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Prediction model for growth trends
of subpleural subsolid nodules
using CT radiomics and radiological
features
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Subpleural subsolid nodules (SSNs) pose challenges in early malignant transformation risk
stratification, leading to over-surveillance or delayed treatment. To develop a radiological-radiomics
combined model for predicting growth of subpleural SSNs and optimizing individualized follow-up
strategies. This retrospective study included 494 subpleural SSNs (training set: 345; test set: 149)
with 2 3 years follow-up CT. Radiological features (nodule type, morphology, pleural retraction) and
radiomics features were analyzed. A radiomics score (Radscore) was developed using least absolute
shrinkage and selection operator (LASSO) regression, and a combined model integrating radiological
and radiomics predictors was constructed. Model performance was evaluated via the area under the
curve (AUC), calibration curves, and decision curve analysis (DCA). The combined model demonstrated
favorable performance in both training (AUC 0.896; 95% Cl 0.8505-0.9425) and test sets (AUC 0.842;
95% Cl 0.7185-0.9600), outperforming radiological model (train: 0.896 vs. 0.716; test: 0.842 vs. 0.741,
all P<0.05) and showed similar performance to the radiomics model (train: 0.896 vs. 0.857, p=0.047;
test: 0.842 vs. 0.840, p=0.936). Key predictors included part-solid nodule (PSNs) type (OR 2.359,
P=0.009), irregular morphology (OR 2.917, P=0.001), and pleural retraction (OR 2.227, P=0.014).
Notably, DCA indicated that the combined model had better clinical utility across a range of decision
thresholds (10-90%), offering a higher net benefit for guiding interventions. The combined model
effectively predicts subpleural SSNs growth, enabling risk stratification to reduce unnecessary follow-
up and prioritize early intervention for high-risk nodules.
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With the widespread application of low-dose computed tomography (LDCT) in lung disease screening, the
detection rate of pulmonary nodules has significantly increased. However, approximately 95% of screen-
detected nodules are ultimately confirmed as benign!. Based on imaging characteristics, pulmonary nodules
can be classified into solid nodules and subsolid nodules (SSNs)2. Studies have shown that solid nodules can
typically be deemed benign if they remain stable during a 2-year follow-up period?, whereas SSN, including
pure ground-glass nodules (PGGNs) and partial solid nodules (PSNs), carry a higher malignant risk and
exhibit more indolent biological behavior, often necessitating extended surveillance®™. This “high detection-
low malignancy” paradox creates two critical challenges: on one hand, excessive follow-up subjects patients to
cumulative radiation exposure and persistent psychological anxiety®; on the other hand, the malignant potential
and indolent growth characteristics of SSNs demand individualized monitoring strategies. Notably, when SSNs
are located in the subpleural region, their clinical significance becomes particularly critical, once visceral pleural
invasion occurs, patient prognosis deteriorates significantly®. Therefore, accurately identifying the malignant
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transformation propensity of subpleural SSNs during early follow-up has emerged as a key clinical breakthrough
for optimizing early diagnosis and treatment of lung cancer.

In current clinical practice, the differentiation of benign and malignant SSNs primarily relies on CT
morphological assessment and growth kinetic analysis. Previous studies have identified multiple risk factors
associated with malignant transformation of pulmonary nodules, including morphological features (nodule size,
density heterogeneity, lobulation or vacuole signs), peri-nodular structural changes (pleural retraction, vascular
convergence), and clinical high-risk factors (advanced age, smoking history, family history of lung cancer)”S.
However, smaller SSNs often lack specific conventional CT signs, such as lobulation, spiculation, or pleural
retraction®. Dynamic follow-up typically monitors growth rates to aid differentiation, as malignant nodules tend
to exhibit faster volumetric growth or increased solid component proportions’. However, the interpretation
of these indicators is susceptible to observer experience and equipment parameters, and relies heavily on
longitudinal follow-up data. Additionally, a prospective study by Sawada et al'’.demonstrated that up to 95% of
malignant SSNs develop solid components within a 3-year follow-up period, underscoring the prognostic value
of evaluating nodule growth or stability. There is an urgent need for refined dynamic risk assessment and rational
follow-up strategies for subpleural SSNs.

Radiomics technology, which extracts high-throughput texture, shape, and high-order heterogeneity features
from CT images, can overcome the limitations of traditional visual evaluation'!. Studies have confirmed that
CT-based radiomics models demonstrate significant advantages in distinguishing benign from malignant
pulmonary nodules!?, grading the invasiveness of lung adenocarcinoma', and predicting the growth of
ground-glass nodules'®. However, existing research predominantly focuses on general SSNs and has not yet
fully considered the unique risks associated with the subpleural region. There is a pressing need to establish a
comprehensive predictive framework specifically tailored to subpleural SSNs.

This retrospective study aims to integrate radiological features with radiomics features using 3-year dynamic
follow-up data of subpleural SSN, to develop a predictive model for their growth trends and guide individualized
follow-up strategies.

Materials and methods

Study design and population

This retrospective study collected chest CT imaging data from the Picture Archiving and Communication
System (PACS). Cases were screened by searching radiology reports for keywords related to “subsolid nodules

(SSNs)” (e.g., “subpleural,” “ground-glass opacity,” “subsolid nodule,” “partial solid nodule”). Two radiologists
(with 7 and 6 years of experience in thoracic imaging, respectively) independently evaluated the cases.

Inclusion criteria

1. Subpleural nodules, defined as lesions within 10 mm of the pleura but not in direct contact!®; 2.Persistent
SSNs confirmed by at least 3 months of follow-up CT; 3.Follow-up duration > 3 years, or <3 years with evidence
of SSNs growth; 4.Initial CT report indicating an average SSN diameter of 6-15 mm; 5.Solid component ratio
(CTR) <0.25 for partial solid nodules (PSNs);6. Thin-slice CT images (slice thickness < 1.25 mm).

Exclusion criteria
(1). Non-subpleural or non-subsolid nodules; (2). Absence of follow-up CT or stable nodules with follow-up
duration < 3 years; (3). Nodules without growth but treated with ablation or surgery during follow-up; (4). Poor-
quality CT images; (5). lii-defined SSN boundaries, making accurate delineation difficult.

A total of 494 SSNs from 454 patients were included and randomly divided into a training set (n=345) and
a test set (n=149) in a 7:3 ratio.

CT image acquisition

The following CT scanners were utilized: uCT528, uCT550, uCT960 (United Imaging Healthcare), GE Revolution
CT (GE Healthcare), Philips Brilliance iCT (Philips Healthcare) and SIEMENS SOMATOM go.Fit CT (Siemens
Healthineers). Detailed scan parameter information is provided in Supplementary Table 1.

SSN growth assessment criteria

(a). An increase in the average diameter of the entire nodule by >2 mm; (b). An increase in the solid component
of PSNs by >2 mm; (c). The appearance of a new solid component within pure ground-glass nodules (PGGN).
All other cases were considered stable!®.

Radiological feature evaluation

Two radiologists (J.L.Z., with 7 years of experience in thoracic imaging, and H.L., with 6 years of experience)
analyzed and recorded the following radiological features for each CT case, blinded to the growth status of the
SSNs:

(a) Nodule Type (partial solid nodule, PSNs / pure ground-glass nodule, PGGNG);

(b) Morphology (round/oval or irregular);

(c) Pleural retraction (Yes or No);

(d) Diameter (average of the maximum length and width on the plane showing the largest nodular area)'’.

Diameter change was calculated as the difference between the last and baseline CT measurements. Both diameter
change and baseline CT-measured diameter were assessed via intraclass correlation coefficient (ICC). The
remaining radiological features and the appearance of solid components were evaluated using Cohen’s Kappa.
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Any discrepancies were arbitrated by a third expert (C.X.Y., with 9 years of experience in thoracic imaging).
Arbitration results were used for final analysis but were excluded from agreement calculations. Detailed inter-
observer agreement results are in Supplementary Table 2.

Radiomics feature extraction and selection

Nodule segmentation

A flowchart of radiomics process is shown in Fig. 1. The volume of interest (VOIs) for subsolid nodules (SSNs)
were manually delineated using ITK-SNAP software (version 3.8.0) by a radiologist with 3 years of experience in
thoracic CT diagnosis, and another radiologist reviewed and adjusted the results as necessary. The delineation
was performed on lung window settings (window width: 1500 HU; window level: -500 HU), avoiding blood
vessels and bronchi.

Feature extraction

Radiomics features were extracted using the PyRadiomics open-source Python package (version 3.7.12, https://
pyradiomics.readthedocs.io). Features were extracted from CT images, including the original images and those
processed with wavelet transform and Laplacian of Gaussian (LoG) filtering. Image preprocessing included
resampling to a uniform voxel size (1 mmx 1 mm x 1 mm) and z-score normalization.

Feature selection

Only radiomics features with high inter-observer agreement (ICC > 0.75) were retained for further analysis. The
Mann-Whitney U test (p <0.1) was used to identify features with significant differences between the growth and
stable groups. Spearman’s rank correlation coefficient was calculated, and if the absolute correlation coefficient
between two features was>0.9, the feature with better diagnostic performance was retained. Hierarchical
clustering was applied to feature clusters with correlation coefficients >0.95, and representative features were
selected based on the maximum dynamic range principle. LASSO regression modeling was performed with
tenfold cross-validation to determine the optimal regularization parameter A (minimizing binomial deviance),
and non-zero coeflicient features were selected to construct a weighted linear combination for the radiomics
score (Radscore). Synthetic Minority Over-sampling Technique (SMOTE) is applied only to the training set to
address the significant class imbalance.

Model construction
Radiological model Independent predictors were screened using univariate and multivariate logistic regression to
construct a radiological prediction model.

Radiomics model A radiomics score (Radscore) was generated using logistic regression based on the selected
radiomics features.
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Fig. 1. Technical workflow of the study. A schematic diagram illustrating the stepwise methodology, including
data acquisition, feature extraction, feature selection, model construction, and clinical application.
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Combined model A nomogram prediction model was constructed by integrating radiomics features with
radiological features.

Performance evaluation

The area under the receiver operating characteristic (ROC) curve (AUC) was calculated, and the DeLong test
was used to compare differences between models. Calibration curves and the Hosmer-Lemeshow test were used
to assess model calibration. Decision curve analysis (DCA) was performed to evaluate clinical net benefit.

Propensity score matching validation

To control for baseline confounding, mitigate risks of circular reasoning, and verify the model-predicted
independence, 1:1 propensity score matching was carried out on the test set (n=40). The matching caliper was
set at 0.03, with covariates including all radiological features, including diameter, nodule type, morphology, and
pleural retraction.

Statistical analysis

All data analyses were conducted on the Python 3.7.12 platform and SPSS 26.0 (IBM Corporation, Armonk,
NY, USA). Statistical tests were performed using Statsmodels 0.13.2, radiomics feature extraction was based
on PyRadiomics 3.0.1, and machine learning models (e.g., SVM) were implemented using Scikit-learn 1.0.2.
Categorical variables were analyzed using the chi-square test, and continuous variables were analyzed using the
t-test or Kruskal-Wallis test. The diagnostic performance of the models was evaluated using ROC curves, and
the DeLong test was used to assess statistical differences in AUC values between models. Calibration curves and
the Hosmer-Lemeshow goodness-of-fit test were used to evaluate model calibration, and decision curve analysis
(DCA) was used to quantify clinical net benefit. The significance threshold was set at p <0.05.

Results

Patient baseline characteristics and radiological feature analysis

This study included 494 subpleural subsolid nodules (SSNs), including a training set of 345 cases (age:
57.62+11.47 years in the growth group vs. 56.62+11.19 years in the stable group) and a test set of 149 cases
(age: 56.02+13.77 years in the growth group vs. 55.49+10.87 years in the stable group). In the training set,
significant differences were observed between the growth and stable groups in nodule diameter (9.00+ 1.65 mm
vs. 8.08£1.84 mm, P<0.001), nodule type (58.33% PSNs vs. 32.32% PGGNs, P<0.001), morphology (54.17%
irregular shape vs. 28.28%, P<0.001), and pleural retraction (58.33% vs. 39.39%, P=0.021). Age and sex
showed no significant differences between groups (P>0.05). Similar trends were observed in the test set, but
sex and pleural retraction differences were not significant (P>0.05). Table 1 summarizes the demographic and
radiological characteristics of the patients.

Univariate and multivariate logistic regression analysis

Univariate analysis identified age (OR 0.969, P<0.001), nodule diameter (OR 0.814, P<0.001), nodule type
(PSN vs. pGGN: OR 0.292, P<0.001), irregular morphology (OR 0.31, P<0.001), and pleural retraction (OR
0.239, P<0.001) as significant predictors of growth risk. In multivariate analysis, age (OR 0.961, P<0.001),
nodule type (PSN: OR 2.359, P=0.009), irregular morphology (OR 2.917, P=0.001), and pleural retraction (OR
2.227, P=0.014) remained independent predictors, while nodule diameter was no longer significant (P>0.05).
Details are provided in Table 2.

Group Training set (n=2345) Test set (n=149)

Variable Stable group | Growth group | P-value | Stable group | Growth group | P-value
Age (year) 56.62+11.19 | 57.62+11.47 0.523 | 55.49+10.87 | 56.02+13.77 0.634
Diameter (mm) 8.08+1.84 9.00£1.65 <0.001 |7.79+1.68 8.91+2.87 0.01
Gender 0.685 0.931
Female 99(33.33%) 14(29.17%) 53(41.09%) 9(45.00%)

Male 198(66.67%) | 34(70.83%) 76(58.91%) | 11(55.00%)

Nodule type <0.001 0.034
pGGN 201(67.68%) | 20(41.67%) 87(67.44%) 8(40.00%)

PSN 96(32.32%) | 28(58.33%) 42(32.56%) | 12(60.00%)
Morphology <0.001 0.002
Oval 213(71.72%) | 22(45.83%) 93(72.09%) 7(35.00%)

Irregular 84(28.28%) 26(54.17%) 36(27.91%) 13(65.00%)

Pleural retraction 0.021 0.121
No 180(60.61%) | 20(41.67%) 79(61.24%) 8(40.00%)

Yes 117(39.39%) | 28(58.33%) 50(38.76%) 12(60.00%)

Table 1. Demographic and radiological features of patients with SSN. SSN subpleural subsolid nodule, PSN
part-solid nodule, pGGN pure ground-glass nodule.
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Multivariate
Univariate analysis analysis
Variable OR | 95%CI pvalue | OR | 95% CI p value
Age 0.969 | 0.965-0.973 | <0.001 | 0.961 | 0.946-0.978 | <0.001
Diameter 0.814 | 0.79-0.839 | <0.001 | 1.035 | 0.918-1.168 0.634
Gender 0.172 | 0.127-0.233 | <0.001 | 0.916 | 0.52-1.613 0.799
Nodule_type 0.292 | 0.205-0.415 | <0.001 |2.359 | 1.374-4.051 0.009
Morphology 0.31 |0.214-0.448 | <0.001 | 2.917 | 1.687-5.043 0.001
Pleural_retraction | 0.239 | 0.169-0.338 | <0.001 |2.227 | 1.303-3.804 0.014

Table 2. Univariate and multivariate logistic regression analysis for clinical radiological features in the training
set. OR odds ratio, CI confidence interval.
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Fig. 2. Radiomics features and their weights derived from CT images.

Key radiomics features

Feature selection identified 12 key features contributing to RadScore. They were extracted from CT images via
three methods: 2 from original images, 6 from wavelet-transformed images, and 4 from LoG—processed images.
Here are the features and their coeflicients:

RadScore = 0.13913 + 0.017287 x log_sigma_3_0_mm_3D_glszm_
SizeZoneNonUniformityNormalized + 0.035857 x log_sigma_4_0_mm_3D_firstorder_
Kurtosis +0.000366 x log_sigma_4_0_mm_3D_glrlm_ShortRunLowGrayLevelEmphasis + 0.000757 x log_
sigma_5_0_mm_3D_glszm_SmallAreaHighGrayLevelEmphasis + 0.015153 x original_shape_
Maximum2DDiameterRow — 0.073767 x original_shape_Sphericity + 0.001821 x wavelet_ HHH_
glszm_GrayLevelNonUniformity — 0.022003 x wavelet_HLL_firstorder_Skewness + 0.008806 x wavelet_
HLL_gldm_LargeDependenceHighGrayLevelEmphasis + 0.007341 x wavelet_ LHH_firstorder_
Skewness —0.019264 x wavelet LHL_firstorder_Median +0.002791 x wavelet_LLL_glcm_JointEnergy.

Each feature’s coefficient in the formula shows its impact on RadScore. A positive coefficient means a higher
feature value increases RadScore, while a negative one implies the opposite. Figure 2 visualizes the features and
their weights.

Model performance comparison
In the training set, the combined model, radiomics model, and radiological model achieved AUCs of 0.896 (95%
CI0.8505-0.9425), 0.857 (95% CI 0.7976-0.9169), and 0.716 (95% CI 0.6354-0.7974), respectively. The DeLong
test demonstrated the superiority of the combined model over the radiomics model (0.896 vs. 0.857, P=0.047)
and radiological model (0.896 vs. 0.716, P<0.001). The combined model exhibited the highest accuracy (87.2%)
and specificity (89.6%), while the radiomics model showed the highest sensitivity (83.3%). Both outperformed
the radiological model across all metrics.

In the test set, the combined model, radiomics model, and Radiological model achieved AUCs of 0.842
(95% CI 0.7185-0.9600), 0.840 (95% CI 0.7444-0.9346), and 0.741 (95% CI 0.5981-0.8829), respectively. The
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Cohort | Sequence AUC | AUC (95% CI) | ACC | SEN | SPE

Radiological | 0.716 | 0.6354-0.7974 | 0.577 | 0.771 | 0.545
Training | Radiomics 0.857 | 0.7976-0.9169 | 0.774 | 0.833 | 0.764
Combined 0.896 | 0.8505-0.9425 | 0.872 | 0.729 | 0.896

Radiological | 0.741 | 0.5981-0.8829 | 0.805 | 0.550 | 0.845
Test Radiomics 0.840 | 0.7444-0.9346 | 0.805 | 0.650 | 0.829
Combined 0.842 | 0.7185-0.9600 | 0.833 | 0.750 | 0.845

Table 3. The performance of the radiological model, radiomics model, and combined model in the training set
and test set. AUC area under the curve, ACC accuracy, CI confidence interval, SEN sensitivity, SPE specificity.
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Fig. 3. ROC curve comparisons and DeLong test results for the radiological, radiomics, and combined
models in the training and test sets. The combined model demonstrated comparable or better discriminative
performance (training AUC 0.896; test AUC 0.842) compared to radiological (AUC 0.716/0.741) and
radiomics (AUC 0.857/0.840) models.

Radiological Radiomics

combined model outperformed the radiological model (0.842 vs. 0.741, P=0.035) but showed no significant
difference compared to the radiomics model (0.842 vs. 0.840, P=0.936). The combined model demonstrated the
highest accuracy (83.3%), sensitivity (75%), and specificity (84.5%). Detailed performance metrics for all models
in both training and test sets are presented in Table 3 and Fig. 3.

Model calibration and clinical utility

Calibration curve analysis

The Hosmer-Lemeshow test revealed good calibration for all models in the training set (radiological model:
P=0.051; radiomics model: P=0.062; combined model: P=0.080), indicating consistency between predicted
probabilities and observed outcomes. In the test set, the combined model maintained good calibration
(P=0.167), while the radiological model (P=0.021) and radiomics model (P=0.044) exhibited mild calibration
deviations (Fig. 4).

Decision curve analysis (DCA)
Decision curve analysis demonstrated that the combined model provided significantly higher net clinical benefit
than the “treat all, “treat none,” radiological model, and radiomics model across the threshold probability

Scientific Reports |

(2025) 15:24800 | https://doi.org/10.1038/541598-025-08860-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Cohort train Calibration B

0.8

e
ES

Fraction of positives

e
=

02

0.0

Cohort test Calibration

Fraction of positives

...... Perfectly calibrated
—=— Radiological
~#— Radiomics

—#— Combined

0.20

Net Benefit

...... Perfectly calibrated
—=— Radiological
~—#— Radiomics

—#— Combined

02 04 0.6 038 10 0.0
Mean predicted probability

02 04 06 08 10
Mean predicted probability

Fig. 4. Calibration curve of different models in training and test sets. The predicted probability of the
combined model in training and test sets was highly consistent with the actual probability, indicating good

model calibration.
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Fig. 5. Decision curve analysis (DCA) of radiological, radiomics, and combined models in the training and
test sets. The combined model achieved the highest net clinical benefit across the 10-90% threshold probability

range, supporting its utility in guiding clinical decisions.

range of 10-90% in the test set (Fig. 5). A nomogram integrating radiomics scores and radiological features is

illustrated in Supplementary Fig. 1.

Propensity score matching validation results

Covariates including diameter, nodule type, morphology, and pleural retraction, were incorporated for
propensity score matching. After matching, all intergroup differences were no longer statistically significant (all
P>0.05). Model performance changed accordingly: the AUC of the radiological model decreased from 0.741 to
0.591, while that of the radiomics model increased from 0.840 to 0.865. The combined model maintained good
performance despite its AUC decreasing slightly from 0.842 to 0.785. Details can be found in Supplementary
Tables 3-4 and Supplementary Figs. 2-5.
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Fig. 6. Two patients with ground-glass nodules (GGNs). (A-C) A man (age, 66 years) with a pure GGN in the
right lower lobe. First found on May 28, 2020, the 9 mm diameter nodule had an irregular shape and no pleural
retraction. Growth probabilities predicted by radiological, radiomics, and combined models were 0.42, 0.14,
and 0.21. No obvious change occurred in 3-years follow-up. (D-F) A woman (age, 28 years) with a pure GGN
in the right upper lobe. Detected on February 11, 2023, the 6 mm diameter nodule had no malignant signs.
Predicted growth probabilities were 0.29 (radiological), 0.69 (radiomic), and 0.71 (combined). Follow-up CT
showed GGN enlargement with mild lobulation and solid components. It was surgically removed in January
2025.

Discussion

We developed and validated a radiological-radiomics combined model by integrating radiological features and
radiomics parameters to predict the growth and long-term stability of subpleural subsolid nodules (SSNs). The
combined model demonstrated favorable performance in both the training and test sets (Fig. 3).

Multivariate logistic regression identified nodule type (partial solid nodule, PSNs), irregular morphology, and
pleural retraction as independent predictors of nodule growth. Specifically, PSNs exhibited a significantly higher
malignant risk compared to pure ground-glass nodules (PGGNs), consistent with the established correlation
between the solid component ratio (CTR) and invasive pathological features!®. Irregular morphology may reflect
heterogeneous growth patterns caused by tumor cell proliferation”!?, while pleural retraction suggests fibrotic
adhesion between the nodule and pleura, potentially indicating early pleural invasion?. Notably, although
nodule diameter was associated with growth risk in univariate analysis, its significance disappeared in the
multivariate model, possibly due to multicollinearity. Moreover, larger nodules (Diameter > 15 mm) are typically
managed surgically rather than with surveillance, potentially explaining the non-significance of diameter in
the multivariate model. The validity of size as a predictor of nodule growth remains inconclusive and warrants
further investigation'4-1°.

Although some traditional CT features were identified, the performance of the radiological model was
suboptimal in both the training and test sets, highlighting the necessity of radiomics for this task, especially for
small, feature-ambiguous nodules. Figure 6 illustrates how the radiomics model and combined model can assist
clinical judgment. The radiomics features demonstrated both consistency and complementarity with traditional
radiological predictors. Key features aligned with established risk indicators: original_shape_Sphericity (negative
coeflicient) suggested reduced growth tendency in spherical nodules, consistent with radiological observations
linking irregular morphology to progression. Complementarily, wavelet-transformed features captured subtle
heterogeneity (e.g., wavelet_ HHH_glszm_GrayLevelNonUniformity with positive coefficient), potentially
reflecting microstructural alterations beyond visual assessment?!. LoG-filtered features such as log_sigma_5_0_
mm_3D_glszm_SmallAreaHighGrayLevelEmphasis may indicate focal tissue changes warranting further
pathological correlation. Furthermore, after eliminating baseline differences through propensity score matching,
both the radiomics model and combined model maintained robust performance (AUC> 0.75), demonstrating
sustained predictive capability independent of the baseline differences in these specific radiological features.

In recent years, predicting the growth rate of pulmonary nodules has become a research focus. Xue et al.
used CT radiomics to predict the two-year growth of 4-12 mm small pulmonary nodules!®, while Sun et al.
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demonstrated the efficacy of a nomogram model combining clinical-radiological features and radiomics
parameters for predicting the long-term stability of 5-20 mm pure ground-glass nodules'. Liao et al. developed
a deep learning model to predict the growth of 5-30 mm subsolid nodules??. These studies highlight the potential
of CT imaging for predicting nodule growth, with radiomics and deep learning methods showing significant
value. However, no prior study has specifically applied CT radiomics to predict growth stability in subpleural
SSNs. By focusing on this unique region and integrating radiomics with radiological features, we developed a
clinically practical radiological-radiomics combined model. This model enables precise risk stratification to: (1)
reduce unnecessary follow-up for low-risk nodules, (2) facilitate timely intervention for high-risk cases, and (3)
optimize individualized surveillance protocols.

The study has several limitations. First, its retrospective design introduces inherent selection bias. Second,
the small test set (n=149) may restrict the model’s generalizability, necessitating external cohort validation.
Third, manual nodule segmentation may cause inter-observer variability. Though features with ICC exceeding
0.75 were chosen to ensure robustness, incorporating automated segmentation algorithms is a future direction.
Fourth, equating nodule growth with malignancy lacks pathological validation, which may lead to confounding
results as benign processes can also show progression.

Conclusion

This study developed a radiological-radiomics combined model to predict growth trends of subpleural subsolid
nodules (SSNs). Partial solid nodules (PSNs), irregular morphology, and pleural retraction were identified as
independent predictors. The combined model demonstrated favorable diagnostic performance by synergizing
macroscopic CT assessments with radiomics-driven quantification of microscopic heterogeneity. This dual-
perspective approach provides an objective framework for optimizing surveillance intensity, potentially reducing
unnecessary follow-up in stable subpleural SSNs.

Data availability
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