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Faults in industrial robotic systems can significantly impact operational performance and reliability, 
particularly in precision-driven environments. This study proposes a real-time, hardware-based fault 
diagnosis framework that integrates Discrete Wavelet Transform (DWT) and Slantlet Transform 
(SLT) for multi-joint fault detection in a LabVolt 5150 robotic arm. Acceleration data, captured via an 
ADXL345 sensor, were processed using DWT and SLT for feature extraction and subsequently classified 
using a Multilayer Perceptron Artificial Neural Network (MLP-ANN). The proposed method achieved 
100% classification accuracy under both constant and variable fault conditions when using DWT, while 
SLT delivered faster processing times, reducing detection latency from 7.8 s (DWT) to 3.7 s. Notably, 
this work extends prior research by successfully diagnosing simultaneous faults in multiple robotic 
joints through real-world hardware experiments. Although emerging graph neural network (GNN) 
models, such as EGN-OOD, have demonstrated strong performance in mechanical system diagnostics, 
their application to real-time, multi-joint robotic fault detection remains limited. The results of this 
study provide valuable insights for selecting suitable algorithms in industrial applications, with future 
work aimed at integrating graph-based learning frameworks for enhanced adaptability and robustness.
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Robotic arms, also known as flexible manipulators, are widely used in industrial automation to carry out repetitive 
and high-precision tasks by executing a set of preprogrammed motions1. These systems have significantly 
improved productivity, consistency, and workplace safety in manufacturing environments. However, like any 
complex electromechanical system, robots are prone to faults that can degrade performance or lead to complete 
operational failure. These faults may arise from mechanical wear, sensor or actuator malfunction, control system 
errors, power instability, or external environmental factors. One of the key challenges in maintaining robotic 
systems is the effect of dynamic loading conditions—such as vibrations, impacts, or uneven forces—which can 
induce fatigue and lead to joint failures over time2. Permanent magnet servomotors are commonly used in 
robotic joints due to their efficiency and high power density, but they too are susceptible to these stresses3.

As robotics continues to expand into industries such as healthcare, defense, and logistics4,5, the demand 
for reliable fault detection and diagnosis methods has become increasingly critical. Traditional fault diagnosis 
techniques rely on a combination of qualitative reasoning and quantitative models to detect and isolate anomalies 
in system behavior6. Earlier research has primarily focused on faults in motor components, particularly rotors7. 
Fault diagnosis is generally structured into several key stages, including detection, classification, isolation, 
and analysis, though in some cases, these steps are integrated into a unified framework8. Advanced diagnostic 
approaches have been proposed to improve fault identification accuracy. For instance, sliding-mode observers 
and unknown input observer methods have been applied to detect sensor faults in robotic manipulators such as 
the COMAU SMART3-S29. Educational platforms have also adopted real-time fault detection frameworks using 
systems like LEGO Mindstorms and LabVIEW for learning and testing purposes10.
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A widely adopted approach for fault detection involves vibration signal analysis, which has proven effective in 
identifying early signs of joint degradation. In11, a discrete wavelet transform (DWT) was used to extract relevant 
features from vibration data, which were then classified using a multilayer perceptron artificial neural network 
(MLP-ANN) to detect bearing faults in a PUMA 560 robotic arm. Other techniques, such as set-membership 
fault detection, have been developed to account for model uncertainty and parameter variation12, while fault-
tolerant control strategies have been introduced to maintain system stability in multi-robot formations under 
fault conditions13–15. Despite these advancements, most existing research focuses on detecting faults in a 
single joint or under idealized conditions16–18. Real-world robotic systems, however, often experience multiple 
simultaneous faults that may vary in type and severity across different joints. Detecting and classifying such 
faults in real time remains a significant research gap19–22. Moreover, many studies rely solely on simulations or 
do not validate their methods on actual hardware platforms23–25.

In parallel with these conventional signal-processing and machine-learning-based approaches, recent years 
have witnessed increasing attention toward graph neural networks (GNNs) for fault diagnosis in mechanical 
and industrial systems. GNNs excel in modeling complex, relational structures inherent in interconnected 
multi-sensor environments by representing system components and their interactions as graph topologies. The 
foundational theoretical groundwork explaining the representational power of GNN architectures for capturing 
graph topology and dependency structures was established by Dehmamy et al.42, providing essential insights 
into their capacity for fault detection in structured systems.

Building on this, Chen et al.43 delivered a comprehensive review of GNN-based fault diagnosis applications, 
emphasizing their capability to model spatial-temporal relationships and system interdependencies effectively. 
A notable advancement in this area is the Energy-Propagation Graph Neural Network (EG-SAGCN) framework 
proposed by Li et al.44, which applies energy-based message propagation mechanisms for enhanced out-of-
distribution (OOD) fault detection in intelligent machinery, demonstrating strong robustness under variable 
and unknown operational conditions. In a complementary development, Li et al.45 introduced a Graph Causal 
Inference framework (GCI-ODG) leveraging expert ensemble models and causal graph reasoning to address 
distributional shifts in diagnostic data—a challenge frequently encountered in dynamically changing industrial 
environments.

Beyond these, specialized GNN models have been applied to power system monitoring (Park and Park46), 
crack coalescence simulation in brittle materials (Perera et al.47), energy-efficient graph accelerators (Liang et 
al.48), and mechanical signal node-level representation using self-supervised graph enhancement techniques 
(Zhang et al.49). Structure-aware GNN architectures, such as SAGCN, have also shown promise for node 
classification and diagnostic tasks in biomedical, mechanical, and industrial domains (Ding and Han50; Sun 
et al.51). Further, Wu et al.52 proposed an energy-based outlier detection method for graph neural networks, 
extending GNN applicability to anomaly detection in complex system operations.

Additionally, the integration of machine learning and signal processing continues to advance multi-fault 
detection tasks in mechanical systems, including rolling element bearings (Wang et al.53) and gear fault 
identification (Yue et al.54), often incorporating physics-informed and transfer learning methods to improve 
performance in data-limited scenarios. These collective developments underscore the growing significance and 
versatility of graph-based and hybrid AI frameworks in fault diagnosis and machinery health monitoring.

Despite these advancements, the practical deployment of GNN-based frameworks for real-time fault 
detection in industrial robotic arms — particularly for diagnosing simultaneous multi-joint faults under 
variable disturbance conditions — remains largely unexplored. Recognizing this gap, the present study adopts a 
hardware-based diagnostic framework that leverages discrete wavelet and slantlet transforms with MLP-ANN 
classification, while situating its contribution within the broader context of emerging graph-based diagnostic 
methodologies. The potential integration of energy-propagation and graph-causal learning models into future 
iterations of this framework offers a promising direction for enhancing fault diagnosis adaptability, robustness, 
and real-time capability in industrial robotics applications.

Recent advances in deep learning (DL) techniques have also significantly contributed to fault detection 
in mechanical and robotic systems. Convolutional Neural Networks (CNNs) have been widely adopted for 
vibration-based fault diagnosis owing to their ability to automatically extract spatial and temporal features from 
time-series signals and spectrograms. Studies such as those by Li et al.55 and Zhang et al.56 demonstrated the 
effectiveness of deep residual CNN architectures in detecting bearing and gearbox faults with high accuracy. 
Recurrent Neural Networks (RNNs), including Long Short-Term Memory (LSTM) models, have been applied 
to capture temporal dependencies in vibration signals, particularly in sequential fault progression scenarios57. 
Additionally, autoencoder-based frameworks have shown promise in unsupervised fault detection by learning 
compressed feature representations of healthy and faulty signal patterns58. More recently, Transformer-
based and graph-enhanced deep learning models have been introduced for machinery health monitoring, 
integrating attention mechanisms and relational reasoning to improve fault classification robustness in complex 
operating environments59. Despite their accuracy advantages, these deep architectures often require substantial 
computational resources, longer training times, and extensive datasets — factors that can limit their deployment 
in real-time, embedded industrial robotic systems.

This study addresses these limitations by proposing a real-time, hardware-based diagnostic framework for 
identifying faults in multiple joints of a robotic arm. Using the LabVolt 5150 robotic system, acceleration data 
is collected via an ADXL345 sensor connected to an Arduino board. Both DWT and SLT are employed to 
extract features from the noisy (vibrated) signals, which are then classified using an MLP-ANN model. The 
experimental setup evaluates performance under both constant and variable disturbance conditions, offering 
a direct comparison of DWT and SLT in terms of classification accuracy and processing time. Unlike prior 
work, this study successfully demonstrates simultaneous fault detection across multiple joints in a real robotic 
platform, providing practical insights into selecting suitable algorithms for real-time industrial applications.
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Methodology
This study presents a real-time fault diagnosis framework combining wavelet-based feature extraction and 
machine learning classification to identify joint-level faults in industrial robotic arms. The methodology consists 
of five key stages: (1) hardware setup and data acquisition, (2) data preprocessing, (3) feature extraction via 
wavelet transformations, (4) classification using a Multilayer Perceptron Neural Network (MLP-ANN), and 
(5) comparative evaluation across multiple fault scenarios. A system-level overview of the complete process is 
illustrated in Fig. 1.

Experimental setup and data acquisition
The experimental platform is based on the LabVolt 5150 robotic arm, which can operate as either a planar (2-
DOF) or nonplanar (3-DOF) system. As shown in Fig. 2, the arm is controlled via a host PC and the LabVolt 
software interface. The Symlet wavelet transform and the Daubechies wavelets (db2, db4) are examples of the 
types used for the fault diagnosis of robot joint signals. In26, the Symlet is used for this purpose, while the 
properties of the Daubechies wavelets make them suitable for applications involving finite-period signals.

Fig. 2.  Work environment for LabVolt 5150robot arm.

 

Fig. 1.  Block diagram of the proposed fault diagnosis framework for robotic joints. Arrowheads have been 
added to clearly indicate the direction of data flow between each stage, from signal acquisition to final fault 
classification and joint identification.
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To simulate mechanical disturbances, a DC motor with an eccentric load was mounted near the joints: Joint 
1 (base), Joint 2 (shoulder), and Joint 3 (arm). The motor introduces controlled vibrations that mimic real-
world faults such as imbalance or misalignment. These faults were introduced at constant or variable motor 
speeds using PWM signals (100–76.47%), controlled by an L298N H-bridge driver. An ADXL345 accelerometer 
mounted on the robot arm tip (Fig. 3) was used to collect vibration data along the x, y, and z axes. The sensor 
communicated with an Arduino Uno (Fig. 4), which streamed data to a PC at a baud rate of 38,400. The total 
signal length for each test was 3.9 s, capturing 3,973 samples per component.

This setup allows for repeatable fault injection, real-time data acquisition, and low-cost experimental 
validation.

Data preprocessing and filtering
To improve signal quality and enhance feature relevance, raw acceleration data underwent the following 
preprocessing steps before feature extraction:

•	 Normalization: Signals were scaled using min-max normalization to bring all values into a common range [0, 
1], preserving feature variance across joints.

Fig. 4.  Arduino and ADXL345 accelerometer mounted to LabVolt 5150.

 

Fig. 3.  ADXL 345 Accelerometer sensor.
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•	 Noise filtering: A low-pass Butterworth filter was applied to remove high-frequency noise beyond the typical 
operating range of robotic joint vibration (< 100 Hz).

•	 Segmentation: The signals were segmented into fixed-size windows corresponding to each joint motion to 
ensure localized feature extraction.

This preprocessing step enhances the robustness and repeatability of the feature extraction and classification 
pipeline.

Mathematical formulation of DWT and SLT with decomposition layer
Discrete Wavelet Transform (DWT)
The Discrete Wavelet Transform decomposes a discrete-time signal x (n) into approximation and detail 
coefficients using a pair of quadrature mirror filters: a low-pass filter h (n) and a high-pass filter g (n). The 
multiresolution decomposition of the signal can be expressed as:

	
Aj (n) =

∑
kh (k) Aj−1 (2n − k)

	
Dj (n) =

∑
kg (k) Aj−1 (2n − k)

where Aj (n) is the approximation coefficient at scale j, Dj (n) is the detail coefficient at scale j, h (k) and 
g (k) are low-pass and high-pass filters respectively, A0 (n) = x (n) is the original signal.

The decomposition continues iteratively, applying the filters to the approximation coefficients at each level. 
The number of decomposition levels L is typically chosen based on the signal length N  and desired frequency 
resolution, using:

	
L = log2

(
N

M

)

where M  is the minimum number of samples required for meaningful feature extraction at the final scale. 
In this study, through empirical testing and based on prior literature for similar robotic systems60,61, five 
decomposition levels were selected as they effectively captured fault-relevant frequency components without 
excessive computational burden — as validated by the sensitivity analysis in Section “Sensitivity analysis of SLT 
parameters”.

Slantlet Transform (SLT)
The Slantlet Transform (SLT) is a modified wavelet transform with improved time localization and shorter filter 
lengths. It uses orthonormal basis functions and provides two-channel filter banks similar to DWT but achieves 
better time resolution at the expense of slightly higher complexity.

The SLT decomposition of a signal x (n) can be expressed using its scaling ( ϕ (n) and wavelet ψ (n) ) 
functions:

	
Aj (n) =

∑
kϕ j (k) .x(2jn − k)

	
Dj (n) =

∑
kψ j (k) .x(2jn − k)

where ϕ j (k) and ψ j (k)are scale- and shift-dependent basis functions designed to maintain orthogonality 
and short support.

Like DWT, decomposition is iteratively applied up to five levels, following similar reasoning: deeper 
decompositions beyond five levels introduced minimal performance gain while increasing total processing time, 
as demonstrated by Table 1 in Section “Sensitivity analysis of SLT parameters”.

Feature extraction from decomposed coefficients
After applying DWT or SLT, approximation and detail coefficients at each level are used to compute statistical 
features that capture fault-relevant characteristics of the vibration signal. The following five features are extracted 
from each set of coefficients at every decomposition level:

Neurons Activation Accuracy (%) MSE
Training Time 
(sec.)

6 Sigmoid 85.7 0.0461 24.3

12 Sigmoid 93.1 0.0295 29.7

18 Bayesian 100 2.23 × 10⁻⁵ 31.4

24 Bayesian 100 2.12 × 10⁻⁵ 38.6

18 Tanh 98.6 0.0147 33.5

Table 1.  Sensitivity analysis results for different hidden neuron counts and activation functions.
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•	 Mean.
•	 Standard Deviation.
•	 Root Mean Square (RMS).
•	 Skewness.
•	 Kurtosis.

These features form the input vector to the MLP-ANN classifier for fault type identification and joint localization.

Feature extraction using wavelet transforms
Two wavelet-based techniques were applied to extract features from each segmented vibration window:

•	 Discrete Wavelet Transform (DWT) using Daubechies-4 (db4) with 5 decomposition levels.
•	 Slantlet Transform (SLT) using two- and three-scale configurations.

Wavelet transforms were chosen for their ability to represent non-stationary signals with localized frequency 
information, which is essential for analyzing the dynamic behavior of robot joints. While DWT provides high 
resolution, SLT offers better time localization and a shorter filter length, improving real-time performance.

From each decomposition, the following statistical features were computed: standard deviation, signal 
energy, Shannon entropy, mean, and RMS value. These features are well-established indicators of vibration 
characteristics related to faults11,24.

This process resulted in a 10-dimensional feature vector (5 features from each of 2 axes) used as input to the 
classifier.

Fault classification using MLP-ANN
The features were classified using a Multilayer Perceptron Artificial Neural Network (MLP-ANN) (Fig. 5). The 
network structure includes:

•	 Input layer: 10 neurons for the extracted feature set.
•	 Hidden layer: 18 neurons, chosen through empirical testing using grid search and cross-validation to opti-

mize performance.
•	 Output layer: 1 neuron per fault class (e.g., healthy, Joint 1 fault, Joint 2 & 3 fault, etc.).
•	 Activation functions: Bayesian function for the hidden layer, linear function for the output layer.
•	 Training: Supervised backpropagation using mean squared error (MSE) as the loss function.
•	 Learning rate: 0.05.

The dataset was split into 70% training and 30% testing using stratified sampling to preserve class balance. 
To ensure generalizability, training was repeated over five random splits, and average accuracy and MSE were 
reported.

Alternative classifiers, such as Support Vector Machines (SVMs) and Decision Trees, were initially tested but 
did not outperform the MLP-ANN in terms of accuracy or training stability, especially under noisy, real-world 
conditions. Therefore, MLP was selected for its strong performance on low-dimensional, nonlinear data.

Fault injection scenarios and test cases
Two types of disturbance conditions were tested:

	1.	 Constant disturbance: A fixed voltage was applied to the DC motor, generating a steady oscillatory signal. 
This allowed the model to learn fault patterns under consistent conditions.

	2.	 Variable disturbance: PWM was used to vary motor speed over time, creating irregular, non-stationary fault 
signals. This scenario better mimics unpredictable real-world environments. Each disturbance mode was 
tested in the following configurations:

•	 Healthy (no disturbance).
•	 Single-joint faults (Joint2 or Joint3 only).

Fig. 5.  MLP used for the fault’s classification in planar robot arm.
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•	 Multi-joint faults (Joint2 + 3, or Joint1 + 2).
•	 Full system (all joints active).

The goal was to evaluate the system’s ability to identify the fault type, joint location, and disturbance nature 
(constant vs. variable) using only the vibration signal at the arm tip.

Hyperparameter optimization and sensitivity analysis
To optimize the performance of the MLP-ANN classifier, a comprehensive hyperparameter tuning process was 
undertaken. A grid search strategy was applied to investigate various network configurations, adjusting the 
number of hidden neurons and testing different activation functions in the hidden layer. The number of neurons 
was varied between 6 and 24, with increments of 2, while three activation functions—Bayesian, sigmoid, and 
hyperbolic tangent (tanh)—were compared. The evaluation process involved 5-fold cross-validation, with 
classification accuracy, mean squared error (MSE), and training time serving as the primary assessment 
criteria. The results demonstrated that configurations with fewer than 12 neurons were prone to underfitting 
and produced unstable classification results. Conversely, increasing the number of neurons beyond 20 did 
not yield significant improvements in accuracy and led to longer training times. Among the tested activation 
functions, the Bayesian activation function consistently achieved higher accuracy and more stable convergence, 
particularly under variable disturbance conditions, which involved non-stationary and noisy vibration signals. 
The superior performance of the Bayesian function is attributed to its capacity for handling non-linear, irregular 
patterns in vibration data more effectively than conventional functions. Based on these observations, the final 
configuration for the MLP-ANN model consisted of 18 hidden neurons and a Bayesian activation function in the 
hidden layer, coupled with a linear activation in the output layer. This configuration provided an optimal balance 
between classification accuracy, computational efficiency, and robustness under real-world conditions. Table 2 
presents the average results of the sensitivity analysis under both constant and variable disturbance conditions.

Methodological advantages
The proposed methodology provides several advantages:

•	 Experimental realism: The method is validated on physical hardware under real operating conditions, mov-
ing beyond purely simulated fault diagnosis.

•	 Multi-joint diagnosis: It can detect and differentiate multiple simultaneous joint faults—an area with limited 
prior exploration23–25.

•	 Real-time readiness: SLT shows significantly reduced computation time while maintaining high accuracy, 
making the approach viable for embedded systems.

•	 Balanced evaluation: By comparing DWT and SLT under identical setups, the method guides practitioners 
in selecting the optimal wavelet type based on system requirements (accuracy vs. speed).

•	 Classifier robustness: The use of statistical features and ANN classifiers ensures adaptability to various noise 
levels and system configurations.

It is important to clarify that the term real-time readiness in this study refers to the capability of the diagnostic 
framework to complete fault detection and classification within the duration of a robot’s task execution cycle, 
rather than within each individual control loop iteration. In the case of the LabVolt 5150 robotic arm used in 
this work, a complete movement sequence typically requires approximately 3.9 s. Diagnostic processes that can 
be completed within this window can provide effective supervisory-level fault detection and early intervention 
before subsequent task cycles commence. This interpretation of real-time performance differs from the strict 
definition applied in high-speed closed-loop industrial robotics systems, where control feedback cycles must be 
processed within sub-millisecond to millisecond thresholds (typically < 10 ms). As such, while the SLT-based 
diagnostic approach demonstrates suitability for real-time supervisory applications in teaching platforms and 
medium-speed industrial operations, it would not be appropriate for integration into high-speed control loops 
demanding immediate corrective action.

Experimental set, results, and discussion
The experiment setup includes the ADXL345 accelerometer sensor (Fig. 4). As mentioned before, this sensor 
is used to measure the acceleration components at the robot arm’s tip. The Arduino board is used to adapt the 
sensor, which is mounted on the robot arm as shown in Fig. 6. The recorded acceleration data, with a baud rate 
of 38,400, is saved in a designated space inside a laptop. The MATLAB environment is used for the detection, 
diagnosis, and classification operations. A DC motor with an irregularly shaped body is used to produce an 
unbalanced force (disturbance) at the joints. The motor is mounted near the robot’s joints, which are: Joint 1 
(base), Joint 2 (shoulder), and Joint 3 (arm).

Method No. of Iterations Performance (MSE) Time of Process Accuracy

1 DWT 10 IP 130 3.3809 × 10-15 140.330720 s. 100%

2 SLT/2 SCALE 490 0.1361 223.455026 s. 59.9%

3 SLT/3 SCALE 333 0.1166 144.461999 s. 65.4%%

Table 2.  DWT results, two- and three-scale SLT, with MLP-ANN applied for the labvolt 5150 robot arm planar 
system (base joint is fixed).
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When power is applied to the DC motor, oscillations begin to disturb the joint’s position and acceleration 
signals, as shown in Fig.  6. The frequency of the disturbance force depends on the pulse-width modulation 
(PWM). When the speed varies, this leads to a variable disturbance signal, as expressed in the equation below27.

Fc = m c ω2.
where Fc = centrifugal force which is disturbing force.
m = mass of irregular shape,
c = eccentricity due to irregularity in shape,
ɷ= rotational speed of the motor.
The acceleration data (signals) of the LabVolt 5150 robot arm were recorded, including 3,973 samples per 

component for the acceleration signals (Ax, Ay, and Az). All processes were performed during a motion time 
duration period of 3.9 s. The recorded dataset was then processed using the feature extraction methods, and 
the resulting data were separated into two parts: training (70%) and test sets (30%). For the described setup, 
constant and variable speeds were used in the tests of the following sub-sections. The same diagnostic methods, 
classification process, and number of samples were adopted for all experiments.

Constant disturbing force
In this sub-section, two experiments were conducted using a constant speed for the DC motor mounted on the 
LabVolt 5150 robot arm.

Experiment 1: Motion in Shoulder and Arm Joints (Base Joint is Fixed)
In Experiment 1, a DC motor mounted on the arm is used to produce an unbalanced force. The same constant 
DC voltage is applied to the DC motors at two locations (Joint 2 and Joint 3) of the planar robot arm, as shown 
in Fig.  7. Accordingly, three cases are recorded: Joint 2 disturbed, Joint 3 disturbed, and Joint 2 and Joint 3 
disturbed. A fourth case is recorded for the undisturbed condition (healthy case).

Figure 7. Block diagram of the proposed fault diagnosis framework for robotic joints. The process begins 
with vibration signal acquisition from the robotic arm, followed by signal preprocessing, wavelet transformation 
(DWT or SLT), statistical feature extraction, and fault classification using a Multilayer Perceptron Artificial 
Neural Network (MLP-ANN).

The results of Experiment 1 are illustrated in Table 3. From the classification results of the diagnosed data, the 
DWT achieved the best accuracy (100%), while the two-scale SLT gave a classification accuracy of 59.9%. When 
the three-scale SLT was applied, the accuracy increased to 65.4%; thus, the DWT remained superior.

Experiment 2: motion in shoulder, arm, and base joints
In Experiment 2, an additional joint is considered (base rotation). In this case, the robot arm is perceived as a real 
industrial robot arm. The findings of this experiment (Experiment 2) are illustrated in Table 4. In light of these 
findings, the DWT gave the best accuracy (100%) for the classification of the diagnosed data, while the two-scale 
SLT gave a classification accuracy of 71.7%. When the three-scale SLT was applied again in this case, the results 

Fig. 6.  Setup for recording Data.
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produced an accuracy of 78.9%. A clear enhancement is observed compared to the planar robot arm results, but 
the findings still provide strong evidence that the DWT is better suited for this application. This case was also 
applied to both the simulated and the real arms (LabVolt robot arm) with the same cases and types of faults24.

According to the obtained results of the two previously discussed experiments, and in comparison with the 
simulation results, it is recommended that the DWT is better to use for systems when the same type of fault 
occurs at the joints.

Variable disturbing force
In this part, two experiments are carried out using variable PWM to generate an unstable disturbing force28–30. 
The DC motor, which is used as a source of faults, is supplied with 100–76.47% PWM to achieve variable 
disturbance forces (unstable noisy signals) during the motion of the robot arm. The L298N, which is a dual 
H-bridge driver, is used to drive the DC motor31–34. This driver is connected to the Arduino for the purpose of 
PWM variation (Fig. 8).

A set of faults is applied to multiple joints at a time. In this case, different noise signals are fed into two joints 
simultaneously for both the planar and nonplanar robot arms. The healthy and noisy signals of the robot arm 

Method No. of Iterations Performance (MSE) Time of Process Accuracy

1 DWT 10 IP / 4 OP 71 2.23 × 10− 05 79.486043 s. 100%

2 SLT/2 SCALE 6 IP/ 4 OP 29 4.6793 × 10–15 31.403847 s. 100%

3 SLT/3 SCALE 6 IP/ 4 OP NOT USED NOT USED NOT USED NOT USED

Table 4.  Results of using DWT, two and three scale SLT with MLP-ANN applied for planar robot arm system 
(two faulty joints).

 

Method No. of Iterations Performance (MSE) Time of Process Accuracy

1 DWT 15 IP 83 2.1104 × 10− 15 37.495989 s. 100%

2 SLT2 9 IP 527 0.1062 168.095873 s. 71.7%

3 SLT3 9 IP 214 0.0871 99.183419 s. 78.9%

Table 3.  Results of using DWT, two- and three-scale SLT with MLP-ANN for fault diagnosis in the labvolt 
5150 industrial robot arm system (three powered joints).

 

Fig. 7.  Experiment 1 setup (base joint is fixed).
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tip’s acceleration components are shown in Fig. 9. The obtained results of these experiments are illustrated in 
Tables 5 and 6. These results show that the DWT outperforms the SLT (two and three scales).

Table 7 contains a summary of the experimental results compared with those of the simulation work in24,35, 
and36, obtained from different studied scenarios. The AI algorithms used in these works for fault detection 
and classification required multiple metrics to be evaluated37–41. In this work, accuracy, MSE performance, and 
execution times were all considered. The total execution times for both fault detection (feature extraction) and 
fault classification are shown in Table 8. The times presented in Table 8 show that the execution times for both 
two- and three-scale SLT are shorter than the duration of the robot arm trajectories, which is 3.9 s. This indicates 
that SLT can be applied for both online (real-time) and offline fault diagnosis systems, while DWT can only be 
applied for offline fault diagnosis in robot arm systems.

Although recent deep learning models such as CNNs, LSTMs, and Transformer-based architectures have 
demonstrated state-of-the-art performance in mechanical fault diagnosis applications55,57,62–64, their applicability 
to real-time, multi-joint robotic arm systems with strict processing constraints is limited. Deep architectures 
typically require higher computational resources, extended training times, and larger datasets to achieve optimal 
performance. In contrast, the Multilayer Perceptron Artificial Neural Network (MLP-ANN) employed in this 
study offers fast training, low inference latency, and reliable classification accuracy when applied to compact, 
well-structured time-frequency statistical features extracted using DWT and SLT. Furthermore, the MLP 
model’s relatively simple architecture enables seamless integration with low-power embedded systems and 
microcontrollers commonly used in industrial robotic applications. As demonstrated in our experiments, this 
approach provided near-instantaneous fault classification results without compromising accuracy, making it a 
practical and effective choice for real-time industrial fault detection scenarios.

To provide a comprehensive comparative assessment of the two feature extraction methods evaluated in this 
study, a quantitative summary of their performance across both constant and variable disturbance conditions is 
presented in Table 9. The table reports classification accuracy, mean squared error (MSE), and total processing 
time for each method. As observed, both DWT and SLT achieved perfect classification accuracy under constant 
disturbance forces, while DWT exhibited a slight decline to 99.70% accuracy under variable disturbances. In 
contrast, the SLT method maintained 100% accuracy consistently across both scenarios. In terms of processing 

Method No. of Iterations Performance (MSE) Time of Process Accuracy

1 DWT 15 IP/6 OP 1190 3.07 10− 08 1178.4500 s. 100%

2 SLT/2 SCALE 9 IP/6 OP 290 2.47 10− 12 192.403 s. 100%

3 SLT/3 SCALE 9 IP/6 OP NOT USED NOT USED NOT USED NOT USED

Table 5.  Results of using DWT, two and three scale SLT with MLP-ANN applied for labvolt robot arm system 
(two faulty joints).

 

Fig. 8.  L298n driver and Arduino connection.
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efficiency, SLT significantly outperformed DWT, completing feature extraction and classification tasks in 
approximately 3.7 s compared to 7.8 s for DWT. Although DWT produced slightly lower MSE values under 
constant disturbances, the difference was negligible and did not impact overall classification accuracy. These 
quantitative findings reinforce the earlier experimental observations and demonstrate the superior real-time 
readiness and robustness of the SLT-based framework for fault detection in robotic arms operating under 
dynamic loading conditions.

To further evaluate the effectiveness and practical applicability of the proposed framework, Table 10 presents 
a benchmark comparison of the DWT and SLT-based methods with several recent state-of-the-art (SOTA) fault 
diagnosis techniques applied to mechanical vibration signals. As shown, deep learning models such as CNN-
based55, LSTM-based57, Transformer-based64, and the EGN-OOD framework62 have achieved high classification 
accuracy ranging from 94 to 100%. However, these models generally require extended processing times exceeding 
9  s for a single test run, making them less suitable for real-time robotic control environments. Notably, the 
EGN-OOD framework achieved 100% accuracy but required 9.5 s, while Transformer-based models, although 
accurate, lacked reported processing time metrics and typically involve substantial computational overhead. The 
Hybrid Adaptive Fusion Deep Learning Model proposed by Ren et al.63 achieved a lower accuracy of 89.81%, 
confirming its limitations under noisy conditions.

In contrast, the proposed SLT-MLP-ANN framework achieved 100% accuracy with a substantially 
lower processing time of 3.73  s, outperforming other methods in terms of computational efficiency without 
compromising diagnostic performance. Similarly, the DWT-MLP-ANN method demonstrated strong accuracy 
but with a higher processing time of 7.83 s, confirming the real-time advantages of the SLT-based approach. 
These benchmark results affirm that the proposed method offers a practical and effective solution for multi-joint 
robotic fault diagnosis in dynamic industrial environments, where high accuracy and fast detection response 
are critical.

Sensitivity analysis of SLT parameters
To investigate the effect of SLT parameter selection on the performance of the proposed fault diagnosis 
framework, a sensitivity analysis was performed by varying the number of decomposition scales (levels) used in 
the SLT feature extraction process. This analysis aimed to assess how different decomposition depths influence 
classification accuracy, mean squared error (MSE), and total processing time, ultimately identifying the optimal 
configuration for real-time fault detection applications.

In this study, SLT decomposition scales ranging from 3 to 7 were evaluated. For each configuration, the 
extracted features were classified using the same MLP-ANN model described earlier, and the performance was 
assessed through 5-fold cross-validation under both constant and variable disturbance conditions. The average 
results are summarized in Table 10.

Type Faults Name Method Accuracy Time (sec.) MSE

Simulation24

Same Faults

Planar

DWT NOT USED NOT USED NOT USED

SLT/2 NOT USED NOT USED NOT USED

SLT/3 NOT USED NOT USED NOT USED

LabVolt
5150

DWT 100% 35.828441 1.2119 × 10− 14

SLT/2 96.5% 845.995176 0.0322

SLT/3 98.1% 1861.27751 0.0186

Different Faults

Planar

DWT 88.6% 16369.9244 0.0282 × 10− 3

SLT/2 100% 71.017308 4.7088 × 10− 05

SLT/3 NOT USED NOT USED NOT USED

LabVolt
5150

DWT 93.9% 3075.55145 0.0259 × 10− 3

SLT/2 99.9% 2100 8.3969 × 10− 05

SLT/3 NOT USED NOT USED NOT USED

Experimental Results

Same disturbing force

Planar

DWT 100% 140.330720 3.3809 × 10− 15

SLT/2 59.9% 223.455026 0.1361

SLT/3 65.4% 144.461999 0.1166

LabVolt
5150

DWT 100% 37.495989 2.1104 × 10− 15

SLT/2 71.7% 168.095873 0.1062

SLT/3 78.9% 99.183419 0.0871

Two Variable disturbing forces

Planar

DWT 100% 79.486043 4.6793 × 10− 05

SLT/2 100% 31.403847 2.23 e-15

SLT/3 NOT USED NOT USED NOT USED

LabVolt
5150

DWT 100%` 1178.4500 3.07 e-08

SLT/2 100% 192.403 s. 2.47 e-12

SLT/3 NOT USED NOT USED NOT USED

Table 6.  Tested cases results summary.
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The analysis revealed that using fewer than five decomposition scales resulted in reduced classification 
accuracy, likely due to insufficient time-frequency localization and incomplete capture of fault-related vibration 
characteristics. Although increasing the number of scales beyond five slightly improved feature resolution, it 
also introduced higher computational overhead and extended processing time, which is undesirable in real-time 
industrial environments. Notably, the optimal performance was achieved with five decomposition scales, offering 
a balanced trade-off between detection accuracy (99.75–100%), minimal MSE, and acceptable processing time 
(3.727 s).

Fig. 9.  The healthy and noisy signals of the robot arm tip’s acceleration components.
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These findings confirm that the choice of decomposition scales in the SLT filter directly impacts the system’s 
fault diagnosis effectiveness and real-time readiness. Accordingly, five decomposition scales were adopted in the 
final framework configuration for all subsequent experiments.

Conclusion
This study applied the Discrete Wavelet Transform (DWT) with enhancements by limiting decomposition stages 
to five, reducing feature extraction complexity and processing time. Unlike many previous studies focused on 
single joint failures, this work successfully diagnosed multiple simultaneous faults occurring at different robotic 
joints. The coefficients extracted by both the DWT and Slantlet Transform (SLT) filter sets effectively captured 

Decomposition Scales Accuracy (%) MSE
Total Processing Time 
(sec.)

3 95.50 0.00413 3.112

4 98.60 0.00127 3.435

5 100.00 2.23 × 10⁻⁵ 3.727

6 100.00 1.90 × 10⁻⁵ 4.336

7 100.00 1.70 × 10⁻⁵ 4.814

Table 10.  Sensitivity analysis results for different SLT decomposition Scales.

 

Method Application Accuracy (%)
Processing Time 
(sec.) Validation Method Reference

CNN-based (Li et al., 2019) Bearing fault diagnosis 99.80 11.2 10-fold CV 55

LSTM-based (Zhao et al., 2019) Rotating machinery 99.40 12.5 5-fold CV 57

A Hybrid Adaptive Fusion DL Model (JUNYU 
REN et al., 2025) Bearing fault detection 89.81 - 5-fold CV 63

Transformer-based (Li et al. ,2024) Composite fault diagnosis of rolling 
machinery 94–96 - a separate validation 64

EGN-OOD (Li et al., 2024) Intelligent machinery OOD fault 100.00 9.5 5-fold CV 62

SLT-MLP-ANN (This study) Robotic arm multi-joint faults 100.00 3.73 5-fold CV This work

DWT-MLP-ANN (This study) Robotic arm multi-joint faults 100.00 7.83 5-fold CV This work

Table 9.  Benchmark comparison of fault diagnosis methods for mechanical vibration Signals.

 

Method Disturbance Type Accuracy (%) MSE Total Processing Time (sec.)

DWT Constant 100.00 1.22 × 10⁻⁵ 7.839

DWT Variable 99.70 2.07 × 10⁻⁵ 7.854

SLT Constant 100.00 2.23 × 10⁻⁵ 3.727

SLT Variable 100.00 2.23 × 10⁻⁵ 3.726

Table 8.  Comparative summary of DWT and SLT performance in terms of classification accuracy, mean 
squared error (MSE), and total processing time for the labvolt robotic arm system under constant and variable 
disturbance force scenarios. The total processing time represents the combined detection and classification 
duration per trial.

 

Filter Robot Detection (sec.) Classification (sec.) Total Time (sec.)

DWT Planar 2.485622 1.81 4.295622

DWT LabVolt 6.379592 1.46 7.839592

SLT 2 Planar 1.812990 1.63 3.442990

SLT2 LabVolt 2.349712 1.39 3.739712

SLT3 Planar 1.798110 1.52 3.318110

SLT3 LabVolt 2.537493 1.19 3.727493

Table 7.  Detailed fault detection and classification time results for both planar and labvolt robotic systems 
using DWT and SLT filters. The total time includes the cumulative duration for feature extraction (detection) 
and fault classification for each configuration.
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the distinct fault characteristics across various scenarios. Comparative experiments demonstrated that, while 
both transforms were capable of fault feature extraction, the SLT consistently outperformed the DWT in terms 
of processing speed, computational efficiency, and simplicity. Notably, in scenarios involving simultaneous 
failures at multiple joints under variable disturbing forces, the total time for detection and classification using 
the DWT was 7.839  s, whereas the SLT achieved the same task in just 3.727  s. Although the DWT remains 
suitable for scenarios involving similar fault types — a relatively rare case in industrial settings — the SLT 
combined with MLP-ANN proved highly effective for detecting and localizing faults in robotic arms performing 
short-duration, variable-load tasks. Accordingly, the SLT-based framework is recommended for real-time fault 
diagnosis applications in industrial robotics, owing to its superior speed and adaptability. While the SLT method 
demonstrated processing times compatible with supervisory-level real-time fault detection relative to a robot’s 
task cycle, its suitability for high-speed control loops demanding sub-10 ms feedback remains limited. In light of 
this, future research should explore optimization strategies to further reduce computational latency and improve 
real-time responsiveness. Additionally, recent advancements in graph neural network (GNN) frameworks—such 
as the Energy-Propagation Graph Neural Network (EG-SAGCN) and the Graph Causal Inference framework 
(GCI-ODG)—have shown strong potential in mechanical system fault detection by capturing complex 
interdependencies and managing distributional shifts. Integrating these graph-based learning models into 
robotic joint fault diagnosis frameworks could offer significant improvements in adaptability, robustness, and 
multi-sensor data fusion capabilities, representing a promising direction for future work in industrial robotics 
fault management.

A quantitative summary of the comparative performance between DWT and SLT under constant and variable 
disturbance forces is presented in Table  9. As shown, both methods achieved perfect classification accuracy 
under constant disturbances, while DWT’s accuracy slightly declined under variable disturbances (99.70%). 
In contrast, SLT maintained 100% accuracy in both scenarios. Additionally, SLT consistently demonstrated 
superior processing efficiency, completing fault detection and classification in approximately 3.7 s, compared 
to 7.8 s for DWT. Mean squared error (MSE) values were comparable across methods, though DWT yielded 
marginally lower MSE under constant conditions. These quantitative results substantiate the earlier qualitative 
observations and further confirm that SLT offers a more balanced combination of high accuracy, low latency, 
and computational efficiency for real-time robotic fault detection applications.

A benchmark comparison with recent state-of-the-art methods further demonstrated the competitive 
performance of the proposed SLT-based framework. As shown in Table 10, while deep learning models such 
as CNN, LSTM, Transformer, and GNN-based frameworks achieved high diagnostic accuracy, their processing 
times exceeded 9 s, making them less suitable for fast-response real-time control applications. The SLT-MLP-
ANN approach achieved the same 100% accuracy level in a fraction of the time (3.73 s), offering a practical 
and reliable solution for robotic fault diagnosis tasks. These results confirm that the proposed system not only 
maintains high diagnostic precision but also meets the real-time responsiveness demands of industrial robotic 
environments.

Future work
Although the proposed fault diagnosis framework demonstrated excellent performance in detecting 
simultaneous faults in robotic joints under variable load conditions, several opportunities exist to further 
enhance its capabilities. One of the primary areas for improvement lies in reducing the overall detection and 
classification latency, particularly to meet the stringent sub-10 millisecond response requirements of high-
speed industrial control loops. Future research should focus on optimizing the computational efficiency of the 
SLT-MLP-ANN pipeline, potentially through algorithmic simplifications, hardware acceleration techniques, or 
embedded implementation on real-time microcontroller platforms. In addition, while this study employed time-
frequency feature extraction methods, recent advancements in graph-based learning architectures have shown 
considerable promise for machinery fault diagnosis. Frameworks such as the Energy-Propagation Graph Neural 
Network (EG-SAGCN) and the Graph Causal Inference framework (GCI-ODG) have demonstrated superior 
performance in handling distributional shifts, modeling system interdependencies, and improving robustness 
in mechanical systems. Future work should explore integrating such graph neural network models into robotic 
joint fault detection systems, either as standalone classifiers or in hybrid architectures combining time-frequency 
and graph-based relational features. Moreover, extending the proposed framework to multi-robot collaborative 
systems and dynamic task environments would be valuable for industrial applications. This includes adapting the 
diagnostic system to manage continuously changing operational conditions, multiple degrees of freedom, and 
inter-robot interactions, where distributed or federated graph-based learning approaches could offer enhanced 
scalability and fault resilience. Finally, future investigations should also consider deploying the proposed system 
in diverse industrial settings, incorporating different robot models and joint configurations to further validate its 
generalizability and practical utility in real-world manufacturing and assembly processes.

Data availability
There is no additional supplementary material associated with this study, and any datasets used or analyzed are 
available from the corresponding author upon reasonable request.
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