain significant structural information. For instance,
if nodes i and j are direct neighbors, then Mij is non-zero. In the absence of self-loops, M3

ii is non-zero if and
only if node i is part of a triangle, as shown in Fig. 4. In the Transformer architecture, position encoding based
on random walk is more expressive than encoding based on the shortest path.

In previous work, node-level random walk encoding has been extensively studied and applied. For instance,
Zhang et al.25 and Dwivedi et al.26 used the diagonal elements Pii of the positional encoding matrix P to enhance
node features. This method, compared to encoding based on the eigenvalues and eigenvectors of the graph
Laplacian matrix, is invariant to signs and bases and has demonstrated strong performance. However, diagonal
elements represent the probability of a node returning to itself, and relying solely on these diagonal elements may
result in the loss of significant structural information. Non-diagonal elements reflect the relationships between
nodes and even higher-order structures, so utilizing the complete encoding matrix P can enhance the edges.

Transformers, through the self-attention mechanism, can effectively model the correlations between different
nodes in a fully connected graph without being constrained by the graph structure. However, when dealing with
fully connected graphs or when a large number of additional edges are added, the performance of GNNs can be
negatively impacted. This is due to the introduction of more noise from the increased number of node neighbors,
which affects the effectiveness of message passing. Therefore, in scenarios where positional encoding is present
but corresponding initial edge features are absent, different graphs are fed into GNNs and Transformers.
Specifically, the graph input to GNNs is enhanced only for the edges that originally exist, while the graph input
to Transformers is enhanced for both the originally existing edges and the relevant but non-existent edges.

Subgraph-enhanced GNNs
For non-isomorphic graphs, even GNNs with fixed expressive power may struggle to differentiate between
two original graphs. However, they might be able to differentiate between subgraphs of the original graph, as
the expressive power required to distinguish between graphs scales with the size of the graphs27. By encoding
local subgraphs of the original graph instead of the entire graph, GNNs generalize the aggregation patterns of
traditional message-passing networks, allowing for the decomposition of difficult problems into simpler ones,
thereby further enhancing the expressive capability of GNNs.

First, extract k-hop subgraphs centered on each node from the original graph, and apply GNNs to process
each subgraph to obtain the node embeddings. The node embeddings learned in the subgraph will eventually
be further transformed into the representations of the corresponding nodes in the original graph. Therefore,
it is necessary to ensure that nodes and edges in the subgraph correspond to those in the original graph. The
process of extracting k-hop subgraphs is shown in Algorithm 1. For nodes in the subgraph, the next-hop nodes
are obtained by multiplying the previous-hop nodes with the adjacency matrix. As for the edges in the subgraph,
they are identified based on edge index: if both the head and tail nodes of an edge are in the subgraph, then the
edge belongs to the subgraph. Alternatively, this can be understood as follows: suppose the subgraph centered on
x2 contains nodes x0 and x1; if there is an edge between these two nodes, then that edge is part of the subgraph.

Fig. 4.  Random walk position encoding.

Scientific Reports | (2025) 15:28758 5| https://doi.org/10.1038/s41598-025-08688-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

During subgraph extraction, the hop count of each node relative to the central node is obtained. These hop
counts can serve as additional structural information, helping the model better understand the position and role
of nodes within the subgraph. A smaller hop count indicates that the node is closer to the central node and has
a stronger relationship with it, whereas a larger hop count means the node is farther from the central node with
a more indirect connection. By encoding the hop counts and concatenating them with the initial node features
of the subgraph, the model’s performance can be further enhanced.

Algorithm 1.  Extraction of a k-hop subgraph

In practice, to improve efficiency when processing multiple subgraphs from the original graph, all subgraphs
are typically merged into a single large graph before being fed into GNNs. The merged graph preserves the
independence of each subgraph, as there are no connections between them. Consequently, GNNs do not
aggregate messages across different subgraphs during message passing. Since the same node may appear in
different subgraphs, three types of encodings are used to integrate the node embeddings: centroid encoding,
subgraph encoding, and context encoding. Centroid encoding focuses solely on the embedding of the central
node in the subgraph; subgraph encoding sums up the embeddings of all nodes within the subgraph; and context
encoding aggregates the embeddings of the same node across all subgraphs. Finally, these three encodings are
fused to obtain the final representation of each node, as described by the following formula:

	 xCentroid
j = Emb(Nod[j] | Sub[j]) � (5)

	 xSubgraph
j = Add

({
Emb(Nod[i] | Sub[j]) | i ∈ Nk(j)

})
� (6)

	 xContext
j = Add

({
Emb(Nod[j] | Sub[i]) | ∀i s.t. j ∈ Nk(i)

})
� (7)

	 xj = Fuse
(
xCentroid

j , xSubgraph
j , xContext

j

)
� (8)

Here, Emb(Nod[j] | Sub[j]) refers to the embedding of node j within subgraph j. If subgraphs are extracted
for each node, the computational and storage overhead can become significant. To address this issue, a min-
set-cover sampling method is employed to select a subset of subgraphs for processing. As shown in Algorithm
2, the min-set-cover sampling ensures that all nodes in the original graph are adequately covered while
minimizing the number of selected subgraphs, thereby enhancing the quality and representativeness of sampling
while maintaining efficiency. Additionally, the model samples subgraphs only during training, while using all
subgraphs during evaluation, which can further enhance its generalization ability. Since the amount of data
in the validation and test sets is usually much smaller than that in the training set, using all subgraphs during
evaluation typically does not result in excessive memory consumption. If further reduction of the evaluation
overhead is desired, it can be achieved by decreasing the batch size of the validation and test sets.

Scientific Reports | (2025) 15:28758 6| https://doi.org/10.1038/s41598-025-08688-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Algorithm 2.  Min-set-cover subgraph sampling

After the subgraph sampling is completed, an important step is to update the nodes_mapper, edge_mapper,
and hop_mapper obtained during the subgraph extraction phase based on the sampled subgraphs (selected_
nodes). This update refers to filtering these mappers and retaining only the information relevant to the sampled
subgraphs. If subgraph sampling is performed, only the central nodes in the sampled subgraphs will have the
centroid encoding and subgraph encoding. To ensure that each node has all three types of encodings, the missing
centroid and subgraph encodings need to be aligned. Before alignment, the hop counts of edges in the original
graph relative to the central nodes must be calculated, as shown in Algorithm 3. First, starting from the central
nodes of the sampled subgraphs, the one-hop edges directly connected to them are identified. Then, two-hop
edges are found by starting from the tail nodes of the one-hop edges, and so on, until the hop counts for all edges
in the original graph are determined. Finally, the centroid and subgraph encodings are aggregated based on the
hop counts of the edges.

Algorithm 3.  The hop counts of edges relative to the central nodes

Scientific Reports | (2025) 15:28758 7| https://doi.org/10.1038/s41598-025-08688-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

The alignment of centroid encodings is illustrated in Fig. 5. Two subgraphs centered on nodes x1 and x3
have been sampled, so only x1 and x3 possess centroid encoding. Furthermore, these subgraphs contain only
1-hop and 2-hop edges. First, aggregation is performed based on the tail nodes of the 1-hop edges((x1, x0), (x1,
x2), and (x3, x0) are all 1-hop edges). The centroid encoding of x0 is obtained by aggregating the encodings of
x1 and x3. Since there is only one 1-hop edge with x2 as the tail node, x2 is aggregated only by x1. Aggregation
is then performed based on the 2-hop edges. The alignment of the subgraph encodings is similar to that of the
centroid encoding.

Edge-enhanced Transformers
Edge features are also crucial, as they provide key information for characterizing the relationships between
nodes. In GNNs, a common practice is to incorporate edge features into the features of the associated nodes or
to use edge features alongside node features during aggregation. However, these methods only propagate edge
information to the nodes associated with these edges. To better leverage edge features, they can be integrated
into Transformers, allowing these features to be considered during attention computation. In Transformers,
there are mainly two ways to incorporate edge features: one is to use edge features to adjust the generation of
the attention weight matrix, thereby affecting the attention distribution between nodes; the other is to add edge
features to the value matrix (V). By combining these two methods, the flexibility of the attention mechanism can
be significantly improved. The improved attention computation formula is defined as follows:

	 Ei,j = σ (ρ ((xiWQ + xjWK) ⊙ WEwei,j) + WEbei,j) � (9)

	 Gi,j = σ (ρ ((xiWQ + xjWK) ⊙ WGwei,j) + WGbei,j) � (10)

	
α̂i,j = softmax

(
(xiWQ)(xjWK)T

√
dk

+ Ei,j

)
� (11)

	
Attn(xi) =

∑
j∈V

α̂i,j(xjWV + Gi,j) � (12)

	 ρ(x) = (ReLU(x))1/2 − (ReLU(−x))1/2 � (13)

Here, σ(·) denotes a nonlinear activation function, and ρ(·) represents a signed square root function that aids
in stabilizing the training process. ei,j denotes the features of the edge connecting nodes i and j, while WEw,
WEb, WGw and WGb are learnable weight matrices. This attention calculation method not only updates edges
but also enables node aggregation influenced by edges. Compared to the scaled dot-product attention used in
standard Transformers, this method captures the relative relationships between nodes in a more flexible and
comprehensive manner.

In the specific implementation of Transformers, as described in the Background, self-attention is typically
achieved through matrix multiplications among the query matrix (Q), key matrix (K), and value matrix (V).
The process entails the computation of attention weights and the aggregation of input features. However, the
problem lies in the fact that the dimension of the attention matrix calculated in this way is related to the number
of nodes, while the dimension of the edge features is not the same as that of the attention matrix. This results in
the inability to effectively take the edges into account when calculating the attention.

Transformers can also be implemented through the way of message passing. First, map the query matrix (Q),
key matrix (K), and value matrix (V) according to the edge index. Then, calculate the attention weights based
on Q and K and use them to weight V . Finally, aggregate the weighted results according to the edge index.
These two approaches differ in implementation but are fundamentally the same. Since edge features need to be
utilized in the attention calculation, the second approach is adopted. However, this method only calculates the
attention between pairs of nodes that are directly connected. Therefore, to compute fully connected attention, it
is necessary to provide a fully connected graph (connecting nodes that were not originally directly connected).

Combining GNNs and Transformers can leverage the advantages of both, resulting in superior performance
across various tasks. Although it is common to stack Transformer blocks on top of GNN blocks in a serial
manner, this two-stage approach can be limited by issues such as over-smoothing and over-squeezing in GNNs.
To address these limitations, this model adopts a parallel structure. Specifically, the output of each GNN layer is
summed with that of the Transformer layer and processed through multi-layer iterations to update the features.

Fig. 5.  The alignment of centroid encodings.

Scientific Reports | (2025) 15:28758 8| https://doi.org/10.1038/s41598-025-08688-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Direct summation is a simple and intuitive fusion method that does not require additional parameters. However,
this method treats the outputs of both models equally and lacks the ability to dynamically adjust their weights.
In certain cases, it may lead to inappropriate weighting for specific tasks. To enhance the integration of outputs
from both GNN and Transformer layers, a gating-based dynamic fusion mechanism is designed, which can
adaptively adjust the fusion weights of the two. The detailed formulation is as follows:

	 weights = σ (Wgate[XGNN, XTrans] + Wbias) � (14)

	 Xfused = weights ⊙ XGNN + (1 − weights) ⊙ XTrans � (15)

Reducing the complexity of Transformers
In Transformers, the attention mechanism can be modeled through an interaction graph, where an edge from
node i to node j indicates that attention between them will be computed. The standard Transformer architecture
employs a fully connected attention mechanism, meaning that each node can interact with all other nodes.
However, this fully connected attention results in quadratic complexity relative to the number of nodes,
and a large number of distant nodes can distract the target node from focusing on its local neighborhood.
In the field of language modeling, some linear Transformers (such as BigBird28 and Performer29) have made
significant progress. However, due to the complexity of graph-structured data, designing suitable linear attention
mechanisms becomes more challenging, and linear Transformers have not been extensively explored in the
graph domain.

To reduce the complexity of Transformers while still incorporating edge features, this paper draws on the
approach proposed by Shirzad et al.30 Their linear attention consists of three components: local attention,
expander graph attention, and global attention, as illustrated in Fig. 6. Local attention allows each node to focus
on its first-order neighbors to model local interactions. Expander graph attention enables information to be
propagated between distant nodes without requiring connections between all node pairs. Global attention is
achieved by adding a small number of virtual nodes, each connected to all other nodes. Together, these three
components form an interaction graph that, compared to a fully connected interaction graph, contains only a
linear number of edges, thereby significantly reducing the computational cost of attention.

Expander graphs are a type of graph with special properties and are widely used in algorithms and theorems.
An ϵ-expander graph, commonly defined as a d-regular graph where each node has degree d, satisfies that
the eigenvalues of its adjacency matrix meet the condition |µi| ≤ ϵd for all i ≥ 2 and ϵ > 0. In a d-regular
graph, the eigenvalues of the Laplacian matrix can be expressed as λi = d − µi. Consequently, |d − λi| ≤ ϵd
for i ≥ 2, indicating that all non-zero eigenvalues of the Laplacian matrix of an ϵ-expander graph satisfy
(1 − ϵ)d ≤ λi ≤ (1 + ϵ)d. Expander graphs are spectrally similar to fully connected graphs with the same
number of nodes. Therefore, a linear attention based on expander graphs preserves the spectral properties of the
fully connected attention mechanism. A graph G is an ϵ-approximation of a graph H, which can be represented
as:

	 (1 − ϵ)H ≼ G ≼ (1 + ϵ)H � (16)

Here, H ⪯ G indicates that for any vector x, the Laplacian matrices LH and LG satisfy the relationship
xT LHx ≤ xT LGx. A more detailed proof will follow.

Suppose graph G is a d-regular ϵ-expander graph. For all vectors x orthogonal to the constant vector,
inequality (17) holds. In the case of the fully connected graph Kn, Eq. (18) is satisfied for all such vectors x. If
H = d

n
Kn represents a fully connected graph with the same structure as Kn but with edge weights scaled by

d
n , then Eq. (19) follows.

	 (1 − ϵ)dxT x ≤ xT LGx ≤ (1 + ϵ)dxT x � (17)

	 xT LKn x = nxT x � (18)

	 xT LHx = dxT x � (19)

Fig. 6.  Components of linear attention.

Scientific Reports | (2025) 15:28758 9| https://doi.org/10.1038/s41598-025-08688-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Here, n represents the number of nodes in the fully connected graph Kn. Substituting Eq. (19) into inequality
(17) yields inequality (20), thus proving that graph G is an ϵ-approximation of the fully connected graph H.

	 (1 − ϵ)xT LHx ≤ xT LGx ≤ (1 + ϵ)xT LHx =⇒ (1 − ϵ)H ⪯ G ⪯ (1 + ϵ)H � (20)

Here, H = d
n

Kn. Substituting this into (20) yields inequality (21), demonstrating that graph G is also an
approximation of the fully connected graph Kn.

	
(1 − ϵ)d

n
Kn ≼ G ≼ (1 + ϵ)d

n
Kn� (21)

Another property of expander graphs is that random walks mix well. Suppose v0, v1, v2, . . . is a random walk
sequence on a d-regular ϵ-expander graph G, where v0 is a starting node chosen randomly according to the
probability distribution π(0), and each subsequent node vt+1 is chosen randomly from among the d neighbors
of vt. It has been demonstrated that on a d-regular ϵ-expander graph with n nodes, for any initial distribution
π(0), where t = Ω

(log(n/δ)
ϵ

)
, the distribution π(t) satisfies the following inequality:

	

∥∥∥π(t) − 1
n

∥∥∥
1

≤ δ� (22)

Here, δ > 0. This indicates that after a logarithmic number of steps, the initial probability distribution will
converge to a uniform distribution. In the fully connected attention mechanism, it’s clear that pairwise node
interactions can be achieved within each Transformer layer. However, in the linear attention mechanism, certain
node pairs are not directly connected, meaning a single Transformer layer cannot model interactions between all
node pairs. Nevertheless, if this linear attention is built upon an ϵ-expander graph, stacking at least t = log(n/δ)

ϵ
layers will allow for the modeling of pairwise interactions between most nodes.

A random d-regular graph, where the d neighbors of each node are chosen randomly, has a high probability
of being an expander graph. Therefore, for simplicity, a random d-regular graph is used to construct the
expander graph, as described in Algorithm 4. In fact, the first nontrivial eigenvalue λ2 of the Laplacian matrix
of a random d-regular graph is closely related to ϵ and the expansiveness of the graph. If the graph contains two
edges separated by a distance of at least 2k + 2, there exists an upper bound for λ2, which plays a significant role
in determining whether the graph is an expander graph:

	
λ2 ≤ d − 2

√
d − 1 + 2

√
d − 1 − 1
k + 1

� (23)

Algorithm 4.  Construction of the expander graph

Experimental results and analysis
Experimental setup and evaluation metrics
Software Environment: Windows Server 2019 Datacenter 64-bit operating system, PyCharm 2023.1.2
Community Edition, CUDA 11.8, Python 3.9, PyTorch 2.0.1.Hardware Environment: 2 Intel® Xeon® Gold
6154 @3.00GHz processors, 256GB DDR4 2666MHz memory, NVIDIA TITAN V with 12GB VRAM, 4TB
mechanical hard drive, and 1TB solid-state drive.

Scientific Reports | (2025) 15:28758 10| https://doi.org/10.1038/s41598-025-08688-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Different tasks have distinct characteristics and objectives, making it crucial to select appropriate evaluation
metrics to accurately assess a model’s performance. In this paper, the following evaluation metrics are used in
the experiments:

	1.	 MAE (Mean Absolute Error): A widely used metric for regression tasks, it measures the performance of a
model by calculating the average absolute error between predicted values and actual values.

	2.	 Accuracy: A common metric for classification tasks, it represents the proportion of correctly classified sam-
ples out of the total number of samples. Higher accuracy indicates better classification performance.

	3.	 AUROC (Area Under the Receiver Operating Characteristic Curve): Mainly used to evaluate binary classifi-
cation tasks, it represents the area under the ROC curve, with values ranging between 0 and 1.

	4.	 AP (Average Precision): Commonly used in information retrieval and object detection tasks, it provides a
comprehensive evaluation of the model’s performance across different thresholds by considering both preci-
sion and recall.

Experimental datasets and baseline models
To comprehensively evaluate the model’s performance, five datasets were selected from Benchmarking GNNs31,
and two datasets each were chosen from the Open Graph Benchmark32 and the Long-Range Graph Benchmark33
for comparison and ablation experiments. The statistical information for all datasets is provided in Table 1.
These datasets cover a diverse range of graph tasks, including multi-class classification, multi-label classification,
regression, and can be downloaded from the following links: ​h​t​t​​​​p​s​:​​/​​/​g​i​t​h​u​b​.​c​​o​m​/​g​r​a​​​p​h​d​e​e​p​l​e​a​r​n​i​n​g​/​b​e​n​c​h​m​
a​r​k​i​n​g​-​g​n​n​s​, https://ogb.stanford.edu, and https://github.com/vijaydwivedi75/lrgb. In addition, the proposed
model will be compared against several popular and state-of-the-art graph learning methods, including GNNs
and GTs.

Comparison experiments
First, the proposed method was evaluated on five datasets from Benchmarking GNNs31: ZINC, MNIST, CIFAR10,
PATTERN, and CLUSTER.The hyper-parameters for each dataset are shown in Table 2, and the experimental
results are shown in Table 3. The results clearly indicate that the proposed model significantly outperforms
traditional message-passing networks and demonstrates superior performance compared to several existing
Graph Transformers, with the most notable improvements observed on the CIFAR10 dataset.

Next, comparison experiments were conducted on two datasets each from Open Graph Benchmark32
and Long-Range Graph Benchmark33. Table 4 shows the experimental results on the ogbg-molhiv and ogbg-
molpcba datasets. Compared to other models, EHDGT shows a clear advantage, indicating its ability to learn
more effective representations. As shown in Table 5, EHDGT performs excellently on both the Peptides-func
and Peptides-struct datasets, particularly on the Peptides-func dataset, where its performance significantly
exceeds that of other models, demonstrating strong long-range dependency capturing ability and generalization
capability. Additionally, the paper compares EHDGT with a variant incorporating linear attention, named

Hyperparameter ZINC-12K CIFAR10 PATTERN CLUSTER MNIST ogbg-molhiv ogbg-molpcba Peptides-func Peptides-struct

Transformer Layers 10 3 10 16 3 10 5 4 4

Hidden dim 64 52 64 48 52 64 384 96 96

Heads 8 4 8 4 4 4 4 4 8

Dropout 0 0 0 0.01 0 0.05 0.3 0 0.05

Attention dropout 0.2 0.5 0.2 0.5 0.5 0.5 0.5 0.5 0.5

Graph pooling Sum Mean – Mean Mean Mean Mean Mean Mean

Epochs 2000 200 100 100 200 100 100 200 200

Table 2.  Hyper-parameter settings for each dataset.

Dataset Graphs Avg. nodes Avg. edges No. classes Metric

ZINC-12K 12,000 23.1 49.8 1 MAE

CIFAR10 60,000 117.6 941.1 10 Accuracy

PATTERN 14,000 118.9 6078.6 2 Accuracy

CLUSTER 12,000 117.2 4301.7 6 Accuracy

MNIST 70,000 70.6 564.5 10 Accuracy

ogbg-molhiv 41,127 25.5 54.9 2 AUROC

ogbg-molpcba 437,929 26.0 56.2 128 AP

Peptides-func 15,535 150.9 307.3 10 AP

Peptides-struct 15,535 150.9 307.3 11 MAE

Table 1.  Dataset statistics.

Scientific Reports | (2025) 15:28758 11| https://doi.org/10.1038/s41598-025-08688-7

www.nature.com/scientificreports/

https://github.com/graphdeeplearning/benchmarking-gnns
https://github.com/graphdeeplearning/benchmarking-gnns
https://ogb.stanford.edu
https://github.com/vijaydwivedi75/lrgb
http://www.nature.com/scientificreports

EHDGT-L. As shown in Tables 4 and 5, although EHDGT-L does not perform as well as EHDGT, it remains
competitive.

Since the linear attention is calculated based on the edges of the interaction graph, its computational
complexity can be analyzed from the perspective of edges. The local attention is constructed based on the
original graph, so it has O(|E|) interaction edges. In this paper, a random d - regular graph is used to construct
the expander graph, so the expander graph attention introduces O(|V |) interaction edges. The global attention
can be realized with only a small number of virtual nodes and contains only O(|V |) interaction edges. Since all
components have a linear number of edges, the attention mechanism implemented based on them is also linear.
As can be seen from Fig. 7, after using the linear attention, there is no need to calculate the attention between
each pair of nodes, and the efficiency of the model is further improved.

Ablation experiments
To assess the impact of each component in EHDGT on performance, ablation experiments were conducted
across multiple datasets. Table 6 presents the experimental results for PATTERN. It is observed that both
subgraph-enhanced GNNs and edge-enhanced Transformers, when combined with edge-level random walk
positional encoding, improve the model’s classification accuracy. Moreover, dynamically fusing the outputs of
these two components leads to even more significant performance gains. Figure 8 illustrates the experimental
results for MNIST and ZINC. It shows that even without subgraph-enhanced GNNs, the model outperforms

Model

ogbg-molhiv ogbg-molpcba

AUROC↑ AP↑

GCN+virtual-node5 0.7599 ± 0.0119 0.2424 ± 0.0034
PNA35 0.7905 ± 0.0132 0.2838 ± 0.0035
DeeperGCN45 0.7858 ± 0.0117 0.2781 ± 0.0038
SAN38 0.7785 ± 0.0025 0.2765 ± 0.0042
GraphTrans46 – 0.2761 ± 0.0029

Exphormer30 0.7834 ± 0.0044 0.2849 ± 0.0025
GRIT47 0.7835 ± 0.0054 0.2362 ± 0.0020
GraphGPS17 0.7880 ± 0.0101 0.2907 ± 0.0028
HyPE-GT48 0.7893 ± 0.0005 –

EHDGT-L (ours) 0.7898 ± 0.0041 0.2912 ± 0.0025
EHDGT (ours) 0.8013 ± 0.0069 0.2915 ± 0.0027

Table 4.  Test performance in graph-level OGB benchmarks. Significant values are in bold.

Model

ZINC - 12K MNIST CIFAR10 PATTERN CLUSTER

MAE↓ Accuracy↑ Accuracy↑ Accuracy↑ Accuracy↑

GCN5 0.367 ± 0.011 90.705 ± 0.218 55.710 ± 0.381 71.892 ± 0.334 68.498 ± 0.976
GIN7 0.526 ± 0.051 96.485 ± 0.252 55.255 ± 1.527 85.387 ± 0.136 64.716 ± 1.553
GAT34 0.384 ± 0.007 95.535 ± 0.205 64.223 ± 0.455 78.271 ± 0.186 70.587 ± 0.447
PNA35 0.188 ± 0.004 97.94 ± 0.12 70.35 ± 0.63 – –

GatedGCN36 0.282 ± 0.015 97.340 ± 0.143 67.312 ± 0.311 85.568 ± 0.088 73.840 ± 0.326
GatedGCN+GEANet37 0.218 ± 0.011 98.315 ± 0.097 73.857 ± 0.306 85.607 ± 0.038 77.013 ± 0.224
SAN38 0.139 ± 0.006 – – 86.581 ± 0.037 76.691 ± 0.65
Graphormer20 0.122 ± 0.006 – – – –

K-Subgraph SAT13 0.094 ± 0.008 – – 86.848 ± 0.037 77.856 ± 0.104
EGT19 0.108 ± 0.009 98.173 ± 0.087 68.702 ± 0.409 86.821 ± 0.020 79.232 ± 0.348
Graphormer-GD39 0.081 ± 0.009 – – – –

Cluster-GT40 0.071 ± 0.004 – – – –

GraphGPS17 0.070 ± 0.004 98.051 ± 0.126 72.298 ± 0.356 86.685 ± 0.059 78.016 ± 0.180
LGI-GT41 0.069 ± 0.002 – – 86.93 ± 0.04 78.19 ± 0.10
SubFormer-Spec42 0.068 ± 0.005 – – – –

CSA-SPSE43 0.061 ± 0.003 98.269 ± 0.078 73.897 ± 0.524 87.064 ± 0.052 78.940 ± 0.132
TIGT44 0.057 ± 0.002 98.230 ± 0.133 73.955 ± 0.360 86.680 ± 0.056 78.033 ± 0.218
EHDGT (ours) 0.058 ± 0.002 98.42 ± 0.12 75.34 ± 0.32 87.358 ± 0.065 79.526 ± 0.344

Table 3.  Test performance on five benchmarks from Benchmarking GNNs. Significant values are in bold.

Scientific Reports | (2025) 15:28758 12| https://doi.org/10.1038/s41598-025-08688-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

GraphGPS. The inclusion of subgraph-enhanced GNNs not only accelerates convergence but also improves
overall performance.

Application
The proposed model wants to predict latent but unannotated entity relations in the knowledge graph by learning
high-quality representations of nodes and edges. This serves to complete the graph and enhance knowledge
inference capabilities, providing richer and more accurate knowledge support for downstream tasks. By
integrating GNN and Transformer into the graph learning process, the model leverages global self-attention
mechanisms to capture high-order semantic relations across multiple hops by modeling interactions between
arbitrary node pairs. To better preserve structural information and enhance the model’s sensitivity to edge
semantics, our approach incorporates edge information to enable edge feature prediction. For each edge in the
graph, a positional vector is computed based on its structural position, and this encoding is embedded into the
attention computation of the Transformer. This mechanism enables the model to distinguish edges with different

Edge-level positional encoding Subgraph-enhanced GNNs Integrating edge features into Transformers Dynamical-fusion mechanism Accuracy↑

– – – – 86.765 ± 0.035

✓ ✓ – – 86.941 ± 0.042

✓ – ✓ – 87.246 ± 0.076

✓ ✓ ✓ – 87.329 ± 0.042

✓ ✓ ✓ ✓ 87.358 ± 0.065

Table 6.  Ablation study on PATTERN.

Fig. 7.  Average time per epoch.

Model

Peptides-func Peptides-struct

AP↑ MAE↓

GCN5 0.5930 ± 0.0023 0.3496 ± 0.0013
GatedGCN36 0.5864 ± 0.0035 0.3420 ± 0.0013
GatedGCN+RWSE36 0.6069 ± 0.0035 0.3357 ± 0.0006
Transformer+LapPE14 0.6326 ± 0.0126 0.2529 ± 0.0016
SAN+LapPE38 0.6384 ± 0.0121 0.2683 ± 0.0043
SAN+RWSE38 0.6439 ± 0.0075 0.2545 ± 0.0012
GraphGPS17 0.6535 ± 0.0041 0.2500 ± 0.0012
Subgraphormer49 0.6415 ± 0.0052 0.2494 ± 0.0020
TIGT44 0.6679 ± 0.0074 0.2485 ± 0.0015
EHDGT-L (ours) 0.6620 ± 0.0025 0.2546 ± 0.0034
EHDGT (ours) 0.6807 ± 0.0051 0.2511 ± 0.0023

Table 5.  Test performance on long-range graph benchmarks. Significant values are in bold.

Scientific Reports | (2025) 15:28758 13| https://doi.org/10.1038/s41598-025-08688-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

structural roles, while also improving its ability to model edge types and semantic weights, thereby enhancing
the accuracy of relation prediction.

The model demonstrates significantly better performance on link prediction tasks compared to baseline
methods that use either GNN or Transformer alone, especially in handling heterogeneous graphs and long-
range semantic relations. This method effectively improves the connectivity and semantic richness of the wine
industry knowledge graph, thereby markedly enhancing the quality and practical utility of the knowledge graph.

Conclusions and prospect
This paper presents a graph representation learning model named EHDGT, which adopts a parallel architecture
to dynamically fuse the outputs of GNNs and Transformers, thereby fully leveraging the strengths of both.
Additionally, enhancements are made to each component: GNNs are used to encode subgraphs instead of the
entire graph, further enhancing their ability to process local information; edge features are incorporated into the
attention computation, enabling Transformers to more comprehensively model the relationships between nodes.
To better utilize edge information, an edge-level positional encoding is introduced to enhance the original
graph. EHDGT demonstrates strong performance and competitive advantages across multiple widely-used and
representative datasets.

This work primarily evaluates the effectiveness of the proposed graph representation learning method
through supervised downstream tasks, such as graph regression and graph classification. In the future, further
exploration of Transformer-based unsupervised graph learning could be pursued, with potential applications
in tasks like community detection and graph generation. While current Transformers effectively capture intra-
graph attention among nodes within individual graph samples, they tend to overlook inter-graph correlations,
which are critical for graph-level tasks. For example, in molecular graph data, molecules with similar structures
often exhibit similar chemical properties and biological activities. A potential future direction is to introduce a
set of learnable parameters that are independent of individual input graphs but shared across the entire dataset,
enabling the model to implicitly capture relationships between different graph instances. Based on the proposed
architecture, future work will focus on designing type-specific attention mechanisms for different node and edge
types, to support knowledge graph completion and denoising.

Received: 14 February 2025; Accepted: 23 June 2025

References
	 1.	 Wu, B., Liang, X., Zhang, S. & Xu, R. Advances and applications in graph neural network. Chin. J. Comput. 45, 35–68 (2022).
	 2.	 Li, L., Liu, J., Ji, X., Wang, M. & Zhang, Z. Self-explainable graph transformer for link sign prediction. In Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 39, 12084–12092 (2025).
	 3.	 Lei, H., Xu, J., Dong, X. & Ke, Y. Divergent paths: Separating homophilic and heterophilic learning for enhanced graph-level

representations. arXiv preprint arXiv:2504.05344 (2025).
	 4.	 Wu, X. et al. Structure-enhanced contrastive learning for graph clustering. arXiv preprint arXiv:2408.09790 (2024).
	 5.	 Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907

(2016).
	 6.	 Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In International

Conference on Machine Learning, 1263–1272 (PMLR, 2017).
	 7.	 Xu, K., Hu, W., Leskovec, J. & Jegelka, S. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).
	 8.	 Morris, C. et al. Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 33, 4602–4609 (2019).
	 9.	 Li, Q., Han, Z. & Wu, X.-M. Deeper insights into graph convolutional networks for semi-supervised learning. In Proceedings of the

AAAI Conference on Artificial Intelligence, Vol. 32 (2018).
	10.	 Chen, D. et al. Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, 3438–3445 (2020).

Fig. 8.  Ablation study on MNIST and ZINC.

Scientific Reports | (2025) 15:28758 14| https://doi.org/10.1038/s41598-025-08688-7

www.nature.com/scientificreports/

http://arxiv.org/abs/2504.05344
http://arxiv.org/abs/2408.09790
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1810.00826
http://www.nature.com/scientificreports

	11.	 Oono, K. & Suzuki, T. Graph neural networks exponentially lose expressive power for node classification. arXiv preprint
arXiv:1905.10947 (2019).

	12.	 Alon, U. & Yahav, E. On the bottleneck of graph neural networks and its practical implications. arXiv preprint arXiv:2006.05205
(2020).

	13.	 Chen, D., O’Bray, L. & Borgwardt, K. Structure-aware transformer for graph representation learning. In International Conference
on Machine Learning, 3469–3489 (PMLR, 2022).

	14.	 Vaswani, A. Attention is all you need. arXiv preprint arXiv:1706.03762 (2017).
	15.	 Qin, Z. et al. cosformer: Rethinking softmax in attention. arXiv preprint arXiv:2202.08791 (2022).
	16.	 Min, E. et al. Transformer for graphs: An overview from architecture perspective. arXiv preprint arXiv:2202.08455 (2022).
	17.	 Rampášek, L. et al. Recipe for a general, powerful, scalable graph transformer. Adv. Neural. Inf. Process. Syst. 35, 14501–14515

(2022).
	18.	 Chen, J., Gao, K., Li, G. & He, K. Nagphormer: A tokenized graph transformer for node classification in large graphs. arXiv

preprint arXiv:2206.04910 (2022).
	19.	 Hussain, M. S., Zaki, M. J. & Subramanian, D. Global self-attention as a replacement for graph convolution. In Proceedings of the

28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 655–665 (2022).
	20.	 Ying, C. et al. Do transformers really perform badly for graph representation?. Adv. Neural. Inf. Process. Syst. 34, 28877–28888

(2021).
	21.	 Kuang, W., WANG, Z., Li, Y., Wei, Z. & Ding, B. Coarformer: Transformer for large graph via graph coarsening, 2022. In ​h​t​t​p​s​:​/​/​o​

p​e​n​r​e​v​i​e​w​.​n​e​t​/​f​o​r​u​m​​​​ (2021).
	22.	 Park, W., Chang, W., Lee, D., Kim, J. & Hwang, S.-w. Grpe: Relative positional encoding for graph transformer. arXiv preprint

arXiv:2201.12787 (2022).
	23.	 Mialon, G., Chen, D., Selosse, M. & Mairal, J. Graphit: Encoding graph structure in transformers. arXiv preprint arXiv:2106.05667

(2021).
	24.	 Lin, K., Wang, L. & Liu, Z. Mesh graphormer. In Proceedings of the IEEE/CVF International Conference on Computer Vision,

12939–12948 (2021).
	25.	 Zhang, Z., Wang, M., Xiang, Y., Huang, Y. & Nehorai, A. Retgk: Graph kernels based on return probabilities of random walks. Adv.

Neural Inf. Process. Syst. 31, 3964–3974 (2018).
	26.	 Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y. & Bresson, X. Graph neural networks with learnable structural and positional

representations. arXiv preprint arXiv:2110.07875 (2021).
	27.	 Loukas, A. How hard is to distinguish graphs with graph neural networks?. Adv. Neural. Inf. Process. Syst. 33, 3465–3476 (2020).
	28.	 Zaheer, M. et al. Big bird: Transformers for longer sequences. Adv. Neural. Inf. Process. Syst. 33, 17283–17297 (2020).
	29.	 Choromanski, K. et al. Rethinking attention with performers. arXiv preprint arXiv:2009.14794 (2020).
	30.	 Shirzad, H., Velingker, A., Venkatachalam, B., Sutherland, D. J. & Sinop, A. K. Exphormer: Sparse transformers for graphs. In

International Conference on Machine Learning, 31613–31632 (PMLR, 2023).
	31.	 Dwivedi, V. P. et al. Benchmarking graph neural networks. J. Mach. Learn. Res. 24, 1–48 (2023).
	32.	 Hu, W. et al. Open graph benchmark: Datasets for machine learning on graphs. Adv. Neural. Inf. Process. Syst. 33, 22118–22133

(2020).
	33.	 Dwivedi, V. P. et al. Long range graph benchmark. Adv. Neural. Inf. Process. Syst. 35, 22326–22340 (2022).
	34.	 Veličković, P. et al. Graph attention networks. arXiv preprint arXiv:1710.10903 (2017).
	35.	 Corso, G., Cavalleri, L., Beaini, D., Liò, P. & Veličković, P. Principal neighbourhood aggregation for graph nets. Adv. Neural. Inf.

Process. Syst. 33, 13260–13271 (2020).
	36.	 Bresson, X. & Laurent, T. Residual gated graph convnets. arXiv preprint arXiv:1711.07553 (2017).
	37.	 Liang, J., Chen, M. & Liang, J. Graph external attention enhanced transformer. In Proceedings of the 41st International Conference

on Machine Learning, Proceedings of Machine Learning Research (eds Salakhutdinov, R. et al.), Vol. 235 29560–29574 (PMLR,
2024).

	38.	 Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V. & Tossou, P. Rethinking graph transformers with spectral attention. Adv.
Neural. Inf. Process. Syst. 34, 21618–21629 (2021).

	39.	 Zhang, B., Luo, S., Wang, L. & He, D. Rethinking the expressive power of gnns via graph biconnectivity. arXiv preprint
arXiv:2301.09505 (2023).

	40.	 Huang, S., Song, Y., Zhou, J. & Lin, Z. Cluster-wise graph transformer with dual-granularity kernelized attention. Adv. Neural. Inf.
Process. Syst. 37, 33376–33401 (2024).

	41.	 Yin, S. & Zhong, G. Lgi-gt: Graph transformers with local and global operators interleaving. In IJCAI, 4504–4512 (2023).
	42.	 Pengmei, Z. & Li, Z. Technical report: The graph spectral token–enhancing graph transformers with spectral information. arXiv

preprint arXiv:2404.05604 (2024).
	43.	 Airale, L., Longa, A., Rigon, M., Passerini, A. & Passerone, R. Simple path structural encoding for graph transformers. arXiv

preprint arXiv:2502.09365 (2025).
	44.	 Choi, Y. Y., Park, S. W., Lee, M. & Woo, Y. Topology-informed graph transformer. arXiv preprint arXiv:2402.02005 (2024).
	45.	 Li, G., Xiong, C., Thabet, A. & Ghanem, B. Deepergcn: All you need to train deeper gcns. arXiv preprint arXiv:2006.07739 (2020).
	46.	 Wu, Z. et al. Representing long-range context for graph neural networks with global attention. Adv. Neural. Inf. Process. Syst. 34,

13266–13279 (2021).
	47.	 Ma, L. et al. Graph inductive biases in transformers without message passing. In International Conference on Machine Learning,

23321–23337 (PMLR, 2023).
	48.	 Bose, K. & Das, S. Hype-gt: where graph transformers meet hyperbolic positional encodings. arXiv preprint arXiv:2312.06576

(2023).
	49.	 Bar-Shalom, G., Bevilacqua, B. & Maron, H. Subgraphormer: Unifying subgraph gnns and graph transformers via graph products.

arXiv preprint arXiv:2402.08450 (2024).

Funding
This paper is financially supported by Ningxia Key R&D Program (Key)Project (2023BDE02001) and Ningxia
Natural Science Foundation Project (2023AAC03818).

Additional information
Correspondence and requests for materials should be addressed to Q.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Scientific Reports | (2025) 15:28758 15| https://doi.org/10.1038/s41598-025-08688-7

www.nature.com/scientificreports/

http://arxiv.org/abs/1905.10947
http://arxiv.org/abs/2006.05205
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2202.08791
http://arxiv.org/abs/2202.08455
http://arxiv.org/abs/2206.04910
https://openreview.net/forum
https://openreview.net/forum
http://arxiv.org/abs/2201.12787
http://arxiv.org/abs/2106.05667
http://arxiv.org/abs/2110.07875
http://arxiv.org/abs/2009.14794
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1711.07553
http://arxiv.org/abs/2301.09505
http://arxiv.org/abs/2404.05604
http://arxiv.org/abs/2502.09365
http://arxiv.org/abs/2402.02005
http://arxiv.org/abs/2006.07739
http://arxiv.org/abs/2312.06576
http://arxiv.org/abs/2402.08450
http://www.nature.com/scientificreports

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025, corrected publication 2025

Scientific Reports | (2025) 15:28758 16| https://doi.org/10.1038/s41598-025-08688-7

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Graph representation learning via enhanced GNNs and transformers
	﻿Related work
	﻿Incorporating graph information into transformers
	﻿Combining GNNs with transformers

	﻿Background
	﻿Graph-structured data
	﻿Transformer architecture

	﻿Improved model
	﻿Random walk positional encoding
	﻿Subgraph-enhanced GNNs
	﻿Edge-enhanced Transformers
	﻿Reducing the complexity of Transformers

	﻿Experimental results and analysis
	﻿Experimental setup and evaluation metrics
	﻿Experimental datasets and baseline models
	﻿Comparison experiments
	﻿Ablation experiments

	﻿Application
	﻿Conclusions and prospect
	﻿References

