

OPEN

Identification of candidate gene networks affecting the number of somatic cells count and milk production in Iranian Holstein cows using Genome-wide association study

Narges Maddahi¹✉, Mostafa Sadeghi¹, Ali Jalil Sarghale¹, Mahdi Saatchi^{2,3}, Mohammad Kazem Davar Siar⁴ & Muna Kholghi¹

One of the most powerful tools for identifying genomic regions associated with various phenotypes is GWAS. Identifying genes influencing milk production traits in Iranian Holstein dairy cows is crucial to understanding the genetic mechanisms underlying these traits and improving future milk production. Therefore, using a single-step GWAS, this study aimed to identify genomic regions, genes, and pathways associated with milk yield (MY), milk fat percentage (FP), milk protein percentage (PP), and somatic cell count (SCC) traits in the Iranian Holstein cattle population. In this study, 210 animals were genotyped using 30K (150 animals from Herd 1) and 50K (60 animals from Herd 2) SNP arrays. Genotypes were then imputed to whole-genome sequence level using the 1000 Bull Genomes Project reference panel, resulting in 6,583,595 high-confidence imputed SNPs for GWAS analysis. Genomic regions associated with milk production traits included 184 significant SNP markers (milk yield, milk fat, milk protein, and somatic cell count, with 86, 18, 22, and 58 significant SNP markers, respectively) based on a significance threshold of P value $< 1 \times 10^{-8}$ across 10 chromosomes (2, 5, 7, 17, 19, 21, 24, 26, and 28). For the traits FP, PP, MY, and SCS, 5, 6, 9, and 7 candidate genes were identified near the significant SNPs, respectively. Key genes with important biological roles included *ATE1*, *FGFR2*, *ALDH1A3*, *CHSY1*, *GABRG3*, *FBXO36*, *PID1*, *TRIP12*, *CD52*, *WDT1*, *MATN1*, *CIDEA*, *LYZ*, *CPM*, *FBXO42*, *MAML3*, *SGMS2*, *HADH*, *CYP2U1*, *SCLT1* and *THRSP*. Therefore, the *ATE1*, *FGFR2*, and *LYZ* genes is not only a key marker for udder health and milk quality but also a promising candidate for genomic selection and therapeutic applications aimed at improving disease resistance in dairy herds. Our research led to the discovery of novel SNPs linked to milk production traits, which could be valuable for future livestock breeding programs.

The increasing global population and the essential role of milk in meeting nutritional needs have made enhancing the performance of domestic animals, particularly dairy cows, a top priority in breeding goals and programs worldwide¹. This focus centers on improving key economic traits like milk production. Milk production and udder health are crucial economic factors that significantly impact the profitability of dairy operations². Improvements in milk production traits directly benefit these operations, while enhancing resistance to mastitis can reduce the financial burden associated with treatment^{1,3}.

Over time, substantial progress has been made in enhancing the production performance of dairy cows. However, mastitis remains a significant challenge. This infectious disease, caused by environmental and management factors combined with the animal's often weakened resistance and immunity (primarily acquired) to pathogens, leads to substantial economic losses in the dairy industry and raises concerns about the quality

¹Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

²Department of Animal Science and Aquaculture, Dalhousie University, Truro B2N 5E3, Canada. ³Department of Animal Science, Iowa State University, 806 Stange Road, Ames, IA 50011, USA. ⁴Department of Animal Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran. ✉email: nargesmaddahi@ut.ac.ir

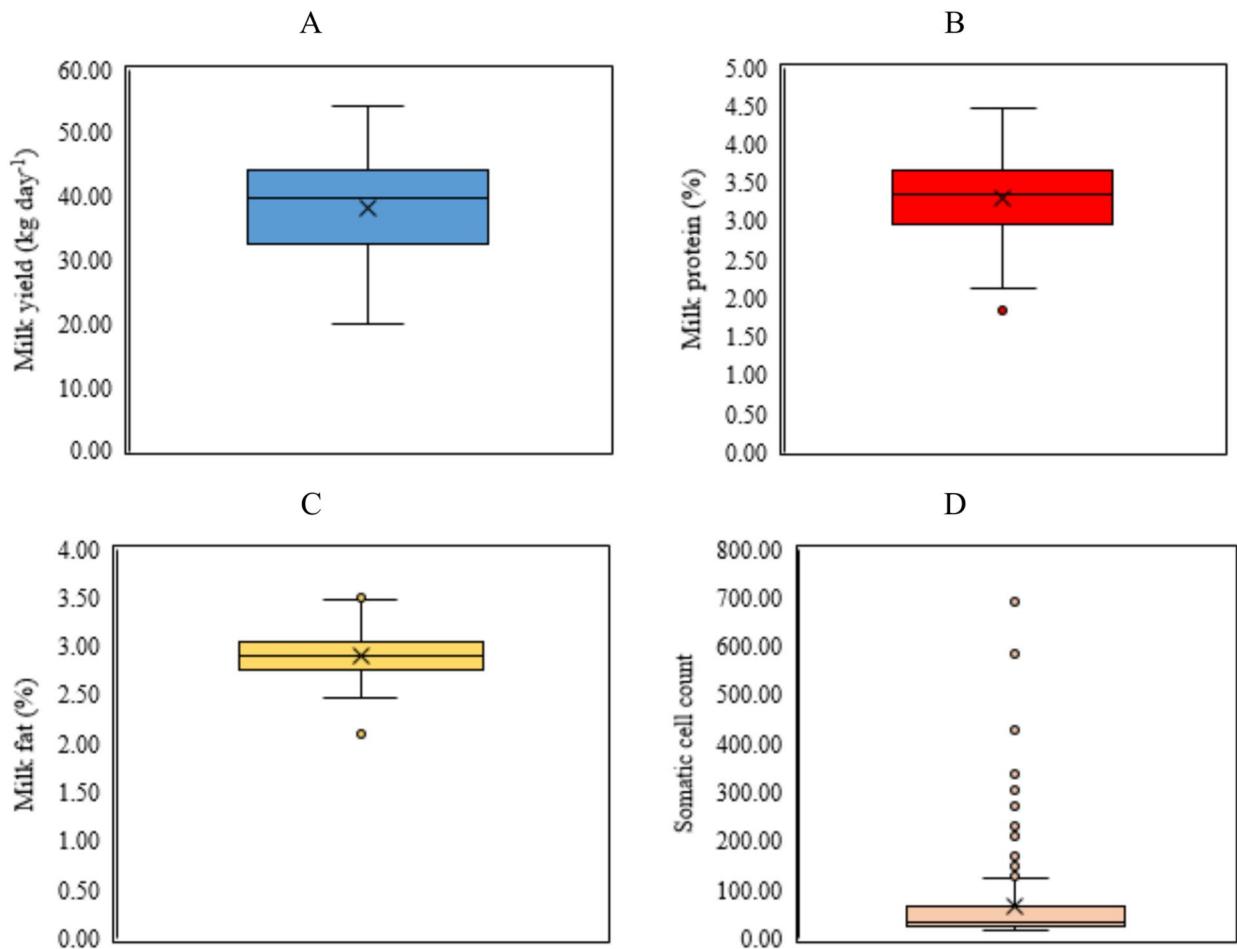
of dairy products globally^{1,2}. The high costs associated with mastitis have led to increased attention to mastitis resistance as a vital breeding goal, considering economic and animal welfare aspects⁴. Direct recording of mastitis occurrences is not routine in most countries, and direct selection for mastitis resistance is uncommon^{1,5,6}. Consequently, the somatic cell count (SCC) in milk, or its logarithmic transformation, measures mastitis due to its higher genetic variance, ease of recording, and strong positive correlation with mastitis incidence⁵. These complex traits, influenced by multiple genes, are affected by various factors, including management practices, environmental conditions, and the animal's physiological state. Control of these traits involves numerous genes and variants, each with minor effects on the observed phenotype^{1,6}. Strong genetic selection and improved management and nutrition can lead to increased milk production and decreased mastitis prevalence. Research highlights a positive yet detrimental relationship (antagonism) between somatic cells and production traits, notably milk production^{1,2,7}. The somatic cell count is a crucial indicator for assessing the quality and health of raw milk and is a factor in pricing. An elevated SCS negatively impacts raw milk's processing quality and overall quality due to changes in its composition, including fat, protein, lactose, and acidity levels^{1,2}.

The advent of genome-wide panels of single nucleotide polymorphisms (SNPs) has revolutionized the field. SNPs are extensively valuable for detecting and localizing quantitative trait loci (QTLs) for complex traits across diverse species^{1,2,8}. They have proven robust and practical tools for identifying accidental mutations linked to economically significant traits in livestock^{3,9,10} and human diseases^{11,12}. Numerous studies over the years have focused on identifying QTLs for various traits in dairy cattle, leading to the discovery of many QTLs across different chromosomes^{9,13}. New sequencing technologies have opened new opportunities to identify markers associated with economically essential genes and milk production traits. Genome-wide association Studies (GWAS) have emerged as a highly efficient strategy for uncovering candidate genes and markers associated with quantitative traits³. The primary aim of GWAS is to pinpoint the most likely genomic locations that control these traits¹⁴. Moreover, genome-wide scanning studies contribute to a deeper understanding of the genes and polymorphisms linked to economic traits, ultimately shedding light on the underlying mechanisms of the traits under investigation^{1,15}. In dairy cattle, the GWAS method has been instrumental in estimating SNPs influencing production traits like milk yield, fat yield, protein percentage^{1,3,4,16,17}, and health traits such as mastitis, uterine health^{1,18}, longevity within the herd^{19–21}, and reproductive traits^{16,22–25}.

While different studies have reported SNPs and genes affecting somatic cells and the occurrence of mastitis, these findings have often varied, with limited overlap in identified SNPs between studies. Several factors contribute to these discrepancies, including environmental conditions, the specific type of dairy management (industrial or semi-industrial), variations in native pathogens and the host's response, and the genetic background of the studied population. These factors significantly impact the relationship between genetic variants and genes across the genome and the resulting phenotype^{26,27}. Notably, this is the first study conducted in Iranian Holstein cows using a GWAS approach to investigate milk production and mastitis traits. In this study, 150 animals from Herd 1 were genotyped using a 30K SNP array, and 60 animals from Herd 2 were genotyped using a 50K SNP array, totaling 210 animals. Genotype data were subsequently imputed to whole-genome sequence level using the 1000 Bull Genomes Project reference panel, resulting in 6,583,595 high-confidence imputed SNPs used for GWAS. Consequently, the primary objective of this study is to examine the association of genome-wide SNPs with somatic cell count, milk yield, milk fat (%), and milk protein (%) traits. This comprehensive analysis seeks to identify known and novel genes or genomic and chromosomal regions linked to the inheritance of these traits, individually or in combination, within the Iranian Holstein cattle population.

Results

Descriptive statistics and


Descriptive statistics for milk production traits and somatic cell count in the Iranian Holstein population are presented in Table 1, and the distribution of each milk production trait and somatic cell count is shown in Fig. 1. On average, Iranian Holstein cows had a milk yield of 38.32. The mean milk fat percentage, milk protein percentage, and somatic cell count were 3.304, 2.899, and 64.41, respectively. The coefficient of variation for milk production traits and somatic cell count indicated acceptable diversity for these traits in Iranian Holstein cows, with values of 19.87, 7.24, 15.33, and 133.69 for milk yield, protein percentage, fat percentage, and somatic cell count, respectively. The estimates of variance components and heritability for the four traits (milk yield, milk protein, milk fat, and somatic cell score) from single-trait animal models are shown in Table 2. Overall, the heritability values for milk yield, milk protein, milk fat, and somatic cell score were 53%, 52%, 43%, and 39%, respectively.

GWAS for somatic cell count and milk production

The results of the GWAS analysis for all studied traits (milk production, fat percentage, protein percentage, and somatic cell count) were reported based on the significance threshold of P value $< 1 \times 10^{-8}$ (supplementary

Trait name	Trait abbreviation	Mean	Minimum	Maximum	Std Dev	Coeff of Variation
Milk yield (kg/d)	MY	38.32	19.84	54.23	7.62	19.87
Milk fat percentage	MF	3.304	1.840	4.480	0.506	15.33
Milk protein percentage	MP	2.899	2.090	3.500	0.210	7.24
Somatic cell count	SCS	64.41	3.11	691.75	8.611	13.39

Table 1. Summary of the data set used in this study.

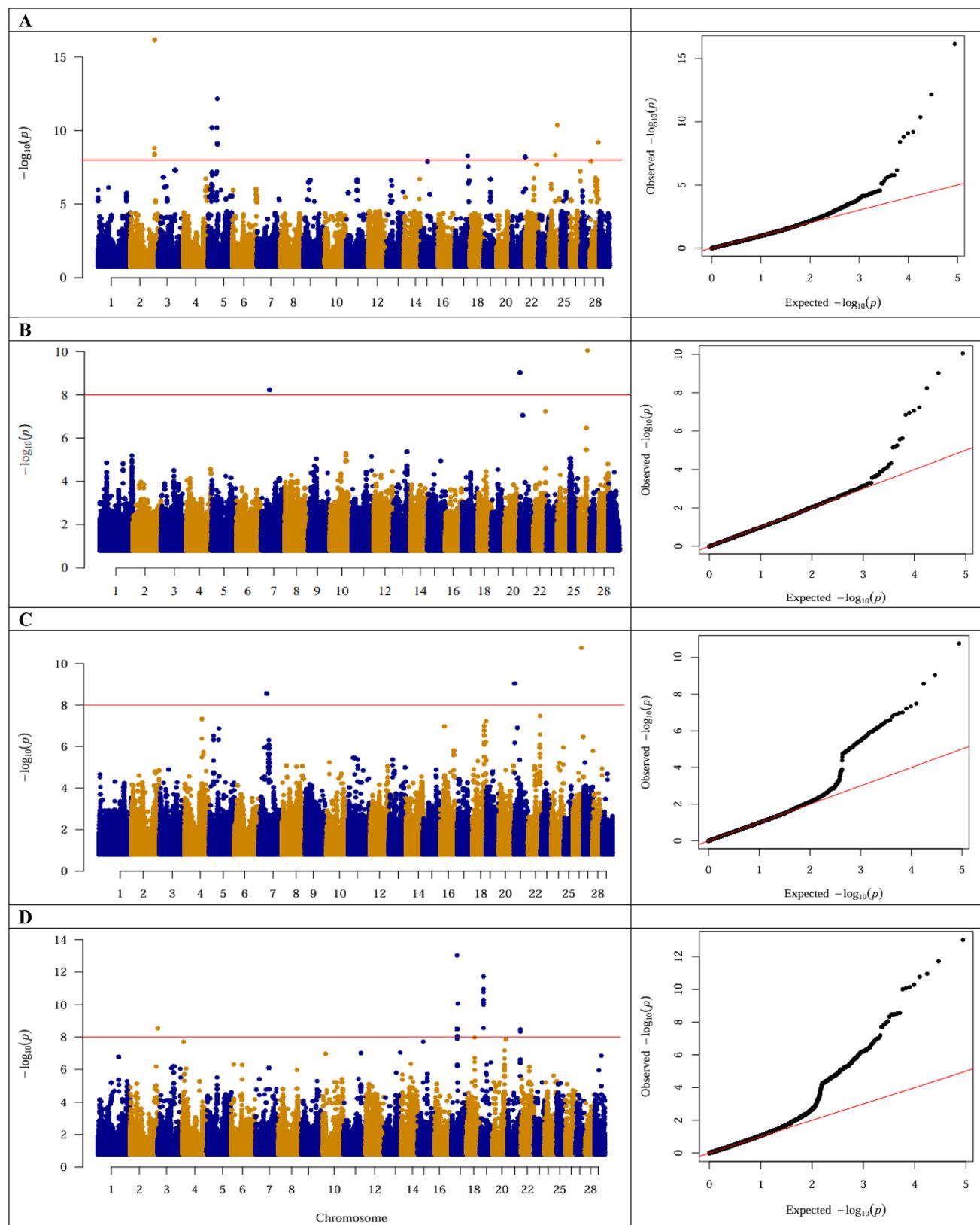


Fig. 1. The distribution of milk yield (A), milk protein (B), milk fat (C), and somatic cell count (D) traits.

Trait name	Trait abbreviation	Mean	$\widehat{\sigma}_a^2$	$\widehat{\sigma}_{htm}^2$	$\widehat{\sigma}_e^2$	\widehat{h}^2
Milk yield (kg/d)	MY	38.32	681.47	35.54	565.34	0.53
Milk fat percentage	MF	3.304	101.23	13.53	119.41	0.43
Milk protein percentage	MP	2.899	131.96	36.32	86.54	0.52
Somatic cell count	SCS	64.41	348.84	28.43	513.76	0.39

Table 2. Estimates of additive genetic variance ($\widehat{\sigma}_a^2$), variance of the random herd-year month of testing effects ($\widehat{\sigma}_{htm}^2$), residual variance ($\widehat{\sigma}_e^2$), and heritability (\widehat{h}^2) for milk yield, milk protein, milk fat, and somatic cell count traits in Iranian Holstein cattle population.

1). For the MY trait, 86 SNPs were identified on the following chromosomes: BTA2 (19), BTA5 (30), BTA17 (1), BTA21 (33), BTA24 (2), and BTA28 (1). And also, 18 SNPs were observed for the MF (milk fat) trait on BTA7 (11), BTA21 (6), and BTA26 (1). Furthermore, for the MP (milk protein) trait, 22 SNPs passed the significance threshold (P value $< 10^{-8}$) and were located in the regions of BTA7 (11), BTA21 (9), BTA22 (1), and BTA26 (1). Moreover, the GWA for the somatic cell count (SCC) trait showed 58 marker-trait associations (P value $< 1 \times 10^{-8}$) locating on chromosomes BTA2 (1), BTA17 (42), BTA19 (12), and BTA21 (1). The Manhattan and Q-Q plot plots for the studied traits are illustrated in Fig. 2. The Manhattan plots clearly illustrate distinct genomic regions of association for each trait, with particularly strong signals on BTA5 and BTA21 for milk traits, and BTA17 for SCC, suggesting potential QTL hotspots. The Q-Q plots show a strong deviation from the expected distribution under the null hypothesis, further confirming the presence of true genetic associations and the robustness of the GWAS. Notably, several novel genes such as *ATE1*, *FGFR2*, *LYZ*, and *MAML3* were identified near the top-associated SNPs, highlighting their potential roles in milk composition, udder health, and host defense mechanisms. These findings provide new insights into the genetic basis of production and health traits and offer promising targets for genomic selection and functional validation in dairy cattle.

Fig. 2. Manhattan plot of the genome-wide p values of association for milk yield (A), milk protein (B), milk fat (C), and somatic cell count (D) traits in Holstein cow. The solid line represents the $p < 10^{-8}$ significance threshold.

QTL regions for somatic cell count and milk production

In Table 3 summarizes the important SNPs ($P < 1 \times 10^{-8}$) linked to milk production characteristics in Iranian Holstein cows that are situated close to identified QTLs. The results indicate that on chromosomes BTA7, BTA21, and BTA26, important QTLs associated with milk decenoic acid content (*MFA-C10:1*), milk capric acid content (*MFA-C10:0*), milk myristoleic acid content (*MFA-C14:1*), milk palmitoleic acid content (*MFA-C16:1*), milk lauroleic acid content (*MFA-C12:1*), milk myristic acid content (*MFA-C14:0*), milk palmitic acid content (*MFA-C16:0*), milk protein yield (*PY*), milk yield (*MY*), yield grade (*YGRADE*) were identified in proximity to the significant SNPs for the milk fat percentage trait. Near the significant SNPs associated with the milk yield trait on chromosomes BTA2, BTA5, BTA17, BTA21, BTA24, and BTA28, QTLs related to milk fat yield (*FY*), somatic cell count (*SCC*), bovine respiratory disease susceptibility (*BRDS*), milk yield (*MY*), milk protein yield (*PY*), body weight (*BW*), fat percentage (*FATP*), bovine tuberculosis susceptibility (*BTBS*), Clinical mastitis (*CM*), and Age at first calving (*AGEFC*) were observed (Table 3). Additionally, QTLs associated with specific somatic cell count (*SCC*), body weight (*BW*), milk protein percentage (*PP*), milk yield (*MY*), *muscularity* (*MUSC*), and average daily gain (*ADG*), traits were identified for the *SCS* trait. Regarding the milk protein percentage trait, several important QTLs, including milk protein yield (*PY*), milk decenoic acid content (*MFA-C10:1*), milk capric acid content (*MFA-C10:0*), milk myristoleic acid content (*MFA-C14:1*), milk palmitoleic acid content (*MFA-C16:1*), milk lauroleic acid content (*MFA-C12:1*), milk myristic acid content (*MFA-C14:0*), milk palmitic acid content (*MFA-C16:0*), calf size (*CALFSZ*), milk yield (*MY*), carcass weight (*CWT*), *muscularity* (*MUSC*), feed conversion ratio (*FCR*), average daily gain (*ADG*), and body weight (*BY*) were determined to be close to the significant SNPs on chromosomes BTA7, BTA21, BTA22, and BTA26.

Gene ontology for somatic cell count and milk production

Over 137 genes associating to milk production and somatic cell count traits were discovered using the gene ontology analysis (supplementary 2), 33 of them are essential genes (Table 4). For the milk fat percentage trait, five candidate genes were discovered around SNPs 26:41,368,775 (2), 21:5,475,347, and 21:5,525,195 (2), which influence the activity of the *ATE1*, *FGFR2*, *ALDH1A3*, *CHSY1*, and *GABRG3* genes (Table 4). And also, for the milk protein percentage trait, six candidate genes were identified, affecting the activity of *ATE1*, *FGFR2*, *ZNF346*, *FGFR4*, *TMEM40*, and *NTRK3* (Table 4). Furthermore, nine candidate genes were identified around SNPs 2:117,632,966 (2), 2:117,637,569, 24:33,558,520 (3), 24:42,643,763, and 5:19,359,629 (2) for the milk yield trait, affecting the activity of the *FBXO36*, *PID1*, *TRIP12*, *CD52*, *WDTC1*, *MATN1*, *CIDEA*, *LYZ*, and *CPM* genes (Table 4). Moreover, the 13 candidate genes were discovered around those SNPs that associated to somatic cell count trait, relating the activity of the *FBXO42*, *MAML3*, *SGMS2*, *SCLT1*, *HADH*, *CYP2U1*, *DLK1*, *THRSP*, *ANKRD26*, *TMEM26*, *VEGFA*, *MED4*, and *VAV1* genes (Table 4).

Gene networks

The results of the gene network analysis for milk production traits, including milk yield (Fig. 3), milk protein percentage (Fig. 4), milk fat percentage (Fig. 5), somatic cell count (Fig. 6), and all traits are shown in Fig. 7. A densely co-expressed network was drawn by using Gene Mania (Fig. 7). This network consisted of 137 genes with 1764 interactions. Among these genes, *CAND1*, *VEGFA*, *AFGLS2*, *FGFR2*, *NUP107*, and *MPPE1* genes have played roles in several intracellular transport processes. Therefore, the identified candidate genes in our study exhibited significant protein–protein interactions to each other or related genes.

Discussion

Phenotypes of milk production traits are primarily quantitative and governed by polygenic mechanisms. Extensive research has been conducted on milk traits over the years. For instance, in 1944, a study confirmed significant QTLs associated with protein yield and fat yield traits, linked to *beta-lactoglobulin* and *kappa-casein*, respectively²⁸. Subsequent studies identified numerous QTLs associated with milk traits across 30 different bovine chromosomes^{1,3,4,29–32}.

Despite the numerous studies, the genetic mechanisms controlling these traits remain largely unclear. Therefore, further research to elucidate the genetic mechanisms governing these traits is precious. To this end, a GWAS was conducted on 210 Iranian Holstein cows, identifying several significant SNPs associated with milk production traits, including milk yield, milk fat, milk protein, and somatic cell count. In this study, significant milk yield SNPs were identified on chromosomes BTA2, BTA5, BTA17, BTA21, BTA24, and BTA28, consistent with previous research findings^{3,15,30,32,33}. Eighteen marker-trait associations were found on chromosomes BTA7, BTA21, and BTA26 for milk fat percentage, corroborating earlier studies^{29,33,34}. For milk protein percentage, 22 SNP markers were identified on BTA7, BTA21, BTA22, and BTA26, with some overlap with previous reports, which identified chromosomes 21 and 22 as the main contributors to this trait^{3,32,35,36}. Several SNPs identified on chromosomes BTA2, BTA17, BTA19, and BTA21 for somatic cell count were also noted in prior research, though some significant SNPs discovered in this study had not been previously reported^{37–41}.

Many genes were located alongside the identified markers, which may directly or indirectly influence the expression of genes associated with milk production traits. However, no reports have yet been published on the effects of some of these genes on milk production traits in cattle, indicating the need to expand our knowledge regarding the functions of these genes in bovines. On Chr26, two genes (*ATE1* and *FGFR2*) associated with milk fat percentage and milk protein percentage was identified. The *ATE1* gene, identified in this study as significantly associated with somatic cell count in Iranian Holstein cows, plays a critical role in protein post-translational modification through arginylation, a process essential for regulating protein stability and degradation. This gene is known to be involved in various cellular functions, including stress response, apoptosis, and cell cycle control. Its identification as a candidate gene in the context of milk production suggests that *ATE1* may influence immune and inflammatory responses in the mammary gland, potentially affecting mastitis susceptibility. This makes

Trait	SNP name	CHR	SNP position	P-VALUE	QTL trait	QTL symbol
Milk fat percentage	26:41,368,775	26	41,368,775	1.76E-11	Milk decenoic acid content	MFA-C10:1
					Milk capric acid content	MFA-C10:0
					Milk myristoleic acid content	MFA-C14:1
					Milk palmitoleic acid content	MFA-C16:1
					Milk lauroleic acid content	MFA-C12:1
					Milk myristic acid content	MFA-C14:0
					Milk palmitic acid content	MFA-C16:0
					Milk protein yield	PY
	21:5,475,347, 21:5,479,335, 21:5,525,195, 21:5,526,942, 21:5,540,218, 21:5,540,346	21	5,475,347, 5,479,335, 5,525,195, 5,526,942, 5,540,218, 5,540,346	7.01E + 00	Milk yield	MY
					Yield grade	YGRADE
					Dry matter intake	DMI
					Residual feed intake	RFI
	7:38,978,819, 7:38,980,158, 7:38,981,963, 7:38,984,445, 7:38,985,659, 7:38,987,723, 7:38,990,526, 7:38,991,222, 7:38,991,958, 7:38,993,562, 7:38,993,821	7	38,978,819, 38,980,158, 38,981,963, 38,984,445, 38,985,659, 38,987,723, 38,990,526, 38,991,222, 38,991,958, 38,993,562, 38,993,821	2.77E-09	Milk yield	MY
					Milk yield	MY
Milk yield	2:117,632,966, 2:117,637,569, 2:117,637,984, 2:117,638,771, 2:117,639,209, 2:117,639,828	2	117,632,966, 117,637,569, 117,637,984, 117,638,771, 117,639,209, 117,639,828	6.83E-17	Bovine tuberculosis susceptibility	BTBS
					Finishing precocity	FPREC
	5:46,840,004	5	46,840,004	6.82E-13	Dairy form	DYF
					Fat thickness at the 12th rib	FATTH
					Milk fat yield	FY
					Meat color	MCOL
					Somatic cell score	SCS
	24:42,643,763	24	42,643,763	4.26E-11	Bovine respiratory disease susceptibility	BRDS
	5:19,359,629, 5:20,921,649, 5:20,921,665, 5:20,921,677, 5:20,921,700, 5:44,942,617, 5:44,947,513, 5:44,951,534	5	19,359,629, 20,921,649, 20,921,665, 20,921,677, 20,921,700, 44,942,617, 44,947,513, 44,951,534	6.48E-11	Bovine tuberculosis susceptibility	BTBS
					Somatic cell score	SCS
	28:41,367,174	28	41,367,174	6.44E-10	Milk yield	MY
					Milk protein yield	PY
					Body weight	BW
	5:46,838,261, 5:46,838,390, 5:46,838,804, 5:46,839,211, 5:46,839,353, 5:46,839,934, 5:46,840,326, 5:46,841,649, 5:46,842,287, 5:46,842,319, 5:46,842,326, 5:46,842,578, 5:46,842,854, 5:46,842,993, 5:46,843,126, 5:46,843,234, 5:46,843,605, 5:46,844,536, 5:46,844,617, 5:46,844,880, 5:46,844,905	5	46,838,261, 46,838,390, 46,838,804, 46,839,211, 46,839,353, 46,839,934, 46,840,326, 46,841,649, 46,842,287, 46,842,319, 46,842,326, 46,842,578, 46,842,854, 46,842,993, 46,843,126, 46,843,234, 46,843,605, 46,844,536, 46,844,617, 46,844,880, 46,844,905	8.01E-10	Fat percentage	FATP
					Fat thickness at the 12th rib	FATTH
					Milk fat yield	FY
					Intramuscular fat	IMF
					Tenderness score	TEND
	2:117,634,155, 2:117,609,575, 2:117,612,785, 2:117,613,536, 2:117,614,046, 2:117,617,324, 2:117,618,341, 2:117,618,551, 2:117,623,366, 2:117,624,136, 2:117,624,277, 2:117,630,474, 2:117,630,564	2	117,634,155, 117,609,575, 117,612,785, 117,613,536, 117,614,046, 117,617,324, 117,618,341, 117,618,551, 117,623,366, 117,624,136, 117,624,277, 117,630,474, 117,630,564	2.82E + 01	Bovine tuberculosis susceptibility	BTBS
					Clinical mastitis	CM
					Finishing precocity	FPREC
	24:33,558,520	24	33,558,520	4.55E-09	Feed conversion ratio	FCR
					Milk fat yield	FY
					Milk protein yield	PY
	17:63,264,129	17	63,264,129	5.04E-09	Age at first calving	AGEFC
					Age at puberty	PUBAGE

Continued

Trait	SNP name	CHR	SNP position	P-VALUE	QTL trait	QTL symbol
somatic cell count	17:27,352,308	17	27,352,308	9.40E-14	Foot angle	FANG
					Milk fat percentage	FP
					Milk capric acid content	MFA-C10:0
					Milk caproic acid content	MFA-C6:0
					Milk caprylic acid content	MFA-C8:0
					Udder cleft	UC
	2:136,324,570	2	136,324,570	2.90E-09	Body weight	BW
					Calving ease	CALEASE
					Number of embryos	EMBN
	17:27,934,174, 17:27,934,711, 17:27,935,175, 17:27,935,578, 17:27,935,936, 17:27,937,114, 17:27,937,682, 17:27,937,911, 17:27,939,074, 17:27,939,227, 17:27,940,869, 17:27,941,000, 17:27,941,865, 17:27,942,749, 17:27,943,061, 17:27,944,056, 17:27,945,023, 17:27,945,729, 17:27,945,870, 17:27,946,069, 17:27,946,873, 17:27,947,078, 17:27,947,831, 17:27,948,286, 17:27,948,458, 17:27,949,222, 17:27,950,485, 17:27,951,279, 17:27,951,312, 17:27,951,379, 17:27,952,082, 17:27,952,115, 17:27,952,181, 17:27,952,231, 17:27,952,427, 17:27,952,527, 17:27,954,753	17	27,934,174, 27,934,711, 27,935,175, 27,935,578, 27,935,936, 27,937,114, 27,937,682, 27,937,911, 27,939,074, 27,939,227, 27,940,869, 27,941,000, 27,941,865, 27,942,749, 27,943,061, 27,944,056, 27,945,023, 27,945,729, 27,945,870, 27,946,069, 27,946,873, 27,947,078, 27,947,831, 27,948,286, 27,948,458, 27,949,222, 27,950,485, 27,951,279, 27,951,312, 27,951,379, 27,952,082, 27,952,115, 27,952,181, 27,952,231, 27,952,427, 27,952,527, 27,954,753	3.20E-09	Body weight	BW
					Milk yield	MY
					Milk protein percentage	PP
					Milk protein yield persistency	PPER
					Somatic cell score	SCS
	21:65,800,662, 21:65,801,072, 21:65,800,729	21	65,800,662, 65,801,072, 65,800,729	3.32E-09	Cystic ovaries	CYSOV
	17:28,549,748, 17:28,554,363, 17:28,557,080	17	28,549,748, 28,554,363, 28,557,080	8.84E-09	Body weight	BW
					Calving ease	CALEASE
					Infectious bovine keratoconjunctivitis susceptibility	IBK
					Milk yield	MY
					Milk protein percentage	PP
					Milk protein yield persistency	PPER
					Somatic cell score	SCS
Milk Protein percentage	26:41,368,775	26	41,368,775	9.05E-11	Milk protein yield	PY
	21:5,475,347, 21:5,479,335, 21:5,525,195, 21:5,526,942, 21:5,540,218, 21:5,540,346	21	5,475,347, 5,479,335, 5,525,195, 5,526,942, 5,540,218, 5,540,346	9.36E-10	Milk yield	MY
	7:38,978,819, 7:38,980,158, 7:38,981,963, 7:38,984,445, 7:38,985,659, 7:38,987,723, 7:38,990,526, 7:38,991,222, 7:38,991,958, 7:38,993,562, 7:38,993,821	7	38,978,819, 38,980,158, 38,981,963, 38,984,445, 38,985,659, 38,987,723, 38,990,526, 38,991,222, 38,991,958, 38,993,562, 38,993,821	5.74E-09	Milk yield	MY
	22:56,353,359	22	56,353,359	5.81E-08	Muscularity	MUSC
					Milk yield	MY
					Feed conversion ratio	FCR

Continued

Trait	SNP name	CHR	SNP position	P-VALUE	QTL trait	QTL symbol
					Mean corporcular volume	MCV
	21:18,622,875, 21:18,664,428, 21:18,667,244	21	18,622,875, 18,664,428, 18,667,244	8.79E-08	Body weight	BW
					Average daily gain	ADG
					Infectious bovine keratoconjunctivitis susceptibility	IBK

Table 3. QTLs located in close distance to the most significant single nucleotide polymorphisms (SNPs) associated with milk yield, milk protein, milk fat, and somatic cell count traits in Holstein cows.

ATE1 a promising target for further functional studies and a valuable marker for improving udder health in genomic selection programs⁴². The *FGFR2* (Fibroblast Growth Factor Receptor 2) gene emerged as a candidate associated with supernumerary teats (SNT) in the GWAS of Iranian Holstein cows, suggesting a potential role in mammary gland morphology and development. *FGFR2* is a key component of the fibroblast growth factor signaling pathway, which regulates cell growth, differentiation, and tissue development. Previous studies have linked *FGFR2* to mammary gland proliferation and its dysregulation to breast cancer development. Specifically, *FGFR2* expression has been observed in the endometrial and trophoblastic epithelium, and its activation has been shown to influence epithelial integrity and fertility. These functions underscore *FGFR2*'s involvement in reproductive and mammary traits, making it a biologically plausible candidate gene for traits like supernumerary teats, which have implications for udder health, milkability, and the efficiency of mechanized milking systems⁴². *ATE1* is a eukaryotic protein that plays a role in metabolism and apoptosis, reducing chromosomal aberrations through cell-cell contact⁴³. A GWAS conducted by Fang et al.⁴² on *Capra hircus* demonstrated that the *ATE1* gene is associated with udder size. Another gene identified in this study, *FGFR2*, has been linked to breast cancer⁴⁴. Overexpression of growth hormone (GH) has been shown to promote mammary proliferation via *FGFR2* and *FGF7*^{42,45}. On *Chr24*, the several genes (*ALDH1A3*, *CHSY1*, and *GABRG3*) were found alongside significant markers for milk fat percentage. The third enzyme from the aldehyde dehydrogenase 1 family, encoded by the *ALDH1A3* gene, plays a detoxification and antioxidant role by converting retinaldehyde to retinoic acid⁴⁴. In a GWAS conducted on Chinese Holstein cows, *ALDH1A3* was associated with milk production traits, such as fat and protein content⁴⁶. The *CHSY1* gene has been previously shown to contribute to bone growth⁴⁷, and this study demonstrates that it may also be linked to milk-related traits. Another essential gene identified is *GABRG3*, associated with teat size⁴⁸. In other GWAS studies on cattle, *GABRG3* has also been linked to carcass traits and feed efficiency^{49–51}.

On *Chr2*, several genes associated with milk yield traits were identified, including the *FBXO36* gene, which was linked to milk yield in this population. *FBXO36*, a member of the F-box protein family, plays a role in protein ubiquitination and is involved in critical cellular functions such as nutrient sensing, signal transduction, circadian rhythms, and the cell cycle, contributing to mastitis resistance in Holstein cows^{52–54}. The function of this gene has been demonstrated in various cattle populations, showcasing its multifunctional role. These associations include specific diseases, infections, and biological functions related to adaptation^{55,56}. Additionally, on the same chromosome, the *PID1* gene plays a role in human lipid metabolism, reducing the sensitivity of adipocytes to insulin through the interaction of the phosphotyrosine-binding domain 1 with the lipoprotein receptor⁵⁷. A GWAS study on cattle has identified the role of the *PID1* gene in lipid metabolism and fatty acid synthesis⁵⁸. *TRIP12* is another gene that regulates the balance between protein synthesis and degradation and is involved in mammal muscle differentiation⁵⁹. The exact role has been proposed for *TRIP12* in intramuscular fat content in cattle^{58,60}. Other critical genes on this chromosome include *CD52*, *WDTC1*, and *MATN1*. The *CD52* gene encodes a glycoprotein that reduces T-cell activation⁶¹. The *WDTC1* gene regulates fat-related gene transcription⁶². Reduced expression of *MATN1* has been associated with impaired muscle growth⁶³. On *Chr24*, the *CIDEA* gene was found alongside significant markers. Previous reports have highlighted its role in lipid synthesis in milk, which is influenced by the complex regulation of multiple gene expressions. *CIDEA* is a protein expressed in adipose tissue and associated with lipid droplets⁶⁴. High expression of this gene in the mammary glands of lactating mice has been linked to lipid secretion⁶⁵. Additionally, the *CIDEA* gene and several lipogenic enzymes are regulated post-partum in the mammary tissue of cattle⁶⁶. On *Chr5*, the *LYZ* (Lysozyme) gene was identified by Salehin et al.⁶⁷. They reported the significant effect of the *LYZ* gene on somatic cell count and milk production in cattle. The *LYZ* gene is of significant importance due to its strong antibacterial and immune-regulatory properties, particularly within the mammary gland of dairy animals. This gene encodes for lysozyme, an antimicrobial enzyme abundantly secreted in milk, saliva, and other bodily fluids, where it plays a crucial role in the innate immune system by breaking down bacterial cell walls. In the context of dairy production, *LYZ* is highly expressed in the mammary gland of buffaloes, contributing to their enhanced resistance to mastitis compared to cattle⁶⁸. Therefore, the *LYZ* gene is not only a key marker for udder health and milk quality but also a promising candidate for genomic selection and therapeutic applications aimed at improving disease resistance in dairy herds. Another gene identified on this chromosome was *CPM*. The *CPM* protein plays a role in adipose tissue differentiation and has been identified as a candidate gene for milk fatty acids in Holstein cows⁶⁹.

In *Chr19*, *UCP1* gene was detected near significant SNPs with SCS trait. *UCP1* gene is a mitochondrial carrier protein. Król et al.⁷⁰ showed that the expression of *UCP1* gene decreases during lactation in mice. Also, the effective function of *UCP1* gene on milk protein percentage, milk fat percentage and milk yield has also been

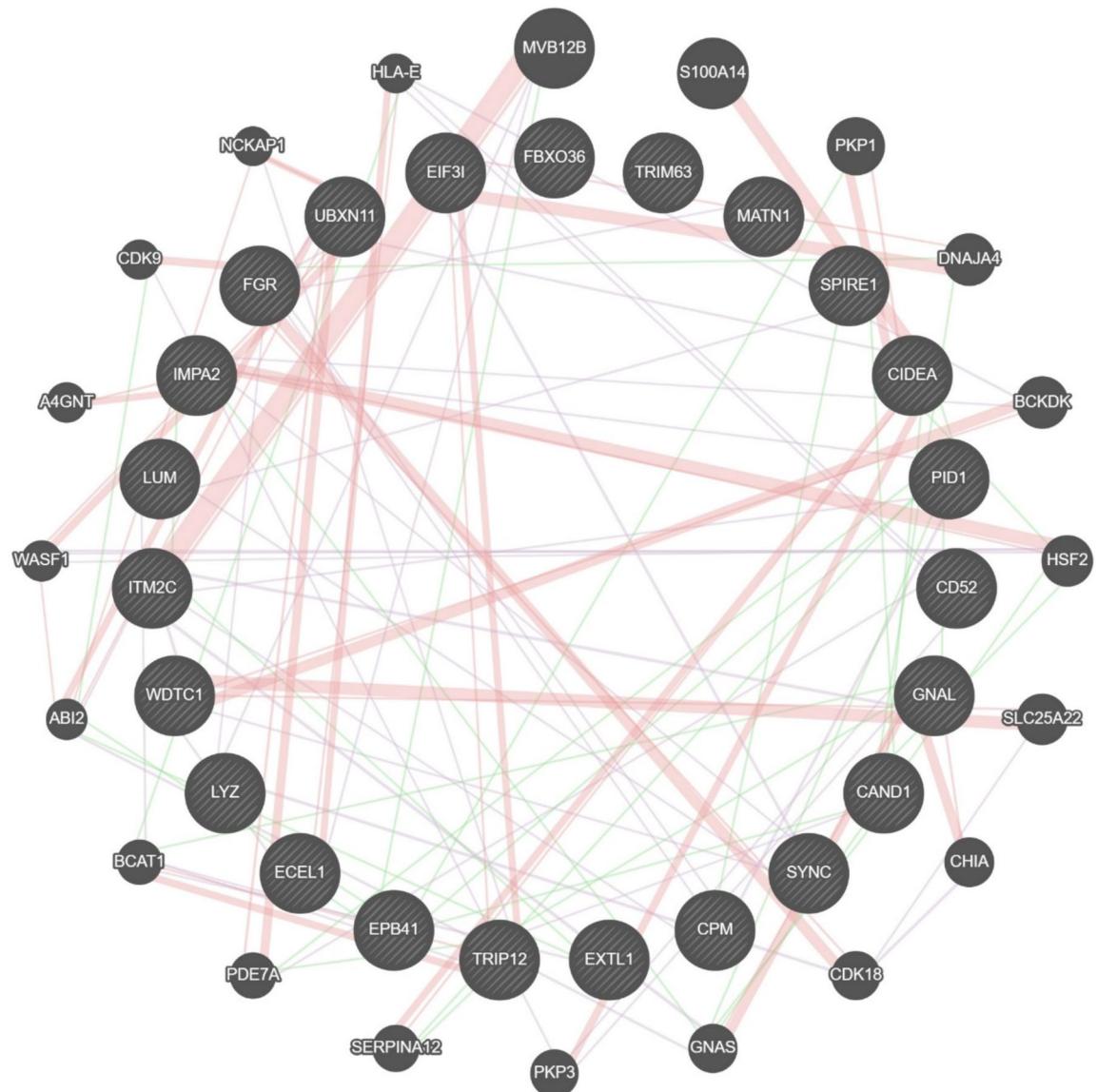
Traits	SNP name	CHR	SNP position	Gene start	Gene end	Ensembl gene ID	Gene name
milk fat percentage	26:41,368,775	26	41,368,775	40,868,775	41,868,775	ENSBTAT0000004132, ENSBTAT0000018708,	arginyltransferase 1(ATE1), fibroblast growth factor receptor 2(FGFR2)
	21:5,475,347	21	5,475,347	4,975,347	5,975,347	ENSBTAT00000048734 ENSBTAT00000120547 ENSBTAT0000075609	aldehyde dehydrogenase 1 family member A3(ALDH1A3) chondroitin sulfate synthase 1(CHSY1) gamma-aminobutyric acid type A receptor subunit gamma3(GABRG3)
	21:5,479,335	21	5,479,335	4,979,335	5,979,335	ENSBTAT00000048734 ENSBTAT00000120547 ENSBTAT0000075609	aldehyde dehydrogenase 1 family member A3(ALDH1A3) chondroitin sulfate synthase 1(CHSY1) gamma-aminobutyric acid type A receptor subunit gamma3(GABRG3)
	21:5,525,195	21	5,525,195	5,025,195	6,025,195	ENSBTAT00000048734 ENSBTAT00000120547 ENSBTAT0000075609	aldehyde dehydrogenase 1 family member A3(ALDH1A3) chondroitin sulfate synthase 1(CHSY1) gamma-aminobutyric acid type A receptor subunit gamma3(GABRG3)
	21:5,526,942	21	5,526,942	5,026,942	6,026,942	ENSBTAT00000048734 ENSBTAT00000120547 ENSBTAT0000075609	aldehyde dehydrogenase 1 family member A3(ALDH1A3) chondroitin sulfate synthase 1(CHSY1) gamma-aminobutyric acid type A receptor subunit gamma3(GABRG3)
	21:5,540,218	21	5,540,218	5,040,218	6,040,218	ENSBTAT00000048734 ENSBTAT00000120547 ENSBTAT0000075609	aldehyde dehydrogenase 1 family member A3(ALDH1A3) chondroitin sulfate synthase 1(CHSY1) gamma-aminobutyric acid type A receptor subunit gamma3(GABRG3)
	21:5,540,346	21	5,540,346	5,040,346	6,040,346	ENSBTAT00000048734 ENSBTAT00000120547 ENSBTAT0000075609	aldehyde dehydrogenase 1 family member A3(ALDH1A3) chondroitin sulfate synthase 1(CHSY1) gamma-aminobutyric acid type A receptor subunit gamma3(GABRG3)
milk protein percentage	26:41,368,775	26	41,368,775	40,868,775	41,868,775	ENSBTAG0000003178, ENSBTAG0000014064	arginyltransferase 1(ATE1), fibroblast growth factor receptor 2(FGFR2)
	7:38,980,158	7	38,980,158	38,480,158	39,480,158	ENSBTAT00000128302, ENSBTAT0000095871	zinc finger protein 346(ZNF346), fibroblast growth factor receptor 4(FGFR4)
	7:38,981,963	7	38,981,963	38,481,963	39,481,963	ENSBTAT00000128302, ENSBTAT0000095871	zinc finger protein 346(ZNF346), fibroblast growth factor receptor 4(FGFR4)
	7:38,984,445	7	38,984,445	38,484,445	39,484,445	ENSBTAT00000128302, ENSBTAT0000095871	zinc finger protein 346(ZNF346), fibroblast growth factor receptor 4(FGFR4)
	7:38,985,659	7	38,985,659	38,485,659	39,485,659	ENSBTAT00000128302, ENSBTAT0000095871	zinc finger protein 346(ZNF346), fibroblast growth factor receptor 4(FGFR4)
	7:38,987,723	7	38,987,723	38,487,723	39,487,723	ENSBTAT00000128302, ENSBTAT0000095871	zinc finger protein 346(ZNF346), fibroblast growth factor receptor 4(FGFR4)
	7:38,990,526	7	38,990,526	38,490,526	39,490,526	ENSBTAT00000128302, ENSBTAT0000095871	zinc finger protein 346(ZNF346), fibroblast growth factor receptor 4(FGFR4)
	7:38,987,723	7	38,987,723	38,487,723	39,487,723	ENSBTAT00000128302, ENSBTAT0000095871	zinc finger protein 346(ZNF346), fibroblast growth factor receptor 4(FGFR4)
	7:38,990,526	7	38,990,526	38,490,526	39,490,526	ENSBTAT00000128302, ENSBTAT0000095871	zinc finger protein 346(ZNF346), fibroblast growth factor receptor 4(FGFR4)
	7:38,987,723	7	38,987,723	38,487,723	39,487,723	ENSBTAT00000128302, ENSBTAT0000095871	zinc finger protein 346(ZNF346), fibroblast growth factor receptor 4(FGFR4)
	7:38,990,526	7	38,990,526	38,490,526	39,490,526	ENSBTAT00000128302, ENSBTAT0000095871	zinc finger protein 346(ZNF346), fibroblast growth factor receptor 4(FGFR4)
	22:56,353,359	22	56,353,359	55,853,359	56,853,359	ENSBTAT00000036498	transmembrane protein 40(TMEM40)
	21:18,622,875	21	18,622,875	18,122,875	19,122,875	ENSBTAT00000098347	neurotrophic receptor tyrosine kinase 3(NTRK3)
	21:18,664,428	21	18,664,428	18,164,428	19,164,428	ENSBTAT00000098347	neurotrophic receptor tyrosine kinase 3(NTRK3)
	21:18,667,244	21	18,667,244	18,167,244	19,167,244	ENSBTAT00000098347	neurotrophic receptor tyrosine kinase 3(NTRK3)
milk yield	2:117,632,966	2	117,632,966	117,132,966	118,132,966	ENSBTAG00000010338 ENSBTAG00000037640 ENSBTAG0000021653	F-box protein 36(FBXO36), phosphotyrosine interaction domain containing 1(PID1), thyroid hormone receptor interactor 12(TRIP12)
	2:117,637,569	2	117,637,569	117,137,569	118,137,569	ENSBTAG00000010338 ENSBTAG00000037640 ENSBTAG0000021653	F-box protein 36(FBXO36), phosphotyrosine interaction domain containing 1(PID1), thyroid hormone receptor interactor 12(TRIP12)
	2:117,637,984	2	117,637,984	117,137,984	118,137,984	ENSBTAG00000010338 ENSBTAG00000037640 ENSBTAG0000021653	F-box protein 36(FBXO36), phosphotyrosine interaction domain containing 1(PID1), thyroid hormone receptor interactor 12(TRIP12)

Continued

Traits	SNP name	CHR	SNP position	Gene start	Gene end	Ensembl gene ID	Gene name
	2:117,638,771	2	117,638,771	117,138,771	118,138,771	ENSBTAG0000010338 ENSBTAG0000037640 ENSBTAG0000021653	F-box protein 36(FBXO36), phosphotyrosine interaction domain containing 1(PID1), thyroid hormone receptor interactor 12(TRIP12)
	2:117,639,209	2	117,639,209	117,139,209	118,139,209	ENSBTAG0000010338 ENSBTAG0000037640 ENSBTAG0000021653	F-box protein 36(FBXO36), phosphotyrosine interaction domain containing 1(PID1), thyroid hormone receptor interactor 12(TRIP12)
	2:117,639,828	2	117,639,828	117,139,828	118,139,828	ENSBTAG0000010338 ENSBTAG0000037640 ENSBTAG0000021653	F-box protein 36(FBXO36), phosphotyrosine interaction domain containing 1(PID1), thyroid hormone receptor interactor 12(TRIP12)
	2:117,609,575	2	117,609,575	117,109,575	118,109,575	ENSBTAT0000007399, ENSBTAT0000070605, ENSBTAT0000043181	CD52 molecule(CD52), WD and tetraricoptide repeats 1(WDTC1), matrillin 1(MATN1)
	2:117,634,155	2	117,634,155	117,134,155	118,134,155	ENSBTAT0000007399, ENSBTAT0000070605, ENSBTAT0000043181	CD52 molecule(CD52), WD and tetraricoptide repeats 1(WDTC1), matrillin 1(MATN1)
	2:117,609,575	2	117,609,575	117,109,575	118,109,575	ENSBTAT0000007399, ENSBTAT0000070605, ENSBTAT0000043181	CD52 molecule(CD52), WD and tetraricoptide repeats 1(WDTC1), matrillin 1(MATN1)
	2:117,612,785	2	117,612,785	117,112,785	118,112,785	ENSBTAT0000007399, ENSBTAT0000070605, ENSBTAT0000043181	CD52 molecule(CD52), WD and tetraricoptide repeats 1(WDTC1), matrillin 1(MATN1)
	2:117,613,536	2	117,613,536	117,113,536	118,113,536	ENSBTAT0000007399, ENSBTAT0000070605, ENSBTAT0000043181	CD52 molecule(CD52), WD and tetraricoptide repeats 1(WDTC1), matrillin 1(MATN1)
	2:117,614,046	2	117,614,046	117,114,046	118,114,046	ENSBTAT0000007399, ENSBTAT0000070605, ENSBTAT0000043181	CD52 molecule(CD52), WD and tetraricoptide repeats 1(WDTC1), matrillin 1(MATN1)
	2:117,617,324	2	117,617,324	117,117,324	118,117,324	ENSBTAT0000007399, ENSBTAT0000070605, ENSBTAT0000043181	CD52 molecule(CD52), WD and tetraricoptide repeats 1(WDTC1), matrillin 1(MATN1)
	2:117,618,341	2	117,618,341	117,118,341	118,118,341	ENSBTAT0000007399, ENSBTAT0000070605, ENSBTAT0000043181	CD52 molecule(CD52), WD and tetraricoptide repeats 1(WDTC1), matrillin 1(MATN1)
	2:117,618,551	2	117,618,551	117,118,551	118,118,551	ENSBTAT0000007399, ENSBTAT0000070605, ENSBTAT0000043181	CD52 molecule(CD52), WD and tetraricoptide repeats 1(WDTC1), matrillin 1(MATN1)
	2:117,623,366	2	117,623,366	117,123,366	118,123,366	ENSBTAT0000007399, ENSBTAT0000070605, ENSBTAT0000043181	CD52 molecule(CD52), WD and tetraricoptide repeats 1(WDTC1), matrillin 1(MATN1)
	2:117,624,136	2	117,624,136	117,124,136	118,124,136	ENSBTAT0000007399, ENSBTAT0000070605, ENSBTAT0000043181	CD52 molecule(CD52), WD and tetraricoptide repeats 1(WDTC1), matrillin 1(MATN1)
	2:117,624,277	2	117,624,277	117,124,277	118,124,277	ENSBTAT0000007399, ENSBTAT0000070605, ENSBTAT0000043181	CD52 molecule(CD52), WD and tetraricoptide repeats 1(WDTC1), matrillin 1(MATN1)
	2:117,630,474	2	117,630,474	117,130,474	118,130,474	ENSBTAT0000007399, ENSBTAT0000070605, ENSBTAT0000043181	CD52 molecule(CD52), WD and tetraricoptide repeats 1(WDTC1), matrillin 1(MATN1)
	2:117,630,564	2	117,630,564	117,130,564	118,130,564	ENSBTAT0000007399, ENSBTAT0000070605, ENSBTAT0000043181	CD52 molecule(CD52), WD and tetraricoptide repeats 1(WDTC1), matrillin 1(MATN1)
5:19,359,629	5	19,359,629	18,859,629	19,859,629	ENSBTAT0000038266 ENSBTAT0000017941	lysosome(LYZ), carboxypeptidase M(CPM)	
5:20,921,649	5	20,921,649	20,421,649	21,421,649	ENSBTAT0000038266 ENSBTAT0000017941	lysosome(LYZ), carboxypeptidase M(CPM)	
5:20,921,665	5	20,921,665	20,421,665	21,421,665	ENSBTAT0000038266 ENSBTAT0000017941	lysosome(LYZ), carboxypeptidase M(CPM)	
5:20,921,677	5	20,921,677	20,421,677	21,421,677	ENSBTAT0000038266 ENSBTAT0000017941	lysosome(LYZ), carboxypeptidase M(CPM)	
5:20,921,700	5	20,921,700	20,421,700	21,421,700	ENSBTAT0000038266 ENSBTAT0000017941	lysosome(LYZ), carboxypeptidase M(CPM)	
5:44,942,617	5	44,942,617	44,442,617	45,442,617	ENSBTAT0000038266 ENSBTAT0000017941	lysosome(LYZ), carboxypeptidase M(CPM)	
5:44,947,513	5	44,947,513	44,447,513	45,447,513	ENSBTAT0000038266 ENSBTAT0000017941	lysosome(LYZ), carboxypeptidase M(CPM)	
5:44,951,534	5	44,951,534	44,451,534	45,451,534	ENSBTAT0000038266 ENSBTAT0000017941	ENSBTAT0000038266 ENSBTAT0000017941	
28:41,367,174	28	41,367,174	40,867,174	41,867,174	ENSBTAT0000038266 ENSBTAT0000017941	ENSBTAT0000038266 ENSBTAT0000017941	

Continued

Traits	SNP name	CHR	SNP position	Gene start	Gene end	Ensembl gene ID	Gene name
somatic cell count	2:136,324,570	2	136,324,570	135,824,570	136,824,570	ENSBTAT0000011217	F-box protein 42(FBXO42)
	19:17,569,632	19	17,569,632	17,069,632	18,069,632	ENSBTAG0000011373, ENSBTAG0000008288, ENSBTAG0000019502, ENSBTAG00000039160, ENSBTAG0000014484, ENSBTAG0000005339, ENSBTAG0000016805, ENSBTAG0000012972, ENSBTAG0000011666, ENSBTAG000002049	mastermind like transcriptional coactivator 3(MAML3), ankyrin repeat domain containing 26(ANKRD26), mediator complex subunit 4(MED4), vav guanine nucleotide exchange factor 1(VAV1), transmembrane protein 26(TM26), vascular endothelial growth factor A(VEGFA), sphingomyelin synthase 2(SGMS2), cytochrome P450 family 2 subfamily U member 1(CYP2U1), thyroid hormone responsive(THRSP), hydroxyacyl-CoA dehydrogenase(HADH)
	19:17,571,628	19	17,571,628	17,071,628	18,071,628	ENSBTAG0000011373, ENSBTAG0000008288, ENSBTAG0000019502, ENSBTAG00000039160, ENSBTAG0000014484, ENSBTAG0000005339, ENSBTAG0000016805, ENSBTAG0000012972, ENSBTAG0000011666, ENSBTAG000002049	mastermind like transcriptional coactivator 3(MAML3), ankyrin repeat domain containing 26(ANKRD26), mediator complex subunit 4(MED4), vav guanine nucleotide exchange factor 1(VAV1), transmembrane protein 26(TM26), vascular endothelial growth factor A(VEGFA), sphingomyelin synthase 2(SGMS2), cytochrome P450 family 2 subfamily U member 1(CYP2U1), thyroid hormone responsive(THRSP), hydroxyacyl-CoA dehydrogenase(HADH)
	19:17,566,796	19	17,566,796	17,066,796	18,066,796	ENSBTAG0000011373, ENSBTAG0000008288, ENSBTAG0000019502, ENSBTAG00000039160, ENSBTAG0000014484, ENSBTAG0000005339, ENSBTAG0000016805, ENSBTAG0000012972, ENSBTAG0000011666, ENSBTAG000002049	mastermind like transcriptional coactivator 3(MAML3), ankyrin repeat domain containing 26(ANKRD26), mediator complex subunit 4(MED4), vav guanine nucleotide exchange factor 1(VAV1), transmembrane protein 26(TM26), vascular endothelial growth factor A(VEGFA), sphingomyelin synthase 2(SGMS2), cytochrome P450 family 2 subfamily U member 1(CYP2U1), thyroid hormone responsive(THRSP), hydroxyacyl-CoA dehydrogenase(HADH)
	19:17,568,477	19	17,568,477	17,068,477	18,068,477	ENSBTAG0000011373, ENSBTAG0000008288, ENSBTAG0000019502, ENSBTAG00000039160, ENSBTAG0000014484, ENSBTAG0000005339, ENSBTAG0000016805, ENSBTAG0000012972, ENSBTAG0000011666, ENSBTAG000002049	mastermind like transcriptional coactivator 3(MAML3), ankyrin repeat domain containing 26(ANKRD26), mediator complex subunit 4(MED4), vav guanine nucleotide exchange factor 1(VAV1), transmembrane protein 26(TM26), vascular endothelial growth factor A(VEGFA), sphingomyelin synthase 2(SGMS2), cytochrome P450 family 2 subfamily U member 1(CYP2U1), thyroid hormone responsive(THRSP), hydroxyacyl-CoA dehydrogenase(HADH)
	19:17,566,441	19	17,566,441	17,066,441	18,066,441	ENSBTAG0000011373, ENSBTAG0000008288, ENSBTAG0000019502, ENSBTAG00000039160, ENSBTAG0000014484, ENSBTAG0000005339, ENSBTAG0000016805, ENSBTAG0000012972, ENSBTAG0000011666, ENSBTAG000002049	mastermind like transcriptional coactivator 3(MAML3), ankyrin repeat domain containing 26(ANKRD26), mediator complex subunit 4(MED4), vav guanine nucleotide exchange factor 1(VAV1), transmembrane protein 26(TM26), vascular endothelial growth factor A(VEGFA), sphingomyelin synthase 2(SGMS2), cytochrome P450 family 2 subfamily U member 1(CYP2U1), thyroid hormone responsive(THRSP), hydroxyacyl-CoA dehydrogenase(HADH)
	19:17,560,790	19	17,560,790	17,060,790	18,060,790	ENSBTAG0000011373, ENSBTAG0000008288, ENSBTAG0000019502, ENSBTAG00000039160, ENSBTAG0000014484, ENSBTAG0000005339, ENSBTAG0000016805, ENSBTAG0000012972, ENSBTAG0000011666, ENSBTAG000002049	mastermind like transcriptional coactivator 3(MAML3), ankyrin repeat domain containing 26(ANKRD26), mediator complex subunit 4(MED4), vav guanine nucleotide exchange factor 1(VAV1), transmembrane protein 26(TM26), vascular endothelial growth factor A(VEGFA), sphingomyelin synthase 2(SGMS2), cytochrome P450 family 2 subfamily U member 1(CYP2U1), thyroid hormone responsive(THRSP), hydroxyacyl-CoA dehydrogenase(HADH)
	19:17,580,436	19	17,580,436	17,080,436	18,080,436	ENSBTAG0000011373, ENSBTAG0000008288, ENSBTAG0000019502, ENSBTAG00000039160, ENSBTAG0000014484, ENSBTAG0000005339, ENSBTAG0000016805, ENSBTAG0000012972, ENSBTAG0000011666, ENSBTAG000002049	mastermind like transcriptional coactivator 3(MAML3), ankyrin repeat domain containing 26(ANKRD26), mediator complex subunit 4(MED4), vav guanine nucleotide exchange factor 1(VAV1), transmembrane protein 26(TM26), vascular endothelial growth factor A(VEGFA), sphingomyelin synthase 2(SGMS2), cytochrome P450 family 2 subfamily U member 1(CYP2U1), thyroid hormone responsive(THRSP), hydroxyacyl-CoA dehydrogenase(HADH)
	19:17,564,026	19	17,564,026	17,064,026	18,064,026	ENSBTAG0000011373, ENSBTAG0000008288, ENSBTAG0000019502, ENSBTAG00000039160, ENSBTAG0000014484, ENSBTAG0000005339, ENSBTAG0000016805, ENSBTAG0000012972, ENSBTAG0000011666, ENSBTAG000002049	mastermind like transcriptional coactivator 3(MAML3), ankyrin repeat domain containing 26(ANKRD26), mediator complex subunit 4(MED4), vav guanine nucleotide exchange factor 1(VAV1), transmembrane protein 26(TM26), vascular endothelial growth factor A(VEGFA), sphingomyelin synthase 2(SGMS2), cytochrome P450 family 2 subfamily U member 1(CYP2U1), thyroid hormone responsive(THRSP), hydroxyacyl-CoA dehydrogenase(HADH)


Continued

Traits	SNP name	CHR	SNP position	Gene start	Gene end	Ensembl gene ID	Gene name
	19:17,564,876	19	17,564,876	17,064,876	18,064,876	ENSBTAG00000011373, ENSBTAG00000008288, ENSBTAG0000019502, ENSBTAG00000039160, ENSBTAG00000014484, ENSBTAG00000005339, ENSBTAG00000016805, ENSBTAG00000012972, ENSBTAG00000011666, ENSBTAG0000002049	mastermind like transcriptional coactivator 3(MAML3), ankyrin repeat domain containing 26(ANKRD26), mediator complex subunit 4(MED4), vav guanine nucleotide exchange factor 1(VAV1), transmembrane protein 26(TM26), vascular endothelial growth factor A(VEGFA), sphingomyelin synthase 2(SGMS2), cytochrome P450 family 2 subfamily U member 1(CYP2U1), thyroid hormone responsive(THRSP), hydroxyacyl-CoA dehydrogenase(HADH)
	17:30,955,632	17	30,955,632	30,455,632	31,455,632	ENSBTAG00000011373, ENSBTAG00000008288, ENSBTAG00000019502, ENSBTAG00000039160, ENSBTAG00000014484, ENSBTAG00000005339, ENSBTAG00000016805, ENSBTAG00000012972, ENSBTAG00000011666, ENSBTAG0000002049	mastermind like transcriptional coactivator 3(MAML3), ankyrin repeat domain containing 26(ANKRD26), mediator complex subunit 4(MED4), vav guanine nucleotide exchange factor 1(VAV1), transmembrane protein 26(TM26), vascular endothelial growth factor A(VEGFA), sphingomyelin synthase 2(SGMS2), cytochrome P450 family 2 subfamily U member 1(CYP2U1), thyroid hormone responsive(THRSP), hydroxyacyl-CoA dehydrogenase(HADH)
	19:17,569,739	19	17,569,739	17,069,739	18,069,739	ENSBTAG00000011373, ENSBTAG00000008288, ENSBTAG00000019502, ENSBTAG00000039160, ENSBTAG00000014484, ENSBTAG00000005339, ENSBTAG00000016805, ENSBTAG00000012972, ENSBTAG00000011666, ENSBTAG0000002049	mastermind like transcriptional coactivator 3(MAML3), ankyrin repeat domain containing 26(ANKRD26), mediator complex subunit 4(MED4), vav guanine nucleotide exchange factor 1(VAV1), transmembrane protein 26(TM26), vascular endothelial growth factor A(VEGFA), sphingomyelin synthase 2(SGMS2), cytochrome P450 family 2 subfamily U member 1(CYP2U1), thyroid hormone responsive(THRSP), hydroxyacyl-CoA dehydrogenase(HADH)
	19:17,570,064	19	17,570,064	17,070,064	18,070,064	ENSBTAG00000011373, ENSBTAG00000008288, ENSBTAG00000019502, ENSBTAG00000039160, ENSBTAG00000014484, ENSBTAG00000005339, ENSBTAG00000016805, ENSBTAG00000012972, ENSBTAG00000011666, ENSBTAG0000002049	mastermind like transcriptional coactivator 3(MAML3), ankyrin repeat domain containing 26(ANKRD26), mediator complex subunit 4(MED4), vav guanine nucleotide exchange factor 1(VAV1), transmembrane protein 26(TM26), vascular endothelial growth factor A(VEGFA), sphingomyelin synthase 2(SGMS2), cytochrome P450 family 2 subfamily U member 1(CYP2U1), thyroid hormone responsive(THRSP), hydroxyacyl-CoA dehydrogenase(HADH)
	19:17,570,882	19	17,570,882	17,070,882	18,070,882	ENSBTAG00000011373, ENSBTAG00000008288, ENSBTAG00000019502, ENSBTAG00000039160, ENSBTAG00000014484, ENSBTAG00000005339, ENSBTAG00000016805, ENSBTAG00000012972, ENSBTAG00000011666, ENSBTAG0000002049	mastermind like transcriptional coactivator 3(MAML3), ankyrin repeat domain containing 26(ANKRD26), mediator complex subunit 4(MED4), vav guanine nucleotide exchange factor 1(VAV1), transmembrane protein 26(TM26), vascular endothelial growth factor A(VEGFA), sphingomyelin synthase 2(SGMS2), cytochrome P450 family 2 subfamily U member 1(CYP2U1), thyroid hormone responsive(THRSP), hydroxyacyl-CoA dehydrogenase(HADH)
	17:28,549,748	17	28,549,748	28,049,748	29,049,748	ENSBTAT00000097033	sodium channel and clathrin linker 1(SCLT1)
	17:28,554,363	17	28,554,363	28,054,363	29,054,363	ENSBTAT00000097034	sodium channel and clathrin linker 1(SCLT1)
	17:28,557,080	17	28,557,080	28,057,080	29,057,080	ENSBTAT00000097035	sodium channel and clathrin linker 1(SCLT1)
	21:65,800,662	21	65,800,662	65,300,662	66,300,662	ENSBTAT00000081077	delta like non-canonical Notch ligand 1(DLK1)
	21:65,801,072	21	65,801,072	65,301,072	66,301,072	ENSBTAT00000081077	delta like non-canonical Notch ligand 1(DLK1)
	21:65,800,729	21	65,800,729	65,300,729	66,300,729	ENSBTAT00000081077	delta like non-canonical Notch ligand 1(DLK1)

Table 4. The candidate or nearest genes to the most significant single nucleotide polymorphisms (SNPs) in significant regions based on 5×10^{-8} for milk yield, milk protein, milk fat, and somatic cell count traits in Holstein cows.

reported⁷¹. *CYP2U1*, *SGMS2* and *HADH* genes cause the secretion of fat cells in milk because they play an important role in the metabolism of lipids and fatty acids⁷². In a GWAS experiment on cows, the role of these three genes (*CYP2U1*, *SGMS2* and *HADH*) was reported as candidate genes for milk fat⁷³. In Iranian Holstein cattle, SNP 17:28,549,748 in BTA17 was associated with SCS. According to Duchemin et al.⁷⁴, this region contains the *SCLT1* gene, which affects the fatty acid composition of milk from Holstein cows. The identified *THRSP* gene was located in the vicinity of the significant SNP associated with the SCS trait. *THRSP* gene in goat, with chest circumference and body weight⁷⁵, with average daily weight gain, waist-eye area and back fat thickness in pig⁷⁶ and in cattle with fatty acid composition milk⁷⁴ and water holding capacity are correlated with meat tenderness⁷⁷.

A new strategy in animal breeding programs, including for cattle, is using genomic information for economically important traits³⁸. Identifying biological processes and genomic regions influencing milk production traits is essential for understanding the underlying genetic mechanisms. This study has identified novel genes as well as previously reported genes. In future breeding programs, the identified candidate gene variants can be utilized to

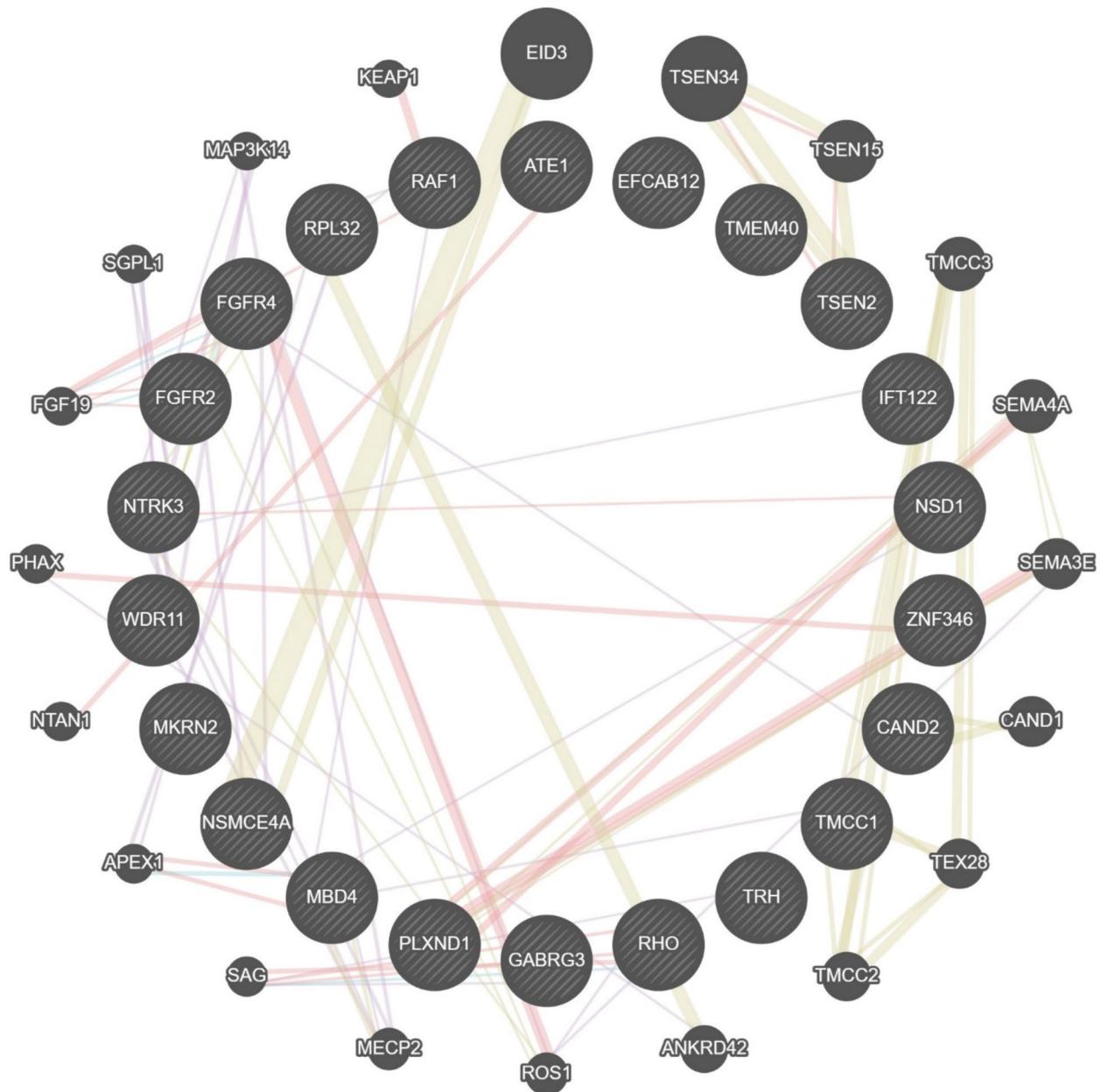


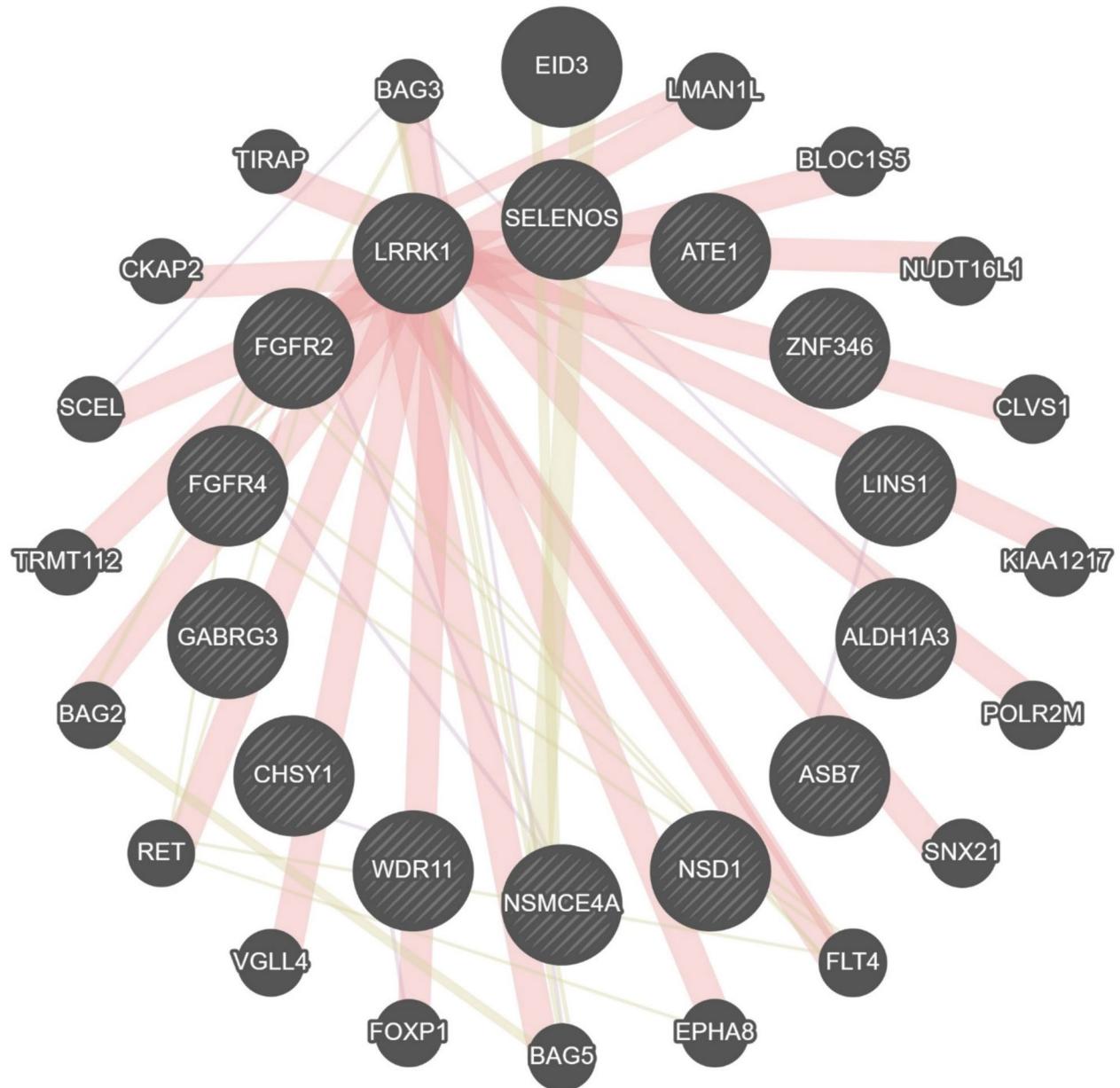
Fig. 3. Gene networks analysis for milk yield trait in Holstein cows. Dark circles with and without slash represent candidate genes and associated genes, respectively. Arrows in pink, blue, red and bone color represent co-expression, pathway, physical interactions and shared protein domains, respectively.

improve milk production traits in dairy cattle. Additionally, validation studies involving gene expression analysis may be necessary in certain animal groups due to possible mutations in the identified candidate genes. This is essential for confirming the impact of these genes on the traits under investigation.

Conclusions

The genetic evaluation of milk production traits and somatic cell count in Holstein cows can be facilitated by combining genomic data in GWAS studies. We have identified several SNPs, important regions in various BTAs, and a list of candidate genes (both novel and known) that may contribute to variations in milk production traits and somatic cell count in Holstein cows. The genes *ATE1*, *FGFR2*, *ALDH1A3*, *CHSY1*, *GABRG3*, *FBXO36*, *PID1*, *TRIP12*, *CD52*, *WDTC1*, *MATN1*, *CIDEA*, *LYZ*, *CPM*, *UCP1*, *MAML3*, *SGMS2*, *HADH*, *CYP2U1*, *SCLT1* and *THRSP* have been suggested as candidate genes for milk production traits and somatic cell count in Holstein cattle. These genes may be used for higher profit identification, causal mutations, and genomic predictions for milk production traits and somatic cell count in dairy cattle. This study demonstrated the feasibility of genetic evaluation for milk production traits and somatic cell count in the Iranian Holstein population, and it should be incorporated into the selection index for Iranian dairy cows.

Fig. 4. Gene networks analysis for milk protein percentage trait in Holstein cows. Dark circles with and without slash represent candidate genes and associated genes, respectively. Arrows in pink, blue, red and bone color represent co-expression, pathway, physical interactions and shared protein domains, respectively.

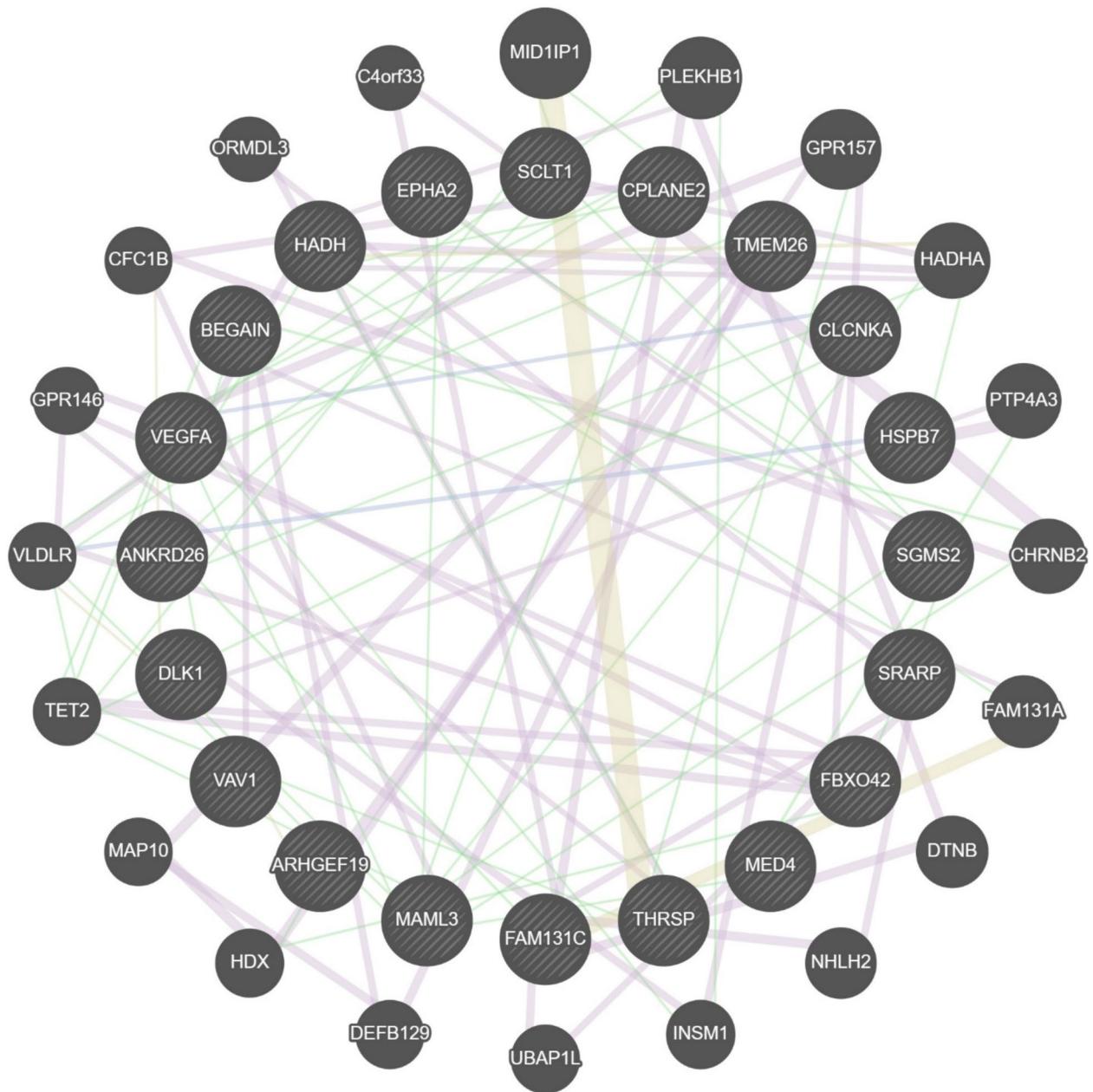

Materials and methods

Phenotypic data

In the dairy farm of Ferdous Pars Agriculture Development, Iranian Holstein cows were selected. To conduct this study, 210 female cows (150 and 60 cattle, respectively, in herds 1 and 2) were selected for the study based on the breeding value of the milk production trait⁷⁸. Animals were chosen using the two-tailed selection strategy outlined by Jiménez-Montero et al.⁷⁹, which was based on estimated breeding values (EBVs) for milk yield. The EBVs were calculated by the National Animal Breeding Centre of Iran (Karaj, Iran) using a lactation model, as described in Eq. (1)⁸⁰. The authors of the article confirm that the study was reported in accordance with the ARRIVE guidelines.

$$y_{ij} = \mu + hys_i + a_{ij} + e_{ij}$$

In this model, y_{ij} represents the milk yield, adjusted to a standard 305-day lactation period with twice-daily milking. The term μ denotes the overall population mean, hys_i accounts for the fixed effect of the i herd-year-season group, a_{ij} represents the breeding value of the j^{th} animal within the i^{th} herd-year-season group, and


Fig. 5. Gene networks analysis for milk fat percentage trait in Holstein cows. Dark circles with and without slash represent candidate genes and associated genes, respectively. Arrows in pink, blue, red and bone color represent co-expression, pathway, physical interactions and shared protein domains, respectively.

e_{ij} captures the random residual error. The average accuracy of the estimated breeding values (EBVs) for milk yield was calculated to be 0.61⁸⁰.

The following cases were also taken into consideration during the sampling in addition to those mentioned above: the sampling involved analyzing the livestock's pedigrees using the CFC V9.0 SP7 software⁸¹, and ensuring that both herds had a high diversity of livestock was done by choosing livestock with minimal kinship relationships⁸⁰. A complete pedigree (The pedigree of the cows is given in Supplementary 3) and records were available for the selected animals, and it was ensured that the animals were not candidates for elimination. During the first to sixth lactation of 210 Holstein cows located on one Iranian farms with two herds, 75,228 phenotypic records were collected from May 2013 to December 2020. Among the traits studied were test-day milk yield (MY; kg/d), somatic cell count (SCC, converted according to Ali and Shook,⁸²), milk protein percentage (PP, %), and milk fat percentage (FP, %). A summary of the phenotypic data is shown in Table 1.

Genotype imputation and quality control (QC)

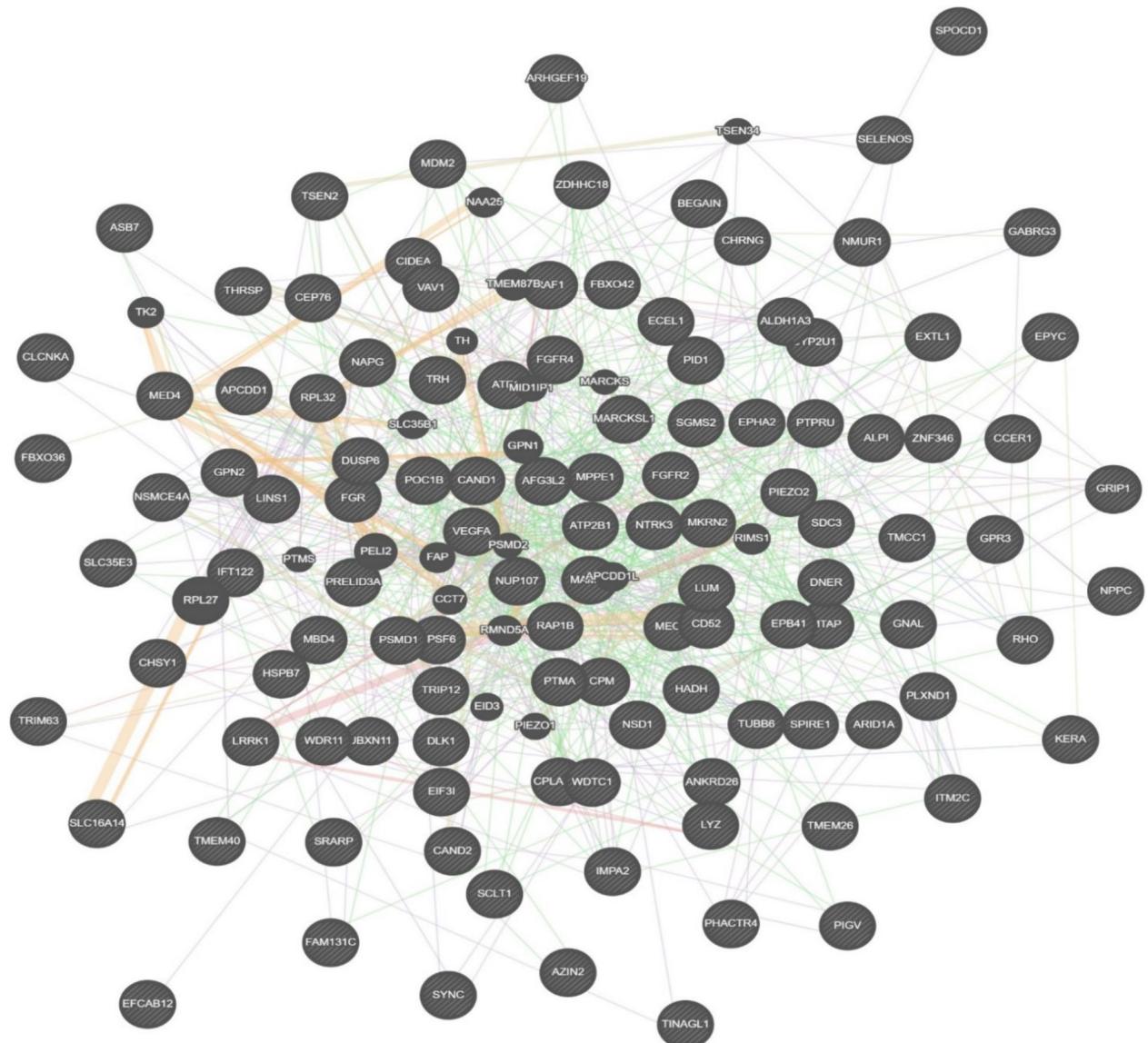

One-hundred fifty (150) and Sixty (60) animals from herd 1 and 2 were genotyped by the GGP-LD v.4 SNP panel (with 30,108 SNPs) and the Affymetrix Axiom Bovine Array-50 K (with 51,987 SNPs), respectively.

Fig. 6. Gene networks analysis for somatic cell count trait in Holstein cows. Dark circles with and without slash represent candidate genes and associated genes, respectively. Arrows in pink, blue, red and bone color represent co-expression, pathway, physical interactions and shared protein domains, respectively.

Using the software PLINK 2.0 to control genotyping quality, four criteria were used. Those animals with over 5% missing genotypes were excluded, those with minor allele frequencies (MAFs) less than 5%, and SNPs that were not genotyped for more than 5% of animals and chi scores were less than 10^{-6} (Chi-square $< 10^{-6}$) were excluded from the Hardy-Weinberg equilibrium test. To check imputation accuracy and identify and remove markers that had lower accuracy and stepwise imputation, Minimac3 2.0.1 software was used⁸³.

The 210 cows (150 from Herd 1 and 60 from Herd 2) were genotyped using two SNP panels: the GGP-LD v.4 (30,108 SNPs) and the Affymetrix Axiom Bovine Array-50 K (51,987 SNPs). These animals comprised the target population⁸⁴. Genotypes were then imputed to whole genome sequence level using a reference population of 234 animals from the 1000 Bull Genomes Project. This reference panel included key progenitors from four major breeds: Holstein–Friesian ($n = 129$), Fleckvieh ($n = 43$), Jersey ($n = 15$), and Angus ($n = 47$), each genotyped using the BovineHD BeadChip and whole-genome sequencing data⁸⁵. Quality control was applied to both SNP chip and sequence data, resulting in 578,505 SNPs from the BovineHD chip and 12,063,146 SNPs from the sequence data after filtering. Genotype phasing was conducted using Eagle v2.3, and imputation was performed with Minimac3 for both reference and target populations⁷⁸. After removing imputed SNPs with an accuracy (R^2) below 0.30, 6,583,595 high-confidence SNPs were retained and used in the genome-wide association analysis.

Fig. 7. Gene networks analysis for all traits in Holstein cows. Dark circles with and without slash represent candidate genes and associated genes, respectively. Arrows in pink, blue, red and bone color represent co-expression, pathway, physical interactions and shared protein domains, respectively.

GWAS for somatic cells count and milk production

A mixed linear model in EMMA was used to association studies between imputed genotypes and milk production and somatic cell count traits⁸⁶. EMMA adjust for both population stratification and relatedness in the association study. The mixed model used for this study was as follow Eq. (1):

$$y = Xb + Zu + e \quad (1)$$

where X is a $n \times q$ matrix of fixed effects including overall mean, covariates and the testing SNP; y is a $n \times 1$ vector of the phenotypic measurement, b is a $q \times 1$ vector denoting the coefficients of fixed effects; Z is a $n \times t$ incidence matrix which relates phenotypes to the corresponding random polygenic effect; u is a $t \times 1$ vector of the random polygenic effect and e is a $n \times 1$ vector of the residual effects. Furthermore, $\text{Var}(u) = \sigma_g^2 K$ and $\text{var}(e) = \sigma_e^2 I$ that I is identity matrix and K is a kinship matrix among all imputed sequence genotypes.

In GWAS, a Bonferroni-corrected genomic threshold of 1×10^{-8} ($P < 0.05 / \text{total number of SNPs}$) for association study is known. We used the R 4.3.2 software to draw the Manhattan plot using the qqman package⁸⁷.

Gene annotation

Our study used Ensembl annotations of the UMD3.1 genome version (<http://www.ensembl.org/biomart/martview>) to identify candidate genes surrounding (within one megabase) SNPs that passed the threshold of $P < 1 \times 10^{-8}$. An analysis of gene ontologies was performed using DAVID Bioinformatics Resources version

6.7 (<http://david.abcc.ncifcrf.gov/>). Also, to identify those QTLs that fall within 1 Mb of SNPs that meet the threshold of $P < 1 \times 10^{-8}$, the QTLdb of cattle was used (<https://www.animalgenome.org/cgibin/QTLdb/BT/index>). The GeneMANIA (<http://genemania.org/>) was then used to draw gene networks.

Data availability

The datasets generated and analyzed during the current study are available in the Figshare repository [<https://doi.org/10.6084/m9.figshare.28604060>].

Received: 18 December 2024; Accepted: 25 June 2025

Published online: 01 September 2025

References

- Buaban, S., Lengnudum, K., Boonkum, W. & Phakdeedindan, P. Genome-wide association study on milk production and somatic cell score for Thai dairy cattle using weighted single-step approach with random regression test-day model. *J. Dairy Sci.* **105**(1), 468–494 (2022).
- Snelling, W. M. et al. Breeding and genetics symposium: networks and pathways to guide genomic selection–. *J. Anim. Sci.* **91**(2), 537–552 (2013).
- Li, H. et al. Genome-wide association study of milk production traits in a crossbred dairy sheep population using three statistical models. *Anim. Genet.* **51**(4), 624–628 (2020).
- Jiang, L. et al. Genome wide association studies for milk production traits in Chinese Holstein population. *PLoS ONE* **5**(10), e13661 (2010).
- Heringstad, B., Sehested, E. & Steine, T. Correlated selection responses in somatic cell score from selection against clinical mastitis. *J. Dairy Sci.* **91**(11), 4437–4439 (2008).
- Rupp, R. & Boichard, D. Genetics of resistance to mastitis in dairy cattle. *Vet. Res.* **34**(5), 671–688 (2003).
- Carlen, E., Strandberg, E. & Roth, A. Genetic parameters for clinical mastitis, somatic cell score, and production in the first three lactations of Swedish Holstein cows. *J. Dairy Sci.* **87**(9), 3062–3070 (2004).
- Daw, E. W., Heath, S. C. & Lu, Y. Single-nucleotide polymorphism versus microsatellite markers in a combined linkage and segregation analysis of a quantitative trait. *BMC Genet.* **6**(Suppl 1), S32 (2005).
- Freebern, E. et al. GWAS and fine-mapping of livability and six disease traits in Holstein cattle. *BMC Genom.* **21**, 1–11 (2020).
- Horin, P., Osickova, J., Necesankova, M., Matiasovic, J., Musilova, P., Kubickova, S., & Rubes, J. Single nucleotide polymorphisms of interleukin-1 beta related genes and their associations with infection in the horse. In *Animal Genomics for Animal Health* Vol. 132 347–351 Karger Publishers. (2008)
- Craig, D. W. & Stephan, D. A. Applications of whole-genome high-density SNP genotyping. *Expert Rev. Mol. Diagn.* **5**(2), 159–170 (2005).
- Scott, Laura J. et al. 2007 "A association study of type diabetes in nts." *science* **5** (2) 159-170.
- Abdalla, I. M. et al. Identification of candidate genes and functional pathways associated with body size traits in chinese holstein cattle based on GWAS analysis. *Animals* **13**(6), 992 (2023).
- Zepeda-Batista, J. L. et al. Discovering of genomic variations associated to growth traits by GWAS in Braunvieh cattle. *Genes* **12**(11), 1666 (2021).
- Otto, P. I. et al. Single-step genome-wide association studies (GWAS) and post-GWAS analyses to identify genomic regions and candidate genes for milk yield in Brazilian Girolano cattle. *J. Dairy Sci.* **103**(11), 10347–10360 (2020).
- Nayeri, S. et al. Genome-wide association for milk production and female fertility traits in Canadian dairy Holstein cattle. *BMC Genet.* **17**, 1–11 (2016).
- van den Berg, I., Boichard, D. & Lund, M. S. Comparing power and precision of within-breed and multibreed genome-wide association studies of production traits using whole-genome sequence data for 5 French and Danish dairy cattle breeds. *J. Dairy Sci.* **99**(11), 8932–8945 (2016).
- Sahana, G. et al. Genome-wide association study using high-density single nucleotide polymorphism arrays and whole-genome sequences for clinical mastitis traits in dairy cattle. *J. Dairy Sci.* **97**(11), 7258–7275 (2014).
- Steri, R., Moioli, B., Catillo, G., Galli, A. & Buttazzoni, L. Genome-wide association study for longevity in the Holstein cattle population. *Animal* **13**(7), 1350–1357 (2019).
- Zhang, H. et al. Genetic parameters and genome-wide association studies of eight longevity traits representing either full or partial lifespan in Chinese Holsteins. *Front. Genet.* **12**, 634986 (2021).
- Zhang, Q., Guldbrandtsen, B., Thomasen, J. R., Lund, M. S. & Sahana, G. Genome-wide association study for longevity with whole-genome sequencing in 3 cattle breeds. *J. Dairy Sci.* **99**(9), 7289–7298 (2016).
- Abdollahi-Arpanahi, R., Carvalho, M. R., Ribeiro, E. S. & Peñagaricano, F. Association of lipid-related genes implicated in conceptus elongation with female fertility traits in dairy cattle. *J. Dairy Sci.* **102**(11), 10020–10029 (2019).
- Frischknecht, M. et al. Intergenomics Consortium Fries R Russ I, Sölkner J, Bieber A Genome-wide association studies of fertility and calving traits in Brown Swiss cattle using imputed whole-genome sequences. *BMC Genom.* **18**(1), 3 (2017).
- Liu, A. et al. Variance components and correlations of female fertility traits in Chinese Holstein population. *J. Anim. Sci. & Biotechnol.* **8**, 1–9 (2017).
- Lu, X. et al. Genome-wide association study on reproduction-related body-shape traits of Chinese Holstein cows. *Animals* **11**(7), 1927 (2021).
- Wang, X. et al. Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility. *BMC Genet.* **16**(1), 9 (2015).
- Chen Xing, C. X., Cheng ZhangRui, C. Z., Zhang Shujun, Z. S., Werling, D., & Wathes, D. C. Combining genome wide association studies and differential gene expression data analyses identifies candidate genes affecting mastitis caused by two different pathogens in the dairy cow (2015)
- Bovenhuis H, Weller JI. Mapping and analysis of dairy cattle quantitative trait loci by maximum likelihood methodology using milk protein genes as genetic markers. *Genetics* **137**, 267–280 (1994).
- Iung, L. H. S. et al. Genome-wide association study for milk production traits in a Brazilian Holstein population. *J. Dairy Sci.* **102**(6), 5305–5314 (2019).
- Križanac, A. M., Reimer, C., Heise, J., Liu, Z., Pryce, J., Bennewitz, J., et al. Sequence-based GWAS in 180 000 German Holstein cattle reveals new candidate genes for milk production traits. *bioRxiv* 2023–12. (2023)
- Chen SY, Gloria LS, Pedrosa VB, Doucette J, Boerman JP, Brito LF. Unraveling the genomic background of resilience based on variability in milk yield and milk production levels in North American Holstein cattle through genome-wide association study and Mendelian randomization analyses. *J. Dairy Sci.* **107**, 1035–1053 (2024).
- Liu L, Zhou J, Chen CJ, Zhang J, Wen W, Tian J, et al. GWAS-based identification of new loci for milk yield, fat, and protein in Holstein cattle. *Animals* **10**, 2048 (2020).

33. Silva, A. A. et al. GWAS and gene networks for milk-related traits from test-day multiple lactations in Portuguese Holstein cattle. *J. Appl. Genet.* **61**(3), 465–476 (2020).
34. Atashi, H. et al. Single-step genome-wide association for selected milk fatty acids in Dual-Purpose Belgian Blue cows. *J. Dairy Sci.* **106**(9), 6299–6315 (2023).
35. Shamsollahi, M. & Zhang, S. Genome wide association study associated with milk protein composition. *Anim. Sci. Res.* **34**(1), 31–44 (2024).
36. Bakhshalizadeh, S., Zerehdaran, S., Hasanzadeh, S., & Javadmanesh, A. Identification of potential candidate genes associated with milk protein differences in Holstein cows: a meta-analysis integrating GWAS and RNA-Seq transcriptome. *Canadian Journal of Animal Science* (2024).
37. Ilie, D. E. et al. Genome-wide association studies for milk somatic cell score in romanian dairy cattle. *Genes* **12**(10), 1495 (2021).
38. Sutera, A. M. et al. Genome-wide association study identifies new candidate markers for somatic cells score in a local dairy sheep. *Front. Genet.* **12**, 643531 (2021).
39. Wang, P. et al. Genome-wide association analysis of milk production, somatic cell score, and body conformation traits in Holstein cows. *Front. Vet. Sci.* **9**, 932034 (2022).
40. Strillacci MG, Punturiero C, Milanesi R, Bernini F, Mason T, Bagnato A. Antibiotic treatments and somatic cell count as phenotype to map QTL for mastitis susceptibility in Holstein cattle breed. *Ital. J. Anim. Sci.* **22**, 190–199 (2023).
41. Lu X, Jiang H, Arbab AAI, Wang B, Liu D, Abdalla IM, et al. Investigating genetic characteristics of Chinese Holstein cow's milk somatic cell score by genetic parameter estimation and genome-wide association. *Agriculture* **13**, 267 (2023).
42. Fang X, Gu B, Chen M, Sun R, Zhang J, Zhao L, Zhao Y. Genome-wide association study of the reproductive traits of the Dazu black goat (*Capra hircus*) using whole-genome resequencing. *Genes* **14**, 1960 (2023).
43. Jiang C, Moorthy BT, Patel DM, Kumar A, Morgan WM, Alfonso B, et al. Regulation of mitochondrial respiratory chain complex levels, organization, and function by arginyltransferase 1. *Front. Cell Dev. Biol.* **8**, 603688 (2020).
44. Bao Y, Wang L, Shi L, Yun F, Liu X, Chen Y, et al. Transcriptome profiling revealed multiple genes and ECM-receptor interaction pathways that may be associated with breast cancer. *Cell. Mol. Biol. Lett.* **24**, 38 (2019).
45. Spencer TE, Bazer FW. Uterine and placental factors regulating conceptus growth in domestic animals. *J. Anim. Sci.* **82**(Suppl 13), E4–E13 (2004).
46. Bao Z, Lin J, Ye L, Zhang Q, Chen J, Yang Q, Yu Q. Modulation of mammary gland development and milk production by growth hormone expression in GH transgenic goats. *Front. Physiol.* **7**, 278 (2016).
47. Yu H, Yu S, Guo J, Cheng G, Mei C, Zan L. Genome-wide association study reveals novel loci associated with body conformation traits in Qin-chuan cattle. *Animals* **13**, 3628 (2023).
48. Tao L, He XY, Wang FY, Pan LX, Wang XY, Gan SQ, et al. Identification of genes associated with litter size combining genomic approaches in Luzhong mountain sheep. *Anim. Genet.* **52**, 545–549 (2021).
49. Olivieri BF, Mercadante MEZ, Cyrillo JNDSG, Branco RH, Bonilha SFM, de Albuquerque LG, et al. Genomic regions associated with feed efficiency indicator traits in an experimental Nellore cattle population. *PLoS One* **11**, e0164390 (2016).
50. Maiorano AM, Cardoso DF, Carvalheiro R, Júnior GAF, de Albuquerque LG, de Oliveira HN. Signatures of selection in Nellore cattle revealed by whole-genome sequencing data. *Genomics* **114**, 110304 (2022).
51. Ceballos, F.C., Hazelhurst, S. & Ramsay, M. Assessing runs of Homozygosity: a comparison of SNP Array and whole genome sequence low coverage data. *BMC Genomics* **19**, 106 (2018).
52. Cuesta, L. M., Liron, J. P., Nieto Farias, M. V., Dolcini, G. L. & Ceriani, M. C. Effect of bovine leukemia virus (BLV) infection on bovine mammary epithelial cells RNA-seq transcriptome profile. *PLoS ONE* **15**(6), e0234939 (2020).
53. Johnston, D. et al. Elucidation of the host bronchial lymph node miRNA transcriptome response to bovine respiratory syncytial virus. *Front. Genet.* **12**, 633125 (2021).
54. Gondaira, S. et al. Innate immune response in bovine neutrophils stimulated with mycoplasma bovis. *Vet. Res.* **52**(1), 11 (2021).
55. Kurz, J. P. et al. A genome-wide association study for mastitis resistance in phenotypically well-characterized Holstein dairy cattle using a selective genotyping approach. *Immunogenetics* **71**, 35–47 (2019).
56. Laodim, T. et al. Genetic factors influencing milk and fat yields in tropically adapted dairy cattle: Insights from quantitative trait loci analysis and gene associations. *Anim. Biosci.* **37**(4), 576 (2024).
57. Shi, C. M. et al. Knockdown of NYGGF4 (PID1) rescues insulin resistance and mitochondrial dysfunction induced by FCCP in 3T3-L1 adipocytes. *Mitochondrion* **12**(6), 600–606 (2012).
58. Machado, P. C. et al. Genome-wide association analysis reveals novel loci related with visual score traits in nellore cattle raised in pasture-based systems. *Animals* **12**(24), 3526 (2022).
59. Egner, M. A. & Glass, D. J. Signaling pathways controlling skeletal muscle mass. *Crit. Rev. Biochem. Mol. Biol.* **49**(1), 59–68 (2014).
60. Silva, D. B. et al. Spliced genes in muscle from Nellore Cattle and their association with carcass and meat quality. *Sci. Rep.* **10**(1), 14701 (2020).
61. Furukawa, A., Wisel, S. A. & Tang, Q. Impact of immune-modulatory drugs on regulatory T cell. *Transplantation* **100**(11), 2288–2300 (2016).
62. Ducos, E. et al. Remarkable evolutionary conservation of antiobesity ADIPOSE/WDTC1 homologs in animals and plants. *Genetics* **207**(1), 153–162 (2017).
63. Garcia-Contreras, C. et al. Impact of genotype, body weight and sex on the prenatal muscle transcriptome of Iberian pigs. *PLoS ONE* **15**(1), e0227861 (2020).
64. Sun, X. et al. High expression of cell death-inducing DFFA-like effector a (CIDEA) promotes milk fat content in dairy cows with clinical ketosis. *J. Dairy Sci.* **102**(2), 1682–1692 (2019).
65. Wang, W. et al. Cidea is an essential transcriptional coactivator regulating mammary gland secretion of milk lipids. *Nat. Med.* **18**(2), 235–243 (2012).
66. Bionaz, M. et al. Old and new stories: Revelations from functional analysis of the bovine mammary transcriptome during the lactation cycle. *PLoS ONE* **7**(3), e33268 (2012).
67. Salehin, M., Ghosh, A. K., Mallick, P. K. & Bhattacharya, T. K. Molecular characterization, polymorphism and association study of lysozyme gene with milk production and somatic cell trait in Bos indicus× Bos taurus cattle. *Animal* **3**(5), 623–631 (2009).
68. Su, J. et al. Comparative evolutionary and molecular genetics based study of Buffalo lysozyme gene family to elucidate their antibacterial function. *Int. J. Biol. Macromol.* **15**(234), 123646 (2023).
69. Shi, L. et al. Identification of genetic effects and potential causal polymorphisms of CPM gene impacting milk fatty acid traits in Chinese Holstein. *Anim. Genet.* **51**(4), 491–501 (2020).
70. Król, E., Martin, S. A., Huhtaniemi, I. T., Douglas, A. & Speakman, J. R. Negative correlation between milk production and brown adipose tissue gene expression in lactating mice. *J. Exp. Biol.* **214**(24), 4160–4170 (2011).
71. Zhou, H. et al. Haplotype variation in the UCP1 gene is associated with milk traits in dairy cows. *J. Dairy Res.* **84**(1), 68–75 (2017).
72. Grilz-Seger, G. et al. High-resolution population structure and runs of homozygosity reveal the genetic architecture of complex traits in the Lipizzan horse. *BMC Genom.* **20**, 1–17 (2019).
73. Illa, S. K., Mukherjee, S., Nath, S. & Mukherjee, A. Genome-wide scanning for signatures of selection revealed the putative genomic regions and candidate genes controlling milk composition and coat color traits in Sahiwal cattle. *Front. Genet.* **12**, 699422 (2021).
74. Duchemin, S. I., Bovenhuis, H., Megens, H. J., Van Arendonk, J. A. M. & Visker, M. H. P. W. Fine-mapping of BTA17 using imputed sequences for associations with de novo synthesized fatty acids in bovine milk. *J. Dairy Sci.* **100**(11), 9125–9135 (2017).

75. An, X. et al. Polymorphism identification in the goat THRSP gene and association analysis with growth traits. *Arch. Anim. Breed.* **55**(1), 78–83 (2012).
76. Wang, X. et al. Polymorphisms in 5 proximal regulating region of THRSP gene are associated with fat production in pigs. *3 Biotech* **10**(1), 9 (2020).
77. Oh, D. Y. et al. Identification of exonic nucleotide variants of the thyroid hormone responsive protein gene associated with carcass traits and Fatty Acid composition in korean cattle. *Asia.-Aust. J. Anim. Sci.* **27**(10), 1373 (2014).
78. JalilSarghale, A. et al. Genome-wide association studies for methane emission and ruminal volatile fatty acids using Holstein cattle sequence data. *BMC Genet.* **21**(1), 1–4 (2020).
79. Jiménez-Montero, J. A., Gonzalez-Recio, O. & Alenda, R. Genotyping strategies for genomic selection in small dairy cattle populations. *Animal* **6**, 1216–1224 (2012).
80. Abdollahi-Arpanahi, R., Razmkabir, M., SayadNezhad, M. & Eghbal, A. Determination of the number of test day records is required to replace lactation model with random regression model?. *Iran. J. Anim. Sci.* **48**, 391–398 (2017).
81. Sargolzaei, M., Schenkel, F. S., Jansen, G. B. & Schaeffer, L. R. Extent of linkage disequilibrium in Holstein cattle in North America. *J. Dairy Sci.* **91**(5), 2106–2117 (2008).
82. Ali, A. K. A. & Shook, G. E. An optimum transformation for somatic cell concentration in milk. *J. Dairy Sci.* **63**, 487–490 (1980).
83. Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. Minimac2: Faster genotype imputation. *Bioinformatics* **31**(5), 782–784 (2014).
84. Daetwyler, H. D. et al. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. *Nat. Genet.* **46**(8), 858–865 (2014).
85. Chen, S. Y. et al. Identifying pleiotropic variants and candidate genes for fertility and reproduction traits in Holstein cattle via association studies based on imputed whole-genome sequence genotypes. *BMC Genom.* **23**(1), 1–22 (2022).
86. Hoze, C. et al. A splice site mutation in CENPU is associated with recessive embryonic lethality in Holstein cattle. *J. Dairy Sci.* **103**(1), 607–612 (2020).
87. Turner SD. qqman: an R package for visualizing GWAS results using QQ and manhattan plots. *Biorxiv*. 005165 (2014).

Acknowledgements

We would like to extend thanks to the Ferdows Pars Agricultural Holding Company, and National Animal Breeding Centre of Iran for giving us access to the animals and recording. Finally, we acknowledge the 1000 Bull Genomes Project for making their research data publicly available.

Author contributions

NM performed the experiments and data analysis and wrote the article draft; MS and AJS supervised the project and provided editorial input on the writing. NM, MS, AJS, MS, MKD and MK contributed to the data collection and supervised the analysis. All authors discussed the results and contributed to the final manuscript. The author(s) read and approved the final manuscript.

Funding

This research did not receive any specific funding.

Declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The samples collected from the studied animals were performed in accordance with animal ethics and approved by the Animal Use Committee of the University of Tehran and the National Animal Breeding Centre of Iran. In addition, permission for sampling was obtained from the farmers on site. Also, we have obtained the informed consent of the owner(s) to use the animals in our study in this area from the University of Tehran and the National Animal Breeding Center of Iran. The authors of the article confirm that the study was reported in accordance with the ARRIVE guidelines.

Additional information

Supplementary Information The online version contains supplementary material available at <https://doi.org/10.1038/s41598-025-09103-x>.

Correspondence and requests for materials should be addressed to N.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025