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The widespread adoption of Electric Vehicles (EVs) presents new challenges for efficient and timely
access to Charging Stations (CSs), particularly under constraints of limited availability and variable
demand. The current investigation addresses the EV charging station allocation problem, aiming

to guide EVs to optimal CSs based on real-time and forecasted system dynamics. An integrated
framework that combines load profile forecasting, optimal path planning, and drone-assisted edge
computing is proposed to support decision-making. Specifically, a Nonlinear Auto-Regressive with
Exogenous inputs (NARX) model is used to predict future load profiles at CSs, enabling proactive
management of charging demand. To determine the most accessible stations, Dijkstra’s algorithm

for shortest-path computation based on the EV’s current location and the locations of the CSs around
is applied. Furthermore, drones with lightweight edge computing algorithms enabled real-time data
exchange between CSs and EVs, providing up-to-date information on slot availability and local crowd
conditions. For the forecasting component, the NARX model has provided a correlation coefficient

of 90% for the CS real data collection. Dijkstra’s algorithm was employed to effectively optimize the
routing of EVs to their nearest charging stations by determining optimal shortest paths. The simulation
results demonstrate that the proposed approach significantly enhances EV allocation efficiency while
reducing both waiting times and travel distances. Further research is needed to address regulatory and
logistical challenges associated with drone deployment in real-time applications.

Keywords Electric vehicles, Charging station allocation, Load profile forecasting, Nonlinear auto-regressive
with exogenous inputs, Optimal path planning, Dijkstra’s algorithm
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CSs Charging stations
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LSTM Long short-term memory

Light-GBM  Light gradient boosting machine
MINLP Mixed-integer non-linear programming
MEC Mobile edge computing

MSE Mean square error

MAE Mean absolute error
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MPC Model predictive control

nRMSE Normalized RMSE

NAR Nonlinear autoregressive

NARX Nonlinear Autoregressive with eXogenous inputs
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RNN Recurrent neural network

RMSE Root MSE

RL Reinforcement learning

RF Random forest

RA-RRT* Route-assisted rapid random tree

SoC State of charge
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Study background

Electric vehicles (EVs) have emerged as a transformative solution in the global shift toward sustainable and
environmentally friendly transportation. Unlike conventional internal combustion engine vehicles, EVs rely on
electric power stored in batteries, resulting in significantly lower greenhouse gas emissions, reduced dependence
on fossil fuels, and quieter operation!. In addition, EVs are known for their reduced maintenance requirements.
In this perspective, EVs can significantly mitigate climate change impacts, especially if powered by renewable
energy sources such as solar panels. This advantage, combined with technological advancements, supportive
government policies, and increased environmental awareness, has driven widespread EV adoption. However,
the global transition to EVs faces challenges, particularly in developing charging infrastructure and managing
charging operations.

Charging infrastructure challenges

The rapid development and the growing adoption of EVs have posed new concerns for the almost stakeholders
including the EVs’ owners, the charging infrastructure managers, the aggregators, the electric grid operators, and
the relevant decision-makers®. As EVs become increasingly favorite car user option, their success depends not
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only on manufacturing technology but also on the effectiveness and accessibility to their supporting logistical
infrastructure, including charging stations (CSs). EVs charging infrastructure plays a critical role in enabling
widespread use, yet it faces several pressing challenges. Firstly, the spatial distribution of CSs is often uneven,
with urban areas better served than rural or suburban regions. Secondly, the current infrastructure struggles to
keep pace with the rapidly growing EV fleet, leading to congestion and long waiting times at CSs. Additionally,
many CSs lack efficient energy management systems, resulting in inefficient utilization and potential overloading
of local power grids. Technical issues such as varying charging standards, insufficient real-time information
on CSs availability, and the absence of predictive analytics for demand forecasting further complicate the user
experience. These limitations underscore the need for intelligent, scalable, and future-proof solutions to ensure
that EV charging infrastructure can support the next phase of sustainable mobility.

The problem of EVs allocation to charging stations (CSs) is inherently multi-dimensional, involving temporal,
spatial, and computational complexities. Indeed, EVs must be routed to suitable CSs based on geographical
proximity, the dynamic availability of charging slots and the forecasting of energy demand at each station. A
simplistic shortest-path strategy may lead to congestion or excessive wait times if the nearest station is already
overloaded. Key challenges include: (1) Real-time availability uncertainty since charging station occupancy
can change rapidly, requiring real-time information sharing; (2) Forecasting energy load. Indeed, accurate load
forecasting is crucial, as unplanned EV arrivals during peak demand periods can result in significant charging
delays; (3) Path optimization under uncertainty for which deciding on a charging station based purely on
distance ignores critical factors like expected waiting time or crowd density; and (4) Scalability of data processing:
centralized systems face significant performance limitations when processing large-scale data in real time. To
address these challenges, the present framework integrates load profile forecasting using NARX models, optimal
path planning with Dijkstra’s algorithm, and drone-based edge computing for real-time, decentralized decision
support. This holistic approach aims to provide EVs with actionable information to make informed charging
decisions in dynamic environments with space-time dependencies.

While the proposed framework incorporates drone-based edge computing for real-time EV-CS
communication, this component remains theoretical and was not fully implemented in the current evaluation.
Keybarriers to full implementation include regulatory and logistical challenges, specifically airspace authorization
requirements, public safety policies, and operational constraints associated with UAV deployment in urban
environments. This study’s scope emphasizes solutions compatible with current infrastructure limitations.

Motivation

As EV adoption rises, new challenges emerge, particularly around establishing efficient, feasible/optimal, and
intelligent allocation of EVs to CSs. Therefore, EVs’ owners should efficiently participate in any effort aiming to
improve the charging ecosystem and contribute to the optimal scheduling®. Optimal allocation of CSs to moving
EVs has become a cornerstone of EV infrastructure planning and management. This ensures users’ needs are
met while maximizing network efficiency and reliability. For instance, a recent survey paper* investigated the
problems related to control and forecasting aiming to improve the charging operations based on emerging
technologies such as data-driven approaches and machine learning (ML). In the context of a deregulated energy
market, the price of electricity is also important and impactful®. To reduce the cost, save time, and increase
the life-time of the EV battery, efficiently forecasting the price of charging is also critical for all EVs charging
ecosystem components®. To meet the rising charging needs, effective EV to CS allocation requires a multifaceted
approach involving load profile forecasting at the CS level, optimal path planning for EVs in low State of Charge
(SoC), and real-time computational support at the various devices/equipment and enablers level. Traditional
approaches for station allocation have primarily relied on static parameters, such as population density,
proximity to main highways, and estimates of average daily usage. However, the rapid evolution of data analytics,
machine learning, and the Internet of Things (IoT) has created opportunities to enhance these methods by using
predictive models, real-time data analysis, and path optimization. In fact, as opposed to the classical charging
problem where vehicles are to be charged during their parking time (usually during night hours), dynamic
EV charging is requested in real-time when EVs are on the road while facing a shortage of charge. Under such
circumstances, EVs may need assistance from other parties playing the role of enablers. The EV drivers should
therefore be alerted about their vehicle battery SoCs in real-time. Once the SoC reaches a minimum threshold,
an optimal (not necessarily the nearest) CS as well as the optimal path he should follow to reach the allocated CS’
should be assigned. By leveraging data on electricity demand at the CSs level, road patterns, and vehicle energy
consumption, advanced forecasting models and path planning algorithms can assist in determining future
demand and establish optimal station allocation that aligns with both current EV SoC and its short-term need
for charging. Additionally, EVs’ relatively short driving range and dependence on accessible CSs necessitate an
approach that accounts for route planning and energy consumption patterns. This may enable drivers to access
charging facilities with minimal deviation from their planned paths®. To ensure efficient charging operations,
several attributes related to load and energy storage should be considered carefully. The EV charging behavior
and load have randomness and uncertainty, making them affected by many factors. Road network structure
(rectilinear and curvilinear paths), traffic congestion, CSs distribution, driving path, travel destination, initial
SoC and even the driver(s) psychology and level of anxiety are the most relevant attributes’.

In the current landscape, integrating emerging technologies such as drones'®!!, Internet-of-Things (I0T)*,
servers and Mobile Edge Computing (MEC) technologies are important to process and analyse data related to
EVs charging locally and globally'®. Meanwhile, urban and high-traffic areas exhibit data latency that could be
detrimental for the efficient operation. Therefore, integrating those contributors may help in improving the EVs
ecosystem. Via Edge computing devices, computational power is brought closer to EVs and CSs, providing real-
time processing capabilities that reduce the need for centralized data centres and minimize data transfer delays'*.
Drone-enabled edge computing can support a wide range of functionalities in EV charging infrastructure,
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from monitoring CSs availability and energy demand to providing real-time updates on route crowds by
accurately surveying the urban area traffic around the CSs'>. By deploying a fleet of drones, it becomes possible
to dynamically manage charging station resources and optimize power distribution based on real-time data.
Additionally, using drones with high-resolution cameras and lightweight computer vision algorithms may assist
the CS allocation by efficiently surveying traffic congestion, mainly around CSs!®. To contribute to the effort of
improving the EVs’ charging operations, the current paper introduces a comprehensive framework to efficiently
assign any EV needing charge to the “best” charging station by involving new technologies and algorithms. The
proposed solution integrates path planning optimization at the vehicle level with energy management strategies
at the CS level.

Research gap and study contributions

The primary goal of this study is to present a comprehensive approach integrating a fleet of drones, load profile
forecasting at the CSs and an optimal path planning algorithm to support informed decision-making for
optimally allocating EVs to CSs in a dynamic real-time context. The main aim of this study is to develop the
overall architecture and contribute to provide insightful solutions for alleviating the assignment problem already
complex even in a static context, as it involves many constraints. Therefore, the main contributions of this study
can be summarized as follows:

« This study introduces a holistic and intelligent framework that addresses the complex and dynamic problem
of assigning EVs to CSs in real-time. Unlike static or offline methods, this framework integrates multiple
cutting-edge technologies to enable smart, context-aware decision-making. The system combines forecasting
models, path planning algorithms, and mobile edge computing, facilitated through drones, to dynamically
evaluate and respond to rapidly changing conditions such as station availability, traffic patterns, and load
demands. This comprehensive and modular architecture allows for adaptive behavior in real-world urban
environments, significantly enhancing the responsiveness, efficiency, and scalability of EV charging logistics.

« A major contribution of this study is the implementation of a load forecasting mechanism using the Non-
linear Auto-Regressive with Exogenous inputs (NARX) model. This predictive tool enables the system to
anticipate future charging loads at individual CSs by accounting for historical usage patterns, time-of-day
effects, and other external inputs. Accurate ahead-of-time load forecasting allows the system to proactively
steer EV's away from stations that are predicted to be overloaded or congested, thereby reducing queue times
and mitigating the risk of charging delays. This forecasting approach empowers infrastructure operators and
EV users alike to optimize resource allocation and improve overall system reliability.

o To further support the decision-making process of EV drivers, the study incorporates a path optimization
component based on Dijkstra’s algorithm. This robust shortest-path algorithm is adapted here to calculate the
most efficient route to candidate CSs while considering geographic proximity. By integrating this path plan-
ning capability with real-time station data, the system helps drivers avoid unnecessary detours and ensures
a balance between minimizing travel distance and maximizing the likelihood of successful, timely charging.
This component plays a crucial role in enhancing user convenience and reducing both travel time and energy
waste.

« The framework also pioneers the use of drone-assisted edge computing as a novel solution for real-time data
collection and dissemination. Drones equipped with lightweight processing capabilities act as mobile edge
nodes that continuously gather, process, and relay information about CS availability, crowd levels, and local
traffic. This decentralized approach ensures low-latency communication between infrastructure components
and the EVs. The use of drones not only expands the spatial coverage of information networks but also allows
for quick adaptation to dynamic environmental conditions, such as unexpected outages or surges in demand.
This innovation enhances system agility and supports more informed, balanced decisions by the EVs’ drivers.

In the present study, the focus will be on the two first components, namely, the load profile forecasting and the
path planning. The fleet of drones as part of the proposed comprehensive approach will not be considered for
technical challenges related to regulations on using drones and logistical reasons.

Paper organization

The remainder of this paper is organized as follows. “Material and methods” section presents the literature
review, discussing existing works on EV charging infrastructure, load forecasting, demand side management
(SDM) and path planning with focus on key research gaps. “Data records” section describes the materials
and methods used in the proposed framework, including the NARX model for load forecasting and Dijkstra’s
algorithm for optimal route planning. “Results and discussion” section outlines the datasets utilized for
conducting the forecasting part. “Conclusions and future directions” section presents the experimental results
and analysis, evaluating the framework’s performance through multiple metrics including forecasting accuracy,
travel efficiency, and decision responsiveness. The proposed approach is benchmarked against baseline methods.
Section 6 provides final conclusions from the investigation summarizing the main findings and proposing future
research directions, such as enhancing scalability, developing more advanced prediction models, and integrating
with smart grid technologies.

Literature review
The following section presents a critical review of literature addressing load profile forecasting at charging
stations, demand-side management, and path planning optimization.
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Load profile forecasting

Focusing on the short-term load forecasting of EV-CSs using machine/deep learning techniques®?, the following
recent articles are reviewed, while highlighting various aspects, when available, such as: the statistical, machine
learning, deep learning, or hybrid method being used, the case study being investigated, inputs/features being
selected while developing the forecasting model, prediction horizon, performance metrics to evaluate the
goodness of the built-forecasting models, and main findings obtained.

For instance, one of the objectives of'7 was to, indirectly, estimate solar PV power generation and, directly,
estimate the corresponding EV charging demand by utilizing three deep learning techniques, namely Recurrent
Neural Network (RNN), Long Short-Term Memory (LSTM) (alongside its variants, including vanilla, stacked,
and bidirectional), and Gated Recurrent Unit (GRU). Once the forecasts were obtained, the second objective
was to exploit them in identifying the optimal capacity of battery storage needed to support the EV charging
infrastructure. Hourly solar PV power generation data (15 kWp capacity for one operational year) and 15-
min EV charging-demand data at university facilities were used to conduct the forecasting tasks. The latter
comprises of various parameters, such as timestamp, EV ID, CS, power required, etc. were used to develop the
forecasting models. Standard performance metrics, including the Mean Square Error (MSE), Root MSE (RMSE),
and Mean Absolute Error (MAE) were used to evaluate the effectiveness of the investigated forecasting models.
Results showed that a simple RNN and bidirectional LSTM were superior to other techniques investigated for
forecasting the solar PV power generation and EV charging demand, respectively.

The authors in'® examined three time series models to directly predict electricity demand of EV CSs, namely
Auto Regressive Moving Average (ARMA), Auto Regressive Integrated Moving Average (ARIMA), and Seasonal
Auto Regressive Integrated Moving Average (SARIMA). Dataset of EV charging activities from two sources were
used to develop the forecasting models: public data on EV charging events in Colorado, USA for four operational
years and EV charging data from ChargeMOD terminals in Kerala, India for several operational months of
various configurations and targets (for technical and economical perspectives). Both sources comprise various
parameters used while developing the forecasting models, such as start and end timestamp of charging events,
total duration of charging events, and energy consumption in kWh. Standard performance metrics, including
the RMSE, MAE, and Mean Absolute Percentage Error (MAPE) were used to evaluate the effectiveness of the
investigated forecasting models. Results indicated that SARIMA was superior to other techniques in terms of
forecasting accuracy.

The authors in® studied the challenges of predicting the short-term EV stations’ charging power caused
by the randomness and uncertainty of user behavior. Specifically, the authors proposed a fusion prediction
model integrating time-series and nonlinear attributes using Partial Least Squares Regression (PLSR) and Light
Gradient Boosting Machine (Light-GBM), whose hyper-parameters were optimized using Bayesian methods for
enhanced performance. The RMSE, MAE, and MAPE were used to assess the prediction accuracy of the proposed
approach. Experimental investigation using historical real EV charging load data!® showed the superiority of the
fusion prediction approach compared to each individual model and other benchmarks (i.e., Backpropagation
Neural Network (BPNN), Convolutional Neural Network (CNN), and LSTM) in accurately predicting the EV
charging power, thereby ensuring an optimal scheduling of EV/CSs as well as a safe operation of the power grid.

In?, a multi-feature data fusion-based load forecasting approach for EV CSs using an LSTM forecasting
model was proposed. The proposed model incorporated historical weather conditions, such as wind speed,
ambient temperature, and relative humidity, as crucial inputs with different lags to enhance the predictability of
the LSTM model. The results demonstrated the effectiveness of the data fusion strategy, with the MAE used as
the performance metric.

The authors in®! examined the effectiveness of various data-driven forecasting techniques, ranging from
simple methods (e.g., linear regression) to more advanced machine learning models (e.g., neural network,
ensemble methods such as Bagging, Gradient Boosting, Ada Boosting, and RF) and deep learning models (e.g.,
CNN, LSTM) models. All models were evaluated against a naive model, and a traditional baseline forecasting
approach. Based on data from Charge pilot system, a charging and energy management system, was used to
evaluate the models’ performance, comprising over 350,000 charging sessions from more than 500 sites. Multiple
features and performance metrics were used to develop the forecasting models, RMSE, normalized RMSE
(nRMSE), MAE, which mean fundamental scaled error, coefficient of determination (R?), as well as pinball and
interval scores for the probabilistic forecasting evaluation. Among the models investigated, Ada Boosting and
RF demonstrated the most robust forecasting results.

The study conducted in?? proposed a novel intelligent grid EV charging scheduling and energy management
approach by integrating a Genetic Algorithm (GA), i.e., to optimize EV charging demands while minimizing
peak grid loads, GRU, i.e., to accurately predict EV charging demands and grid load conditions, paving the way
towards effective optimization of EV charging schedules, and Reinforcement Learning (RL) algorithm, i.e., to
minimize grid energy costs while meeting EV charging demands, thereby ensuring effective an overall energy
management. Four datasets were used to evaluate the effectiveness of the proposed approach (GA-GRU-RL):
Pecan Street, NREL, ChargePoint, and UCI. Various performance metrics from the literature, such as accuracy,
recall, F| score, and AUC, were used to assess its effectiveness. Results demonstrated the superiority of the
proposed approach, though certain limitations were noted.

In?3, a comparison between various deep learning techniques for the EV charging load forecasting problem
up to 72 h ahead was conducted. Specifically, LSTM, GRU, hybrid CNN and LSTM, hybrid CNN and GRU,
multivariate LSTM, and multivariate GRU models were investigated and effectively compared, with K-Nearest
Neighbor (KNN), Decision Tree (DT), Random Forest (RF), and Support Vector Machines (SVMs) used as
benchmarks. The study utilized a publicly available dataset comprising data from over 30,000 EV charging
sessions collected from various charging sites in California, USA?%. The dataset included various features for
developing forecasting models, such as timestamps and energy delivered in kWh. The RMSE and MAE were used
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to assess the models’ effectiveness. Results showed that the multivariate LSTM and GRU models were superior
in terms of prediction accuracy. Similarly,?> developed a forecasting model for EV charging requirements across
different forecasting horizons, including 1-h ahead, day-ahead, and week-ahead predictions, using ANN and
LSTM models. The study utilized a real dataset extracted from the Adaptive Charging Network at the California
Institute of Technology, USA. Results demonstrated that the LSTM model outperformed the ANN model in
terms of RMSE across the various forecasting horizons investigated.

Researchers in?® adopted the deep learning LSTM model to forecast the charging demand/task of EV CSs
and proposed a comprehensive optimization model addressing charging costs, battery degradation, and user
dissatisfaction. The model, formulated as a Mixed-Integer Non-Linear Programming (MINLP) problem,
integrates traffic uncertainty, facility limitations, and time-of-use electricity prices. The proposed model showed
superior performance and effectiveness in simulations compared to existing methods.

On the other hand, there are other indirectly related research works where the contribution of forecasting-
based machine/deep learning is shown effective in optimizing the scheduling of EV CSs. For instance,?” adopted
an ANN-based forecasting model, developed using the Levenberg-Marquardt training/learning algorithm, for
short-term forecasting of solar PV power generation and the state of charge of the storage battery in a solar
PV-powered EV charging station for decision-making perspectives. Similarly,?® implemented an ANN-based
forecasting model equipped with the Levenberg—Marquardt algorithm to effectively estimate energy production
from a 65-kW solar PV system integrated with a charging station featuring charging points of varying power
levels. Specifically, the ANN was used to estimate the weather data, from which the associated energy generation
was subsequently computed. The authors in? developed a novel design approach that encompassed evaluating
and analysing various solar irradiance prediction models, forecasting day-ahead solar PV power generation,
both using ANN-based models and other techniques from the literature, and optimizing EV charging schedules
using Energy Storage Systems (ESSs). The study in* explored Al-driven energy forecasting for EV charging
infrastructure by investigating the capabilities of various forecasting techniques in accurately estimating solar
and wind energy generation for EV CSs.

Collectively, these efforts demonstrate the effectiveness of AI-driven forecasting solutions in supporting EV
CSsscheduling and decision-making processes. In practice, the impact of forecasting accuracy (or interchangeably,
imperfect predictions) on EV charging scheduling costs is crucial and should also be considered. The uncertainty
in EV arrival times, departure times, and charging volumes are potential causes of such imperfect predictions.
To address these sources of uncertainty,?! proposed a risk-limiting charging scheduling approach using chance-
constrained optimization in an offline setting. The authors developed a Model Predictive Control (MPC)
approach for online scheduling of EV CSs. The obtained results demonstrated the significance of incorporating
accurate forecasting and robust optimization techniques to enhance EV CSs’ scheduling efficiency.

Demand side management

DSM has become a pivotal strategy in addressing the challenges posed by the increasing integration of EV's into
power grids. As EVs  adoption accelerates, EVs need to be recharged when they are out of use. Such recharging
may be performed during nighttime or when drivers are occupied by other tasks in various locations (malls,
restaurants, etc.). Uncoordinated charging can lead to significant peak loads, stressing grid infrastructure, and
potentially long waiting time®2. DSM offers a suite of techniques aimed at optimizing energy consumption
patterns, thereby ensuring grid stability and efficiency. In the context of EVs, DSM encompasses strategies such as
smart charging, where EV charging is scheduled during off-peak hours, and vehicle-to-grid (V2G) technologies
that allow EVs to discharge energy back into the grid during high-demand periods. These approaches not only
mitigate the risk of grid overload but also enhance the utilization of renewable energy sources by aligning
charging activities with periods of high renewable generation. Researchers such as in*, have developed efficient
management strategies based on inference fuzzy systems (IFSs) to manage the available power at a parking lot
level. Recent studies have highlighted the efficacy of DSM in managing EV charging demands. For instance,
a comprehensive review emphasizes the role of DSM in facilitating the integration of EVs into smart grids,
underscoring the importance of coordinated charging to prevent grid instability>*-3°. Furthermore, advanced
control methodologies, such as model predictive control, have been proposed to dynamically adjust EV charging
based on real-time grid conditions, electricity prices, and user preferences, thereby optimizing both grid
performance and user satisfaction®”.

From an operational perspective, DSM is a crucial component that serves as a foundational element in the
sustainable integration of EVs into power systems. By leveraging advanced forecasting, optimization algorithms,
and real-time communication technologies, DSM enables a more resilient and efficient energy ecosystem that
accommodates the growing demands of electric mobility in terms of charging needs.

Path planning

Like the load profile forecasting, optimal path planning of EVs seeking charging (while riding) is crucial.
Classical path planning, although efficient in static circumstances, may fail in dynamic conditions since the
shortest path may not be the best way that drives the EV to the best charging station because of other constraints
like the crowd and the route nature. In this sub-section, we will survey few studies tackling path planning, while
concentrating on the trade-off between route feasibility and optimality.

Based on Martin's algorithm, the study in* provided EV users by a tool to select CSs and charging paths. The
bidirectional version of the algorithm was reported to be efficient in selecting three candidate CSs. However,
the main limitation of this approach is the computational burden induced by the calculation of the minimal
distance between each CS and each node in the road network. This issue may be accentuated when the number
of EVs seeking charging and the number of nodes in the network are relatively high. The study in** proposed
a general framework including information exchange between CSs, EVs and other parties involved in the
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traffic management. The study has been reported to help the EV user in selecting the best station. However, the
objective functions optimized (charging cost, waiting time, etc.) for better charging experience were considered
separately which may limit the inherent multi-objective aspect of the problem. The authors in*’ have used the
Route-Assisted Rapid Random Tree (RA-RRT*) algorithm for searching the most feasible routes and aggregators
stopping points while considering SoC constraints. Although the results were reported to be acceptable, random
tree algorithms may face challenges when used in a real-time because of each computational complexity. The
study in*! has investigated a distributed Ant System (AS) algorithm to find the best CSs to which an EV may be
driven. Although the usefulness of the study findings, the main limitation of this study is that it doesn’t consider
the state of the road and that it is based only on the minimal path regardless of its hardness. In our study, Dijkstra
algorithm will be used for path planning of EVs in need of charging during their trip since this algorithm is
known to be lightweight and computationally tractable*.

Material and methods

General framework of EV/CS allocation problem

In this paper, a general framework for the complex allocation of EVs in need of charging while riding, to the
suitable CSs, is presented (Fig. 1).

The proposed unified framework is expected to improve both operational efficiency and user experience
within the EV charging ecosystem. Unlike traditional approaches relying on static or limited data inputs, the
present approach is inherently dynamic since it considers the EV needing charging is currently in road and
extract real-time data about the traffic situation and the CSs current charging loads. In what follows, details of
the framework components as well as their expected roles in the charging allocation problems are provided:

o Load profile forecasting at the CSs (mainly in the short term) is crucial to anticipating fluctuations in electric
load demand across different CSs and at different time periods. The main focus of this study is allocated to
the real-time assistance of EVs to reach the optimal CS in its immediate surrounding or in the way of its
current destination. In order to be efficient and informative, forecasting load profile should be conducted at
all CSs in the covered urban area. The prediction of load is beneficial for the CS owner (helps him to manage
the energy resources efficiently and therefore satisfy the customers’ needs) and for the EV (assist the driver
about the load being requested at different CSs to prevent delays and waste of time if seeking charging from
an overloaded CS).

o Path planning is significant in the context of EV/CS allocation, as it directly affects the way an EV needing
charging to efficiently reach the suitable CS. Path planning in urban area is inherently complex due to the road
network structure and the number of vehicles. Additional complexity is added when considering the dynamic
nature and the urgent need of charging. Effective path planning ensures that EV drivers can reach CSs with
minimal cost either in traveling time or satisfaction of the constrained current SoC that may not allow the EV
to reach the suitable CS.

« Drone-enabled edge computing represents a transformative innovation in the management of EV charging op-
eration in urban areas. As mobile computing units, fleet of drones equipped with edge computing capabilities
can collect, process, and transmit data to optimize EV/CS allocation. In our framework, drones can assist in
monitoring charging station availability, providing real-time data about crowd management which may assist
the EV driver to select the best CS convenient to his needs. Additionally, drones can also collect information
on road conditions around CSs including weather patterns. By operating at the edge of the network, drones
reduce the need for centralized data processing and offer a decentralized solution for maintaining data integ-
rity, security, and responsiveness across the charging infrastructure.
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Fig. 1. General framework of EVs/CSs allocation problem.
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« As the focus of this study is the implementation of an approach to allocate EVs seeking for charging to the
optimal CSs, this section will detail the two main components of the proposed solution. Namely, the load
profile forecasting at the CS level and the optimal path planning.

In the proposed framework, path planning and load forecasting are treated as distinct yet complementary
components. The path planning module utilizes Dijkstra’s algorithm to identify the shortest feasible paths from
the electric vehicles (EVs) to candidate charging stations. In parallel, a Nonlinear Auto-Regressive model with
exogenous inputs (NARX) is employed to forecast the near-future load profiles at each charging station, offering
predictive insight into energy consumption and slot availability. While these modules operate independently,
their outputs are jointly considered during the EV’s decision-making process, allowing the selection of charging
stations that are not only geographically accessible but also operationally optimal. For instance, an EV may
bypass the nearest station if its predicted load suggests potential delays. Although our current implementation
does not embed the load forecasting directly into the path planning algorithm, such as through load-weighted
graph edge adjustments, this modular structure offers a flexible foundation for future integration of these
components into a unified optimization framework.
The proposed general framework can be run according to the following pseudocode (Algorithm 1).

Input:

EV _list: List of Electric Vehicles needing recharge

CS_list: List of Charging Stations (CSs) in the considered urban area

G: Road network graph (nodes and weighted edges)

Historical Loads: Historical load data for each CS

Exogenous Data: External variables

Output:

Assignment of each EV to an optimal CS

9. Begin

10. For each CS in CS_list do

11. Run Algorithm 2

12. For each EV in EV _list do

13. Run Algorithm 3

14. Sort the CSs in the CS_list according to their distance to the considered EV
15. Compromise the distance and the forecasted profile and make a decision
16. Assign EV to Best CS

17. End

PRANR LD =

Algorithm 1. EV_CS_Assignment_Framework.

As described in the above pseudocode, each time an EV sends a request of recharging and its current location,
the principal algorithm runs Dijkstra’s algorithm to find and later sort the CSs according to their respective
distances. In addition, it calls the forecasting algorithm and runs it for all CSs. A compromised combination of
distances and forecasted load profiles is then sent to the EV to select the best CS corresponding to its current
situation in terms of remaining charge and CS’s probable waiting time.

Load profile forecasting

This subsection illustrates the overall methodology proposed to forecast the charging time (7") and ahead
charging energy (E) for an EV-CS allocation (as depicted in Fig. 2). The pseudocode of the forecasting task is
provided in Algorithm 2 below.

1. Input:

2. Historical Load: Past consumption data for one CS

3. Exogenous_Variables: External factors affecting load

4.  Output:

5. Forecasted Load: Predicted load for the next time interval

6. Begin

7. Initialize NAR/NARX Model with Historical Load and Exogenous_Variables
8. Train the model using available data

9. Forecasted Load < NARX Model.predict(next time interval)
10. Return Forecasted Load

11. End
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Fig. 2. The framework proposed in this work for forecasting EV charging time and energy.

Algorithm 2. ForecastLoadProfile.

Note here that the forecasting horizon is crucial since shorter is this horizon, better impact may it add to the
EV/CS assignment problem. In this study, we expect to investigate the feasibility/optimality of the forecasting
based on daily dataset. However, for better participation in the EV/CS allocation problem, the forecasting should
be performed for all CSs at a given urban area using large datasets preferably at the minimum horizon.

The overall collected dataset (X) of an EV CS utilized in this work is establishg#. Ssgeciﬁcaﬂy, it comprises the
charging events characterized by their agsociated remained feature values (i.e., M, Y, and W p) in inputs and
the corresponding response variables (7 or E) in outputs:

X = [Bﬁ?WD’ TE) (1)

For forecasting purposes, the predictors were used as inputs to a time series machine learning model while the
two target variables were considered individually, with a separate model developed for forecasting each target
variable. Specifically, two models were investigated, mainly due to ease of use, straightforward development,
convenient computational requirements compared to other existing time series models, and their proven
effectiveness in various engineering applications:

(1). Nonlinear AutoRegressive (NAR)
(2). Nonlinear AutoRegressive with eXogenous inputs (NARX).

Both are types of neural network models widely used in time series forecasting across various applications. The
former is a type of RNN commonly used to forecast a response variable (hereafter denoted as y) solely based on
its past values, considering an embedding dimension or feedback delay, d( Eq. (2)). On the other hand, NARX
model extends NAR by considering exogenous (i.e., external) input variables (hereafter denoted as ) such as the
variables available at hand, making it useful for systems influenced by both their history and exogenous (external)
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factors (Eq. (3)). Both consider the error/noise term, e(t), accommodating the unexplained or random variation
in the model’s output, thus covering factors not captured by the function f, as shown in Eq. (2) and Eq. (3) for
NAR and NARX models, respectively:

y@)=fyt—=1),...,y(t —d)) +e(t) 2
y@)=fy@Et-1,...,yt—d),z(t—1),...,z(t —d)) + e(¢) 3)

For the forecasting task, predictions were made for one-day ahead (forecasting horizon 1, H;) for the two
response variables: charging time (7") and charging energy (F).

The models were properly optimized in terms of the number of hidden neurons (/V;) and feedback delays
(d), with both parameters assumed to span the values from 1 to 10, representing their potential minimum and
maximum candidate values.

The overall dataset was divided into three distinct sets: (i) training, (ii) validation, and (iii) test datasets, with
random sampling portions of 60%, 20%, and 20%, respectively, for building, optimizing, and evaluating NAR
and NARX models.

Two performance metrics were employed to evaluate the effectiveness of the forecasting models: Root Mean
Square Error (RM SE) in kWh (Eq. (4)) and the Correlation Coefficient (R) in percentage (Eq. (5)). RMSE
measures forecasting accuracy, while R emphasizes the strength of the relationship between the forecasted
and true response values. Typically, lower RM S E and higher R values indicate the effectiveness of the built-
forecasting models. For each combination of N}, and d, the simulation was repeated 10 times, with different
random sampling of the dataset portions, and the performance metrics and their variability measured in terms
of the standard deviation (0 rarsE and o r) were computed on average. The optimal combination of N, and d
is then identified at which RM S'E is minimized.

2

RMSE = \/ZNVM v ) (4)

Nvaiia

N(Z‘L
> (ys = 9) (G5 — )

szi szd ~ =\ ? )
\/Z atid (g, —7)° DA y]_y)

where Nv 154 is the number of sampled-validation charging days, y; and g, are the j-th actual and forecasted
response values, respectively, and 3§ and ¥ are the average actual and forecasted response values, respectively.

To measure the effectiveness of the built and optimized NAR and NARX models, the typical naive forecasting
model is built and effectively compared with the performance obtained by the optimal models on the test dataset.
As a final remark, the computational efforts required for developing and optimizing the models were recorded to
assess the efficiency of the model development process.

Optimal path planning

For EV/CS allocation problem, finding the optimal path an EV should follow to reach the best CS is challenging.
In a dynamic context (as opposed to the static context where the route conditions are not considered), the
shortest path may not be the best due to traffic congestion or route nature (such as bent or upward sloped
routes). Under such conditions, optimal path-finding algorithms may be penalized if those conditions are well-
understood. However, in this subsection, the main algorithms used for optimal planning are summarized, and a
compromise choice of the best algorithm will be made.

For EV charging optimal path search, the shortest path algorithms consider a network where single-source/
single-destination problems focus on finding the optimal path between a starting node (location of the EV in
shortage of charge) and a target node (position of a CS) in a weighted graph. The three main algorithms used for
this purpose, along with their advantages and limitations, are summarized as follows.

Dijkstra’s Algorithm Its principle of working is based on iteratively exploring the shortest known path to each
vertex from the source®’. It uses a priority queue to efficiently select the next node with the smallest tentative
distance. Its main advantage is that it guarantees the shortest path in graphs with non-negative edge weights. Its
application is usually preferred for dense graphs**. Although its usefulness, Dijkstra’s algorithn'’s main limitation
is that it computes paths to all vertices, which may be unnecessary when interested in only a single destination*’.

Bellman-Ford Algorithm This algorithm uses relaxation to iteratively update the shortest paths by considering
each edge multiple times*S. It can handle graphs with negative edge weights and can detect negative weight cycles
and report their existence. Compared to Dijkstra’s algorithm, it is known to be slower, especially on dense graphs.

A*Search Algorithm Known as simply A* (Star), this algorithm combines Dijkstra’s algorithm with a heuristic
rule to prioritize nodes that are estimated to be closer to the destination®”. It may be efficient for single-source/
single-destination problems (like our problem). Its main limitation is that it requires a heuristic function, which
may not always be easy to define or compute.

As our EV/CS allocation problem is single-source/single-destination, Dijkstra’s algorithm will be used as a
compromised choice while considering its time complexity since the latter is proportional to the product of the
number of vertices and the number of edges. The interested reader to the algorithm details may refer to*? and the
references therein. The path planning algorithm proposed in this paper is provided in the following pseudocode
(Algorithm 3).
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1. Input:

2. G: Road network graph

3.  source: EV's current position

4. CS_nodes: List of charging station nodes

5. Output:

6. Distances: Mapping from each CS_node to its shortest distance from source
7. Begin

8 Initialize all node distances to oo, set Distance[source] < 0
9. Create priority queue Q and insert source node

10.  While Q is not empty do

11. u < Extract Min(Q)

12. For each neighbor v of u do // alt is an alternative distance
13. alt < Distance[u] + weight(u, v)

14. If alt < Distance[v] then

15. Distance[v] < alt

16. Update Q with new distance

17.  For each CS in CS_nodes do

18. Distances[CS] «— Distance[CS]

19.  Return Distances

20. End

Algorithm 3. ComputeShortestPaths.

Data records
The dataset used in this work for forecasting the charging energy demand is collected from*S. It comprises
17 parameters whose description and units are provided in Table 1. The dataset spans the period from 18th
November 2014 to 8th October 2015, with a total of 3395 charging events.

To gain further insights into the available dataset, Fig. 3 shows the distribution of charging events on a daily
basis from Saturday to Friday, spanning the study period.

Figure 4 shows the hourly distribution of the charging energy (in kWh), fitted with a Smoothing Spline (red
line) with SSE = 13981, R? = 99.80%, and RMSE = 51.1985 kWh. Figure 4 indicates two peaks of EV
charging during the day: one occurring around midday (between 12 and 14 PM) and the other occurring in

Feature Unit
The charging session ID -
Total charging energy kWh
The charging cost $

Charging starting date and time -

Charging ending date and time -

Charging starting time Hour

Charging ending time Hour

Total charging time Hour

Week day -

Charging hosted platform -

Distance m

User ID -

Charging station ID -

Charging location ID -

Manager vehicle -

Facility type -

Binary index of the week days (Sat to Fri) | -

Table 1. The description of the parameters available.
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Fig. 3. Distribution of charging events distribution by weekday.

the early evening (between 17 and 19 PM), reflecting the typical EV charging times aligned with daily traffic
patterns. It is worth mentioning that Fig. 4 only displays charging energy exceeding 50 kWh, for illustration
purposes.

For day-ahead forecasting, the following features are selected, while the remaining ones were excluded due to
irrelevance or redundancy, as they are already embedded within the considered features. Specifically, the selected
features are extracted and transformed into the form of daily charging events:

o Day of the year (feature 1, denoted as D). It represents the specific day of the month on which the charging
event occurred, e.g., 18 for the 18th of the month and so on, capturing daily patterns in the charging events.

o Month of the year (feature 2, denoted as M). It represents the specific month number of the year on which the
charging event occurred, e.g., 11 for November and so on, capturing monthly patterns in the charging events.

o Year identifier (feature 3, denoted as ). It represents the year identifier in which the charging event occurred,
e.g., 2014 and 2015, capturing yearly variations in the charging events.

o Week day index/label (feature 4, denoted as Wp). It assigns a label or index to each day of the week, e.g., 1
corresponds to Saturday and 7 corresponds to Friday, and so on, capturing weekly patterns in the charging
events.

o Total daily charging time (feature 5, denoted as T'). It represents the total daily charging time spent in hours.

o Total daily charging energy (feature 6, denoted as E). It represents the total daily charging energy spent charg-
ing in kWh.

Specifically, the charging events that occurred each day were aggregated into daily charging events for the purpose
of day-ahead forecasting of the charging time (7T") and energy (E) (i.e., response or dependent variables), based
on the day of the year (D), month of the year (M), year identifier (Y), and weekday index or label (Wp) (i.e.,
predictors or independent variables). The dataset was structured as a time series, and a data-driven machine
learning model was employed for the forecasting task, predicting 1 day (forecasting horizon 1) for the two
response variables, charging time and energy, T" and E, respectively. The established time series daily dataset
comprises N = 321 days, covering the charging events that occurred between November 18, 2014 and October
8,2015.

It is worth mentioning that there were no charging events on some days, and the associated charging time and
energy values were replaced with NaN for the subsequent analysis of the forecasting task. Specifically, 25.86% of
the data was missing (i.e., 83 days), while the remaining 74.15% was complete (i.e., 238 days).

Figure 5 shows the charging time (T) and charging energy (E) across the entire period of 321 days, including
the missing operational days. The following insights can be stated:

« Both features increase over time, highlighting the potential for an increase in EV charging events as time
progresses.
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Fig. 4. Distribution of charging energy by day hour with the fitted smoothing spline for the charging power
exceeding 50 kWh.

o The zoomed-in figure reveals cyclical charging patterns occurring at different times of the day, week, or across
the operational period.

To effectively identify the most influential features and their impact on the predictability of both charging time
and energy, Fig. 6 presents the Pearson correlation matrix for the six considered features. From the figure, the
highest correlation values with charging time and energy are observed for the month of the year (1), followed
by the weekday index/label (WWp), and then the year identifier (Y). In contrast, the day of the year (D) shows the
lowest correlation value of 0.06 and will therefore be excluded from the subsequent forecasting analysis.

Results and discussion
Load profile forecasting
Table 2 reports the optimal parameters (Nop¢ and dop¢) identified for each NAR and NARX models, along with
the optimal performance metrics and computational efforts on the validation dataset obtained for forecasting
the charging time (7") and the charging energy (E) one-day ahead. It is worth mentioning that the models were
developed using MATLAB R2024a, running on a personal computer whose processor is 11th Gen Intel(R) Core
(TM) i5-1135G7.

Looking at Table 2, one can notice the following:

o NARX model achieves the best forecasting accuracy for both charging time and energy on the validation da-
taset. The model achieves an RM SE value of 17.08 h (~ 11.52% percentage error compared to the maximum
charging time value recognized in the study period) and 30.27 kWh (~11.68% percentage error compared to
the maximum charging energy value recognized in the study period) compared to those obtained by the NAR
model with values equal to 28.06 h and 54.30 kWh, for forcasting the charging time and energy, respectively.

o The NARX model, as expected, requires a larger number of hidden neurons to establish the mathematical
relationship between the input sets and the output, compared to the NAR model, which relies solely on the
historical values of the response variable.

o As expected, the computational effort required to develop and optimize NARX models is greater than that for
NAR model, due to the inclusion of additional exogenous (external) factors.
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Fig. 5. Daily charging time and energy over a period of 321 days, including missing operational days. The
zoomed-in figure highlights the cyclical charging patterns.

For clarification, Fig. 7 shows the evolution of the RMSE and R performance metrics versus the different
values of N and d. Figure 7a and b illustrate the evolution of RM SE against varying values of N (at dop:) and d(
at Nopt) candidates, respectively. Figure 7c and d display the evolution of R against varying values of N (at dop¢)
and d( at Nop:) candidates, respectively, for charging time (7°) forecasting, with an indication of the optimal
(minimum) RM SE value obtained and the corresponding R value. Similarly, Fig. 8 shows the evolution of
the two-performance metrics against the two variables for charging energy (F) forecasting. In Figs. 7 and 8,
one can observe, as discussed, NARX model requires a large number of hidden neurons to effectively establish
the relationship between the input sets and the output for charging time and energy, i.e., 10 and 8, respectively.

Once the NAR and NARX models are built and optimized, their effectiveness is evaluated against the typical
forecasting model in the literature, naive, on the unseen test dataset across the 10 different simulation trials.
To robustly quantify the goodness of the built models, the performance metrics and their associated variability
obtained across the 10 simulation trials are reported in Table 3, for completeness.

Looking at Table 3, one can state the following points:

o NARX model outperforms the forecasting accuracy achieved by NAR and Naive forecasting model for the
two response variables, as expected, across almost the entire performance metrics.

o The variability obtained by NARX is larger than that obtained by NAR model for the two response variables,
as expected, due to the variability inherent in the additional exogenous (external) factors considered while
developing the model.

It is worth noting that the 60%, 20%, and 20% splits for training, validation, and test data were consistently
maintained across the 10 simulation trials when developing the NAR and NARX models to ensure a fair
comparison. Additionally, the differences observed in the Naive approach results across the two response
variables are due to the distinct optimal configurations identified for each model (NAR and NARX). These
differences led to varying test dataset splits, which in turn produced varied yet consistent outcomes for the Naive
forecasting approach.

For the sake of clarity, the best simulation trials (i.e., trial #9 for charging time and trial #8 for charging energy)
were selected to illustrate examples of the one-day ahead forecasts made by the NARX model for charging time
(Fig. 9a) and energy (Fig. 9b). Notably, there is a significant match between the true/actual and forecasted values
of both charging time and energy across the selected days. This alignment also highlights how effectively the
NARX model detects trends, confirming its accuracy in forecasting the two response variables.
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Fig. 6. Pearson correlation matrix for the six considered features.

NAR Charging Time (T") 1 1 28.06 Hours | 63.17 | 1.90
Charging Energy (E) |1 1 5430 kWh |65.46 |2.24
Charging Time (7°) 10 1 17.08 Hours | 88.38 | 3.92
NARX
Charging Energy (F) | 8 1 30.27kWh | 90.26 |3.64

Table 2. Optimal configuration of the NAR and NARX models for forecasting charging time and energy for
one-day ahead on the validation dataset over the 10 different simulation trials.

For completeness regarding the load profile forecasting of EV CSs, Table 4 presents a comprehensive
comparison between the proposed approach and other forecasting approaches reported in the literature. As
reported in Table 4, the reviewed studies cover a wide range of machine/deep learning and hybrid forecasting
approaches applied, for instance, to EV CSs, focusing on short-term EV charging demand and/or electricity
consumption. Specifically, two key points can be highlighted:

o the current study introduces a novel integration of ahead load profile forecasting using an NARX model,
integrated with optimal path planning via Dijkstra’s algorithm and real-time availability checking using light-
weight drone-based edge computing. In contrast, most of the reported studies focus mainly on improving
forecasting accuracy based on standard performance metrics, whereas the proposed framework of this study
extended to couple the forecasting outcomes with real-time decision-making and CS allocation strategies,
offering a more holistic approach that addresses not only forecasting accuracy but also practical operational
challenges, e.g., EV CSs availability, congestion, and optimal routing.

o It is crucial to emphasize that conducting a complete quantitative comparison across all literature studies is
inherently challenging due to the diversity of metrics employed, differences in datasets, variations in forecast-
ing horizons, and the specific system contexts investigated.
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d for charging energy forecasting.
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Forecasting model | Forecasting variable | RM SE[kWh] | o rasse[kWh] | R[%] | o r[%]
NAR Charging time (T") 29.4805 3.9477 61.54 |11.51
Charging energy (E) | 61.3683 7.7795 62.23 8.07
Nai Charging time (7) 30.0793 3.672 67.11 |11.35
aive
Charging energy (E) | 60.4392 6.9925 67.62 6.42
Charging time (7) 19.2406 5.5243 86.06 7.77
NARX
Charging energy (E) | 36.012 9.0286 86.62 6.59
Charging time (T) 33.598 4.163 60.12 8.80
Naive
Charging energy (E) | 65.0476 7.6878 57.94 | 12.78

Table 3. Performance metrics obtained by the optimal NAR and NARX models against those obtained by
naive forecasting model on the test dataset across the 10 simulation trials for the two response variables,
charging time and energy.

o Simulation Trial #9
e T I
104 ——True
L) e 1l —s—Foracakt
_;:3 80[-
Y r 3
ki G K /
:,_5 | .-/ ‘r |
£ 40 - s R | ! i .
. | 1N\ PO s f t\
20r = N v‘ﬁ'\ f* A W " '| .
L AAALACNT NI Y rikY 1
29-Nov-2014 15-Mar-2015 24+-May-20 09-Aug-2015
Dates
(a)
i Smmulation Trial #8
&9u] I | I ‘ =
—+—True
— 200 —'—F:r::al
z Veay
= 150- W -
G 1
:‘-‘: -0:'— ﬁ + ' =
1 |'
S0 "' ,-"‘\ & 1 -
(3 ¢ b
oLAce o g eec:::‘-:”\:cé '}’ : L
20-Nov-2014 L:-Feb-‘ﬂ 19-May ’3- 27-Aug-2015
Dates
(b)

Fig. 9. Examples of 1-day ahead forecasting of the (a) charging time (at a simulation trial #9) and (b) charging
energy (at a simulation trial #8) on the test data obtained by NARX model.

Optimal path planning

In this subsection, the efficiency of Dijkstra’s algorithm in supporting the optimal assignment of an EV to a CS
is illustrated through small-size case studies. The routes network is modelled as a directed graph composed of
nodes and edges with known weights (which is the case if the road network is well-established). Additionally, the
CSs locations are also known in advance which is the case of an established road infrastructure. We assume that
any EV seeking charging is positioned at a node of the network (the case where the EV is between two nodes is
not considered). We assume also that the remaining EV charge is able to drive it to any of the CSs and that the
information on availability of charging slots at all nearby CSs is communicated by the fleet of drones and that this
information can be shared with the EV (either the driver or the EV itself if it is autonomous).

To evaluate the proposed optimal path planning and EV-to-charging station allocation framework, we
constructed a set of artificial graph-based scenarios that simulate a simplified road network. These graphs
consist of nodes representing intersections or locations and edges representing roads with associated weights
(e.g., distance or travel cost). Charging stations were strategically placed at selected nodes, while electric vehicles
were randomly assigned to starting nodes. This synthetic setup was chosen to allow controlled testing of the
frameworK’s performance under varied and customizable conditions. It also enabled flexibility in modelling edge
weights, network density, and station distributions, parameters that would be difficult to manipulate in a fixed
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Developed/adapted forecasting approach

Forecasting variable(s)

Main results obtained for EV charging attributes

RNN, LSTM (various variants), GRU

Solar PV power generation
(indirectly), EV charging
demand (directly)

The best EV charging demand forecasting was obtained
using bidirectional LSTM

ARMA, ARIMA, SARIMA

Electricity demand of EV CSs

SARIMA model provides the most accurate EV charging
station power demand and revenue forecasts, in terms of
RMSE, MAE, MAPE

Fusion prediction model combining PLSR and Light-GBM, with
hyperparameter optimization via Bayesian Optimization

Short-term EV station charging
power

The proposed forecasting approach achieves superior
short-term EV charging load forecasting accuracy

20

Multi-feature data fusion-based load forecasting using LSTM model

Load forecasting for EV CSs

The proposed forecasting approach reduces the
EV charging load estimation error to 3.29% over
conventional LSTM approaches

21

Data-driven techniques: linear regression, neural network, ensemble methods,
deep learning models (CNN, LSTM); evaluated against a naive model and a
traditional baseline approach

EV charging demand / load
(based on ChargePilot system
data)

Ada Boosting and RF showed the most robust forecasting
performance based on metrics such as RMSE, nRMSE,
MAE, mean fundamental scaled error, R?, pinball score,
and interval scores for probabilistic forecasting evaluation

22

Integrated approach combining GA for optimization, GRU for demand and
grid load prediction, and RL for minimizing grid energy costs

EV charging demand and grid
load conditions

The proposed approach demonstrated superior
performance compared to other methods, evaluated
using accuracy, recall, F1 score, and AUC, although some
limitations were noted

23

Deep learning techniques: LSTM, GRU, hybrid CNN-LSTM, hybrid CNN-
GRU, multivariate LSTM, multivariate GRU; benchmarks: KNN, DT, RE,
SVMs

EV charging load (up to 72 h
ahead)

Multivariate LSTM and GRU models were superior in
terms of prediction accuracy, assessed using RMSE and
MAE

25

ANN and LSTM models for forecasting across multiple horizons (1-h ahead,
day-ahead, week-ahead)

EV charging requirements

LSTM outperformed ANN in terms of RMSE across all
investigated forecasting horizons

LSTM model for EV CS charging demand forecasting; combined with a
comprehensive optimization model formulated as MINLP addressing charging
costs, battery degradation, and user dissatisfaction, under uncertainty

Charging demand/task at
EV CSs

Superior performance and effectiveness in simulations
compared to existing methods

27

ANN-based forecasting model using Levenberg-Marquardt training/learning
algorithm

Short-term solar PV power
generation, SoC of storage
battery in a solar PV-powered
EV charging station

Effective forecasting for decision-making perspectives

28

ANN-based forecasting model using Levenberg-Marquardt algorithm to
estimate weather data and subsequently compute energy production from a
65-kW solar PV system integrated with an EV CS with varying power levels

Energy production from solar
PV system (based on weather
data estimation)

Effective estimation approach

29

ANN-based models and other solar irradiance prediction techniques;
combined with day-ahead solar PV power generation forecasting and
optimization of EV charging schedules using Energy Storage Systems (ESSs)

Day-ahead solar PV power
generation

Effective model evaluation and optimization approach

Al-driven energy forecasting techniques investigating solar and wind energy
generation estimation for EV charging stations

Solar and wind energy
generation for EV charging
infrastructure

Demonstrated the capabilities and accuracy of various
forecasting techniques

31

Risk-limiting charging scheduling using chance-constrained optimization
(offline) and MPC approach (online), both incorporating forecasting under
uncertainty

EV arrival times, departure
times, and charging volumes
(under uncertainty)

Results demonstrated the importance of integrating
accurate forecasting and robust optimization to enhance
scheduling efficiency

Table 4. Summary of recent studies from the literature on forecasting approaches developed/adapted to

forecast key aspects of EV CSs.

Parameter Value | Comment

Total number of nodes 15 This number represents a small-scale road network

Number of CSs 3 Deliberately selected in correlation with the network size

Number of vehicles 5 Number of vehicles in charging shortage

Maximum weight for edges (distance or travel time) | 25 E(;e(lil::rately selected to represent the travel time or distance between two adjacent

P . To prevent a fully connected network and simulate as accurately as possible a real
roportion of edges to remove 0.5 N . . S .

network, some edges were removed. More this value is high, more the network is sparse

Table 5. Case#1 network parameters.

real-world dataset. While this study focuses on validating the methodology in a controlled environment, future
work will involve applying the framework to real-world EV infrastructure data to further assess its scalability
and practical applicability.

Case#1 To illustrate the effectiveness of the proposed approach, a network composed of 15 vertices and
edges with random weights are generated and used (See Table 5). The adjacency matrix is deliberately chosen as
asymmetric which indicates that two adjacent vertices are connected via two roads with different weights. The
case study information is summarized in Table 5.

The road network was generated randomly with edges’ weights between 0 and the maximum weight of edges.
Additionally, the three CSs were positioned randomly at specific nodes of the network. The network adjacency
matrix as well as the positions of CSs are provided in Table 6 below.
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Nodes |1(CS3) |2 |3 [4(CS1) |5 |6 |7 |8 |9(CS2) |10 |11 |12 |13 |14 |15
1(CS3) |0 7 11 |0 0 |0 18 |15 | 14 0 |0 |9 |0 |0 |3
2 0 0 |8 |4 9 |0 |0 |0 |O 0 |6 [0 |O 3 10
3 0 8 |0 |0 0 (0 |0 |0 |O 0 |0 [22(21 1410
4(CS1) |24 0 (2410 8 (0 |0 |O 16 0 |6 |0 19 |0 18
5 0 4 |10 10 0 |6 |3 (2 |0 110 |2 |0 1 0
6 0 0 |0 11 7 |0 |23]18|0 3 /0 (0 |0 |25|0
7 0 13 |15 |0 9 1510 |0 |O 0o |0 |7 1816 |0
8 0 15 |1 16 9 |0 1 0 18 20 |7 15 |0 8 |0
9(CS2) |0 0 |5 |0 0 |0 |0 (2410 0 |0 17 |0 7 18
10 0 0 18 |0 0 (0 |0 |2 19 0 7 (0 (0 |0 |O
11 22 0 14 | 4 0 |0 |0 |O 19 0 |0 |0 |O 13 | 4
12 16 0 |5 |0 2410 |0 |6 |0 0 |9 |0 |0 |6 |9
13 16 0 0 (0 0 13 16 0 7 0 0 0 0 0 0
14 0 8 |0 |20 0 |8 |0 15 |6 0 16 {22 |0 |0 17
15 1 0 14 |0 0 (0 |0 [0 |O 0 |0 |0 |O |O |O
Table 6. Graph of the traffic network for Case 1.
EV# | Starting at node# | Nearest CS# | Position node of the nearest CS | Shortest path | Shortest path cost
EV1 |8 CS1 4 8-11-4 11
EV2 | 11 CS1 4 11-4 4
EV3 | 14 CS2 9 14-9 6
EV4 |7 CS2 9 7-14-9 12
EV5 | 15 CS3 1 15-1 1
Table 7. Optimal paths and EV/CS allocation for case#1.
Shortest Paths for EVs to Nearest Charging Stations (Directed Graph)
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Fig. 10. Illustration of the optimal paths for the EV/CS allocation problem provided by Dijkstra’s algorithm

(Case#1).
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Y-axis

EV# | Starting at node# | Nearest CS# | Position node of the nearest CS | Shortest path | Shortest path cost
EVl |38 CS2 33 384533 9
EV2 |16 CS3 21 16-21 18
EV3 |19 CS5 46 19-22-46 12
Ev4 |27 CS4 15 27-15 812
EV5 |34 CS5 46 34-46 13
EVe |48 CS4 15 48-9-15 5
EV7 |28 CS5 46 28-50-46 23
EV8 |42 CS3 21 42-21 3
EV9 |36 CS5 46 36-22-46 9
EV10 | 49 CS1 47 49-32-47 6

Table 8. Optimal paths and EV/CS allocation for case#2.

Shortest Paths for EVs to Nearest Charging Stations (Directed Graph)

o o §Road Network

X-axis

Fig. 11. Illustration of the optimal paths for the EV/CS allocation problem provided by Dijkstra algorithm
(Case#2).

After running Dijkstra’s algorithm for the shortest path in term of distance (or time), the cost of the paths
as well as the best CS an EV seeking for charging is allocated are summarized in Table 7. Moreover, a schematic
illustration of this case scenario is depicted in Fig. 10.

In this case scenario, EV1 and EV2 are allocated to CS1. If both EV's request charging at the same time, EV2
has a higher chance to reach CS1 before EV1. Therefore, the charging schedule at CS1 should be updated to
include EV2 and later include EV1. Additionally, since EV3 and EV4 are assigned to CS2, EV3 may arrive to the
charging station earlier and has a chance to be charged faster than EV4.

Case#2 In this second case, a larger network involving 50 nodes, 5 CSs and 10 EVs is considered. For space
limitation, only the results of the EVs/CSs assignment (Table 8) as well as the graph (Fig. 11) are provided.

The results of the second case study (Case#2) showed the potential of the proposed approach to provide
optimal solution of the EV path planning in the context of EV/CS allocation problem. However, it was noticed
that the larger the network is, more the algorithm takes time to provide the solution.

Although Dijkstra’s algorithm offers computational efficiency in moderately sized networks, its scalability is
limited in large-scale, real-time EV charging systems. To overcome this, future work will explore advanced and
scalable path planning techniques. These may include heuristic methods such as the A* algorithm, which uses
informed search to reduce computation time, and hierarchical routing methods that simplify graph complexity
through abstraction. Furthermore, integrating edge computing resources can enable distributed processing of
route computations across multiple nodes. We also envision the use of machine learning-based path planning,
particularly reinforcement learning, to dynamically adapt to changing traffic patterns and charging station
availability. These enhancements aim to ensure real-time responsiveness and efficiency in large-scale deployment
scenarios.
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A major limitation of this study is the absence of experimental validation or detailed simulation results. This
is due in part to the complexity of deploying drone-based systems for critical infrastructure support, which
involves not only technical development but also adherence to strict aviation safety standards and regulatory
protocols. Future work will focus on developing simulated environments to model realistic drone behaviors,
communication latency, edge processing loads, and route allocation efficiency, while also incorporating real-
world constraints imposed by aviation authorities and urban planning considerations.

Conclusions and future directions

With the large-scale adoption of EVs worldwide, operational issues such as the limited number of CSs being
deployed in urban areas and the relatively long charging time are being faced nowadays. From economic and time
perspectives, the installation of CSs is not an easy task. In addition, decreasing EV’ charging time is challenging
because of grid stability and the high probability of battery deterioration. Therefore, the number of CSs cannot
expand quickly, and the charging time cannot be shortened easily. Under such conditions, the unique remaining
solutions may be built around optimizing the use of charge and the scheduling of the recharging operation.

To contribute to this domain, this paper develops a framework including three components, namely, load
profile forecasting, optimal path planning and fleet of drones to assist the EV users in selecting the best CS.
The main focus of this paper was on the first two components. The load profile prediction at the CS level was
performed based on a nonlinear autoregressive model (NARX) and the path planning was based on Dijkstra’s
algorithm. The experimental results have shown that the proposed algorithm for ahead load forecasting
is efficient. Additionally, optimal path planning has provided good feasible paths toward optimal CSs. Once
combined, the proposed approach components enforced by information about the CSs availability and the traffic
situation in terms of crowd analysis, may assist the EV driver (or the EV itself if it is autonomous) to select the
best CS. However, the findings of this paper may be strengthened by considering the user preferences (such as
selecting CSs existing in its current route) and considering a shorter horizon for the forecasting at the CS level.

Future work will focus on several key areas to enhance and validate the proposed framework. First, we plan
to develop high-fidelity simulation environments that model large-scale urban deployments, including dynamic
EV flows and charging demand. This will allow for performance benchmarking under realistic conditions.
Second, more scalable path planning algorithms, such as heuristic (e.g., A*) or learning-based approaches, will
be explored to improve computational efficiency. Third, the integration of regulatory considerations related to
drone operations (e.g., airspace restrictions, safety protocols, and licensing requirements) will be considered.
Finally, we aim to prototype a decentralized architecture leveraging edge computing for real-time data processing
and decision-making, which will help assess latency, fault tolerance, and robustness in practical settings. These
improvements will significantly advance the feasibility and deployment readiness of the proposed system.

Data availability
The data used in this study are included within the manuscript. The data used for implementing the forecasting
algorithms are available at https://data.mendeley.com/datasets/5zrtmp7gwd/2.
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