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Energy efficiency has become a central concern amidst shifting global economic conditions,
intensifying climate variability, and geopolitical tensions that have fundamentally reshaped energy
consumption and production patterns. Improving energy efficiency is vital for addressing these
challenges and advancing the United Nations sustainable development goals (SDGs). Artificial
intelligence (Al) has emerged as a transformative tool in this context, offering innovative solutions to
complex energy-related problems. While prior research has examined the energy impacts of digital
technologies broadly, few studies have isolated the specific contributions of Al. Addressing this

gap, our study investigates the influence of Al development on energy efficiency and explores the
mechanisms by which Al drives this improvement. Using a fixed-effects model based on prefecture-
level data in China, we find that Al significantly enhances energy efficiency. This effect is primarily
mediated through two channels: (1) promoting green technological innovation and (2) facilitating the
rationalization of industrial structures. Moderation analyses reveal that Al's positive impact is more
pronounced in cities with strong informal environmental regulations and less significant in those with
weaker oversight. Additionally, Al adoption yields greater efficiency gains in declining and regenerating
resource-based cities compared to their growing and mature counterparts. These findings highlight
Al's pivotal role in advancing energy efficiency and provide actionable guidance for policymakers. To
fully realize these benefits, decision-makers should strengthen informal environmental governance
and prioritize Al deployment in transitioning resource-based cities. Such measures can help address
pressing global energy challenges and accelerate progress toward sustainable development.

Keywords Artificial intelligence, Energy efficiency, Green technology innovation, Industrial structure
rationalization, Informal environmental regulations, Resource-based cities

In recent decades, as globalization has accelerated and environmental challenges have intensified, sustainable
development has emerged as a shared global priority'. In 2015, the United Nations launched the 17 Sustainable
Development Goals (SDGs), urging countries to align economic growth with environmental responsibility
and aiming for substantial progress by 2030 to ensure a safer and more equitable future’. Among these goals,
energy efficiency plays a pivotal role in achieving sustainable development®*. In the face of rising geopolitical
tensions® intensifying climate change® and growing uncertainty, the efficient use of energy has become essential
for national development.

Extensive research has identified multiple determinants of energy efficiency, including financial
development”® carbon emission trading®!! fiscal decentralization!> manufacturing agglomeration'*!* and
policy uncertainty'®. These factors, grounded in diverse theoretical frameworks, influence energy efficiency
through different mechanisms. More recently, digital technologies have attracted growing scholarly attention for
their transformative impact on energy systems. Technological advancements are reshaping energy production,
operations, and transmission processes. Within the broader context of sustainable development, digital
innovation is accelerating the transition toward greener, low-carbon practices!®. These technologies have been
shown to enhance energy efficiency, modernize energy infrastructure, and restructure energy consumption
patterns'®~18. Drawing on the theory of technological innovation, several studies underscore the beneficial effects
of digital transformation—highlighting its role in upgrading industrial structures, optimizing energy use, and
improving overall efficiency'®. However, some scholars caution that the development of digital infrastructure
may also entail adverse environmental consequences, potentially undermining sustainability objectives®. Among
the emerging technologies, artificial intelligence (AI) has distinguished itself as a transformative driver of future

Py

School of Economics and Management, Sichuan Normal University, Chengdu 610101, Sichuan, China. ““email:

wangtian@sicnu.edu.cn

Scientific Reports|  (2025) 15:24129 | https://doi.org/10.1038/541598-025-09319-x nature portfolio


http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-09319-x&domain=pdf&date_stamp=2025-7-6

www.nature.com/scientificreports/

innovation. In 2022, the number of Al-related patents granted annually has surpassed 62,000—more than seven
times the figure recorded in 2018. By the end of 2023, AI systems had equaled or exceeded human performance
on standardized assessments in domains such as image classification, basic reading comprehension, natural
language reasoning, multilingual understanding, and visual reasoning. Only in areas such as visual common-
sense reasoning and complex mathematical problem-solving does Al still lag behind human capabilities
(Artificial Intelligence Index Report, 2024).

The integration of Al into the energy sector is increasingly recognized for its transformative potential to
accelerate the transition to sustainable energy sources and enhance energy efficiency. Through advanced
data analytics, predictive modeling, and automation, Al facilitates smarter decision-making, optimizes
energy distribution, and promotes the adoption of renewable energy technologies, thereby contributing to
a more resilient and sustainable energy system?’-22. Proponents argue that Al is reshaping the landscape of
energy management and sustainability, driving high-quality urban development and generating measurable
environmental benefits, including improved energy efficiency and enhanced ecological outcomes**!. However,
despite these advantages, the energy-intensive nature of Al technologies poses potential risks to overall energy
efficiency. Training and operating Al models require substantial computational resources?® which can lead to
increased carbon dioxide emissions and environmental degradation'®?¢. Furthermore, the dependence of Al
systems on massive datasets indirectly amplifies the carbon footprint of the information technology sector. For
example, data centers in the United States alone account for approximately 2% of national energy consumption.
Globally, projections suggest that by 2030, the energy consumption of the information and communication
technology (ICT) sector could reach 20% of total energy use, underscoring its growing role in the global energy
landscape!”?.

Given the rapid advancement of Al and its dual potential to both transform and challenge sustainable energy
use, empirical investigation into its effects is critical. This study centers on China, offering valuable insights
into the relationship between Al development and energy efficiency. According to the Ministry of Industry and
Information Technology (China), the country’s Al industry exceeded 500 billion RMB by 2023, encompassing
over 4,500 enterprises. As the world’s largest energy consumer and a leading developing nation?? China’s
pursuit of energy efliciency holds significant implications for global sustainability, particularly for other
developing economies. The rapid growth of Al in China presents a unique opportunity to assess its impact and
to explore pathways for integrating Al into sustainable development strategies.

Previous studies have predominantly relied on metrics such as the number of industrial robots or Al-related
patent applications to assess Al development?-3? often focusing on production processes and technological
innovation. While informative, these metrics tend to emphasize specific technologies and their direct effects
on energy consumption, potentially overlooking AI's broader and more systemic influence across sectors. To
address this gap, this study employs a fixed-effects model using prefecture-level data from Chinese cities to
evaluate the relationship between AI development and energy efficiency.

This research advances the literature in four key ways: (1) Unlike prior studies that use proxies such as
industrial robots or patent counts, we assess the influence of Al enterprises, offering a more robust reflection
of the practical and commercial dimensions of AI implementation. (2) Moving beyond simplistic indicators
like the energy-to-GDP ratio, we adopt a Data Envelopment Analysis (DEA) model based on the Charnes-
Cooper-Rhodes (CCR) approach, allowing for a nuanced assessment of energy efficiency across multiple inputs
and outputs. (3) We investigate the pathways through which AI impacts energy efficiency, providing an in-
depth understanding of the mediating mechanisms that drive these effects. (4) By investigate the functional
boundaries of Al in influencing energy efficiency, we offer a clearer picture of its potential scope. By addressing
these research gaps, the study delivers critical insights into the direct effects of AI on energy efficiency, especially
by unpacking the mechanisms that link AI development with sustainable energy outcomes. The findings offer
actionable strategies for policymakers and industry stakeholders, fostering evidence-based decision-making in
the integration of Al technologies to support global sustainability goals.

The structure of this paper is organized as follows: Section 2 presents a comprehensive review of the literature
and introduces the theoretical hypotheses. Section 3 describes the data sources and research methodology.
Section 4 reports the results of the empirical analysis. Section 5 provides extended analysis, focusing on the
moderating effects. Finally, Section 6 summarizes the key conclusions and discusses the policy implications and
limitations of the study.

Literature review and theoretical hypothesis

Literature review

Key driver of energy efficiency

Efficient and renewable energy systems have been widely recognized as essential contributors to sustainable
development by strengthening environmental governance®*. Numerous studies have investigated the factors
influencing energy efficiency. Among these, environmental considerations have played a pivotal role in shaping
financial strategies—particularly through green finance policies, which allocate capital to environmentally
sustainable initiatives and lay the groundwork for improved energy performance”?. Building on this foundation,
institutional mechanisms such as carbon trading systems offer market-based incentives to reduce emissions
and promote more efficient resource allocation’!!. Furthermore, the role of industrial agglomeration has
garnered increasing attention. Researchers have found that clustering industries can create economies of scale
and generate positive externalities—such as knowledge spillovers—that streamline production processes and
enhance energy utilization!>14.
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The impact of digital technologies

Recently, , the global shift toward digital transformation—fueled by rapid advancements in digital technologies—
has reshaped economic paradigms. Breakthroughs in artificial intelligence and other frontier technologies
have emerged as key enablers of innovation and optimization in energy use across diverse sectors!®. These
advancements not only catalyze economic and social transformation but also foster further technological
progress. As a result, growing academic interest is now directed toward understanding how digitalization
influences production systems and alters energy consumption patterns.

Within the academic discourse, two divergent perspectives have emerged regarding the impact of digital
technologies on energy transition. Proponents of the positive view argue that digital technologies have
facilitated high-quality urban development while delivering measurable environmental benefits**. Enhanced
innovation capacity®® has improved total factor productivity by optimizing human capital, integrating advanced
manufacturing with modern service industries, and implementing cost-reduction strategies®®*’, ultimately
leading to gains in energy efficiency?>*!. However, a contrasting view cautions that technological innovation
may also drive-up carbon emissions due to the resource-intensive construction of digital infrastructure, thus
exerting adverse effects on the ecological environment!'*2.

The impact of AI

Artificial intelligence (AI), as a foundational element of digital technologies, has the potential to profoundly
transform energy utilization and enhance efficiency, particularly in the manufacturing sector 2?23, Unlike
other digital innovations, AT’s core functionalities can be classified into six critical domains: learning,
perception, prediction, interaction, adaptation, and reasoning”. For instance, Al's learning capability allows
systems to improve performance over time, thereby increasing operational efficiency and effectiveness.
Perception enables the interpretation of complex datasets and dynamic environments, supporting more
informed decision-making®. Predictive capabilities facilitate accurate outcome forecasting, which is essential
for strategic planning®!. Interaction fosters seamless communication between humans and machines, enhancing
user engagement and system responsiveness*2. Adaptation allows Al systems to respond to novel conditions and
tasks, maintaining their relevance and functionality**>. Finally, reasoning enables Al to draw logical inferences
and solve complex problems, effectively augmenting human cognitive capabilities. Empirical studies underscore
AT’s impact on energy efficiency. For example, Al-driven ventilation control systems have achieved energy
savings of approximately 26% in commercial buildings in the United States**. Unlike conventional digital tools,
AT’s ability to autonomously make decisions, recognize patterns, and exhibit “human-like” scientific reasoning
enables more nuanced management of production processes, thereby supporting greener manufacturing
practices®. Collectively, these capabilities establish Al as a versatile and powerful enabler of innovation and
efficiency across diverse industrial and technological domains. Nevertheless, the development and deployment
of Al systems are energy-intensive, particularly during manufacturing, model training, and operational phases,
potentially resulting in a substantial carbon footprint®.

A growing body of literature explores the complex relationship between AI and energy efficiency, yielding
a range of perspectives. Several studies highlight AT’s potential to enhance energy performance, particularly in
regions characterized by high levels of green innovation?, and within high-performing organizations where
Al integration is more advanced’. However, these benefits are counterbalanced by the substantial energy
demands associated with AI model development and training. High-performance computing for algorithm
development, training cycles, and data center cooling consumes vast computational resources, contributing
to elevated carbon emissions and environmental degradation!®?>2¢47. The expansion of digital infrastructure,
particularly at scale, exacerbates these challenges, as it entails considerable energy inputs for both construction
and maintenance!7-28:4849,

Despite these concerns, Al presents transformative opportunities to address energy-related challenges
through predictive analytics, real-time monitoring, and automated control systems. As AI technologies are
increasingly adopted across sectors such as manufacturing, transportation, and utilities, they offer sophisticated
mechanisms to detect inefficiencies in energy consumption and enable precise, data-driven interventions to
enhance operational efficiency™. These applications yield both direct and indirect environmental benefits. For
instance, Al can optimize the timely input of production factors to maximize resource utilization®'. Furthermore,
the integration of intelligent automation within large-scale industrial ecosystems enables production lines to
become more flexible, adaptive, self-aware, self-regulating, and capable of autonomous optimization®?->%. Such
advancements significantly reduce resource consumption and promote sustainability, yielding substantial gains
in both environmental performance and industrial efficiency.

Literature gap

This literature review synthesizes current scholarship on energy efficiency and offers a comprehensive analysis
of its influencing factors. Although considerable research has examined the impact of digital technologies and
Al on energy efficiency, several critical gaps remain. Notably, much of the existing literature conflates AI with
broader digital technologies, with limited studies isolating AI to examine its distinct effects. Furthermore, prior
research often quantifies Al through proxies such as industrial robot density or patent data. In contrast, this
paper emphasizes the practical application of Al technologies®~’. Additionally, prevailing studies typically
assess energy efficiency using a unidimensional framework, such as the ratio of energy input to GDP output.
This study adopts a more robust approach by employing the CCR model, which enables a multidimensional
assessment of energy efficiency?>*. Most importantly, the underlying mechanisms through which Al influences
energy efficiency remain underexplored. These research gaps underscore the need for further empirical
investigation—particularly in China, where a nuanced understanding of AT’s role in energy consumption could
enhance its applicability in developing economies.
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Theoretical background and hypothesis

As outlined above, the relationship between AI and energy efficiency is multifaceted, encompassing both
opportunities and challenges. When AI technologies transition from patent registration to real-world
deployment, their energy usage dynamics evolve. Practical implementation often leads to system optimization
and energy consumption reduction. This implies that AT's capacity to improve energy efficiency is best realized
through active application rather than theoretical modeling alone. In this regard, AI offers a unique advantage
by integrating energy efficiency with adaptability, interactivity, and creativity?>. This phenomenon aligns with
the Solow paradox, which posits that the productivity gains from technological innovation are not immediately
apparent but emerge gradually over time®®. Innovation theory further supports the view that widespread adoption
of Al can lead to significant improvements in productivity and operational efficiency. Given AI's demonstrated
potential to reduce energy consumption and disrupt conventional energy use patterns, this study advances the
following hypothesis:

H1: AI development can improve energy efficiency.

Green technological innovation refers to enterprise-driven innovations aimed at conserving energy,
reducing emissions, mitigating climate-related environmental damage, and enhancing ecological benefits.
These innovations also contribute to the modernization of production technologies®. Empirical evidence
suggests that Al development positively influences green innovation outcomes’. From the perspective of
technological innovation, green innovation can reduce emissions from fossil fuels while promoting the adoption
of renewable energy sources!!. While green innovation may increase research and development expenditures,
it simultaneously enhances productivity and enables effective management of wastewater, exhaust emissions,
and solid waste during manufacturing. The implementation of stringent environmental regulations to stimulate
technological innovation can significantly reduce environmental pollution without compromising production
efficiency®. Accordingly, this study proposes Hypothesis 2:

H2: AI development enhances energy efficiency through fostering green technological innovation.

Prior research has established that energy intensity varies significantly across industrial sectors and that
structural transformation can influence aggregate energy efficiency®'. Notably, industrial structure is a critical
determinant of carbon emissions. The configuration and composition of industries—particularly their
dependence on energy-intensive technologies and processes—substantially shape the overall carbon footprint.
As such, industrial restructuring has become increasingly central to sustainable development and climate change
mitigation strategies®?. Upgrading the industrial structure can reduce total carbon emissions by decreasing the
share of high-energy-consuming sectors while expanding low-carbon and renewable energy industries. This
structural shift not only curtails emissions but also fosters a more resilient and sustainable economic system,
aligning with global efforts to combat climate change and advance environmental sustainability®. Artificial
intelligence (AI) plays a catalytic role in driving industrial upgrading by optimizing and reshaping industrial
configurations. The widespread deployment of Al is expected to revolutionize traditional technologies, thereby
enabling a more rational, efficient, and innovation-driven industrial structure. AI and related innovation
technologies accelerate industrial adaptation and advancement by promoting industrial clustering and enhancing
operational efficiency through the adoption, integration, and diffusion of new technological paradigms®®’.
Technological progress also generates significant capital reallocation and innovation-driven transformation. On
one hand, capital—including physical, human, and institutional—tends to flow out of high-energy-intensive
sectors and into knowledge-intensive, low-carbon industries. On the other hand, the advancement of emerging
industries—characterized by superior energy efficiency and environmental performance—contributes to overall
improvements in energy use. Based on this rationale, the present study proposes the following hypothesis:

H3: AI development boosts energy efficiency by rationalizing the industrial structure.

In exploring the mechanisms through which AI affects energy efficiency, it is equally important to examine
the contextual conditions under which its influence may vary. Drawing on the theory of environmental
regulation, prior empirical research indicates that such regulations exert a pronounced influence on both
firms’ intentions to innovate and their actual innovation behaviors. This suggests that the effectiveness of Al in
enhancing energy efficiency may be contingent upon the regulatory environment and the extent to which firms
are incentivized to adopt green technologies. Environmental regulations heighten firms” awareness of ecological
concerns and promote engagement in green innovation activities. For instance, stringent policies can enhance
firms’ recognition of the importance of environmental responsibility, thereby increasing their motivation to
pursue green innovations®®. In developing countries—where formal regulatory frameworks are often weak
or inconsistently enforced—informal environmental regulation (IER) emerges as a pivotal mechanism for
compelling polluters to take corrective action®®. We argue that in such contexts, the impact of Al on energy
efficiency is likely to be more substantial in environments characterized by higher levels of IER. Social pressure
and public scrutiny, as key drivers of informal regulation, can incentivize firms to adopt AI technologies
that reduce emissions and improve operational sustainability. These regulatory dynamics may foster a more
conducive environment for Al adoption, thereby amplifying its potential to enhance energy efficiency. On this
basis, we propose the following hypothesis:

H4: Informal environmental regulation amplifies the positive impact of AI on energy efficiency.

The developmental stage of a city significantly influences the extent to which AI can enhance energy
efficiency. In China, approximately 44% of urban areas are classified as resource-based cities—urban centers
whose economies rely heavily on the extraction and processing of natural resources such as minerals, water,
and forests”’. According to the resource curse theory, the finite nature of these resources implies that sustained
extraction will eventually lead to their depletion”!. Resource-based cities generally follow four developmental
stages: growing, mature, declining, and regenerating. Each stage presents distinct challenges and opportunities
for energy use and technological adoption. Growing resource-based cities possess abundant resources and are in
the early phases of industrial expansion. These cities are increasingly exploring sustainable practices alongside
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resource development. Mature cities, having reached peak resource output after years of intensive exploitation,
face the challenge of balancing economic growth with environmental preservation. Achieving this balance
is vital for long-term sustainability, requiring deliberate efforts to mitigate environmental degradation while
maintaining economic performance’2. Declining resource-based cities confront the compounded challenges of
resource exhaustion and economic instability. These cities must transition from a resource-dependent economy
to one that is diversified and sustainable. This transition demands innovative policy measures and strategic
interventions. Al can play a critical role in this transformation by identifying inefficiencies, optimizing remaining
resources, and facilitating the shift toward sustainable practices. In regenerating cities, resource extraction has
largely ceased, and efforts focus on ecological restoration and sustainable urban development. For these cities,
Al is essential to supporting smart city initiatives, energy management systems, and environmental monitoring,
all of which are key to achieving sustainable urban planning’®. Empirical research indicates that the digital
economy has a pronounced positive effect on energy efficiency in resource-dependent cities. However, this
impact is less significant in cities with more diversified economies. The heightened responsiveness of resource-
based cities may be attributed to their centralized industrial structures and initially lower energy efficiency
baselines”*. Consequently, these cities exhibit both a greater capacity and a more urgent need to leverage Al and
other innovative technologies to optimize energy use. As natural resources inevitably dwindle, the priorities
of resource-based cities evolve across different stages. In the early stages, the emphasis may be on maximizing
extraction efficiency, while in later stages, the focus shifts toward sustainability and ecological recovery. Thus,
the demand for Al applications to improve energy efficiency varies across stages, with the need becoming most
acute in cities experiencing resource depletion and economic decline. Based on this context, we propose the
following hypothesis:

H5: The stage of resource development in a resource-based city moderates the impact of AI on energy
efficiency.

Figure 1 shows the conceptual framework.

Methods

Data source

The focus of our study is on the impact of Al on energy efficiency across Chinese cities. To empirically test our
hypotheses, we employ a fixed-effects model using data compiled from five major sources. Because city-level
energy consumption data are not publicly available, we follow established methodologies and use nighttime light
intensity data from NOAA as a proxy for energy consumption’>’¢. Official energy data, standardized in tons of
standard coal, are drawn from the China Energy Statistical Yearbook to facilitate calculation and comparison.
Additional control variables—including GDP, industrial structure, income levels, educational attainment,
population density, and demographic composition—are extracted from the China City Statistical Yearbook. AI
enterprise data are identified using a keyword extraction technique applied to the business scope descriptions
listed in the Tianyancha enterprise database. Furthermore, green patent data sourced from CNIPA provide
insight into the level of technological innovation. All continuous variables are logarithmically transformed
to stabilize variance and normalize distributions. After data collection and preprocessing, the final dataset
comprises 4177 observations spanning the years 2006 to 2020.

Model settings

Drawing on existing research, we employ a two-way fixed effects panel model to control for both individual
(city-level) and time-specific effects?®. This model offers significant advantages in handling complex panel

Informal environmental regulation Stage of resource-based cities
H4 J\ HS l
Y

H2 | |

| Green technology innovation —
Artificial . ! Energy
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Fig. 1. Shows the conceptual framework.
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data by effectively reducing omitted variable bias and enhancing the precision of causal inference. The baseline
specification is as follows:

EEis = oo+ B Al + B pdensity;, + B gstructurei + B 4pgdp;; + B 55021 + B genergy; + 15 + v+ e (1)

where i denote the city and t the year. The dependent variable, EE, represents energy efficiency, while the
key explanatory variable, Al, captures the artificial intelligence development index. Control variables include
population density, industrial structure, per capita GDP (pgdp), sulfur dioxide emissions (so02), and energy
consumption. City and year fixed effects are denoted by 1 ; and 7y ; respectively.

Description of variables

Explained variable

Energy efficiency is a multifaceted concept with no universally accepted metric. Broadly, it refers to achieving the
same level of output or service with reduced energy input—for example, using the ratio of energy consumption
to GDP output as a proxy?*. However, such single-factor indicators provide a limited, one-dimensional view that
neglects interactions among multiple inputs and the presence of multiple outputs’”7%.

These indicators typically focus solely on the energy-output relationship, overlooking the influence of other
production factors such as labor and capital. To address this limitation, we adopt the CCR model within the
Data Envelopment Analysis (DEA) framework, which evaluates relative efficiency using a non-parametric
approach. This model incorporates a broader set of inputs—namely energy, labor, and capital—and a single
output (GDP) to estimate each decision-making unit's (DMU’s) position relative to a production frontier’*.
This methodology provides a holistic view of energy efficiency by comparing the performance of a DMU with
peers that optimize input use for a given output or maximize output for a given level of input’®. By integrating
both technical and scale efficiency under the assumption of constant returns to scale®” the CCR model captures
input-output interactions more comprehensively, providing a more accurate and holistic assessment of energy
efficiency. Therefore, we construct our measure of energy efficiency using the CCR model rather than relying on
single-factor indicators. For robustness checks, we further construct a measure of total factor energy efficiency
using the SBM (Slack-Based Measure) model®!-33.

Explanatory variable

Prior studies have commonly measured the level of AT development using two main approaches. The first relies
on industrial robot data from the International Federation of Robotics (IFR)**-32848> ‘While widely used, this
method offers only a partial view and fails to capture the full spectrum of AI applications. The second approach
uses Al-related patent data as a proxy for Al development. As a direct reflection of technological innovation,
patent data enables precise identification of Al-specific technologies and has been increasingly employed to
assess technological advancement®®®”. Nevertheless, the number of Al-related patents is often used as a proxy
for the level of R&D activity and the cumulative technological achievements in the AT domain. However, when
examining energy consumption, the number of Al enterprises may serve as a more direct and relevant indicator.
This is because enterprise count reflects the degree of industrial agglomeration and the extent to which the AI
sector has matured in a given city. A growing number of Al enterprises typically signals the translation of R&D
efforts into real-world applications and market-driven innovations>>®8. Therefore, compared to patent counts,
the number of Al enterprises offers a more comprehensive measure of both innovation output and its practical
implementation.

Mediating variables

Green technology innovation (GTI). At the city level, green technology innovation is measured by taking the
natural logarithm of the number of green patent applications plus one, to account for the potential of zero values
and to normalize the data®.

Industrial Structure Rationalization (ISR). Following prior research, this study adopts the Theil index to
evaluate the rationalization of industrial structure by assessing both sectoral coordination and resource allocation
efficiency®?. The Theil index quantifies disparities in output and employment across sectors, capturing the extent
of structural imbalance at the city level, as shown in Eq. (2):

L= ml(3) /T ) @)

In Eq. (2), TL denotes the Theil index, with Y and L representing total industrial output and labor force,
respectively. Yi and Li refer to the output and employment of sector i, where i ranges from 1 to n, the total
number of sectors. A lower Theil index approaching zero indicates a more rational industrial structure. This
study calculates ISR for 284 cities over the period 2006-2020.

Moderating variables

Informal environment regulation (IER). To assess the moderating role of informal environmental regulation,
the study employs a composite index constructed from indicators such as per capita income, population density,
age structure, and educational attainment. These variables jointly capture the socio-economic conditions that
influence public awareness and pressure for environmental protection, thus serving as proxies for informal
regulatory mechanisms operating outside formal institutions.
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To explore how informal environmental regulation moderates the impact, this research draws on the
methodology of selecting a series of indicators such as income level, educational background, population
density, and age structure to measure the extent of informal environmental regulation in cities?®°!.

Stage of Resource City (SRC). Based on the National Resource-Based City Sustainable Development
Plan (2013), resource-based cities are classified into four developmental stages: Growing, Mature, Declining,
and Regenerating. In this study, these stages are numerically coded from 1 to 4, respectively, following the
classification framework proposed by previous research”’.

Control variables

In addition, we control for several variables commonly identified in the literature as influencing energy efficiency:
(1) Population Density (density): Areas with higher population density often exhibit greater energy demand?.
Population density is calculated based on the year-end total population®”2. (2) Industrial Structure (structure):
This is measured by the share of tertiary industry value added in GDP, capturing the economic composition
and its implications for energy use patterns. (3) GDP per Capita (pgdp): Reflecting regional economic
development, GDP per capita is associated with higher living standards and greater awareness of sustainability
concerns”. It is measured as the per capita GDP of urban residents. (4) Total Energy Consumption (energy):
This variable captures the absolute scale of energy usage within a city, serving as a key control for evaluating
energy efficiency®. (5) Environmental Pollution (so,): Given that highly polluted regions often allocate more
resources to environmental management, sulfur dioxide (so,) emissions—one of the most prominent industrial
pollutants—are used as a proxy for environmental pressure and are included as a control variable®®; therefore,
this study controls it, considering the environmental pollution status, and measures it by the amount of sulfur
dioxide emissions.

Table 1 outlines the definitions and calculation methods of all variables.

Empirical analysis

Benchmark regression analysis

Due to the Hausman test results, with a p-value of 0.000, we choose the fixed effects model to control for
unobserved individual heterogeneity. The analysis begins by examining the impact of AI development on energy
efficiency (EE), with regression results presented in Table 2. Column (1) reports baseline estimates without
control variables, while column (2) introduces controls. Column (3) further refines the model by clustering
standard errors at both the city and calendar year levels to mitigate potential intra-group error correlation. The
progressive increase in R-squared values across columns (1) through (3) indicates improved model fit with the
inclusion of controls and robust error adjustments. In all specifications, the coefficient of AI on EE remains
positive (0.049) and statistically significant at the 1% level, providing preliminary evidence that AI development
positively influences energy efficiency.

Regarding the control variables, the coefficient on population density is positive and significant at the 1% level,
suggesting that higher population density is associated with greater energy efficiency. This may be attributable to
the intensified economic activity and more diversified industrial structures typically found in densely populated
regions. Additionally, such regions often adopt stricter energy efficiency regulations, incentivizing firms to
implement advanced energy-saving technologies. Likewise, the coeflicient on per capita GDP is both positive
and significant at the 1% level, indicating that higher income levels are linked to enhanced energy efficiency. This
relationship likely reflects the increased capacity of wealthier regions to invest in technological innovation and
R&D, along with heightened public awareness of environmental sustainability and energy conservation.

In contrast, the coefficients for so, emissions and total energy consumption are negative, implying that
greater pollutant emissions and energy usage are detrimental to energy efficiency. These findings are consistent
with empirical patterns observed in real-world contexts.

Type of variables Variables N Mean | Sd | min | max
Dependent variable | Energy efficiency 4177 | 0.54 | 0.14 | 0.27 |0.99

Explanatory variable | Artificial intelligence development | 4177 | 4.12 | 1.79 |0 10.37
Mediating Green technology innovation 4177 | 4.30 | 1.87 |0 10.25
variable

Industrial structure rationalization | 4177 | 0.28 | 0.21 | —-0.03 | 1.72

Informal environment regulation | 4177 | 0.18 | 0.06 | 0.07 |0.88

Moderating variable

Stage of resource-based city 1681 | 2.35 | 0.86 |1 4
Population density 4177 | 573 | 0.93 | 0.68 |7.88
Industry structure 4177 | 0.40 | 0.10 | 0.09 |0.84
Control variable Per capita GDP 4177 11045 | 0.72 | 4.61 |13.06
Sulfur dioxide 4177 | 10.14 | 1.27 | 1.10 13.43
Total energy consumption 4177 | 13.67 | 1.27 19.30 | 17.53

Table 1. Summary statistics. The VIF value for EE, Al and control variables range from 1.28 to 4.83, the mean
VIF is 2.69. There is no significant multicollinearity problem among the variables.
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Model (1) 2) 3)
DV EE, EE, EE,
Al 0.025%** | 0.049*** | 0.049***
(20.709) | (20.109) | (7.083)
0.028*** | 0.028***
Density
(8.638) (3.009)
—0.135%%* | —0.135
Structure
(-4.178) (-1.731)
d 0.070*** | 0.070***
pecp (13.373) | (4.828)
—0.019*** | —0.019***
502
(=7.195) | (-3.062)
—0.087*** | —0.087***
Energy
(-26.219) | (~10.725)
0.435%°%* 1 0.883*** | 0.883***
Contant
(81.637) | (16.658) | (6.100)
Province FE | YES YES YES
Year FE YES YES YES
N 4177 4177 4177
R? 0.100 0.510 0.510

Table 2. Results of the regression analysis. Parentheses contain robust standard errors in columns (1) and (2),
with standard errors clustered by city and calendar year in column (3). ***, ** and * indicate significance at the
1, 5, and 10% levels, respectively.

Robustness checks

Robustness test

To verify the robustness of these results, the study undertakes three validation approaches. First, it replaces the
CCR model-derived measure of energy efficiency with a single-factor energy efficiency (EE) measure®!. This
shift allows us to assess energy efficiency through a more straightforward metric, calculated as the ratio of energy
input to economic output!®. Although this approach oversimplifies the multidimensional nature of energy
performance, it aligns the analysis with conventional metrics frequently used in existing literature, enabling
comparability across studies. As shown in column (1) of Table 3, the positive and significant relationship between
Al development and EE persists, lending further credibility to the baseline findings.

Second, a subsample analysis is conducted to account for regional heterogeneity. The cities of Beijing,
Shanghai, Guangzhou, and Shenzhen—China’s leading megacities—exhibit advanced economic development,
robust infrastructure, and strong capabilities in Al innovation, placing them well ahead of cities in central and
western China, which face structural and infrastructural limitations. To mitigate potential bias introduced by
these outliers, a regression is performed after excluding the four first-tier cities. The results, presented in Column
(2) of Table 3, are consistent with those of the full sample, further reinforcing the robustness and generalizability
of the core conclusions.

Third, the effects of AI development on energy efficiency may exhibit a time lag due to delays in policy
interpretation and implementation. To account for this, we introduce one- and two-period lags of AT development
as robustness checks, as shown in columns (3) and (4) of Table 3, respectively. The results remain consistent with
our baseline findings and provide further empirical support for Hypothesis 1, reaffirming that AI development
is positively associated with improvements in urban energy efficiency.

Endogenous processing

To address potential endogeneity, we adopt an instrumental variable (IV) approach. Drawing on established
methodologies in the literature, we construct two instruments: (1) a one-period lag of AI development, and
(2) a Bartik shift-share instrument. The latter is derived by interacting the lagged first-order Al index with its
first-order difference, thereby generating a theoretically grounded IV2>?>, Table 4 presents the results of the IV
regressions, which include the same set of control variables used in the baseline model to mitigate confounding
effects. The results demonstrate that Al remains positively and significantly associated with energy efficiency
under both IV strategies. Specifically, columns (1) and (3) report the first-stage regression outcomes, confirming
a strong correlation between the instruments (IV1 and IV2) and AI Columns (2) and (4) show the second-stage
estimates, where the coefficients on AI are 0.051 and 0.049, respectively, both significant at the 1% level. These
findings confirm the robustness and consistency of the main regression results.

Mechanism test

Green technology innovation

Table 5 reports the mediating role of green technological innovation (GTI) in the Al-energy efficiency
relationship. Column (1) presents the total effect of AI on energy efficiency, while column (2) shows that AI

Scientific Reports |

(2025) 15:24129 | https://doi.org/10.1038/s41598-025-09319-x nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Model (1) 2) 3) (4)
DV EE, EE, EE EE,,
Al 0.403°%* 1 0.051** | 0.045*** | 0.041***
(17.529) | (7.007) (6.369) (5.775)
0.058* 0.017 0.028** 0.027**
Density
(2.012) (1.643) (3.008) (2.901)
—1.024%%* | —0.187* —-0.090 —-0.027
Structure
(-4.925) | (-2.040) | (-1.067) | (-0.302)
0.094** 0.059*** | 0.066*** | 0.062***
pgdp
(2.364) (3.562) (4.447) (4.049)
) 0.071*** | -0.013* —-0.018** | -0.017**
so.
(4.754) (-2.084) | (-2.810) | (-2.424)
—0.8417%* | —0.093*** | —0.078*** | —0.070***
Energy
(-34.961) | (-11.122) | (-8.850) (=7.553)
10.774%%* | 1.066*** | 0.805*** | 0.742***
Contant
(24.969) | (6.856) (5.159) (4.490)
Province FE | YES YES YES YES
Year FE YES YES YES YES
N 4177 2900 3895 3613
R? 0.508 0.511 0.462 0.430

Table 3. Results of the robust test. Parentheses with standard errors clustered at the city and calendar year. ***,
**and * indicate significance at the 1, 5, and 10% levels, respectively.

Model (1) ) 3) (4)
DV Al EE, Al EE,
0.978***
V1
(224.806)

0.584%*
V2

(11.318)

0.051%+% 0.049%+*
Al
(19.278) (7.997)

Control YES YES YES YES
Industry FE | YES YES YES YES
Year FE YES YES YES YES
N 3895 3895 3895 3895
R? 0.269 0.269
F 50537.522 | 172.801 | 128.099 | 121.609
C-DWaldF | 102617.616 849.228
K-P LM 1070.288 350.629
K-P LM P-val | 0.000 0.000

Table 4. Endogeneity test results. Parentheses with standard errors. ***, ** and * indicate significance at the 1,
5, and 10% levels, respectively.

significantly promotes GTT at the 1% level. This suggests that AI development exerts a substantial and positive
influence on the advancement of green technologies, underscoring its capacity to catalyze sustainable innovation.
In column (3), when both AT and GTT are regressed on energy efficiency, the coeflicient for GTI remains positive
and statistically significant at the 5% level. This indicates that GTI contributes to enhancing energy efficiency
and functions as a partial mediator. The clustering of Al enterprises appears to foster green innovation, which
in turn drives improvements in energy efficiency. These results support Hypothesis 2 regarding the mediating
role of GTI.

Rationalization of industrial structure

Table 6 presents the mediating mechanism analysis involving the rationalization of the industrial structure (ISR).
Column (1) shows the total effect of Al on energy efficiency, while column (2) reveals that Al significantly
promotes ISR at the 1% level, suggesting that AI contributes to industrial upgrading and structural optimization.
In column (3), when AI and ISR are jointly regressed on energy efficiency, both variables show positive and
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Model (1) (2) (3
DV EE, GTI, EE,
Al 0.0497** 1 0.6727** | 0.044*
(20.109) | (46.782) | (13.576)
0.028%** | 0.122%** | 0.028***
Density
(8.638) (6.317) (8.452)
—0.135%** | 0.168 —0.137%*
Structure
(-4.178) | (1.042) (—4.205)
0.070** | 0.273*** | 0.069***
pgdp
(13.373) | (10.248) | (12.735)
—0.019%%* | 0.114*** | —0.020***
502
(=7.195) | (8.065) (-7.415)
—0.087* | 0.175%** | —0.089***
Energy
(-26.219) | (9.608) (—26.614)
0.007**
gti
(2.364)
0.883*** —5.633%** | 0.923%**
Contant
(16.658) | (-19.659) | (16.659)
Province FE | YES YES —-0.001
Year FE YES YES (-0.691)
N 4177 4177 4177
R? 0.510 0.910 0.510

Table 5. The mediating roles of GTI. Parentheses with standard errors. ***, ** and * indicate significance at the
1, 5, and 10% levels, respectively.

Model (1) 2) 3)
DV EE, ISR, EE,
AT 0.049%* 1 0.021** | 0.048***
(20.109) | (6.187) (19.665)
0.028*** 0.021%** 0.028***
Density
(8.638) (4.849) (8.375)
—0.135%* | —0.630*** | —0.116***
Structure
(-4.178) | (~13.851) | (-3.520)
0.070* | —0.187*** | 0.076***
pgdp
(13.373) | (-19.912) | (12.896)
—0.0197%* | —0.020%** | —0.019***
502
(=7.195) | (-5.922) |(-6.928)
—0.087*** | —0.029*** | —0.086***
Energy
(-26.219) | (-5.940) | (-25.654)
0.031***
ISR
(2.597)
0.8830%* | 2.876%** | 0.793%*
Contant
(16.658) | (31.788) | (12.082)
Province FE | YES YES YES
Year FE YES YES YES
N 4177 4177 4177
R? 0.510 0.538 0.511

Table 6. The mediating roles of industrial structure rationalization. Parentheses with standard errors. ***, **
and * indicate significance at the 1, 5, and 10% levels, respectively.

statistically significant coefficients at the 1% level. These findings indicate that ISR serves as a significant
mediating pathway through which AI enhances energy efficiency. Thus, the results provide empirical support
for Hypothesis 3, confirming that Al facilitates energy efficiency improvements by driving the rationalization of
the industrial structure.
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Model (1) (2)
DV EE EE

t t
0.033*** 1 0.057***

Al
(7.694) (9.428)
-0.596*
IER
(-1.857)
0.090***
AIxIER
(4.445)
—0.064**
Mature
(-3.288)
—0.192*%*
Declining
(-9.371)
—0.246***
Regenerative
(~10.500)
0.005
Al x Mature
(0.884)
0.026***
Al x Declining
(4.195)
0.041***
Al x Regenerative
(6.409)
0.028*** 1 0.014*
Density
(8.499) (2.760)
-0.136"* | —0.053
Structure
(-4.193) | (-1.003)
d 0.069*** | 0.084**
Pecp (13.140) | (10.183)
-0.018** | -0.005
502
(-6.710) | (~1.400)
—0.087** | —0.085***
Energy
(-26.082) | (-19.078)
0.986*** | 0.630***
Contant
(13.137) | (6.997)
Province FE YES YES
Year FE YES YES
N 4177 1681
R? 0.513 0.625

Table 7. Moderate roles of informal environment regulation and the types of resource-based city. ***, ** and *
indicate significance at the 1, 5, and 10% levels, respectively; industry and Year fixed effects are controlled for
in all columns. Robust standard errors are presented in parentheses.

Further analysis

After establishing the fundamental connection between artificial intelligence (AI) development and energy
efficiency, this study proceeds to examine the nuanced dynamics of this relationship under varying boundary
conditions”. Specifically, we investigate how environmental regulations and the developmental stage of
resource-based cities moderate the impact of Al on energy efficiency. This focus is grounded in the recognition
that environmental regulation significantly shapes the technological and operational landscape of cities®’.
Previous research suggests that technological innovation tends to be more effective in regions with stringent
environmental oversight®. Likewise, the economic trajectory of resource-based cities—categorized as growing,
mature, declining, or regenerative—is closely tied to the energy sector, and each stage exhibits distinct
characteristics®. These structural differences create divergent incentives and capacities for integrating Al to
enhance energy efficiency. By exploring these moderating factors, we aim to refine our understanding of the
contextual conditions under which AI contributes most effectively to energy efficiency.

Moderate role of informal environment regulation

We begin by analyzing the role of informal environmental regulation (IER). Table 7, column (1), presents the
moderating effects of IER on the relationship between AI development and energy efficiency. The interaction
term between IER and Al development is both positive and statistically significant at the 1% level, indicating
that AT’s impact on energy efficiency is more pronounced in areas with strong informal regulatory mechanisms.
These findings support Hypothesis 4.
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Moderate role of the stage of resource development

Next, we consider how the developmental stage of resource-based cities influences the effectiveness of Al in
improving energy efficiency. Our analysis reveals that Al exerts a stronger positive effect in declining and
regenerative cities compared to growing and mature ones, likely due to their heightened need for transformation
and greater potential for system optimization. In Table 7, column (2), the moderation analysis indicates that
mature cities are less energy efficient than growing cities, with declining and regenerative cities performing even
worse. However, the interaction term between Al and mature cities is not statistically significant, suggesting no
meaningful difference in AD's impact on energy efficiency between mature and growing cities. In contrast, the
significantly positive interaction terms for declining and regenerative cities indicate a more substantial effect
of Al in these contexts. This may reflect the targeted application of AI technologies to enhance efficiency amid
resource depletion in declining cities, and to optimize energy management in regenerative cities transitioning
from historical resource dependency. These results empirically validate our assumption that AT’s contribution to
energy efficiency varies across different stages of resource-based urban development.

Conclusion and implication

Conclusion

Amid growing global emphasis on sustainable development, the role of AI in advancing energy efficiency
has garnered considerable attention from both policymakers and researchers. This study assesses the extent
to which AI development facilitates sustainable practices in China, particularly in the energy domain. Three
key findings emerge from our analysis. First, AI development positively influences energy efficiency. Second,
this effect operates primarily through two channels: green innovation and industrial structure rationalization.
Specifically, AI promotes the development and deployment of green technologies while also enabling a more
balanced and efficient allocation of industrial resources. Third, the moderating analysis reveals that AT’s impact
on energy efficiency is significantly amplified in cities with strong informal environmental regulations, and is
comparatively muted in cities with looser regulatory environments. Additionally, AI has proven particularly
effective in enhancing energy efficiency in resource-based cities that are either in decline or undergoing
regeneration, relative to their growing or mature counterparts. Our study’s results align with existing research,
emphasizing the significant impact of Al on energy efficiency. By comparing our findings with other studies,
we have identified the mechanisms through which AT affects energy efficiency and the conditions under which
these effects are most pronounced. This comparison not only validates our results but also highlights the unique
contributions of our study.

These findings contribute significantly to the scientific understanding of AT’s role in sustainable development
by offering empirical evidence of its impact on energy efficiency. By elucidating the mechanisms linking AT to
energy efficiency, our research provides critical insights for policymakers and industry stakeholders, underscoring
the importance of incorporating Al into strategic frameworks to advance sustainable development. The practical
implications are particularly salient for China, given its energy scarcity and uneven resource distribution. In light
of China’s ambitious targets to peak CO, emissions by 2030 and achieve carbon neutrality by 2060, harnessing
Al to enhance energy efficiency and drive industrial transformation in resource-based cities is imperative. This
strategy not only facilitates the attainment of domestic sustainability goals but also strengthens China’s position
as a global leader in sustainable development.

Policy implication

Based on the above findings, several key policy implications emerge for promoting sustainable development
through AI adoption. First, the positive impact of AI on energy efficiency is significantly amplified in cities
with robust informal environmental regulations. Policymakers should therefore prioritize the reinforcement
of environmental governance by implementing formal regulations, enhancing public awareness, supporting
environmental NGOs, and cultivating a culture of sustainability at the community level. Second, Al exerts a
stronger influence on energy efficiency in declining and regenerating resource-dependent cities. Targeted
investments in Al infrastructure and applications during these critical transition stages can support industrial
restructuring. Simultaneously, efforts should be made to cultivate conducive environments for AI adoption in
growing and mature cities. Early integration of AI technologies in these areas can yield long-term benefits by
embedding sustainable practices and mitigating future transition risks. Third, AI enhances energy efficiency
primarily through green technological innovation and industrial structure optimization. Policymakers and
industry leaders should leverage Al to drive innovation and streamline industrial operations, thereby promoting
sustainability and unlocking the full potential of AI-driven transformation.

Limitations and future research

Our analysis is based on data from China, which may limit the generalizability of the findings to other regions
or developed countries. Future research should incorporate cross-national datasets to validate and expand
upon our conclusions, enabling a broader understanding of AT’s role in global energy efficiency improvements.
Furthermore, this study does not delve into the differential impacts of various AI subtypes. For instance,
generative Al may present unique implications worth exploring in greater depth in subsequent research.

Data availability
The datasets analysed during the current study are available from the corresponding author on reasonable re-
quest.
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