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Geological complexities along mountain highways frequently trigger landslides, posing significant 
threats to transportation safety and infrastructure. This study evaluates landslide susceptibility 
along the Lizha-Jiezi section of China’s G345 national highway using Random Forest (RF) and Support 
Vector Machine (SVM) models. Eleven conditioning factors including altitude, slope, aspect, plan 
curvature, profile curvature, lithology, distance to fault, rainfall, distance to river, normalized 
difference vegetation index (NDVI), and distance to road were analyzed using remote sensing and 
field surveys. A landslide inventory of 67 events was divided into training (70%) and validation 
(30%) datasets, with non-landslide samples selected at least 100 m away from landslide locations 
to minimize spatial overlap. Factor contribution analysis identified distance to road as the most 
significant predictor, highlighting anthropogenic impacts on slope destabilization. Model validation via 
receiver operating characteristic (ROC) curves demonstrated RF’s superior performance (AUC = 0.887) 
over SVM (AUC = 0.735). The RF-derived susceptibility map classified five risk levels, revealing high-
risk zones concentrated within 200 m of roads, consistent with field observations. Results emphasize 
the necessity of integrating anthropogenic factors into landslide risk management for mountainous 
infrastructure. This study provides actionable insights for mitigation strategies and land-use planning, 
offering a scalable framework adaptable to similar regions.
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Landslides, as prevalent natural geological processes in mountainous and hilly regions, pose significant threats 
to human safety, transportation infrastructure, economic development, and ecological environments. Currently, 
landslides are increasing globally, and all countries in the world are suffering from the threat of landslide 
disasters. The La Clapiere landslide is the largest landslide in France1, and its rate of decline peaked between 1987 
and 1988, raising fears of a catastrophic rupture. The Apennine region of Italy has many landslides formed due to 
tectonic activity and extreme weather, causing great economic losses2,3.Korea, where mountains and hills occupy 
most of its land area, has considerable landslide hazards4–7. China is also a typical disaster-stricken country, 
with mountains occupying two-thirds of its land area, especially in the Qinling region of China, with majestic 
mountains, gullies and ravines, and most of the roads built over the mountains and with large ups and downs, the 
geological environment conditions along the roads are complex and changeable, and the ecological environment 
is fragile, leading to frequent landslides. Landslides along the road can cause road burial, or even damage the 
road, blocking traffic and causing serious economic losses8. Therefore, landslide susceptibility evaluation9 along 
mountainous advanced highways plays a vital role in ensuring the reliability of road construction and carrying 
out landslide prevention and control work.

In general, the landslide susceptibility evaluation can provide some basic basis for the prevention and control 
of landslides, and achieve comprehensive management with emphasis. Since the 1960s, domestic and foreign 
experts and scholars have studied many methods for landslide susceptibility evaluation. The most commonly 
used landslide susceptibility analysis models include the following two types: (1) Knowledge-driven models, 
which include expert scoring method, analytic hierarchy process (AHP)10,11, fuzzy logic method12–14 and fuzzy 
comprehensive evaluation method et al.10,15; (2) Data-driven models, which include the traditional data-driven 
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model: information model16–18, frequency ratio model (FR)19–22, logistic regression model23–26, and machine 
learning models: artificial neural network model (ANN)22,27, support vector machine model (SVM)28–33, 
random forest model (RF)19,34–37, alternative decision tree model et al.38–47.

The modeling and quantification process of knowledge-driven model is simple, and its modeling principle 
is closely related to the characteristics of landslide conditioning factors, while it is subjective. Zhu et al.48 took 
Kaixian and the Three Gorges study area as the research object and proposed landslide susceptibility mapping 
based on expert knowledge. Moragues et al.49 used the AHP and weighted linear combination method to 
evaluate the susceptibility to slope instability process of the Argentine Hubei branch of the South Patagonia 
ice sheet. Pourghasemi et al.50 used fuzzy logic method and AHP model to make LSMs of the Kharaz basin in 
Iran. Zhao et al.10 used Shannon entropy theory, fuzzy comprehensive evaluation method and AHP to establish 
the landslide susceptibility model in the study area and evaluate the susceptibility. The above research shows 
that with the development of technology and the deepening of research, people’s understanding of landslide is 
further improved, and more and more knowledge fields are involved in landslide data. The knowledge-driven 
model based on the knowledge and experience in experts is greatly affected by the level of experts, subjective and 
unable to effectively deal with the huge landslide data and the respective characteristics of landslide conditioning 
factors.

The data-driven model excavates the internal relationship between conditioning factors and landslide through 
objective mathematical statistics analysis, so as to realize the prediction of landslide susceptibility. Akbar and 
Ha51 obtained the landslide data of Kahan Valley in Western Himalayas of Pakistan through 3 S technology, and 
evaluated the landslide susceptibility of the region based on the information content model; Berhane et al.52 
constructed landslide inventory maps through field investigation, stereo aerial photography analysis and image 
interpretation, and then used frequency ratio model to generate LSM to complete susceptibility evaluation; 
Schlogel et al.53 combined three different resolution DEMs with the selection of landslide or source area to 
obtain sample data sets, and then established a logistic regression model to evaluate the landslide susceptibility 
in the study area. The above research is based on the traditional data-driven model for landslide susceptibility 
evaluation. Those evaluation results show that the traditional data-driven model lacks the ability to excavate and 
analyze the interaction between landslide conditioning factors, and fails to consider the linear and uncertainty 
characteristics of landslide caused by conditioning factor. As a new type of data-driven model, machine learning 
model makes up for the shortcomings of strong subjectivity and low prediction accuracy of knowledge-driven 
model, as well as the deficiency of the traditional data-driven model in analyzing the interaction between 
conditioning factors. Machine learning model guarantees the accuracy and reliability of calculation and analysis 
results through objective mathematical statistics analysis. Park et al.54 compared the ability of FR, AHP, logistic 
regression and ANN models to generate LSM. The results showed that the accuracy of these four models was 
roughly similar, but the ANN was slightly higher than the other three models. Pourghasemi and Kerle55 used 
GIS-based RF for LSM in the western part of Mazandalan province, northern Iran; Chen et al.56 used three data 
mining techniques, namely, adaptive neuro-fuzzy inference system combined with frequency ratio (ANFIS-FR), 
generalized additive model (GAM) and SVM, to evaluate the landslide susceptibility of Hanyuan, and the SVM 
model had the highest prediction accuracy57; Zhao et al.19 examine the effectiveness of various machine learning 
models for landslide susceptibility prediction at different spatial resolutions, finding that higher resolutions and 
integrated models significantly improve accuracy, with the RS-ADT model at 12.5 m resolution performing best; 
Pandey et al.58 used boosted regression tree (BRT), generalized linear model (GLM), RF and SVM models to 
analyze the susceptibility of landslides along the highway corridor from Nahan to Rajgarh. The results showed 
that RF model had the highest prediction accuracy, followed by SVM model. Many scholars have shown that RF 
and SVM models have good applicability and high prediction accuracy59.

Highway plays an important role in the economic development of a region60. However, the frequent 
occurrence of landslides along the highway61 has brought certain difficulties to the construction, operation and 
maintenance of highway projects62. Therefore, landslide susceptibility assessment along mountain highways 
plays a vital role in reducing landslide disasters along mountain highways. The G345 highway Zhen’an section is 
one of the key highway construction projects in Shaanxi Province, located in Zhen’an County, Shaanxi Province. 
Zhen’an County is located in the middle of the southern of Qinling Mountains. The geological structure is 
complex, the geological environment is poor and the mountains are crisscrossed in Zhen’an. At the same time, 
the precipitation is abundant, and there are many types of landslides. It is one of the high-prone areas of landslides 
in Shaanxi Province. In this paper, the Lizha-Jiezi section of G345 national highway and its surrounding area 
within a 2 km range is taken as the study area. Comprehensively considered the topography, geological structure, 
meteorological hydrology, vegetation cover and human activities, 11 conditioning factors were selected: altitude, 
slope, aspect, plan curvature, profile curvature, lithology, distance to fault, rainfall, distance to river, normalized 
difference vegetation index (NDVI), and distance to road. The RF and SVM models are applied to obtain the 
LSM of the study area, which can provide important reference for landslides prevention and mitigation, risk 
assessment, engineering construction, land use planning and economic development along highways in the 
study area.

Study area
The total length of the national highway in the study area is 85.771 km, which is located in Zhen’an County, 
Shangluo City, Shaanxi Province, China (Fig.  1). The geographical coordinates are 108°33′58″–109°06′32″E, 
33°17′04″–33°30′45″ N, east from Jiezi, west to Lizha, which is an important part of G345 national highway.

The study area belongs to the subtropical climate zone and is warm and humid with abundant rainfall. 
However, the mountainous terrain is complex, and the higher the altitude is, the lower the temperature is, 
showing great changes in the vertical direction. The inter-annual precipitation changes greatly, and the annual 
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precipitation distribution is also very uneven. The seasonality is obvious, showing a single peak. The precipitation 
is large from June to October, and the highest is in July.

The terrain of the study area is generally high in the northwest and low in the southeast, and the terrain of 
the approach area is undulating. The highest altitude is 2585 m, the lowest is 474 m, and the height difference is 
2111 m. Zhen’an-Banyan inverse fault is developed in the study area, Its occurrence is about 5°~25°∠50°~85°, 
and it basically runs through the longitudinal highway. Moreover, the fault zone is generally northward.

Data preparation
This section may be divided by subheadings. It should provide a concise and precise description of the 
experimental results, their interpretation, as well as the experimental conclusions that can be drawn.

Landslide inventory mapping
There are many methods to construct the landslide inventory map. This study obtained the data of the study 
area and constructed the landslide inventory map by consulting historical data, remote sensing image map, 
geological map and detailed field investigation. A total of 67 landslides were found during the field investigation 
in the study area, including 42 slides and 25 falls. Among them, 58 small landslides accounted for 86.57% of 
the total number of landslides, and 9 medium-sized landslides accounted for 13.43% of the total number of 
landslides. Typical slides are slide3 (Fig. 2a), with a volume of 1.2 × 104m3, typical falls as fall7 (Fig. 2b), volume 
of 1.62 × 104m3. Through the analysis and comparison of landslide data, 67 landslides in the study area were 
randomly divided into 70% of the training set samples (47)63–66 and 30% of the validation set samples (20)67–69. 
In order to construct the landslide susceptibility evaluation model, an equal number of non-landslide samples 
(67) were randomly selected from the study area 100 m away from the landslides, and randomly divided into 
70% of the training set samples (47) and 30% of the validation set samples (20). The training set samples were 
used to construct the RF and SVM models, the validation set samples were used to verify the generalization 
ability of the model70, and the reliability of the model was investigated.

Fig. 1.  Study area. (Note: this figure is made using ArcGIS desktop 10.8 (ArcMap component) ​h​t​t​p​s​:​​/​/​w​w​w​.​​e​s​r​
i​.​c​​o​m​/​z​h​-​​c​n​/​a​r​​c​g​i​s​/​p​​r​o​d​u​c​t​​s​/​a​r​c​g​​i​s​-​d​e​s​k​t​o​p​/​o​v​e​r​v​i​e​w).
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Landslide conditioning factors
Considering the topography, geological structure, meteorological hydrology, vegetation cover and human 
activities in the study area, a total of 11 conditioning factors were selected71–74: altitude, slope, aspect, plan 
curvature, profile curvature, lithology, distance to fault, rainfall, distance to river, NDVI and distance to road.

The altitude reflects the potential energy of the slope and largely controls the stability of the slope. Altitude 
affects the water content and stress in the slope, as well as the intensity of human engineering activities and the 
vegetation distribution on the slope surface. The altitude map (Fig. 3a) is realized by ASTER GDEM data with a 
resolution of 30 m collected by Geospatial Data Cloud (http://www.gscloud.cn/search). In addition, DEM data 
are used to generate slope (Fig. 3b), aspect (Fig. 3c), plan curvature (Fig. 3d) and profile curvature (Fig. 3e) by 
GIS.

As the material basis of landslide, lithology largely affects the composition of rock and soil, particle size, 
uniformity, loose degree, weathering degree and other aspects. The strength of different lithology is very different, 
and the impact on landslide is also different. Therefore, the lithology affects the stability of the slope, which is one 
of the important factors in the formation of landslide. Lithology obtained from field surveys and detailed survey 
data is divided into four categories (Fig. 3f). Under the combined influence of internal and external dynamic 
geological effects, the rock strata will deform. Once the stress exceeds its own strength limit, the rock cannot 
maintain the original complete shape and ruptures. When the dislocation of rock position reaches a critical 
value, a fault will be formed. Faults affect the development of landslides, and the closer to the fault, the greater 
the possibility of landslides, showing strong control. According to the topographic map, the fault distribution is 
obtained, and the distance to the fault is obtained by the buffer analysis function of GIS (Fig. 3g).

Rainfall is the main trigger factor of landslides75, which is manifested in the infiltration of rainwater into 
rock and soil, resulting in rock softening. With the addition of a large amount of rainwater, the pore pressure 
will increase while the moisture content of rock and soil increases, which will reduce the effective stress of rock 
and soil and provide conditions for the development of landslides. Rainfall data come from Shaanxi Hydrology 
and Water Resources Information Network (http://www.shxsw.com.cn/) (Fig. 3h). Long-term river cutting and 
side erosion of bank slope, especially in flood season, increased the slope front surface to a large extent, created 
natural conditions for the occurrence of landslides, mainly in the spatial distribution of landslides. According to 
the previous research experience and field investigation in this study area, the distance to the river is obtained by 
using GIS buffer analysis function (Fig. 3i).

The main role of vegetation is to protect the stability of slope and reduce soil erosion. In general, the lusher 
the vegetation is, the lower the development degree of landslides will be, but it does not play a decisive role in the 
development of landslides. NDVI (Fig. 3j) extracted from Landsat 8 OLI_TIRS (http://www.gscloud.cn/search) 
remote sensing image can accurately reflect the coverage of surface vegetation.

The reconstruction and expansion project of mountainous highways inevitably excavates the slope, thus 
forming artificial high and steep slope. Under the influence of external factors, especially rainfall, the loose rock 
and soil on the slope collapses, forming landslides such as slides and falls, which may cause traffic congestion and 
hurt pedestrians. According to the topographic map combined with the field investigation in this study area, the 
distance between the study area and the road is obtained by using GIS buffer analysis function (Fig. 3k).

Methods
This study is divided into five steps: (1) Using GIS for data preparation, get grid point attribute data. (2) 
Correlation analysis of indicators. (3) Establishing RF and SVM respectively to get landslide susceptibility index. 
(4) Validation of the models by ROC. (5) The landslide susceptibility data is imported into GIS for generating 
the LSM.

Correlation analysis of conditioning factor
Landslide is affected by a variety of factors, and the 11 conditioning factors may have a certain correlation. In 
the later construction of the models, multiple collinearity problems may occur, which affect the accuracy of the 
models. Therefore, it is very important to analyze the correlation between indicators and eliminate redundant 
conditioning factors. Therefore, this paper uses Pearson correlation coefficient76–78 to analyze the correlation of 
each factor in the study area. In GIS, the attribute data of each factor layer in the study area are extracted and 

Fig. 2.  Example of landslides photos in the study area.
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Fig. 3.  Spatial distribution of landslides conditioning factors (Note: this figure is made using ArcGIS desktop 
10.8 (ArcMap component) ​h​t​t​p​s​:​​/​/​w​w​w​.​​e​s​r​i​.​c​​o​m​/​z​h​-​​c​n​/​a​r​​c​g​i​s​/​p​​r​o​d​u​c​t​​s​/​a​r​c​g​​i​s​-​d​e​s​k​t​o​p​/​o​v​e​r​v​i​e​w). (a) Altitude, 
(b) slope, (c) aspect, (d) plan curvature, (e) profile curvature, (f) lithology, (g) distance to fault, (h) rainfall, (i) 
distance to river, (j) NDVI, (k) distance to road.
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imported into Matlab. The corr function is used to analyze the correlation between each factor. The correlation 
coefficient R is used to measure the correlation between each factor, and the value range of R is [-1,1]79. Here 
|R| is used to measure the correlation between factors. As shown in Table 1, the greater the |R| is, the closer it is 
to 1, which indicates that the correlation between the two factors is higher. A set of conditioning factor system 
suitable for this study area is established by excluding highly relevant indicators.

Random forest
RF was first proposed by Breiman80 as an ensemble algorithm. RF is a set of decision trees constructed by 
random way to form a forest. The number of decision trees in the forest can be customized, and there is no direct 
relationship between the constructed decision trees. The RF uses the bootstrap method to model the decision 
tree for each bootstrap81 sample from the original sample, and then combines the decision trees82 together to 
obtain the final classification or prediction results by voting. RF model reduces the correlation between any two 
decision trees and avoids model overfitting by randomizing sample data and feature selection. Figure 4 illustrates 
the process of building a RF model. A large number of theoretical and empirical studies have proved that RF 
algorithm has high prediction accuracy, strong generalization ability and fast training speed.

Support vector machine
SVM is a new learning machine based on statistical learning theory83,84. In general, the traditional statistical 
analysis method uses the principle of minimum empirical risk to construct a mathematical model. This method 
is applicable under the condition of large enough samples. However, when the sample size is small, both the size 

Fig. 3.  (continued)

Value ranges Degree of relatedness

|R|

<0.4 Low correlation

0.4 ~ 0.7 Explicit relevance

0.7 ~ 1 High correlation

Table 1.  Conditioning factor correlation table.
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of empirical risk and the complexity of the model should be considered, and efforts should be made to minimize 
the complexity of the model. Based on the above situation, the Vapnik comprehensively considered the empirical 
risk and the VC dimension of the model (representing the complexity of the model), and compromised the 
size of the two to minimize the approximate actual risk. In practical application, the main goal of this method 
is to minimize the sum of generalization error rate of the model and the amount of VC dimension. In general, 
compared with the traditional statistical methods, SVM has higher prediction accuracy and good generalization 
ability.

The main idea of SVM is to find an optimal surface so that the interval between all samples and the surface is 
maximized and the hyperplane is expressed as follow: 

	 f (x) = [ω × ϕ (x)] + b� (1)

In the formula: ω  is feature vector of hyperplane in high dimensional space, ϕ  is mapping function from low 
dimensional space to high dimensional space, b is threshold.

Landslide susceptibility evaluation is a typical nonlinear problem, which is affected by many factors. Therefore, 
this paper uses nonlinear mapping function to transform low-dimensional space to high-level space. After the 
original dimension data are converted into high-dimensional spatial data, the hyperplane is searched by using 
the kernel function to maximize the hyperplane interval of the sample. Radial basis function (RBF) kernel can 
provide more accurate prediction results in most classification models, especially in nonlinear environments85–88. 
Therefore, RBF kernel is selected for SVM modeling in this landslide susceptibility evaluation. 

	 K (xi, x) = exp
(
−γ ∥xi − x∥2)

� (2)

In the formula: K (xi, x) is kernel function, γ  is parameter of a kernel function.

Results
Conditioning factor analysis
With the increase of altitude, the density of landslides decreased significantly (Fig.  5a). In the range of 
altitude < 800 m, the density of landslides is the largest, which is 0.4998/km2. Landslides are mainly distributed 
in the range of altitude < 1400 m, a total of 60, accounting for 89.55% of the total. In this range, there are many 
rivers, and human engineering activities are frequent. It is easy to form steep slopes, if induced by rainfall and 
river scour, it is easy to cause landslides. Within the slope range of < 33.48° (Fig. 5b), 53 landslides were developed 

Fig. 4.  Flowchart of the random forest method.
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Fig. 5.  Relationship between conditioning factors and landslide (a) altitude, (b) slope, (c) aspect, (d) plan 
curvature, (e) profile curvature, (f) lithology, (g) distance to fault, (h) rainfall, (i) distance to river, (j) NDVI, 
(k) distance to road.
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in the study area, accounting for 79.1% of the total. When the slope is within the range of < 15.14°, the density of 
landslide is the largest, which is 0.4757/km2. In this range, frequent human engineering activities combined with 
the slope affect the effective surface of the slope. If induced by rainfall, it is easy to cause landslides. The change of 
landslide density in slope direction shows obvious single peak, and the maximum landslide density is 0.3894/km2 
in S (157.5°~202.5°) (Fig. 5c). The landslide is mainly distributed in SE (112.5°~157.5°), S (157.5°~202.5°), SW 
(202.5°~247.5°), a total of 39, accounting for 58.21% of the total. In the case of similar geological environment 
conditions and human engineering activities, the hydrothermal condition of sunny slope is better, the internal 
water of rock and soil is more likely to reach saturation, and it is easier to form landslides. In the range of plane 
curvature − 1.378 ~ 1.301, landslide distribution is more (Fig. 5d), a total of 56, accounting for 83.58% of the 
total. In the range of plan curvature − 1.378~ -0.039, the density of landslide is the largest, which is 0.2951/km2. 
In the range of section curvature − 2.287 ~ 2.250, landslide distribution is more (Fig. 5e), a total of 59, accounting 
for 88.06% of the total. In the range of section curvature 0.640 ~ 2.250, the density of landslide is the largest, 
which is 0.2749/km2.

The lithology in the study area is mainly hard rock group, and 13 landslides are developed (Fig.  5f), 
accounting for 19.4% of the total. However, the density of the landslide is only 0.1107/km2. The lithology of 
the stratum is mainly limestone, slate and dolomite. The local weathering is strong, the joints and fissures are 
developed, and the rock mass is relatively broken. If the induced factors such as rainfall are encountered, it is easy 
to form landslides. From the perspective of landslide density, the landslide density of Quaternary loose deposits 
is 1.5625/km2, and the density is the largest. It is mainly Quaternary alluvial-flood deposits and residual slope 
deposits, which are distributed in floodplains, valleys, foothill slopes and other parts. Here, human engineering 
activities are frequent. Building houses, road construction and excavation of slope toe have a great impact on 
the geological environment, and are easy to form landslides. Overall, with the weakening of rock hardness, the 
overall trend of disaster density is increasing. The distance to the fault in the study area is mainly within the range 
of < 1500 m, and 45 landslides (Fig. 5g) are developed, accounting for 67.16% of the total. Overall, the closer to 
the fault, the greater the landslide density is. Especially, it is controlled by several major faults such as Zhen’an-
Banyan fault, and it is easier to form landslides due to the joint action of several faults.

The landslides in the study area are distributed in 25 places (Fig. 5h) where the annual precipitation is less 
than 900 mm/a, accounting for 37.31% of the total. Because the lithology is soft rock and the faults are densely 
distributed there, the landslides are most distributed. In the range of 950 ~ 1000 mm/a, the distribution area is 
small and affected by two faults, so the density of landslide is the largest. Rainfall, as the main external inducing 

Fig. 5.  (continued)
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condition, is easy to form landslides. However, because the lithology of the western mountainous area is intrusive 
rock group, metamorphic rock group and a small amount of Quaternary loose strata, the density of landslides 
decreases. The main distribution distance of landslide in the study area is less than 200 m from the river, a total 
of 50 (Fig. 5i), accounting for 74.63% of the total, and the density of landslide is the largest. With the increase 
of distance to the river, the number of landslides and the density of landslides decreased significantly. Overall, 
affected by river erosion, it is easy to form landslides.

Landslides in the study area are mainly distributed in NDVI of 0.085 ~ 0.249 (Fig. 5j), a total of 57, accounting 
for 85.07% of the total. In the range of 0.191 ~ 0.249, the density of landslide is the largest, and the degree of 
vegetation development can protect slope stability and reduce soil erosion to a certain extent, but it does not 
play a decisive role.

The landslides in the study area are mainly distributed within the distance of < 200 m to the road (Fig. 5k), 
There are a total of 41, accounting for 61.19% of the total. And the density of landslides is the largest, which is 
0.8806/km2. With the increase of distance to the road, the number of landslides and the density of landslide 
decreased significantly. Overall, human engineering activities on slope foot damage, more likely to form 
landslides.

The attribute data of each factor in the study area were extracted by GIS, and the data were imported into 
Matlab. The correlation analysis of each index was carried out by corr function, and the Pearson correlation 
coefficient matrix Table 2 between the two indexes was obtained.

It can be concluded from the Table 2 that the correlation coefficient between most indicators is |R| < 0.4, 
indicating that most indicators are lowly correlated, only the correlation coefficient between individual 
indicators is 0.4≤|R|<0.7, which indicates that individual indicators are significantly correlated. And there is no 
high correlation between indicators. In summary, the 11 conditioning factors selected in this paper can form an 
evaluation system.

Random forest
In the validation set of 40 samples, the prediction results of 9 samples are inconsistent with the actual situation 
(Fig. 6a), Moreover, the prediction accuracy is 77.5% (Fig. 6b), indicating the prediction results are relatively 
good in landslide susceptibility evaluation. The grid attribute data of landslide conditioning factors in the study 
area extracted from GIS were imported into the RF classifier after training based on Matlab, and the landslide 
susceptibility index of each grid point data in the whole study area was obtained by prediction and calculation. 
The landslide susceptibility index was imported into GIS to generate the LSM of the study area. Then the natural 
discontinuity point method is used to classify the LSM into five grades89,90, including: very low, low, moderate, 
high, very high. Finally, the LSM based on RF model is completed (Fig. 6c).

Support vector machine
In the SVM model, the selection of the kernel function and the corresponding parameters of the kernel function 
have a decisive influence on the later construction of the model91. In this study, the RBF is used as the kernel 
function. Parameters c and g can be selected by using the cross-validation method in the model construction 
stage. The range of parameters c and g92 in this study is [-3.5, 3]. After inputting all kinds of boundary range 
parameters into the Matlab cross-validation model, when the parameters c and g are 0.93303 and 1, respectively, 
the cross-validation accuracy reaches the maximum, and the optimal accuracy is 76.5957%. Therefore, best 
c = 0.93303, best g = 1 (Fig. 7a).

The fitting degree of the classifier model based on SVM to the validation set samples is 72.5% (Fig. 7b), 
indicating that the model has high fitting degree and high prediction accuracy.

The grid attribute data of landslide influence factors in the study area extracted from GIS are imported into 
the SVM classifier based on Matlab93–99. The landslide susceptibility index of each grid point data in the whole 
study area is predicted and calculated. The LSM is obtained by GIS, and the natural discontinuity method is used 
to classify the LSM into five grades, including: very low, low, moderate, high, very high. Finally, the LSM based 
on SVM (Fig. 7c) is completed.

a b c d e f g h i j k

a 1

b 0.029 1

c 0.019 0.049 1

d 0.028 0.000 0.016 1

e − 0.062 0.001 − 0.010 − 0.615 1

f 0.664 0.027 − 0.044 − 0.001 − 0.001 1

g − 0.626 − 0.018 − 0.076 − 0.004 0.021 − 0.619 1

h 0.087 − 0.288 − 0.052 − 0.021 0.016 0.187 − 0.166 1

i 0.388 − 0.009 0.078 − 0.006 − 0.047 0.090 − 0.167 − 0.080 1

j 0.302 0.022 − 0.003 − 0.001 − 0.001 0.402 − 0.483 0.210 0.030 1

k 0.350 0.004 0.051 − 0.011 − 0.034 0.075 − 0.189 − 0.064 0.696 0.089 1

Table 2.  Correlation coefficient matrix of evaluation indexes.
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Model validation
When evaluating the performance of predictive models, the confusion matrix serves as an effective analytical 
tool. This matrix is presented as a two-dimensional square array, with its core structure comprising four key 
elements: TN (True Negative, indicating correct identification of negative samples), FN (False Negative, denoting 
erroneous classification of positive samples as negative), TP (True Positive, representing accurate identification 
of positive samples), and FP (False Positive, referring to incorrect classification of negative samples as positive).

Based on these four fundamental parameters, this study calculates the Positive Predictive Value (PPV), Negative 
Predictive Value (NPV), and Accuracy (ACC) as shown in Table 3, which serve as statistical error evaluation 
criteria to enable objective assessment and comparison of different model performances. Consequently, in the 
study area, the RF model demonstrates higher ACC values than the SVM model. Specifically, the RF model 
correctly classified 78.1% (PPV) of the dataset as landslide points and 82.8% (NPV) as non-landslide points.

	
P P V = T P

F P + T P
� (3)

	
NP V = T N

F N + T N
� (4)

	
ACC = T P + T N

P + N
� (5)

Fig. 6.  (a) Performance analysis of RF classifier; (b) validation set prediction results of RF model; (c) landslides 
susceptibility map of RF model. (Note: this figure is made using ArcGIS desktop 10.8 (ArcMap component) ​h​t​t​
p​s​:​​/​/​w​w​w​.​​e​s​r​i​.​c​​o​m​/​z​h​-​​c​n​/​a​r​​c​g​i​s​/​p​​r​o​d​u​c​t​​s​/​a​r​c​g​​i​s​-​d​e​s​k​t​o​p​/​o​v​e​r​v​i​e​w).
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This study used ROC analysis models to predict performance100–104. The X-axis specificity represents the 
probability value of the prediction error for the non-landslide data. The Y-axis susceptibility represents the 
probability of predicting landslide results. The larger the area on the lower right side of the curve is, the higher 
the prediction accuracy of the model is. Therefore, the area between the prediction accuracy curve of the model 
and the abscissa is called the AUC value and the value range is 0–1105,106. The closer the AUC value is to 1, the 
higher the prediction accuracy of the representative model107,108. The AUC of the RF was 0.887, and that of the 
SVM model was 0.735 (Fig. 8). Therefore, both RF and SVM were suitable for landslide susceptibility evaluation 
in this study area, but RF had better prediction ability.

Statistical indicators RF SVM

PPV 0.781 0.699

NPV 0.828 0.738

ACC 0.803 0.716

Table 3.  Statistical indicators of each model.

 

Fig. 7.  (a) Result of SVM parameter selection; (b) validation set prediction results of SVM model; (c) 
landslides susceptibility map of SVM model. (Note: this figure is made using ArcGIS desktop 10.8 (ArcMap 
component) ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​e​s​r​​i​.​c​​o​m​/​​z​​h​​-​c​n​/​​a​r​c​​g​i​​s​/​p​r​o​d​​​u​c​t​s​/​​a​r​​c​g​i​s​-​d​e​​s​k​t​o​p​/​o​v​e​r​v​i​e​w).
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Discussion
In this paper, RF and SVM models are established, and 11 conditioning factors are selected. The main purpose 
is to establish the landslide susceptibility model of Lizha-Jiezi section of G345 national highway and evaluate the 
landslide susceptibility of the study area.

The evaluation unit contains the landslides data of each conditioning factor. The division of the evaluation 
unit is the premise of using GIS to evaluate the susceptibility of the study area, including the determination of 
the type, size and number of the evaluation unit. At present, the methods of evaluation unit division include 
grid unit and slope unit. Grid unit is the most commonly used evaluation unit division method at present. This 
method can quickly and effectively carry out the later data extraction and overlay analysis, but the shape of grid 
unit cells is regular, which cannot well reflect the characteristics of terrain change. Due to the discontinuity 
of slope unit, the evaluation results of landslide susceptibility evaluation are often poor in accuracy and thus 
difficult to meet the actual requirements. In this study, the grid unit is used to evaluate the susceptibility of 
landslide. Although it cannot respond well to the surface fluctuation, the evaluation results transit smoothly and 
have higher prediction accuracy than the slope unit.

The prediction ability of landslide conditioning factors (Fig.  9) shows that each conditioning factor 
contributes to landslide susceptibility modeling, but the contribution is different. The dominance of distance 
to road as the most influential factor in both models underscores the significant role of human engineering 
activities in slope destabilization. Road construction often involves slope cutting and vegetation removal, 
exacerbating geological vulnerability, a phenomenon widely observed in mountainous highways58,61. Notably, 
this finding contrasts with studies emphasizing rainfall or lithology as primary drivers24, suggesting that region-
specific human interventions may override natural triggers in certain contexts. In the SVM model, altitude, 
slope, and lithology also show high contribution. Altitude reflects the potential energy of the slope, slope reflects 
the steepness of terrain, and lithology is the material basis of landslide, which controls the stability of the slope 
to a certain extent. However, the high contribution of distance to river and rainfall in the RF model aligns with 
global patterns where hydrological factors critically influence slope stability52,53. Rainfall increases the moisture 
content of rock and soil, thereby elevating pore water pressure and decreasing their effective stress. This process 
increases the sliding force on unstable slopes and provides conditions for landslide initiation. Long-term river 
cutting and lateral erosion directly damage riverbank slopes, weakening their stability and thereby promoting 
landslide occurrence. Although the contribution of aspect, plan curvature, profile curvature, distance to fault 
and NDVI to the model is relatively small, the role of these factors cannot be ignored.

Compared with knowledge-driven model and traditional data-driven model, machine learning model 
can obtain higher prediction accuracy more quickly and effectively. In this study, RF and SVM models in 
machine learning model are used to generate LSM in the study area. These two methods have been widely 
used in landslide susceptibility assessment109. In this study, the susceptibility levels of each model are divided 

Fig. 8.  ROC curves for the model validation set.
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into five categories: very low, low, moderate, high and very high. The area occupied by different categories, the 
number of landslides and the density of landslides of each model are counted and calculated (Fig. 10). Combined 
with the model accuracy verification (Fig. 8), it is found that the RF model has higher prediction accuracy of 
landslide susceptibility in the study area. RF model is not very susceptible to parameters. It is easy to determine 
which parameters to use110. It has strong generalization ability and is not easy to produce overfitting. It has 
high prediction accuracy in landslide susceptibility evaluation in other areas111–114. Although RF and SVM have 
achieved good prediction accuracy, it is very important to select a more suitable prediction model for the study 
area according to the unique geological environmental conditioning factors and landslide inducing factors in the 
landslide susceptibility assessment.

Due to the limited information available, this study only considers the distance analysis when analyzing 
the conditioning factors of faults, rivers and roads, and ignores the influence of scale and influence range on 
landslide susceptibility. Furthermore, while this study employed randomized data splitting (70% training, 30% 
validation) and ensured non-landslide samples were selected from areas > 100 m away from landslide locations 
to minimize spatial overlap, potential spatial autocorrelation within the inventory dataset was not explicitly 
quantified. Spatial autocorrelation could lead to inflated model performance metrics if spatially clustered 
landslides share similar environmental characteristics, thereby reducing the model’s generalizability to regions 
with distinct spatial dependencies. More data can be collected in future studies to study the relationship between 
the scale, influence range and landslide susceptibility of faults, rivers and roads. Additionally, future studies 

Fig. 10.  (a) Description of what is contained in the first panel; (b) histograms of evaluation results of SVM 
model.

 

Fig. 9.  The prediction ability of the landslide conditioning factors.

 

Scientific Reports |        (2025) 15:24991 14| https://doi.org/10.1038/s41598-025-08774-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


could also enhance robustness by incorporating spatial cross-validation or integrating spatial covariates to 
explicitly address autocorrelation, particularly when extrapolating predictions to broader geographic contexts.

Conclusion
This study advances landslide susceptibility assessment in mountainous highway environments by integrating 
multi-source geospatial data with robust machine learning models, providing novel insights and methodological 
contributions to the field. The application of Random Forest (RF) and Support Vector Machine (SVM) models 
to the Lizha-Jiezi section of the G345 national highway revealed that RF (AUC = 0.887) outperformed SVM 
(AUC = 0.735), demonstrating its superior adaptability in capturing complex interactions among conditioning 
factors. Notably, the dominance of distance to road as the most influential factor underscores the critical role 
of human engineering activities in destabilizing slopes, which challenges the conventional emphasis on natural 
triggers like rainfall or lithology in similar terrains. This highlights the necessity of prioritizing anthropogenic 
impacts in landslide risk management for mountainous infrastructure projects, a perspective less explored in 
prior studies.

Furthermore, our systematic evaluation of 11 conditioning factors, including topography, hydrology, 
and human activity variables, establishes a scalable framework for integrating multi-dimensional data into 
susceptibility mapping. The methodology’s success in identifying high-risk zones within 2 km of the highway 
offers actionable insights for targeted landslide mitigation, enabling authorities to optimize resource allocation 
and engineering interventions.

Future research could improve spatial resolution and integrate dynamic variables (e.g., real-time rainfall, 
seismic activity, vegetation changes) to enhance prediction accuracy. Additionally, future studies should employ 
spatial cross-validation, spatial econometric models, or advanced sampling strategies to reduce biases from 
clustered landslide occurrences and improve the models’ extrapolation capability to broader regions. Subsequent 
work must also validate the framework’s adaptability across diverse geological and climatic environments, 
particularly in areas experiencing rapid urbanization or frequent extreme weather events. By integrating 
advanced machine learning techniques with actionable risk management, this approach not only advances 
academic discourse but also provides policymakers and engineers with tools to proactively protect critical 
infrastructure and address geological threats exacerbated by human activities.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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