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Subpleural subsolid nodules (SSNs) pose challenges in early malignant transformation risk 
stratification, leading to over-surveillance or delayed treatment. To develop a radiological-radiomics 
combined model for predicting growth of subpleural SSNs and optimizing individualized follow-up 
strategies. This retrospective study included 494 subpleural SSNs (training set: 345; test set: 149) 
with ≥ 3 years follow-up CT. Radiological features (nodule type, morphology, pleural retraction) and 
radiomics features were analyzed. A radiomics score (Radscore) was developed using least absolute 
shrinkage and selection operator (LASSO) regression, and a combined model integrating radiological 
and radiomics predictors was constructed. Model performance was evaluated via the area under the 
curve (AUC), calibration curves, and decision curve analysis (DCA). The combined model demonstrated 
favorable performance in both training (AUC 0.896; 95% CI 0.8505–0.9425) and test sets (AUC 0.842; 
95% CI 0.7185–0.9600), outperforming radiological model (train: 0.896 vs. 0.716; test: 0.842 vs. 0.741, 
all P < 0.05) and showed similar performance to the radiomics model (train: 0.896 vs. 0.857, p = 0.047; 
test: 0.842 vs. 0.840, p = 0.936). Key predictors included part-solid nodule (PSNs) type (OR 2.359, 
P = 0.009), irregular morphology (OR 2.917, P = 0.001), and pleural retraction (OR 2.227, P = 0.014). 
Notably, DCA indicated that the combined model had better clinical utility across a range of decision 
thresholds (10–90%), offering a higher net benefit for guiding interventions. The combined model 
effectively predicts subpleural SSNs growth, enabling risk stratification to reduce unnecessary follow-
up and prioritize early intervention for high-risk nodules.
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With the widespread application of low-dose computed tomography (LDCT) in lung disease screening, the 
detection rate of pulmonary nodules has significantly increased. However, approximately 95% of screen-
detected nodules are ultimately confirmed as benign1. Based on imaging characteristics, pulmonary nodules 
can be classified into solid nodules and subsolid nodules (SSNs)2. Studies have shown that solid nodules can 
typically be deemed benign if they remain stable during a 2-year follow-up period2, whereas SSNs, including 
pure ground-glass nodules (PGGNs) and partial solid nodules (PSNs), carry a higher malignant risk and 
exhibit more indolent biological behavior, often necessitating extended surveillance2–4. This “high detection-
low malignancy” paradox creates two critical challenges: on one hand, excessive follow-up subjects patients to 
cumulative radiation exposure and persistent psychological anxiety5; on the other hand, the malignant potential 
and indolent growth characteristics of SSNs demand individualized monitoring strategies. Notably, when SSNs 
are located in the subpleural region, their clinical significance becomes particularly critical, once visceral pleural 
invasion occurs, patient prognosis deteriorates significantly6. Therefore, accurately identifying the malignant 
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transformation propensity of subpleural SSNs during early follow-up has emerged as a key clinical breakthrough 
for optimizing early diagnosis and treatment of lung cancer.

In current clinical practice, the differentiation of benign and malignant SSNs primarily relies on CT 
morphological assessment and growth kinetic analysis. Previous studies have identified multiple risk factors 
associated with malignant transformation of pulmonary nodules, including morphological features (nodule size, 
density heterogeneity, lobulation or vacuole signs), peri-nodular structural changes (pleural retraction, vascular 
convergence), and clinical high-risk factors (advanced age, smoking history, family history of lung cancer)7,8. 
However, smaller SSNs often lack specific conventional CT signs, such as lobulation, spiculation, or pleural 
retraction8. Dynamic follow-up typically monitors growth rates to aid differentiation, as malignant nodules tend 
to exhibit faster volumetric growth or increased solid component proportions9. However, the interpretation 
of these indicators is susceptible to observer experience and equipment parameters, and relies heavily on 
longitudinal follow-up data. Additionally, a prospective study by Sawada et al10.demonstrated that up to 95% of 
malignant SSNs develop solid components within a 3-year follow-up period, underscoring the prognostic value 
of evaluating nodule growth or stability. There is an urgent need for refined dynamic risk assessment and rational 
follow-up strategies for subpleural SSNs.

Radiomics technology, which extracts high-throughput texture, shape, and high-order heterogeneity features 
from CT images, can overcome the limitations of traditional visual evaluation11. Studies have confirmed that 
CT-based radiomics models demonstrate significant advantages in distinguishing benign from malignant 
pulmonary nodules12, grading the invasiveness of lung adenocarcinoma13, and predicting the growth of 
ground-glass nodules14. However, existing research predominantly focuses on general SSNs and has not yet 
fully considered the unique risks associated with the subpleural region. There is a pressing need to establish a 
comprehensive predictive framework specifically tailored to subpleural SSNs.

This retrospective study aims to integrate radiological features with radiomics features using 3-year dynamic 
follow-up data of subpleural SSNs, to develop a predictive model for their growth trends and guide individualized 
follow-up strategies.

Materials and methods
Study design and population
This retrospective study collected chest CT imaging data from the Picture Archiving and Communication 
System (PACS). Cases were screened by searching radiology reports for keywords related to “subsolid nodules 
(SSNs)” (e.g., “subpleural,” “ground-glass opacity,” “subsolid nodule,” “partial solid nodule”). Two radiologists 
(with 7 and 6 years of experience in thoracic imaging, respectively) independently evaluated the cases.

Inclusion criteria
1. Subpleural nodules, defined as lesions within 10 mm of the pleura but not in direct contact15; 2.Persistent 
SSNs confirmed by at least 3 months of follow-up CT; 3.Follow-up duration ≥ 3 years, or < 3 years with evidence 
of SSNs growth; 4.Initial CT report indicating an average SSN diameter of 6–15 mm; 5.Solid component ratio 
(CTR) < 0.25 for partial solid nodules (PSNs);6. Thin-slice CT images (slice thickness ≤ 1.25 mm).

Exclusion criteria
(1). Non-subpleural or non-subsolid nodules; (2). Absence of follow-up CT or stable nodules with follow-up 
duration < 3 years; (3). Nodules without growth but treated with ablation or surgery during follow-up; (4). Poor-
quality CT images; (5). Iii-defined SSN boundaries, making accurate delineation difficult.

A total of 494 SSNs from 454 patients were included and randomly divided into a training set (n = 345) and 
a test set (n = 149) in a 7:3 ratio.

CT image acquisition
The following CT scanners were utilized: uCT528, uCT550, uCT960 (United Imaging Healthcare), GE Revolution 
CT (GE Healthcare), Philips Brilliance iCT (Philips Healthcare) and SIEMENS SOMATOM go.Fit CT (Siemens 
Healthineers). Detailed scan parameter information is provided in Supplementary Table 1.

SSN growth assessment criteria
(a). An increase in the average diameter of the entire nodule by ≥ 2 mm; (b). An increase in the solid component 
of PSNs by ≥ 2 mm; (c). The appearance of a new solid component within pure ground-glass nodules (PGGNs). 
All other cases were considered stable16.

Radiological feature evaluation
Two radiologists (J.L.Z., with 7 years of experience in thoracic imaging, and H.L., with 6 years of experience) 
analyzed and recorded the following radiological features for each CT case, blinded to the growth status of the 
SSNs:

	(a)	 Nodule Type (partial solid nodule, PSNs / pure ground-glass nodule, PGGNs);
	(b)	 Morphology (round/oval or irregular);
	(c)	 Pleural retraction (Yes or No);
	(d)	  Diameter (average of the maximum length and width on the plane showing the largest nodular area)17.

Diameter change was calculated as the difference between the last and baseline CT measurements. Both diameter 
change and baseline CT-measured diameter were assessed via intraclass correlation coefficient (ICC). The 
remaining radiological features and the appearance of solid components were evaluated using Cohen’s Kappa. 
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Any discrepancies were arbitrated by a third expert (C.X.Y., with 9 years of experience in thoracic imaging). 
Arbitration results were used for final analysis but were excluded from agreement calculations. Detailed inter-
observer agreement results are in Supplementary Table 2.

Radiomics feature extraction and selection
Nodule segmentation
A flowchart of radiomics process is shown in Fig. 1. The volume of interest (VOIs) for subsolid nodules (SSNs) 
were manually delineated using ITK-SNAP software (version 3.8.0) by a radiologist with 3 years of experience in 
thoracic CT diagnosis, and another radiologist reviewed and adjusted the results as necessary. The delineation 
was performed on lung window settings (window width: 1500 HU; window level: –500 HU), avoiding blood 
vessels and bronchi.

Feature extraction
Radiomics features were extracted using the PyRadiomics open-source Python package (version 3.7.12, ​h​t​t​p​s​:​/​/​
p​y​r​a​d​i​o​m​i​c​s​.​r​e​a​d​t​h​e​d​o​c​s​.​i​o​​​​​)​. Features were extracted from CT images, including the original images and those 
processed with wavelet transform and Laplacian of Gaussian (LoG) filtering. Image preprocessing included 
resampling to a uniform voxel size (1 mm × 1 mm × 1 mm) and z-score normalization.

Feature selection
Only radiomics features with high inter-observer agreement (ICC > 0.75) were retained for further analysis. The 
Mann–Whitney U test (p < 0.1) was used to identify features with significant differences between the growth and 
stable groups. Spearman’s rank correlation coefficient was calculated, and if the absolute correlation coefficient 
between two features was ≥ 0.9, the feature with better diagnostic performance was retained. Hierarchical 
clustering was applied to feature clusters with correlation coefficients > 0.95, and representative features were 
selected based on the maximum dynamic range principle. LASSO regression modeling was performed with 
tenfold cross-validation to determine the optimal regularization parameter λ (minimizing binomial deviance), 
and non-zero coefficient features were selected to construct a weighted linear combination for the radiomics 
score (Radscore). Synthetic Minority Over-sampling Technique (SMOTE) is applied only to the training set to 
address the significant class imbalance.

Model construction
Radiological model Independent predictors were screened using univariate and multivariate logistic regression to 
construct a radiological prediction model.

Radiomics model A radiomics score (Radscore) was generated using logistic regression based on the selected 
radiomics features.

Fig. 1.  Technical workflow of the study. A schematic diagram illustrating the stepwise methodology, including 
data acquisition, feature extraction, feature selection, model construction, and clinical application.
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Combined model A nomogram prediction model was constructed by integrating radiomics features with 
radiological features.

Performance evaluation
The area under the receiver operating characteristic (ROC) curve (AUC) was calculated, and the DeLong test 
was used to compare differences between models. Calibration curves and the Hosmer–Lemeshow test were used 
to assess model calibration. Decision curve analysis (DCA) was performed to evaluate clinical net benefit.

Propensity score matching validation
To control for baseline confounding, mitigate risks of circular reasoning, and verify the model-predicted 
independence, 1:1 propensity score matching was carried out on the test set (n = 40). The matching caliper was 
set at 0.03, with covariates including all radiological features, including diameter, nodule type, morphology, and 
pleural retraction.

Statistical analysis
All data analyses were conducted on the Python 3.7.12 platform and SPSS 26.0 (IBM Corporation, Armonk, 
NY, USA). Statistical tests were performed using Statsmodels 0.13.2, radiomics feature extraction was based 
on PyRadiomics 3.0.1, and machine learning models (e.g., SVM) were implemented using Scikit-learn 1.0.2. 
Categorical variables were analyzed using the chi-square test, and continuous variables were analyzed using the 
t-test or Kruskal–Wallis test. The diagnostic performance of the models was evaluated using ROC curves, and 
the DeLong test was used to assess statistical differences in AUC values between models. Calibration curves and 
the Hosmer–Lemeshow goodness-of-fit test were used to evaluate model calibration, and decision curve analysis 
(DCA) was used to quantify clinical net benefit. The significance threshold was set at p < 0.05.

Results
Patient baseline characteristics and radiological feature analysis
This study included 494 subpleural subsolid nodules (SSNs), including a training set of 345 cases (age: 
57.62 ± 11.47 years in the growth group vs. 56.62 ± 11.19 years in the stable group) and a test set of 149 cases 
(age: 56.02 ± 13.77 years in the growth group vs. 55.49 ± 10.87 years in the stable group). In the training set, 
significant differences were observed between the growth and stable groups in nodule diameter (9.00 ± 1.65 mm 
vs. 8.08 ± 1.84 mm, P < 0.001), nodule type (58.33% PSNs vs. 32.32% PGGNs, P < 0.001), morphology (54.17% 
irregular shape vs. 28.28%, P < 0.001), and pleural retraction (58.33% vs. 39.39%, P = 0.021). Age and sex 
showed no significant differences between groups (P > 0.05). Similar trends were observed in the test set, but 
sex and pleural retraction differences were not significant (P > 0.05). Table 1 summarizes the demographic and 
radiological characteristics of the patients.

Univariate and multivariate logistic regression analysis
Univariate analysis identified age (OR 0.969, P < 0.001), nodule diameter (OR 0.814, P < 0.001), nodule type 
(PSN vs. pGGN: OR 0.292, P < 0.001), irregular morphology (OR 0.31, P < 0.001), and pleural retraction (OR 
0.239, P < 0.001) as significant predictors of growth risk. In multivariate analysis, age (OR 0.961, P < 0.001), 
nodule type (PSN: OR 2.359, P = 0.009), irregular morphology (OR 2.917, P = 0.001), and pleural retraction (OR 
2.227, P = 0.014) remained independent predictors, while nodule diameter was no longer significant (P > 0.05). 
Details are provided in Table 2.

Group Training set (n = 345)

P-value

Test set (n = 149)

P-valueVariable Stable group Growth group Stable group Growth group

Age (year) 56.62 ± 11.19 57.62 ± 11.47 0.523 55.49 ± 10.87 56.02 ± 13.77 0.634

Diameter (mm) 8.08 ± 1.84 9.00 ± 1.65  < 0.001 7.79 ± 1.68 8.91 ± 2.87 0.01

Gender 0.685 0.931

 Female 99(33.33%) 14(29.17%) 53(41.09%) 9(45.00%)

 Male 198(66.67%) 34(70.83%) 76(58.91%) 11(55.00%)

Nodule type  < 0.001 0.034

 pGGN 201(67.68%) 20(41.67%) 87(67.44%) 8(40.00%)

 PSN 96(32.32%) 28(58.33%) 42(32.56%) 12(60.00%)

Morphology  < 0.001 0.002

 Oval 213(71.72%) 22(45.83%) 93(72.09%) 7(35.00%)

 Irregular 84(28.28%) 26(54.17%) 36(27.91%) 13(65.00%)

Pleural retraction 0.021 0.121

 No 180(60.61%) 20(41.67%) 79(61.24%) 8(40.00%)

 Yes 117(39.39%) 28(58.33%) 50(38.76%) 12(60.00%)

Table 1.  Demographic and radiological features of patients with SSN. SSN subpleural subsolid nodule, PSN 
part-solid nodule, pGGN pure ground-glass nodule.
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Key radiomics features
Feature selection identified 12 key features contributing to RadScore. They were extracted from CT images via 
three methods: 2 from original images, 6 from wavelet-transformed images, and 4 from LoG—processed images. 
Here are the features and their coefficients:

R a d S c o r e   =   0 . 1 3 9 1 3   +   0 . 0 1 7 2 8 7   ×   l o g _ s i g m a _ 3 _ 0 _ m m _ 3 D _ g l s z m _
S i z e Z o n e No n Un i f o r m i t y No r m a l i z e d  +  0 . 0 3 5 8 5 7  ×  l o g _ s i g m a _ 4 _ 0 _ m m _ 3 D _ f i r s t o r d e r _
Kurtosis + 0.000366 × log_sigma_4_0_mm_3D_glrlm_ShortRunLowGrayLevelEmphasis + 0.000757 × log_
sigma_5_0_mm_3D_glszm_SmallAreaHighGrayLevelEmphasis + 0.015153 × original_shape_
Maximum2DDiameterRow − 0.073767 × original_shape_Sphericity + 0.001821 × wavelet_HHH_
glszm_GrayLevelNonUniformity − 0.022003 × wavelet_HLL_firstorder_Skewness + 0.008806 × wavelet_
HLL_gldm_LargeDependenceHighGrayLevelEmphasis + 0.007341 × wavelet_LHH_firstorder_
Skewness − 0.019264 × wavelet_LHL_firstorder_Median + 0.002791 × wavelet_LLL_glcm_JointEnergy.

Each feature’s coefficient in the formula shows its impact on RadScore. A positive coefficient means a higher 
feature value increases RadScore, while a negative one implies the opposite. Figure 2 visualizes the features and 
their weights.

Model performance comparison
In the training set, the combined model, radiomics model, and radiological model achieved AUCs of 0.896 (95% 
CI 0.8505–0.9425), 0.857 (95% CI 0.7976–0.9169), and 0.716 (95% CI 0.6354–0.7974), respectively. The DeLong 
test demonstrated the superiority of the combined model over the radiomics model (0.896 vs. 0.857, P = 0.047) 
and radiological model (0.896 vs. 0.716, P < 0.001). The combined model exhibited the highest accuracy (87.2%) 
and specificity (89.6%), while the radiomics model showed the highest sensitivity (83.3%). Both outperformed 
the radiological model across all metrics.

In the test set, the combined model, radiomics model, and Radiological model achieved AUCs of 0.842 
(95% CI 0.7185–0.9600), 0.840 (95% CI 0.7444–0.9346), and 0.741 (95% CI 0.5981–0.8829), respectively. The 

Fig. 2.  Radiomics features and their weights derived from CT images.

 

Variable

Univariate analysis

p value

Multivariate 
analysis

p valueOR 95% CI OR 95% CI

Age 0.969 0.965–0.973  < 0.001 0.961 0.946–0.978  < 0.001

Diameter 0.814 0.79–0.839  < 0.001 1.035 0.918–1.168 0.634

Gender 0.172 0.127–0.233  < 0.001 0.916 0.52–1.613 0.799

Nodule_type 0.292 0.205–0.415  < 0.001 2.359 1.374–4.051 0.009

Morphology 0.31 0.214–0.448  < 0.001 2.917 1.687–5.043 0.001

Pleural_retraction 0.239 0.169–0.338  < 0.001 2.227 1.303–3.804 0.014

Table 2.  Univariate and multivariate logistic regression analysis for clinical radiological features in the training 
set. OR odds ratio, CI confidence interval.
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combined model outperformed the radiological model (0.842 vs. 0.741, P = 0.035) but showed no significant 
difference compared to the radiomics model (0.842 vs. 0.840, P = 0.936). The combined model demonstrated the 
highest accuracy (83.3%), sensitivity (75%), and specificity (84.5%). Detailed performance metrics for all models 
in both training and test sets are presented in Table 3 and Fig. 3.

Model calibration and clinical utility
Calibration curve analysis
The Hosmer–Lemeshow test revealed good calibration for all models in the training set (radiological model: 
P = 0.051; radiomics model: P = 0.062; combined model: P = 0.080), indicating consistency between predicted 
probabilities and observed outcomes. In the test set, the combined model maintained good calibration 
(P = 0.167), while the radiological model (P = 0.021) and radiomics model (P = 0.044) exhibited mild calibration 
deviations (Fig. 4).

Decision curve analysis (DCA)
Decision curve analysis demonstrated that the combined model provided significantly higher net clinical benefit 
than the “treat all,” “treat none,” radiological model, and radiomics model across the threshold probability 

Fig. 3.  ROC curve comparisons and DeLong test results for the radiological, radiomics, and combined 
models in the training and test sets. The combined model demonstrated comparable or better discriminative 
performance (training AUC 0.896; test AUC 0.842) compared to radiological (AUC 0.716/0.741) and 
radiomics (AUC 0.857/0.840) models.

 

Cohort Sequence AUC AUC (95% CI) ACC SEN SPE

Training

Radiological 0.716 0.6354–0.7974 0.577 0.771 0.545

Radiomics 0.857 0.7976–0.9169 0.774 0.833 0.764

Combined 0.896 0.8505–0.9425 0.872 0.729 0.896

Test

Radiological 0.741 0.5981–0.8829 0.805 0.550 0.845

Radiomics 0.840 0.7444–0.9346 0.805 0.650 0.829

Combined 0.842 0.7185–0.9600 0.833 0.750 0.845

Table 3.  The performance of the radiological model, radiomics model, and combined model in the training set 
and test set. AUC area under the curve, ACC accuracy, CI confidence interval, SEN sensitivity, SPE specificity.

 

Scientific Reports |        (2025) 15:24800 6| https://doi.org/10.1038/s41598-025-08860-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


range of 10–90% in the test set (Fig. 5). A nomogram integrating radiomics scores and radiological features is 
illustrated in Supplementary Fig. 1.

Propensity score matching validation results
Covariates including diameter, nodule type, morphology, and pleural retraction, were incorporated for 
propensity score matching. After matching, all intergroup differences were no longer statistically significant (all 
P > 0.05). Model performance changed accordingly: the AUC of the radiological model decreased from 0.741 to 
0.591, while that of the radiomics model increased from 0.840 to 0.865. The combined model maintained good 
performance despite its AUC decreasing slightly from 0.842 to 0.785. Details can be found in Supplementary 
Tables 3–4 and Supplementary Figs. 2–5.

Fig. 5.  Decision curve analysis (DCA) of radiological, radiomics, and combined models in the training and 
test sets. The combined model achieved the highest net clinical benefit across the 10–90% threshold probability 
range, supporting its utility in guiding clinical decisions.

 

Fig. 4.  Calibration curve of different models in training and test sets. The predicted probability of the 
combined model in training and test sets was highly consistent with the actual probability, indicating good 
model calibration.
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Discussion
We developed and validated a radiological-radiomics combined model by integrating radiological features and 
radiomics parameters to predict the growth and long-term stability of subpleural subsolid nodules (SSNs). The 
combined model demonstrated favorable performance in both the training and test sets (Fig. 3).

Multivariate logistic regression identified nodule type (partial solid nodule, PSNs), irregular morphology, and 
pleural retraction as independent predictors of nodule growth. Specifically, PSNs exhibited a significantly higher 
malignant risk compared to pure ground-glass nodules (PGGNs), consistent with the established correlation 
between the solid component ratio (CTR) and invasive pathological features18. Irregular morphology may reflect 
heterogeneous growth patterns caused by tumor cell proliferation7,19, while pleural retraction suggests fibrotic 
adhesion between the nodule and pleura, potentially indicating early pleural invasion20. Notably, although 
nodule diameter was associated with growth risk in univariate analysis, its significance disappeared in the 
multivariate model, possibly due to multicollinearity. Moreover, larger nodules (Diameter > 15 mm) are typically 
managed surgically rather than with surveillance, potentially explaining the non-significance of diameter in 
the multivariate model. The validity of size as a predictor of nodule growth remains inconclusive and warrants 
further investigation14–19.

Although some traditional CT features were identified, the performance of the radiological model was 
suboptimal in both the training and test sets, highlighting the necessity of radiomics for this task, especially for 
small, feature-ambiguous nodules. Figure 6 illustrates how the radiomics model and combined model can assist 
clinical judgment. The radiomics features demonstrated both consistency and complementarity with traditional 
radiological predictors. Key features aligned with established risk indicators: original_shape_Sphericity (negative 
coefficient) suggested reduced growth tendency in spherical nodules, consistent with radiological observations 
linking irregular morphology to progression. Complementarily, wavelet-transformed features captured subtle 
heterogeneity (e.g., wavelet_HHH_glszm_GrayLevelNonUniformity with positive coefficient), potentially 
reflecting microstructural alterations beyond visual assessment21. LoG-filtered features such as log_sigma_5_0_
mm_3D_glszm_SmallAreaHighGrayLevelEmphasis may indicate focal tissue changes warranting further 
pathological correlation. Furthermore, after eliminating baseline differences through propensity score matching, 
both the radiomics model and combined model maintained robust performance (AUC > 0.75), demonstrating 
sustained predictive capability independent of the baseline differences in these specific radiological features.

In recent years, predicting the growth rate of pulmonary nodules has become a research focus. Xue et al. 
used CT radiomics to predict the two-year growth of 4–12 mm small pulmonary nodules16, while Sun et al. 

Fig. 6.  Two patients with ground-glass nodules (GGNs). (A–C) A man (age, 66 years) with a pure GGN in the 
right lower lobe. First found on May 28, 2020, the 9 mm diameter nodule had an irregular shape and no pleural 
retraction. Growth probabilities predicted by radiological, radiomics, and combined models were 0.42, 0.14, 
and 0.21. No obvious change occurred in 3-years follow-up. (D–F) A woman (age, 28 years) with a pure GGN 
in the right upper lobe. Detected on February 11, 2023, the 6 mm diameter nodule had no malignant signs. 
Predicted growth probabilities were 0.29 (radiological), 0.69 (radiomic), and 0.71 (combined). Follow-up CT 
showed GGN enlargement with mild lobulation and solid components. It was surgically removed in January 
2025.
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demonstrated the efficacy of a nomogram model combining clinical-radiological features and radiomics 
parameters for predicting the long-term stability of 5–20 mm pure ground-glass nodules14. Liao et al. developed 
a deep learning model to predict the growth of 5–30 mm subsolid nodules22. These studies highlight the potential 
of CT imaging for predicting nodule growth, with radiomics and deep learning methods showing significant 
value. However, no prior study has specifically applied CT radiomics to predict growth stability in subpleural 
SSNs. By focusing on this unique region and integrating radiomics with radiological features, we developed a 
clinically practical radiological-radiomics combined model. This model enables precise risk stratification to: (1) 
reduce unnecessary follow-up for low-risk nodules, (2) facilitate timely intervention for high-risk cases, and (3) 
optimize individualized surveillance protocols.

The study has several limitations. First, its retrospective design introduces inherent selection bias. Second, 
the small test set (n = 149) may restrict the model’s generalizability, necessitating external cohort validation. 
Third, manual nodule segmentation may cause inter-observer variability. Though features with ICC exceeding 
0.75 were chosen to ensure robustness, incorporating automated segmentation algorithms is a future direction. 
Fourth, equating nodule growth with malignancy lacks pathological validation, which may lead to confounding 
results as benign processes can also show progression.

Conclusion
This study developed a radiological-radiomics combined model to predict growth trends of subpleural subsolid 
nodules (SSNs). Partial solid nodules (PSNs), irregular morphology, and pleural retraction were identified as 
independent predictors. The combined model demonstrated favorable diagnostic performance by synergizing 
macroscopic CT assessments with radiomics-driven quantification of microscopic heterogeneity. This dual-
perspective approach provides an objective framework for optimizing surveillance intensity, potentially reducing 
unnecessary follow-up in stable subpleural SSNs.

Data availability
Data is provided within the manuscript or supplementary information files.
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