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The widespread adoption of Electric Vehicles (EVs) presents new challenges for efficient and timely 
access to Charging Stations (CSs), particularly under constraints of limited availability and variable 
demand. The current investigation addresses the EV charging station allocation problem, aiming 
to guide EVs to optimal CSs based on real-time and forecasted system dynamics. An integrated 
framework that combines load profile forecasting, optimal path planning, and drone-assisted edge 
computing is proposed to support decision-making. Specifically, a Nonlinear Auto-Regressive with 
Exogenous inputs (NARX) model is used to predict future load profiles at CSs, enabling proactive 
management of charging demand. To determine the most accessible stations, Dijkstra’s algorithm 
for shortest-path computation based on the EV’s current location and the locations of the CSs around 
is applied. Furthermore, drones with lightweight edge computing algorithms enabled real-time data 
exchange between CSs and EVs, providing up-to-date information on slot availability and local crowd 
conditions. For the forecasting component, the NARX model has provided a correlation coefficient 
of 90% for the CS real data collection. Dijkstra’s algorithm was employed to effectively optimize the 
routing of EVs to their nearest charging stations by determining optimal shortest paths. The simulation 
results demonstrate that the proposed approach significantly enhances EV allocation efficiency while 
reducing both waiting times and travel distances. Further research is needed to address regulatory and 
logistical challenges associated with drone deployment in real-time applications.
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BPNN	� Backpropagation neural network
CSs	� Charging stations
CNN	� Convolutional neural network
R2	� Coefficient of determination
R	� Correlation coefficient
DT	� Decision tree
ESSs	� Energy storage systems
EVs	� Electric vehicles
GRU	� Gated recurrent unit
GA	� Genetic algorithm
IoT	� Internet of things
KNN	� K-nearest neighbor
LSTM	� Long short-term memory
Light-GBM	� Light gradient boosting machine
MINLP	� Mixed-integer non-linear programming
MEC	� Mobile edge computing
MSE	� Mean square error
MAE	� Mean absolute error
MAPE	� Mean absolute percentage error
MPC	� Model predictive control
nRMSE	� Normalized RMSE
NAR	� Nonlinear autoregressive
NARX	� Nonlinear Autoregressive with eXogenous inputs
PLSR	� Partial least squares regression
RNN	� Recurrent neural network
RMSE	� Root MSE
RL	� Reinforcement learning
RF	� Random forest
RA-RRT*	� Route-assisted rapid random tree
SoC	� State of charge
SARIMA	� Seasonal auto regressive integrated moving average
SVMs	� Support vector machines
X	� Overall collected dataset for regression
N	� Number of days in X
NV alid	� Number of validation charging days
Nh	� Number of hidden neurons
f 	� NAR and NARX function
x	� Input variables
y	� Response variable
d	� Feedback delay
e	� Error/noise term
yj , 	� yj : j-Th actual and forecasted responses
y,ŷ	� Average actual and forecasted responses−→
D 	� Day of the year−→
M 	� Month of the year−→
Y 	� Year identifier−→
W D 	� Weekday index/label
T 	� Total daily charging time
E	� Total daily charging energy
σRMSE 	� RMSE standard deviation
σR	� R standard deviation
Nopt	� Optimal number of hidden neurons
dopt	� Optimal feedback delay

Study background
Electric vehicles (EVs) have emerged as a transformative solution in the global shift toward sustainable and 
environmentally friendly transportation. Unlike conventional internal combustion engine vehicles, EVs rely on 
electric power stored in batteries, resulting in significantly lower greenhouse gas emissions, reduced dependence 
on fossil fuels, and quieter operation1. In addition, EVs are known for their reduced maintenance requirements. 
In this perspective, EVs can significantly mitigate climate change impacts, especially if powered by renewable 
energy sources such as solar panels. This advantage, combined with technological advancements, supportive 
government policies, and increased environmental awareness, has driven widespread EV adoption. However, 
the global transition to EVs faces challenges, particularly in developing charging infrastructure and managing 
charging operations.

Charging infrastructure challenges
The rapid development and the growing adoption of EVs have posed new concerns for the almost stakeholders 
including the EVs’ owners, the charging infrastructure managers, the aggregators, the electric grid operators, and 
the relevant decision-makers2. As EVs become increasingly favorite car user option, their success depends not 
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only on manufacturing technology but also on the effectiveness and accessibility to their supporting logistical 
infrastructure, including charging stations (CSs). EVs charging infrastructure plays a critical role in enabling 
widespread use, yet it faces several pressing challenges. Firstly, the spatial distribution of CSs is often uneven, 
with urban areas better served than rural or suburban regions. Secondly, the current infrastructure struggles to 
keep pace with the rapidly growing EV fleet, leading to congestion and long waiting times at CSs. Additionally, 
many CSs lack efficient energy management systems, resulting in inefficient utilization and potential overloading 
of local power grids. Technical issues such as varying charging standards, insufficient real-time information 
on CSs availability, and the absence of predictive analytics for demand forecasting further complicate the user 
experience. These limitations underscore the need for intelligent, scalable, and future-proof solutions to ensure 
that EV charging infrastructure can support the next phase of sustainable mobility.

The problem of EVs allocation to charging stations (CSs) is inherently multi-dimensional, involving temporal, 
spatial, and computational complexities. Indeed, EVs must be routed to suitable CSs based on geographical 
proximity, the dynamic availability of charging slots and the forecasting of energy demand at each station. A 
simplistic shortest-path strategy may lead to congestion or excessive wait times if the nearest station is already 
overloaded. Key challenges include: (1) Real-time availability uncertainty since charging station occupancy 
can change rapidly, requiring real-time information sharing; (2) Forecasting energy load. Indeed, accurate load 
forecasting is crucial, as unplanned EV arrivals during peak demand periods can result in significant charging 
delays; (3) Path optimization under uncertainty for which deciding on a charging station based purely on 
distance ignores critical factors like expected waiting time or crowd density; and (4) Scalability of data processing: 
centralized systems face significant performance limitations when processing large-scale data in real time. To 
address these challenges, the present framework integrates load profile forecasting using NARX models, optimal 
path planning with Dijkstra’s algorithm, and drone-based edge computing for real-time, decentralized decision 
support. This holistic approach aims to provide EVs with actionable information to make informed charging 
decisions in dynamic environments with space–time dependencies.

While the proposed framework incorporates drone-based edge computing for real-time EV-CS 
communication, this component remains theoretical and was not fully implemented in the current evaluation. 
Key barriers to full implementation include regulatory and logistical challenges, specifically airspace authorization 
requirements, public safety policies, and operational constraints associated with UAV deployment in urban 
environments. This study’s scope emphasizes solutions compatible with current infrastructure limitations.

Motivation
As EV adoption rises, new challenges emerge, particularly around establishing efficient, feasible/optimal, and 
intelligent allocation of EVs to CSs. Therefore, EVs’ owners should efficiently participate in any effort aiming to 
improve the charging ecosystem and contribute to the optimal scheduling3. Optimal allocation of CSs to moving 
EVs has become a cornerstone of EV infrastructure planning and management. This ensures users’ needs are 
met while maximizing network efficiency and reliability. For instance, a recent survey paper4 investigated the 
problems related to control and forecasting aiming to improve the charging operations based on emerging 
technologies such as data-driven approaches and machine learning (ML). In the context of a deregulated energy 
market, the price of electricity is also important and impactful5. To reduce the cost, save time, and increase 
the life-time of the EV battery, efficiently forecasting the price of charging is also critical for all EVs charging 
ecosystem components6. To meet the rising charging needs, effective EV to CS allocation requires a multifaceted 
approach involving load profile forecasting at the CS level, optimal path planning for EVs in low State of Charge 
(SoC), and real-time computational support at the various devices/equipment and enablers level. Traditional 
approaches for station allocation have primarily relied on static parameters, such as population density, 
proximity to main highways, and estimates of average daily usage. However, the rapid evolution of data analytics, 
machine learning, and the Internet of Things (IoT) has created opportunities to enhance these methods by using 
predictive models, real-time data analysis, and path optimization. In fact, as opposed to the classical charging 
problem where vehicles are to be charged during their parking time (usually during night hours), dynamic 
EV charging is requested in real-time when EVs are on the road while facing a shortage of charge. Under such 
circumstances, EVs may need assistance from other parties playing the role of enablers. The EV drivers should 
therefore be alerted about their vehicle battery SoCs in real-time. Once the SoC reaches a minimum threshold, 
an optimal (not necessarily the nearest) CS as well as the optimal path he should follow to reach the allocated CS7 
should be assigned. By leveraging data on electricity demand at the CSs level, road patterns, and vehicle energy 
consumption, advanced forecasting models and path planning algorithms can assist in determining future 
demand and establish optimal station allocation that aligns with both current EV SoC and its short-term need 
for charging. Additionally, EVs’ relatively short driving range and dependence on accessible CSs necessitate an 
approach that accounts for route planning and energy consumption patterns. This may enable drivers to access 
charging facilities with minimal deviation from their planned paths8. To ensure efficient charging operations, 
several attributes related to load and energy storage should be considered carefully. The EV charging behavior 
and load have randomness and uncertainty, making them affected by many factors. Road network structure 
(rectilinear and curvilinear paths), traffic congestion, CSs distribution, driving path, travel destination, initial 
SoC and even the driver(s) psychology and level of anxiety are the most relevant attributes9.

In the current landscape, integrating emerging technologies such as drones10,11, Internet-of-Things (IoT)12, 
servers and Mobile Edge Computing (MEC) technologies are important to process and analyse data related to 
EVs charging locally and globally13. Meanwhile, urban and high-traffic areas exhibit data latency that could be 
detrimental for the efficient operation. Therefore, integrating those contributors may help in improving the EVs 
ecosystem. Via Edge computing devices, computational power is brought closer to EVs and CSs, providing real-
time processing capabilities that reduce the need for centralized data centres and minimize data transfer delays14. 
Drone-enabled edge computing can support a wide range of functionalities in EV charging infrastructure, 
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from monitoring CSs availability and energy demand to providing real-time updates on route crowds by 
accurately surveying the urban area traffic around the CSs15. By deploying a fleet of drones, it becomes possible 
to dynamically manage charging station resources and optimize power distribution based on real-time data. 
Additionally, using drones with high-resolution cameras and lightweight computer vision algorithms may assist 
the CS allocation by efficiently surveying traffic congestion, mainly around CSs16. To contribute to the effort of 
improving the EVs’ charging operations, the current paper introduces a comprehensive framework to efficiently 
assign any EV needing charge to the “best” charging station by involving new technologies and algorithms. The 
proposed solution integrates path planning optimization at the vehicle level with energy management strategies 
at the CS level.

Research gap and study contributions
The primary goal of this study is to present a comprehensive approach integrating a fleet of drones, load profile 
forecasting at the CSs and an optimal path planning algorithm to support informed decision-making for 
optimally allocating EVs to CSs in a dynamic real-time context. The main aim of this study is to develop the 
overall architecture and contribute to provide insightful solutions for alleviating the assignment problem already 
complex even in a static context, as it involves many constraints. Therefore, the main contributions of this study 
can be summarized as follows:

•	 This study introduces a holistic and intelligent framework that addresses the complex and dynamic problem 
of assigning EVs to CSs in real-time. Unlike static or offline methods, this framework integrates multiple 
cutting-edge technologies to enable smart, context-aware decision-making. The system combines forecasting 
models, path planning algorithms, and mobile edge computing, facilitated through drones, to dynamically 
evaluate and respond to rapidly changing conditions such as station availability, traffic patterns, and load 
demands. This comprehensive and modular architecture allows for adaptive behavior in real-world urban 
environments, significantly enhancing the responsiveness, efficiency, and scalability of EV charging logistics.

•	 A major contribution of this study is the implementation of a load forecasting mechanism using the Non-
linear Auto-Regressive with Exogenous inputs (NARX) model. This predictive tool enables the system to 
anticipate future charging loads at individual CSs by accounting for historical usage patterns, time-of-day 
effects, and other external inputs. Accurate ahead-of-time load forecasting allows the system to proactively 
steer EVs away from stations that are predicted to be overloaded or congested, thereby reducing queue times 
and mitigating the risk of charging delays. This forecasting approach empowers infrastructure operators and 
EV users alike to optimize resource allocation and improve overall system reliability.

•	 To further support the decision-making process of EV drivers, the study incorporates a path optimization 
component based on Dijkstra’s algorithm. This robust shortest-path algorithm is adapted here to calculate the 
most efficient route to candidate CSs while considering geographic proximity. By integrating this path plan-
ning capability with real-time station data, the system helps drivers avoid unnecessary detours and ensures 
a balance between minimizing travel distance and maximizing the likelihood of successful, timely charging. 
This component plays a crucial role in enhancing user convenience and reducing both travel time and energy 
waste.

•	 The framework also pioneers the use of drone-assisted edge computing as a novel solution for real-time data 
collection and dissemination. Drones equipped with lightweight processing capabilities act as mobile edge 
nodes that continuously gather, process, and relay information about CS availability, crowd levels, and local 
traffic. This decentralized approach ensures low-latency communication between infrastructure components 
and the EVs. The use of drones not only expands the spatial coverage of information networks but also allows 
for quick adaptation to dynamic environmental conditions, such as unexpected outages or surges in demand. 
This innovation enhances system agility and supports more informed, balanced decisions by the EVs’ drivers.

In the present study, the focus will be on the two first components, namely, the load profile forecasting and the 
path planning. The fleet of drones as part of the proposed comprehensive approach will not be considered for 
technical challenges related to regulations on using drones and logistical reasons.

Paper organization
The remainder of this paper is organized as follows. “Material and methods” section presents the literature 
review, discussing existing works on EV charging infrastructure, load forecasting, demand side management 
(SDM) and path planning with focus on key research gaps. “Data records” section describes the materials 
and methods used in the proposed framework, including the NARX model for load forecasting and Dijkstra’s 
algorithm for optimal route planning. “Results and discussion” section outlines the datasets utilized for 
conducting the forecasting part. “Conclusions and future directions” section presents the experimental results 
and analysis, evaluating the framework’s performance through multiple metrics including forecasting accuracy, 
travel efficiency, and decision responsiveness. The proposed approach is benchmarked against baseline methods. 
Section 6 provides final conclusions from the investigation summarizing the main findings and proposing future 
research directions, such as enhancing scalability, developing more advanced prediction models, and integrating 
with smart grid technologies.

Literature review
The following section presents a critical review of literature addressing load profile forecasting at charging 
stations, demand-side management, and path planning optimization.
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Load profile forecasting
Focusing on the short-term load forecasting of EV-CSs using machine/deep learning techniques2,3, the following 
recent articles are reviewed, while highlighting various aspects, when available, such as: the statistical, machine 
learning, deep learning, or hybrid method being used, the case study being investigated, inputs/features being 
selected while developing the forecasting model, prediction horizon, performance metrics to evaluate the 
goodness of the built-forecasting models, and main findings obtained.

For instance, one of the objectives of17 was to, indirectly, estimate solar PV power generation and, directly, 
estimate the corresponding EV charging demand by utilizing three deep learning techniques, namely Recurrent 
Neural Network (RNN), Long Short-Term Memory (LSTM) (alongside its variants, including vanilla, stacked, 
and bidirectional), and Gated Recurrent Unit (GRU). Once the forecasts were obtained, the second objective 
was to exploit them in identifying the optimal capacity of battery storage needed to support the EV charging 
infrastructure. Hourly solar PV power generation data (15 kWp capacity for one operational year) and 15-
min EV charging-demand data at university facilities were used to conduct the forecasting tasks. The latter 
comprises of various parameters, such as timestamp, EV ID, CS, power required, etc. were used to develop the 
forecasting models. Standard performance metrics, including the Mean Square Error (MSE), Root MSE (RMSE), 
and Mean Absolute Error (MAE) were used to evaluate the effectiveness of the investigated forecasting models. 
Results showed that a simple RNN and bidirectional LSTM were superior to other techniques investigated for 
forecasting the solar PV power generation and EV charging demand, respectively.

The authors in18 examined three time series models to directly predict electricity demand of EV CSs, namely 
Auto Regressive Moving Average (ARMA), Auto Regressive Integrated Moving Average (ARIMA), and Seasonal 
Auto Regressive Integrated Moving Average (SARIMA). Dataset of EV charging activities from two sources were 
used to develop the forecasting models: public data on EV charging events in Colorado, USA for four operational 
years and EV charging data from ChargeMOD terminals in Kerala, India for several operational months of 
various configurations and targets (for technical and economical perspectives). Both sources comprise various 
parameters used while developing the forecasting models, such as start and end timestamp of charging events, 
total duration of charging events, and energy consumption in kWh. Standard performance metrics, including 
the RMSE, MAE, and Mean Absolute Percentage Error (MAPE) were used to evaluate the effectiveness of the 
investigated forecasting models. Results indicated that SARIMA was superior to other techniques in terms of 
forecasting accuracy.

The authors in9 studied the challenges of predicting the short-term EV stations’ charging power caused 
by the randomness and uncertainty of user behavior. Specifically, the authors proposed a fusion prediction 
model integrating time-series and nonlinear attributes using Partial Least Squares Regression (PLSR) and Light 
Gradient Boosting Machine (Light-GBM), whose hyper-parameters were optimized using Bayesian methods for 
enhanced performance. The RMSE, MAE, and MAPE were used to assess the prediction accuracy of the proposed 
approach. Experimental investigation using historical real EV charging load data19 showed the superiority of the 
fusion prediction approach compared to each individual model and other benchmarks (i.e., Backpropagation 
Neural Network (BPNN), Convolutional Neural Network (CNN), and LSTM) in accurately predicting the EV 
charging power, thereby ensuring an optimal scheduling of EV/CSs as well as a safe operation of the power grid.

In20, a multi-feature data fusion-based load forecasting approach for EV CSs using an LSTM forecasting 
model was proposed. The proposed model incorporated historical weather conditions, such as wind speed, 
ambient temperature, and relative humidity, as crucial inputs with different lags to enhance the predictability of 
the LSTM model. The results demonstrated the effectiveness of the data fusion strategy, with the MAE used as 
the performance metric.

The authors in21 examined the effectiveness of various data-driven forecasting techniques, ranging from 
simple methods (e.g., linear regression) to more advanced machine learning models (e.g., neural network, 
ensemble methods such as Bagging, Gradient Boosting, Ada Boosting, and RF) and deep learning models (e.g., 
CNN, LSTM) models. All models were evaluated against a naïve model, and a traditional baseline forecasting 
approach. Based on data from Charge pilot system, a charging and energy management system, was used to 
evaluate the models’ performance, comprising over 350,000 charging sessions from more than 500 sites. Multiple 
features and performance metrics were used to develop the forecasting models, RMSE, normalized RMSE 
(nRMSE), MAE, which mean fundamental scaled error, coefficient of determination (R2), as well as pinball and 
interval scores for the probabilistic forecasting evaluation. Among the models investigated, Ada Boosting and 
RF demonstrated the most robust forecasting results.

The study conducted in22 proposed a novel intelligent grid EV charging scheduling and energy management 
approach by integrating a Genetic Algorithm (GA), i.e., to optimize EV charging demands while minimizing 
peak grid loads, GRU, i.e., to accurately predict EV charging demands and grid load conditions, paving the way 
towards effective optimization of EV charging schedules, and Reinforcement Learning (RL) algorithm, i.e., to 
minimize grid energy costs while meeting EV charging demands, thereby ensuring effective an overall energy 
management. Four datasets were used to evaluate the effectiveness of the proposed approach (GA-GRU-RL): 
Pecan Street, NREL, ChargePoint, and UCI. Various performance metrics from the literature, such as accuracy, 
recall, F1 score, and AUC, were used to assess its effectiveness. Results demonstrated the superiority of the 
proposed approach, though certain limitations were noted.

In23, a comparison between various deep learning techniques for the EV charging load forecasting problem 
up to 72 h ahead was conducted. Specifically, LSTM, GRU, hybrid CNN and LSTM, hybrid CNN and GRU, 
multivariate LSTM, and multivariate GRU models were investigated and effectively compared, with K-Nearest 
Neighbor (KNN), Decision Tree (DT), Random Forest (RF), and Support Vector Machines (SVMs) used as 
benchmarks. The study utilized a publicly available dataset comprising data from over 30,000 EV charging 
sessions collected from various charging sites in California, USA24. The dataset included various features for 
developing forecasting models, such as timestamps and energy delivered in kWh. The RMSE and MAE were used 
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to assess the models’ effectiveness. Results showed that the multivariate LSTM and GRU models were superior 
in terms of prediction accuracy. Similarly,25 developed a forecasting model for EV charging requirements across 
different forecasting horizons, including 1-h ahead, day-ahead, and week-ahead predictions, using ANN and 
LSTM models. The study utilized a real dataset extracted from the Adaptive Charging Network at the California 
Institute of Technology, USA. Results demonstrated that the LSTM model outperformed the ANN model in 
terms of RMSE across the various forecasting horizons investigated.

Researchers in26 adopted the deep learning LSTM model to forecast the charging demand/task of EV CSs 
and proposed a comprehensive optimization model addressing charging costs, battery degradation, and user 
dissatisfaction. The model, formulated as a Mixed-Integer Non-Linear Programming (MINLP) problem, 
integrates traffic uncertainty, facility limitations, and time-of-use electricity prices. The proposed model showed 
superior performance and effectiveness in simulations compared to existing methods.

On the other hand, there are other indirectly related research works where the contribution of forecasting-
based machine/deep learning is shown effective in optimizing the scheduling of EV CSs. For instance,27 adopted 
an ANN-based forecasting model, developed using the Levenberg–Marquardt training/learning algorithm, for 
short-term forecasting of solar PV power generation and the state of charge of the storage battery in a solar 
PV-powered EV charging station for decision-making perspectives. Similarly,28 implemented an ANN-based 
forecasting model equipped with the Levenberg–Marquardt algorithm to effectively estimate energy production 
from a 65-kW solar PV system integrated with a charging station featuring charging points of varying power 
levels. Specifically, the ANN was used to estimate the weather data, from which the associated energy generation 
was subsequently computed. The authors in29 developed a novel design approach that encompassed evaluating 
and analysing various solar irradiance prediction models, forecasting day-ahead solar PV power generation, 
both using ANN-based models and other techniques from the literature, and optimizing EV charging schedules 
using Energy Storage Systems (ESSs). The study in30 explored AI-driven energy forecasting for EV charging 
infrastructure by investigating the capabilities of various forecasting techniques in accurately estimating solar 
and wind energy generation for EV CSs.

Collectively, these efforts demonstrate the effectiveness of AI-driven forecasting solutions in supporting EV 
CSs scheduling and decision-making processes. In practice, the impact of forecasting accuracy (or interchangeably, 
imperfect predictions) on EV charging scheduling costs is crucial and should also be considered. The uncertainty 
in EV arrival times, departure times, and charging volumes are potential causes of such imperfect predictions. 
To address these sources of uncertainty,31 proposed a risk-limiting charging scheduling approach using chance-
constrained optimization in an offline setting. The authors developed a Model Predictive Control (MPC) 
approach for online scheduling of EV CSs. The obtained results demonstrated the significance of incorporating 
accurate forecasting and robust optimization techniques to enhance EV CSs’ scheduling efficiency.

Demand side management
DSM has become a pivotal strategy in addressing the challenges posed by the increasing integration of EVs into 
power grids. As EVs’ adoption accelerates, EVs need to be recharged when they are out of use. Such recharging 
may be performed during nighttime or when drivers are occupied by other tasks in various locations (malls, 
restaurants, etc.). Uncoordinated charging can lead to significant peak loads, stressing grid infrastructure, and 
potentially long waiting time32. DSM offers a suite of techniques aimed at optimizing energy consumption 
patterns, thereby ensuring grid stability and efficiency. In the context of EVs, DSM encompasses strategies such as 
smart charging, where EV charging is scheduled during off-peak hours, and vehicle-to-grid (V2G) technologies 
that allow EVs to discharge energy back into the grid during high-demand periods. These approaches not only 
mitigate the risk of grid overload but also enhance the utilization of renewable energy sources by aligning 
charging activities with periods of high renewable generation. Researchers such as in33, have developed efficient 
management strategies based on inference fuzzy systems (IFSs) to manage the available power at a parking lot 
level. Recent studies have highlighted the efficacy of DSM in managing EV charging demands. For instance, 
a comprehensive review emphasizes the role of DSM in facilitating the integration of EVs into smart grids, 
underscoring the importance of coordinated charging to prevent grid instability34–36. Furthermore, advanced 
control methodologies, such as model predictive control, have been proposed to dynamically adjust EV charging 
based on real-time grid conditions, electricity prices, and user preferences, thereby optimizing both grid 
performance and user satisfaction37.

From an operational perspective, DSM is a crucial component that serves as a foundational element in the 
sustainable integration of EVs into power systems. By leveraging advanced forecasting, optimization algorithms, 
and real-time communication technologies, DSM enables a more resilient and efficient energy ecosystem that 
accommodates the growing demands of electric mobility in terms of charging needs.

Path planning
Like the load profile forecasting, optimal path planning of EVs seeking charging (while riding) is crucial. 
Classical path planning, although efficient in static circumstances, may fail in dynamic conditions since the 
shortest path may not be the best way that drives the EV to the best charging station because of other constraints 
like the crowd and the route nature. In this sub-section, we will survey few studies tackling path planning, while 
concentrating on the trade-off between route feasibility and optimality.

Based on Martin’s algorithm, the study in38 provided EV users by a tool to select CSs and charging paths. The 
bidirectional version of the algorithm was reported to be efficient in selecting three candidate CSs. However, 
the main limitation of this approach is the computational burden induced by the calculation of the minimal 
distance between each CS and each node in the road network. This issue may be accentuated when the number 
of EVs seeking charging and the number of nodes in the network are relatively high. The study in39 proposed 
a general framework including information exchange between CSs, EVs and other parties involved in the 
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traffic management. The study has been reported to help the EV user in selecting the best station. However, the 
objective functions optimized (charging cost, waiting time, etc.) for better charging experience were considered 
separately which may limit the inherent multi-objective aspect of the problem. The authors in40 have used the 
Route-Assisted Rapid Random Tree (RA-RRT*) algorithm for searching the most feasible routes and aggregators 
stopping points while considering SoC constraints. Although the results were reported to be acceptable, random 
tree algorithms may face challenges when used in a real-time because of each computational complexity. The 
study in41 has investigated a distributed Ant System (AS) algorithm to find the best CSs to which an EV may be 
driven. Although the usefulness of the study findings, the main limitation of this study is that it doesn’t consider 
the state of the road and that it is based only on the minimal path regardless of its hardness. In our study, Dijkstra 
algorithm will be used for path planning of EVs in need of charging during their trip since this algorithm is 
known to be lightweight and computationally tractable42.

Material and methods
General framework of EV/CS allocation problem
In this paper, a general framework for the complex allocation of EVs in need of charging while riding, to the 
suitable CSs, is presented (Fig. 1).

The proposed unified framework is expected to improve both operational efficiency and user experience 
within the EV charging ecosystem. Unlike traditional approaches relying on static or limited data inputs, the 
present approach is inherently dynamic since it considers the EV needing charging is currently in road and 
extract real-time data about the traffic situation and the CSs current charging loads. In what follows, details of 
the framework components as well as their expected roles in the charging allocation problems are provided:

•	 Load profile forecasting at the CSs (mainly in the short term) is crucial to anticipating fluctuations in electric 
load demand across different CSs and at different time periods. The main focus of this study is allocated to 
the real-time assistance of EVs to reach the optimal CS in its immediate surrounding or in the way of its 
current destination. In order to be efficient and informative, forecasting load profile should be conducted at 
all CSs in the covered urban area. The prediction of load is beneficial for the CS owner (helps him to manage 
the energy resources efficiently and therefore satisfy the customers’ needs) and for the EV (assist the driver 
about the load being requested at different CSs to prevent delays and waste of time if seeking charging from 
an overloaded CS).

•	 Path planning is significant in the context of EV/CS allocation, as it directly affects the way an EV needing 
charging to efficiently reach the suitable CS. Path planning in urban area is inherently complex due to the road 
network structure and the number of vehicles. Additional complexity is added when considering the dynamic 
nature and the urgent need of charging. Effective path planning ensures that EV drivers can reach CSs with 
minimal cost either in traveling time or satisfaction of the constrained current SoC that may not allow the EV 
to reach the suitable CS.

•	 Drone-enabled edge computing represents a transformative innovation in the management of EV charging op-
eration in urban areas. As mobile computing units, fleet of drones equipped with edge computing capabilities 
can collect, process, and transmit data to optimize EV/CS allocation. In our framework, drones can assist in 
monitoring charging station availability, providing real-time data about crowd management which may assist 
the EV driver to select the best CS convenient to his needs. Additionally, drones can also collect information 
on road conditions around CSs including weather patterns. By operating at the edge of the network, drones 
reduce the need for centralized data processing and offer a decentralized solution for maintaining data integ-
rity, security, and responsiveness across the charging infrastructure.

Fig. 1.  General framework of EVs/CSs allocation problem.
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•	 As the focus of this study is the implementation of an approach to allocate EVs seeking for charging to the 
optimal CSs, this section will detail the two main components of the proposed solution. Namely, the load 
profile forecasting at the CS level and the optimal path planning.

In the proposed framework, path planning and load forecasting are treated as distinct yet complementary 
components. The path planning module utilizes Dijkstra’s algorithm to identify the shortest feasible paths from 
the electric vehicles (EVs) to candidate charging stations. In parallel, a Nonlinear Auto-Regressive model with 
exogenous inputs (NARX) is employed to forecast the near-future load profiles at each charging station, offering 
predictive insight into energy consumption and slot availability. While these modules operate independently, 
their outputs are jointly considered during the EV’s decision-making process, allowing the selection of charging 
stations that are not only geographically accessible but also operationally optimal. For instance, an EV may 
bypass the nearest station if its predicted load suggests potential delays. Although our current implementation 
does not embed the load forecasting directly into the path planning algorithm, such as through load-weighted 
graph edge adjustments, this modular structure offers a flexible foundation for future integration of these 
components into a unified optimization framework.

The proposed general framework can be run according to the following pseudocode (Algorithm 1).

Algorithm 1.  EV_CS_Assignment_Framework.

As described in the above pseudocode, each time an EV sends a request of recharging and its current location, 
the principal algorithm runs Dijkstra’s algorithm to find and later sort the CSs according to their respective 
distances. In addition, it calls the forecasting algorithm and runs it for all CSs. A compromised combination of 
distances and forecasted load profiles is then sent to the EV to select the best CS corresponding to its current 
situation in terms of remaining charge and CS’s probable waiting time.

Load profile forecasting
This subsection illustrates the overall methodology proposed to forecast the charging time (T ) and ahead 
charging energy (E) for an EV-CS allocation (as depicted in Fig. 2). The pseudocode of the forecasting task is 
provided in Algorithm 2 below.
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Algorithm 2.  ForecastLoadProfile.

Note here that the forecasting horizon is crucial since shorter is this horizon, better impact may it add to the 
EV/CS assignment problem. In this study, we expect to investigate the feasibility/optimality of the forecasting 
based on daily dataset. However, for better participation in the EV/CS allocation problem, the forecasting should 
be performed for all CSs at a given urban area using large datasets preferably at the minimum horizon.

The overall collected dataset (X) of an EV CS utilized in this work is established. Specifically, it comprises the 
charging events characterized by their associated remained feature values (i.e., 

−→
M , 

−→
Y , and 

−→
W D) in inputs and 

the corresponding response variables (
−→
T  or 

−→
E ) in outputs:

	
X =

[−→
D

−→
M

−→
Y

−→
W D

∣∣∣ −→
T

−→
E ]� (1)

For forecasting purposes, the predictors were used as inputs to a time series machine learning model while the 
two target variables were considered individually, with a separate model developed for forecasting each target 
variable. Specifically, two models were investigated, mainly due to ease of use, straightforward development, 
convenient computational requirements compared to other existing time series models, and their proven 
effectiveness in various engineering applications:

	(1).	 Nonlinear AutoRegressive (NAR)
	(2).	 Nonlinear AutoRegressive with eXogenous inputs (NARX).

Both are types of neural network models widely used in time series forecasting across various applications. The 
former is a type of RNN commonly used to forecast a response variable (hereafter denoted as y) solely based on 
its past values, considering an embedding dimension or feedback delay, d( Eq. (2)). On the other hand, NARX 
model extends NAR by considering exogenous (i.e., external) input variables (hereafter denoted as x) such as the 
variables available at hand, making it useful for systems influenced by both their history and exogenous (external) 

Fig. 2.  The framework proposed in this work for forecasting EV charging time and energy.
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factors (Eq. (3)). Both consider the error/noise term, e(t), accommodating the unexplained or random variation 
in the model’s output, thus covering factors not captured by the function f , as shown in Eq. (2) and Eq. (3) for 
NAR and NARX models, respectively:

	 y (t) = f (y (t − 1) , . . . , y(t − d)) + e(t)� (2)

	 y (t) = f (y (t − 1) , . . . , y (t − d) , x (t − 1) , . . . , x(t − d)) + e(t)� (3)

For the forecasting task, predictions were made for one-day ahead (forecasting horizon 1, H1) for the two 
response variables: charging time (T ) and charging energy (E).

The models were properly optimized in terms of the number of hidden neurons (Nh) and feedback delays 
(d), with both parameters assumed to span the values from 1 to 10, representing their potential minimum and 
maximum candidate values.

The overall dataset was divided into three distinct sets: (i) training, (ii) validation, and (iii) test datasets, with 
random sampling portions of 60%, 20%, and 20%, respectively, for building, optimizing, and evaluating NAR 
and NARX models.

Two performance metrics were employed to evaluate the effectiveness of the forecasting models: Root Mean 
Square Error (RMSE) in kWh (Eq. (4)) and the Correlation Coefficient (R) in percentage (Eq. (5)). RMSE 
measures forecasting accuracy, while R emphasizes the strength of the relationship between the forecasted 
and true response values. Typically, lower RMSE and higher R values indicate the effectiveness of the built-
forecasting models. For each combination of Nh and d, the simulation was repeated 10 times, with different 
random sampling of the dataset portions, and the performance metrics and their variability measured in terms 
of the standard deviation (σRMSE  and σR) were computed on average. The optimal combination of Nh and d 
is then identified at which RMSE is minimized.

	
RMSE =

√∑NV alid

j=1 (yj − ŷj)
2

NV alid

� (4)

	

R =
∑NV alid

j=1 (yj − y)(ŷj − ŷ)
√∑NV alid

j=1 (yj − y)2

√∑NV alid

j=1

(
ŷj − ŷ

)2 � (5)

where NV alid is the number of sampled-validation charging days, yj  and ŷj  are the j-th actual and forecasted 
response values, respectively, and y and ŷ are the average actual and forecasted response values, respectively.

To measure the effectiveness of the built and optimized NAR and NARX models, the typical naïve forecasting 
model is built and effectively compared with the performance obtained by the optimal models on the test dataset. 
As a final remark, the computational efforts required for developing and optimizing the models were recorded to 
assess the efficiency of the model development process.

Optimal path planning
For EV/CS allocation problem, finding the optimal path an EV should follow to reach the best CS is challenging. 
In a dynamic context (as opposed to the static context where the route conditions are not considered), the 
shortest path may not be the best due to traffic congestion or route nature (such as bent or upward sloped 
routes). Under such conditions, optimal path-finding algorithms may be penalized if those conditions are well-
understood. However, in this subsection, the main algorithms used for optimal planning are summarized, and a 
compromise choice of the best algorithm will be made.

For EV charging optimal path search, the shortest path algorithms consider a network where single-source/
single-destination problems focus on finding the optimal path between a starting node (location of the EV in 
shortage of charge) and a target node (position of a CS) in a weighted graph. The three main algorithms used for 
this purpose, along with their advantages and limitations, are summarized as follows.

Dijkstra’s Algorithm Its principle of working is based on iteratively exploring the shortest known path to each 
vertex from the source43. It uses a priority queue to efficiently select the next node with the smallest tentative 
distance. Its main advantage is that it guarantees the shortest path in graphs with non-negative edge weights. Its 
application is usually preferred for dense graphs44. Although its usefulness, Dijkstra’s algorithm’s main limitation 
is that it computes paths to all vertices, which may be unnecessary when interested in only a single destination45.

Bellman-Ford Algorithm This algorithm uses relaxation to iteratively update the shortest paths by considering 
each edge multiple times46. It can handle graphs with negative edge weights and can detect negative weight cycles 
and report their existence. Compared to Dijkstra’s algorithm, it is known to be slower, especially on dense graphs.

A* Search Algorithm Known as simply A* (Star), this algorithm combines Dijkstra’s algorithm with a heuristic 
rule to prioritize nodes that are estimated to be closer to the destination47. It may be efficient for single-source/
single-destination problems (like our problem). Its main limitation is that it requires a heuristic function, which 
may not always be easy to define or compute.

As our EV/CS allocation problem is single-source/single-destination, Dijkstra’s algorithm will be used as a 
compromised choice while considering its time complexity since the latter is proportional to the product of the 
number of vertices and the number of edges. The interested reader to the algorithm details may refer to42 and the 
references therein. The path planning algorithm proposed in this paper is provided in the following pseudocode 
(Algorithm 3).

Scientific Reports |        (2025) 15:23844 10| https://doi.org/10.1038/s41598-025-08840-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Algorithm 3.  ComputeShortestPaths.

Data records
The dataset used in this work for forecasting the charging energy demand is collected from48. It comprises 
17 parameters whose description and units are provided in Table 1. The dataset spans the period from 18th 
November 2014 to 8th October 2015, with a total of 3395 charging events.

To gain further insights into the available dataset, Fig. 3 shows the distribution of charging events on a daily 
basis from Saturday to Friday, spanning the study period.

Figure 4 shows the hourly distribution of the charging energy (in kWh), fitted with a Smoothing Spline (red 
line) with SSE = 13981, R2 = 99.80%, and RMSE = 51.1985 kWh. Figure 4 indicates two peaks of EV 
charging during the day: one occurring around midday (between 12 and 14 PM) and the other occurring in 

Feature Unit

The charging session ID –

Total charging energy kWh

The charging cost $

Charging starting date and time –

Charging ending date and time –

Charging starting time Hour

Charging ending time Hour

Total charging time Hour

Week day –

Charging hosted platform –

Distance m

User ID –

Charging station ID –

Charging location ID –

Manager vehicle –

Facility type –

Binary index of the week days (Sat to Fri) –

Table 1.  The description of the parameters available.

 

Scientific Reports |        (2025) 15:23844 11| https://doi.org/10.1038/s41598-025-08840-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the early evening (between 17 and 19 PM), reflecting the typical EV charging times aligned with daily traffic 
patterns. It is worth mentioning that Fig. 4 only displays charging energy exceeding 50 kWh, for illustration 
purposes.

For day-ahead forecasting, the following features are selected, while the remaining ones were excluded due to 
irrelevance or redundancy, as they are already embedded within the considered features. Specifically, the selected 
features are extracted and transformed into the form of daily charging events:

•	 Day of the year (feature 1, denoted as D). It represents the specific day of the month on which the charging 
event occurred, e.g., 18 for the 18th of the month and so on, capturing daily patterns in the charging events.

•	 Month of the year (feature 2, denoted as M ). It represents the specific month number of the year on which the 
charging event occurred, e.g., 11 for November and so on, capturing monthly patterns in the charging events.

•	 Year identifier (feature 3, denoted as Y ). It represents the year identifier in which the charging event occurred, 
e.g., 2014 and 2015, capturing yearly variations in the charging events.

•	 Week day index/label (feature 4, denoted as WD). It assigns a label or index to each day of the week, e.g., 1 
corresponds to Saturday and 7 corresponds to Friday, and so on, capturing weekly patterns in the charging 
events.

•	 Total daily charging time (feature 5, denoted as T ). It represents the total daily charging time spent in hours.
•	 Total daily charging energy (feature 6, denoted as E). It represents the total daily charging energy spent charg-

ing in kWh.

Specifically, the charging events that occurred each day were aggregated into daily charging events for the purpose 
of day-ahead forecasting of the charging time (T ) and energy (E) (i.e., response or dependent variables), based 
on the day of the year (D), month of the year (M ), year identifier (Y ), and weekday index or label (WD) (i.e., 
predictors or independent variables). The dataset was structured as a time series, and a data-driven machine 
learning model was employed for the forecasting task, predicting 1  day (forecasting horizon 1) for the two 
response variables, charging time and energy, T  and E, respectively. The established time series daily dataset 
comprises N = 321 days, covering the charging events that occurred between November 18, 2014 and October 
8, 2015.

It is worth mentioning that there were no charging events on some days, and the associated charging time and 
energy values were replaced with NaN for the subsequent analysis of the forecasting task. Specifically, 25.86% of 
the data was missing (i.e., 83 days), while the remaining 74.15% was complete (i.e., 238 days).

Figure 5 shows the charging time (T ) and charging energy (E) across the entire period of 321 days, including 
the missing operational days. The following insights can be stated:

•	 Both features increase over time, highlighting the potential for an increase in EV charging events as time 
progresses.

Fig. 3.  Distribution of charging events distribution by weekday.
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•	 The zoomed-in figure reveals cyclical charging patterns occurring at different times of the day, week, or across 
the operational period.

To effectively identify the most influential features and their impact on the predictability of both charging time 
and energy, Fig. 6 presents the Pearson correlation matrix for the six considered features. From the figure, the 
highest correlation values with charging time and energy are observed for the month of the year (M ), followed 
by the weekday index/label (WD), and then the year identifier (Y ). In contrast, the day of the year (D) shows the 
lowest correlation value of 0.06 and will therefore be excluded from the subsequent forecasting analysis.

Results and discussion
Load profile forecasting
Table 2 reports the optimal parameters (Nopt and dopt) identified for each NAR and NARX models, along with 
the optimal performance metrics and computational efforts on the validation dataset obtained for forecasting 
the charging time (T ) and the charging energy (E) one-day ahead. It is worth mentioning that the models were 
developed using MATLAB R2024a, running on a personal computer whose processor is 11th Gen Intel(R) Core 
(TM) i5-1135G7.

Looking at Table 2, one can notice the following:

•	 NARX model achieves the best forecasting accuracy for both charging time and energy on the validation da-
taset. The model achieves an RMSE value of 17.08 h (~ 11.52% percentage error compared to the maximum 
charging time value recognized in the study period) and 30.27 kWh (~ 11.68% percentage error compared to 
the maximum charging energy value recognized in the study period) compared to those obtained by the NAR 
model with values equal to 28.06 h and 54.30 kWh, for forcasting the charging time and energy, respectively.

•	 The NARX model, as expected, requires a larger number of hidden neurons to establish the mathematical 
relationship between the input sets and the output, compared to the NAR model, which relies solely on the 
historical values of the response variable.

•	 As expected, the computational effort required to develop and optimize NARX models is greater than that for 
NAR model, due to the inclusion of additional exogenous (external) factors.

Fig. 4.  Distribution of charging energy by day hour with the fitted smoothing spline for the charging power 
exceeding 50 kWh.
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For clarification, Fig.  7 shows the evolution of the RMSE and R performance metrics versus the different 
values of N  and d. Figure 7a and b illustrate the evolution of RMSE against varying values of N ( at dopt) and d( 
at Nopt) candidates, respectively. Figure 7c and d display the evolution of R against varying values of N ( at dopt) 
and d( at Nopt) candidates, respectively, for charging time (T ) forecasting, with an indication of the optimal 
(minimum) RMSE value obtained and the corresponding R value. Similarly, Fig. 8 shows the evolution of 
the two-performance metrics against the two variables for charging energy (E) forecasting. In Figs. 7 and 8, 
one can observe, as discussed, NARX model requires a large number of hidden neurons to effectively establish 
the relationship between the input sets and the output for charging time and energy, i.e., 10 and 8, respectively.

Once the NAR and NARX models are built and optimized, their effectiveness is evaluated against the typical 
forecasting model in the literature, naïve, on the unseen test dataset across the 10 different simulation trials. 
To robustly quantify the goodness of the built models, the performance metrics and their associated variability 
obtained across the 10 simulation trials are reported in Table 3, for completeness.

Looking at Table 3, one can state the following points:

•	 NARX model outperforms the forecasting accuracy achieved by NAR and Naïve forecasting model for the 
two response variables, as expected, across almost the entire performance metrics.

•	 The variability obtained by NARX is larger than that obtained by NAR model for the two response variables, 
as expected, due to the variability inherent in the additional exogenous (external) factors considered while 
developing the model.

It is worth noting that the 60%, 20%, and 20% splits for training, validation, and test data were consistently 
maintained across the 10 simulation trials when developing the NAR and NARX models to ensure a fair 
comparison. Additionally, the differences observed in the Naïve approach results across the two response 
variables are due to the distinct optimal configurations identified for each model (NAR and NARX). These 
differences led to varying test dataset splits, which in turn produced varied yet consistent outcomes for the Naïve 
forecasting approach.

For the sake of clarity, the best simulation trials (i.e., trial #9 for charging time and trial #8 for charging energy) 
were selected to illustrate examples of the one-day ahead forecasts made by the NARX model for charging time 
(Fig. 9a) and energy (Fig. 9b). Notably, there is a significant match between the true/actual and forecasted values 
of both charging time and energy across the selected days. This alignment also highlights how effectively the 
NARX model detects trends, confirming its accuracy in forecasting the two response variables.

Fig. 5.  Daily charging time and energy over a period of 321 days, including missing operational days. The 
zoomed-in figure highlights the cyclical charging patterns.
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For completeness regarding the load profile forecasting of EV CSs, Table 4 presents a comprehensive 
comparison between the proposed approach and other forecasting approaches reported in the literature. As 
reported in Table 4, the reviewed studies cover a wide range of machine/deep learning and hybrid forecasting 
approaches applied, for instance, to EV CSs, focusing on short-term EV charging demand and/or electricity 
consumption. Specifically, two key points can be highlighted:

•	 the current study introduces a novel integration of ahead load profile forecasting using an NARX model, 
integrated with optimal path planning via Dijkstra’s algorithm and real-time availability checking using light-
weight drone-based edge computing. In contrast, most of the reported studies focus mainly on improving 
forecasting accuracy based on standard performance metrics, whereas the proposed framework of this study 
extended to couple the forecasting outcomes with real-time decision-making and CS allocation strategies, 
offering a more holistic approach that addresses not only forecasting accuracy but also practical operational 
challenges, e.g., EV CSs availability, congestion, and optimal routing.

•	 It is crucial to emphasize that conducting a complete quantitative comparison across all literature studies is 
inherently challenging due to the diversity of metrics employed, differences in datasets, variations in forecast-
ing horizons, and the specific system contexts investigated.

Forecasting model Forecasting variable Nhopt dopt RMSE R[%] Computation time [minutes]

NAR
Charging Time (T ) 1 1 28.06 Hours 63.17 1.90

Charging Energy (E) 1 1 54.30 kWh 65.46 2.24

NARX
Charging Time (T ) 10 1 17.08 Hours 88.38 3.92

Charging Energy (E) 8 1 30.27 kWh 90.26 3.64

Table 2.  Optimal configuration of the NAR and NARX models for forecasting charging time and energy for 
one-day ahead on the validation dataset over the 10 different simulation trials.

 

Fig. 6.  Pearson correlation matrix for the six considered features.
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Fig. 8.  Evolution of the (a and b) RMSE and (c and d) R performance metrics against different values of N and 
d for charging energy forecasting.

 

Fig. 7.  Evolution of the (a & b) RMSE and (c & d) R performance metrics against different values of N and d 
for charging time forecasting.
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Optimal path planning
In this subsection, the efficiency of Dijkstra’s algorithm in supporting the optimal assignment of an EV to a CS 
is illustrated through small-size case studies. The routes network is modelled as a directed graph composed of 
nodes and edges with known weights (which is the case if the road network is well-established). Additionally, the 
CSs locations are also known in advance which is the case of an established road infrastructure. We assume that 
any EV seeking charging is positioned at a node of the network (the case where the EV is between two nodes is 
not considered). We assume also that the remaining EV charge is able to drive it to any of the CSs and that the 
information on availability of charging slots at all nearby CSs is communicated by the fleet of drones and that this 
information can be shared with the EV (either the driver or the EV itself if it is autonomous).

To evaluate the proposed optimal path planning and EV-to-charging station allocation framework, we 
constructed a set of artificial graph-based scenarios that simulate a simplified road network. These graphs 
consist of nodes representing intersections or locations and edges representing roads with associated weights 
(e.g., distance or travel cost). Charging stations were strategically placed at selected nodes, while electric vehicles 
were randomly assigned to starting nodes. This synthetic setup was chosen to allow controlled testing of the 
framework’s performance under varied and customizable conditions. It also enabled flexibility in modelling edge 
weights, network density, and station distributions, parameters that would be difficult to manipulate in a fixed 

Fig. 9.  Examples of 1-day ahead forecasting of the (a) charging time (at a simulation trial #9) and (b) charging 
energy (at a simulation trial #8) on the test data obtained by NARX model.

 

Forecasting model Forecasting variable RMSE[kWh] σRMSE [kWh] R[%] σR[%]

NAR
Charging time (T ) 29.4805 3.9477 61.54 11.51

Charging energy (E) 61.3683 7.7795 62.23 8.07

Naïve
Charging time (T ) 30.0793 3.672 67.11 11.35

Charging energy (E) 60.4392 6.9925 67.62 6.42

NARX
Charging time (T ) 19.2406 5.5243 86.06 7.77

Charging energy (E) 36.012 9.0286 86.62 6.59

Naïve
Charging time (T ) 33.598 4.163 60.12 8.80

Charging energy (E) 65.0476 7.6878 57.94 12.78

Table 3.  Performance metrics obtained by the optimal NAR and NARX models against those obtained by 
naïve forecasting model on the test dataset across the 10 simulation trials for the two response variables, 
charging time and energy.
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real-world dataset. While this study focuses on validating the methodology in a controlled environment, future 
work will involve applying the framework to real-world EV infrastructure data to further assess its scalability 
and practical applicability.

Case#1 To illustrate the effectiveness of the proposed approach, a network composed of 15 vertices and 
edges with random weights are generated and used (See Table 5). The adjacency matrix is deliberately chosen as 
asymmetric which indicates that two adjacent vertices are connected via two roads with different weights. The 
case study information is summarized in Table 5.

The road network was generated randomly with edges’ weights between 0 and the maximum weight of edges. 
Additionally, the three CSs were positioned randomly at specific nodes of the network. The network adjacency 
matrix as well as the positions of CSs are provided in Table 6 below.

Parameter Value Comment

Total number of nodes 15 This number represents a small-scale road network

Number of CSs 3 Deliberately selected in correlation with the network size

Number of vehicles 5 Number of vehicles in charging shortage

Maximum weight for edges (distance or travel time) 25 Deliberately selected to represent the travel time or distance between two adjacent 
nodes

Proportion of edges to remove 0.5 To prevent a fully connected network and simulate as accurately as possible a real 
network, some edges were removed. More this value is high, more the network is sparse

Table 5.  Case#1 network parameters.

 

Ref Developed/adapted forecasting approach Forecasting variable(s) Main results obtained for EV charging attributes

17 RNN, LSTM (various variants), GRU
Solar PV power generation 
(indirectly), EV charging 
demand (directly)

The best EV charging demand forecasting was obtained 
using bidirectional LSTM

18 ARMA, ARIMA, SARIMA Electricity demand of EV CSs
SARIMA model provides the most accurate EV charging 
station power demand and revenue forecasts, in terms of 
RMSE, MAE, MAPE

9 Fusion prediction model combining PLSR and Light-GBM, with 
hyperparameter optimization via Bayesian Optimization

Short-term EV station charging 
power

The proposed forecasting approach achieves superior 
short-term EV charging load forecasting accuracy

20 Multi-feature data fusion-based load forecasting using LSTM model Load forecasting for EV CSs
The proposed forecasting approach reduces the 
EV charging load estimation error to 3.29% over 
conventional LSTM approaches

21
Data-driven techniques: linear regression, neural network, ensemble methods, 
deep learning models (CNN, LSTM); evaluated against a naïve model and a 
traditional baseline approach

EV charging demand / load 
(based on ChargePilot system 
data)

Ada Boosting and RF showed the most robust forecasting 
performance based on metrics such as RMSE, nRMSE, 
MAE, mean fundamental scaled error, R2, pinball score, 
and interval scores for probabilistic forecasting evaluation

22 Integrated approach combining GA for optimization, GRU for demand and 
grid load prediction, and RL for minimizing grid energy costs

EV charging demand and grid 
load conditions

The proposed approach demonstrated superior 
performance compared to other methods, evaluated 
using accuracy, recall, F1 score, and AUC, although some 
limitations were noted

23
Deep learning techniques: LSTM, GRU, hybrid CNN-LSTM, hybrid CNN-
GRU, multivariate LSTM, multivariate GRU; benchmarks: KNN, DT, RF, 
SVMs

EV charging load (up to 72 h 
ahead)

Multivariate LSTM and GRU models were superior in 
terms of prediction accuracy, assessed using RMSE and 
MAE

25 ANN and LSTM models for forecasting across multiple horizons (1-h ahead, 
day-ahead, week-ahead) EV charging requirements LSTM outperformed ANN in terms of RMSE across all 

investigated forecasting horizons

26
LSTM model for EV CS charging demand forecasting; combined with a 
comprehensive optimization model formulated as MINLP addressing charging 
costs, battery degradation, and user dissatisfaction, under uncertainty

Charging demand/task at 
EV CSs

Superior performance and effectiveness in simulations 
compared to existing methods

27 ANN-based forecasting model using Levenberg–Marquardt training/learning 
algorithm

Short-term solar PV power 
generation, SoC of storage 
battery in a solar PV-powered 
EV charging station

Effective forecasting for decision-making perspectives

28
ANN-based forecasting model using Levenberg–Marquardt algorithm to 
estimate weather data and subsequently compute energy production from a 
65-kW solar PV system integrated with an EV CS with varying power levels

Energy production from solar 
PV system (based on weather 
data estimation)

Effective estimation approach

29
ANN-based models and other solar irradiance prediction techniques; 
combined with day-ahead solar PV power generation forecasting and 
optimization of EV charging schedules using Energy Storage Systems (ESSs)

Day-ahead solar PV power 
generation Effective model evaluation and optimization approach

30 AI-driven energy forecasting techniques investigating solar and wind energy 
generation estimation for EV charging stations

Solar and wind energy 
generation for EV charging 
infrastructure

Demonstrated the capabilities and accuracy of various 
forecasting techniques

31
Risk-limiting charging scheduling using chance-constrained optimization 
(offline) and MPC approach (online), both incorporating forecasting under 
uncertainty

EV arrival times, departure 
times, and charging volumes 
(under uncertainty)

Results demonstrated the importance of integrating 
accurate forecasting and robust optimization to enhance 
scheduling efficiency

Table 4.  Summary of recent studies from the literature on forecasting approaches developed/adapted to 
forecast key aspects of EV CSs.
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Fig. 10.  Illustration of the optimal paths for the EV/CS allocation problem provided by Dijkstra’s algorithm 
(Case#1).

 

EV# Starting at node# Nearest CS# Position node of the nearest CS Shortest path Shortest path cost

EV1 8 CS1 4 8-11-4 11

EV2 11 CS1 4 11-4 4

EV3 14 CS2 9 14-9 6

EV4 7 CS2 9 7-14-9 12

EV5 15 CS3 1 15-1 1

Table 7.  Optimal paths and EV/CS allocation for case#1.

 

Nodes 1 (CS3) 2 3 4 (CS1) 5 6 7 8 9 (CS2) 10 11 12 13 14 15

1 (CS3) 0 7 11 0 0 0 18 15 14 0 0 9 0 0 3

2 0 0 8 4 9 0 0 0 0 0 6 0 0 3 0

3 0 8 0 0 0 0 0 0 0 0 0 22 21 14 0

4 (CS1) 24 0 24 0 8 0 0 0 16 0 6 0 19 0 18

5 0 4 10 0 0 6 3 2 0 11 0 2 0 1 0

6 0 0 0 11 7 0 23 18 0 3 0 0 0 25 0

7 0 13 15 0 9 15 0 0 0 0 0 7 18 6 0

8 0 15 1 16 9 0 1 0 18 20 7 15 0 8 0

9 (CS2) 0 0 5 0 0 0 0 24 0 0 0 17 0 7 18

10 0 0 18 0 0 0 0 2 19 0 7 0 0 0 0

11 22 0 14 4 0 0 0 0 19 0 0 0 0 13 4

12 16 0 5 0 24 0 0 6 0 0 9 0 0 6 9

13 16 0 0 0 0 13 6 0 7 0 0 0 0 0 0

14 0 8 0 20 0 8 0 15 6 0 16 22 0 0 17

15 1 0 14 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.  Graph of the traffic network for Case 1.
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After running Dijkstra’s algorithm for the shortest path in term of distance (or time), the cost of the paths 
as well as the best CS an EV seeking for charging is allocated are summarized in Table 7. Moreover, a schematic 
illustration of this case scenario is depicted in Fig. 10.

In this case scenario, EV1 and EV2 are allocated to CS1. If both EVs request charging at the same time, EV2 
has a higher chance to reach CS1 before EV1. Therefore, the charging schedule at CS1 should be updated to 
include EV2 and later include EV1. Additionally, since EV3 and EV4 are assigned to CS2, EV3 may arrive to the 
charging station earlier and has a chance to be charged faster than EV4.

Case#2 In this second case, a larger network involving 50 nodes, 5 CSs and 10 EVs is considered. For space 
limitation, only the results of the EVs/CSs assignment (Table 8) as well as the graph (Fig. 11) are provided.

The results of the second case study (Case#2) showed the potential of the proposed approach to provide 
optimal solution of the EV path planning in the context of EV/CS allocation problem. However, it was noticed 
that the larger the network is, more the algorithm takes time to provide the solution.

Although Dijkstra’s algorithm offers computational efficiency in moderately sized networks, its scalability is 
limited in large-scale, real-time EV charging systems. To overcome this, future work will explore advanced and 
scalable path planning techniques. These may include heuristic methods such as the A* algorithm, which uses 
informed search to reduce computation time, and hierarchical routing methods that simplify graph complexity 
through abstraction. Furthermore, integrating edge computing resources can enable distributed processing of 
route computations across multiple nodes. We also envision the use of machine learning–based path planning, 
particularly reinforcement learning, to dynamically adapt to changing traffic patterns and charging station 
availability. These enhancements aim to ensure real-time responsiveness and efficiency in large-scale deployment 
scenarios.

Fig. 11.  Illustration of the optimal paths for the EV/CS allocation problem provided by Dijkstra algorithm 
(Case#2).

 

EV# Starting at node# Nearest CS# Position node of the nearest CS Shortest path Shortest path cost

EV1 38 CS2 33 38 45 33 9

EV2 16 CS3 21 16-21 18

EV3 19 CS5 46 19-22-46 12

EV4 27 CS4 15 27-15 812

EV5 34 CS5 46 34-46 13

EV6 48 CS4 15 48-9-15 5

EV7 28 CS5 46 28-50-46 23

EV8 42 CS3 21 42-21 3

EV9 36 CS5 46 36-22-46 9

EV10 49 CS1 47 49-32-47 6

Table 8.  Optimal paths and EV/CS allocation for case#2.
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A major limitation of this study is the absence of experimental validation or detailed simulation results. This 
is due in part to the complexity of deploying drone-based systems for critical infrastructure support, which 
involves not only technical development but also adherence to strict aviation safety standards and regulatory 
protocols. Future work will focus on developing simulated environments to model realistic drone behaviors, 
communication latency, edge processing loads, and route allocation efficiency, while also incorporating real-
world constraints imposed by aviation authorities and urban planning considerations.

Conclusions and future directions
With the large-scale adoption of EVs worldwide, operational issues such as the limited number of CSs being 
deployed in urban areas and the relatively long charging time are being faced nowadays. From economic and time 
perspectives, the installation of CSs is not an easy task. In addition, decreasing EV’ charging time is challenging 
because of grid stability and the high probability of battery deterioration. Therefore, the number of CSs cannot 
expand quickly, and the charging time cannot be shortened easily. Under such conditions, the unique remaining 
solutions may be built around optimizing the use of charge and the scheduling of the recharging operation.

To contribute to this domain, this paper develops a framework including three components, namely, load 
profile forecasting, optimal path planning and fleet of drones to assist the EV users in selecting the best CS. 
The main focus of this paper was on the first two components. The load profile prediction at the CS level was 
performed based on a nonlinear autoregressive model (NARX) and the path planning was based on Dijkstra’s 
algorithm. The experimental results have shown that the proposed algorithm for ahead load forecasting 
is efficient. Additionally, optimal path planning has provided good feasible paths toward optimal CSs. Once 
combined, the proposed approach components enforced by information about the CSs availability and the traffic 
situation in terms of crowd analysis, may assist the EV driver (or the EV itself if it is autonomous) to select the 
best CS. However, the findings of this paper may be strengthened by considering the user preferences (such as 
selecting CSs existing in its current route) and considering a shorter horizon for the forecasting at the CS level.

Future work will focus on several key areas to enhance and validate the proposed framework. First, we plan 
to develop high-fidelity simulation environments that model large-scale urban deployments, including dynamic 
EV flows and charging demand. This will allow for performance benchmarking under realistic conditions. 
Second, more scalable path planning algorithms, such as heuristic (e.g., A*) or learning-based approaches, will 
be explored to improve computational efficiency. Third, the integration of regulatory considerations related to 
drone operations (e.g., airspace restrictions, safety protocols, and licensing requirements) will be considered. 
Finally, we aim to prototype a decentralized architecture leveraging edge computing for real-time data processing 
and decision-making, which will help assess latency, fault tolerance, and robustness in practical settings. These 
improvements will significantly advance the feasibility and deployment readiness of the proposed system.

Data availability
The data used in this study are included within the manuscript. The data used for implementing the forecasting 
algorithms are available at https://data.mendeley.com/datasets/5zrtmp7gwd/2.
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