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In recent years, with the advancement of deep learning, Convolutional Neural Networks (CNNs) have 
been widely applied in speaker recognition, making CNN-based speaker embedding learning the 
predominant method for speaker verification. Time Delay Neural Networks (TDNN) have achieved 
notable progress in speaker embedding tasks. However, TDNN often struggles with accurately 
modeling multi-scale features when processing complex audio data, which can result in reduced 
speaker recognition accuracy. To address this issue, we propose the Efficient Parallel Channel Network 
- Time Delay Neural Network (EPCNet-TDNN), building upon the ECAPA-TDNN architecture. The 
proposed model incorporates a novel Efficient Channel and Spatial Attention Mechanism (ECAM) in 
the ECA_block, which replaces the original SE_block. This modification enhances the model’s ability 
to capture key information, improving overall performance. To further reduce feature dependency and 
enhance multi-scale information fusion, a Parallel Residual Structure (PRS) is introduced, enabling 
the independent capture of multi-scale features through parallel computation instead of sequential 
processing. The ECA_block adopts the output structure of ECAPA-TDNN, Calling it a Tandem Structure 
(TS). Facilitating the integration of information from different scales and channels, resulting in more 
refined feature representations. After multi-scale feature extraction, the Selective State Space 
(SSS) module is introduced to improve the model’s ability to capture temporal sequence features. 
Experimental results on the CN-Celeb1 dataset show that EPCNet-TDNN has a relative improvement 
of about 14.1% (0.025), 9.4% (0.075), and 6.6% in EER, minDCF, and ACC, respectively, compared to 
ECAPA-TDNN. These results demonstrate the significant improvements achieved by the proposed 
approach over previous methods.

Speaker recognition (SR) is a modern biometric technology that converts captured acoustic features into 
spectrograms1. These spectrograms are then compared with stored spectrograms to determine if they belong 
to the same identity, thus enabling identity verification. As a popular research direction in the field of speech 
processing, SR enables computers to accurately identify a speaker’s voice and analyze the acoustic information 
contained therein, further improving the accuracy of speech processing. The technology offers advantages such 
as non-contact operation, high convenience, high security, low cost, and support for remote authentication, 
making it widely used in fields like banking transaction security, remote payment authentication, criminal 
suspect identification, and automatic identity tagging. Traditionally, i-vector2 combined with probabilistic 
linear discriminant analysis (PLDA)3 has been a widely used method. With the booming development of deep 
learning, optimizing the accuracy and robustness of voiceprint recognition has become an important research 
direction, and researchers have made significant efforts to improve network backbones, pooling mechanisms, 
and loss functions4.

Convolutional Neural Networks (CNNs)5 are the current mainstream framework, with two main branches: 
Time Delay Neural Networks (TDNN)6 based on one-dimensional convolution (Conv1d), and ResNet7 based 
on two-dimensional convolution (Conv2d). TDNN can process variable-length sequences and capture both 
short-term and long-term dependencies in the temporal dimension. TDNN demonstrates strong temporal 
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modelling capabilities in sequence data, such as speech, by applying the same convolution kernel at different 
time points. X-vector8 and its variants were proposed to further enhance performance. Subsequently, ECAPA-
TDNN9 further improved speech feature extraction by introducing several architectural enhancements to the 
original X-vector, making it one of the most widely adopted models in tasks such as voiceprint recognition. 
Building upon ECAPA-TDNN, Han et al. introduced a multi-resolution feature encoder as an additional branch 
to improve performance in short speech segment conditions. Similarly, Liu et al. proposed an attention-based 
pre-segment module to enhance feature representation, which they named MFA-TDNN10. On the other hand, 
ResNet7, a Conv2d-based network architecture proposed by He et al. for image classification tasks, introduced 
residual modules that successfully address the gradient vanishing problem in deep networks. This allows deep 
networks to be trained more stably and has led to its widespread use in image processing and computer vision 
tasks11. ResNet has also been gradually introduced into speech processing due to its powerful feature extraction 
capabilities. Based on the ResNet model, Kynych, F et al. developed a real-time speaker recognition system 
using SE-ResNet-34 embedding and online clustering technology. This system achieves accuracy comparable to 
offline systems with low latency and low computational cost. It was subsequently extended to multimodal audio-
visual processing for broadcast stream analysis12. However, these methods still have room for improvement 
in capturing temporal information, as well as in multi-scale feature extraction, especially in complex scenes. 
Therefore, it remains a valuable task to design a model that improves multi-scale feature extraction and enhances 
the ability to capture temporal information.

The two main challenges facing models with multi-scale feature extraction capability and enhanced ability 
to capture temporal information are how to efficiently capture key information in order to ensure the accuracy 
of the model, and how to maintain an efficient temporal modeling capability to avoid excessive computational 
complexity when dealing with complex temporal data. To address these challenges, the EPCNet-TDNN 
algorithm is proposed in this paper. The main contributions of this paper are as follows: 

	(1)	 Propose the ECA_block module to replace the original SE_block: by introducing the novel ECAM mecha-
nism in ECA_block to replace the original SE_block, and replacing the ordinary one-dimensional convolu-
tion in SE_block with a deep separable convolution, the computational efficiency and feature capture ability 
of the model are significantly improved, further enhancing the overall performance.

	(2)	 Parallel residual structure is designed: in order to reduce the dependence between features and enhance 
the fusion of multi-scale information, this paper proposes a parallel Res2Net structure, which enables the 
model to capture multi-scale features independently through parallel computing and improves the model’s 
multi-dimensional feature capture.

	(3)	 Drawing on the output structure of ECAPA-TDNN: The output structure design of ECAPA-TDNN is in-
troduced in ECA_block, which improves the model’s ability to integrate different scales and channel infor-
mation by mimicking the multi-level feature fusion and further enhances the feature representation.

	(4)	 Introduction of Selective State Space (SSS) module: after multi-scale feature extraction, this paper introduc-
es the SSS module, by introducing the SSS module, it improves the model’s modelling of long and short-
term dependencies, enhances the ability to understand complex time-series data, and significantly improves 
the performance in dynamic data. Finally, our proposed model is verified to be valid on the dataset Cn-Cel-
eb1. Experimental results on the CN-Celeb113 dataset show that EPCNet-TDNN has a relative improve-
ment of about 14.1% (0.025), 9.4% (0.075), and 6.6% in EER, minDCF, and ACC, respectively, compared to 
ECAPA-TDNN.

Related works
Voiceprint recognition is a key research direction in speech signal processing, aiming to accurately recognize 
and verify the identity of speakers using advanced algorithms. In recent years, researchers have done a great 
deal of work in acoustic pattern recognition. In terms of front-end acoustic feature extraction, most of the 
existing acoustic feature extraction methods are mainly based on some form of short-time spectra to achieve 
speaker verification for short speech, such as Mel Frequency Cepstrum Coefficients (MFCC)14, Linear Predictive 
Cepstrum Coefficients (LPCC)15, and other acoustic features. In addition, the Gaussian Mixture Model-
Universal Background Model (GMM-UBM)16, based on statistical methods, is a traditional mainstream method 
for short speech acoustic recognition. Its main idea is to calculate the new parameters of the UBM model from 
the training data of the target speaker, and then adapt the newly obtained parameters to the original parameters 
of the UBM model to get the final target speaker model. Following this, Campbell et al. proposed a Gaussian 
Mixture Model Super Vector Support Vector Machine (GMM-GSV)17. Kenny et al. proposed a joint subspace 
alternative learning method called Joint Factor Analysis (JFA) and introduced the i-vector method. The core idea 
was to construct a low-dimensional channel-dependent speaker space by defining the total variability space18. 
Al-Kaltakchi et al. proposed a method based on the combination of i-vectors and extreme learning machines, 
which were used to improve the robustness of speaker recognition models19.

With the further development of deep learning, a variety of voiceprint recognition methods have been 
proposed. Povey et al. proposed a factorized decomposition time delay neural network (F-TDNN)20, which 
improves training efficiency by decomposing the parameter matrix of the TDNN into smaller matrices. In 
addition, Snyder et al. proposed an extended time delay neural network (E-TDNN)21, which is based on a 
wider and deeper structure that enables the model to learn more information and significantly improves the 
performance of speaker recognition. F. Daneshfar et al. proposed a speech emotion recognition system based 
on speech and glottal signals, extracting features using Gabor filter banks (GBFB and SGBFB) and employing 
a hierarchical adaptive weighted multi-layer extreme learning machine (H-AWELM) for classification, 
addressing the data imbalance issue in multi-class ELM training. The system was evaluated on the EMODB 
dataset, demonstrating excellent emotion recognition performance22. Li, Y et al. were inspired by human brain 
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observations of noise speech spectrum maps and cognitive behaviour and proposed an auxiliary model speech 
enhancement framework that decomposes noise spectrum energy into regular and random components. 
Through the collaborative work of multiple sub-networks, such as voiceprint segmentation networks and noise 
reconstruction networks, they achieved state-of-the-art speech enhancement performance on public datasets23. 
Li, YF et al. proposed a DS-TDNN24 model, which extracts both local and global features in parallel by introducing 
a global perceptual filtering layer (GF layer) and using a dual-stream architecture. Combining dynamic filtering 
strategies and sparse regularization methods to enhance the model’s ability to capture long-time dependencies 
and reduce computational costs, better performance and efficiency are achieved in speaker verification tasks. 
Zhang, HJ et al. addressed the issue of accuracy degradation in voiceprint recognition across different scenarios 
and channels by proposing a deep learning-based dual-channel voiceprint recognition model. Through the design 
of the DWLoss loss function, ECA feature extraction module, and PLDA channel compensation technology, the 
model’s noise resistance and recognition accuracy were significantly improved25. In the loss function section, Ji, 
CQ, and others addressed issues such as training-testing inconsistency, sample imbalance, and similarity overlap 
in traditional Softmax for speaker verification. They proposed the SphereSpeaker adaptive objective function 
(introducing an angular margin mechanism) and the ResNet-P network architecture. Experimental results show 
that this method achieves the lowest equal error rate and significantly improves the performance of speaker 
verification systems26. Han et al. addressed the training-verification inconsistency in traditional classification-
based speaker embedding by proposing score comparison-based learning, which enforces lower intra-class and 
higher inter-class variance at the similarity score level. They also introduced a generalized loss function unifying 
various conventional losses and regularization techniques, demonstrating improved performance and robustness 
against overfitting across multiple datasets27. In addition, Desplanques et al. proposed ECAPA-TDNN, a TDNN-
based speaker verification model, which introduces aggregated information, channel attention, and improved 
propagation methods to further improve the robustness of the speaker recognition system9. Based on ECAPA-
TDNN, Lin et al. proposed the ECAPDLA CNNv2-TDNN28 model, which significantly improves the feature 
extraction capability and training by introducing a pre-activated convolutional layer (CNN stem), changing 
the multilayer aggregation to Deep Layer Aggregation, and replacing the SE-Res2block with a self-calibrating 
block (SC block). Liu et al. proposed DF-ResNets and DF-ECAPAs models4, which significantly improve the 
model depth and performance by introducing depth-first (DF) architectural design rules. They also proposed 
two attentional feature fusion schemes (S-AFF and P-AFF), which significantly enhance the performance of 
smaller models with low computational cost, striking a balance between performance and complexity. Luo et 
al. extended the convolutional receptive field by introducing a multi-scale channel adaptive module (MSCA-
Res2Block) and combined it with a balanced fine-tuning strategy and Z-Score normalization, which significantly 
improved the performance of Arabic dialect recognition29.

Despite the significant progress made by existing methods in voiceprint recognition, there are still some 
shortcomings. Many models have difficulty in adequately capturing multi-scale information during feature 
extraction, especially when dealing with more complex speech signals, and have limited ability to model long- 
and short-term dependencies. In addition, the models still need improvement in coping with the capture of 
global information and adapting to different speech features. Our experimental results on the Cnceleb1 dataset 
demonstrate the potential of the model to improve recognition accuracy and robustness, especially when dealing 
with complex scenes and short speech, showing good promise. However, further research and validation on 
more datasets will help to comprehensively evaluate the model’s generalization ability and performance in real-
world applications.

Proposed method
This section provides a detailed description of the improved EPCNet-TDNN, beginning with the widely used 
ECAPA-TDNN network architecture. Next, the evolution from ECAPA-TDNN to the enhanced EPCNet-TDNN 
is outlined. Finally, each innovation introduced in the improved model is presented step by step.

ECAPA-TDNN
ECAPA-TDNN is an enhanced version of the x-vector architecture that has demonstrated outstanding 
performance in several speaker verification competitions, including VoxSRC-201930, VoxSRC-202031, 
SdSVC-202132, and VoxSRC-202133. ECAPA-TDNN employs a 1D convolutional layer, where the input feature 
is a 2D representation in the form of F×T, with F representing the frequency dimension and T representing the 
time dimension. The input is first processed through a 1D inflated convolutional layer, producing a feature map 
of size C×T, where C denotes the number of channels. This feature map is passed through three consecutive SE-
Res2Blocks, each comprising two 1D inflated convolutional layers, a 1D inflated Res2Block, and a 1D squeeze-
and-excitation (SE) block.

In addition, a multilayer feature aggregation module is specifically designed to capture and integrate the 
hierarchical speaker information from different network layers by linking the output feature maps of the three 
SE-Res2Blocks. Following this, an attention-based statistic pooling layer is applied to emphasize speaker-specific 
attributes across both the channel and temporal dimensions using a self-attention mechanism. Lastly, similar to 
ResNet-based speaker verification systems, a fully connected layer is used to reduce the dimensionality of the 
pooled vectors, and AAM-softmax serves as the loss function during model training, as illustrated in Fig. 1.

Although the ECAPA-TDNN model excels in audio feature extraction, it still exhibits limitations in capturing 
temporal information, enhancing the flexibility of the attention mechanism, and deepening feature fusion. The 
model primarily integrates multi-level feature information through basic feature concatenation and an attention 
mechanism. However, the fusion process for multi-scale information remains relatively simple, and the model’s 
capacity for feature selection is constrained, making it challenging to effectively handle multi-level information 
across different types of audio.
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Improved ECA_block
In this section we explain the improved ECA_block in detail, including the ECAM mentioned therein, the depth 
separable convolution, the parallel residual structure and finally the use of tandem structure in the ECA_block.

ECAM
The Convolutional Block Attention Module (CBAM)34 is a lightweight and efficient attention mechanism that 
sequentially applies channel and spatial attention to enhance feature representation. The channel attention 
module identifies “which features are more important” by generating channel-level attention weights through 
global average pooling and max pooling, while the spatial attention module highlights “which locations to focus 
on” by deriving spatial attention weights based on channel information. This two-step attention mechanism 
enables the model to concentrate on more informative features, thereby improving performance across various 
tasks with minimal computational overhead.

ECAM is designed by adopting the concept of CBAM, replacing the channel attention mechanism with 
Efficient Channel Attention (ECA)35 to optimize computational efficiency while preserving performance. ECA 
models inter-channel dependencies using local 1D convolution, eliminating the additional parameters and 
computational cost introduced by the fully connected layer in CBAM. This allows ECA to not only capture 
fine-grained channel relationships effectively but also mitigate information loss caused by global pooling. The 
structure of ECAM is illustrated in Fig. 2.

As illustrated in Fig. 2, the process begins with the input features being pooled by global averaging to capture 
global information, followed by a convolution operation via the Adaptive Selection of Kernel Size. The channel 
weights are generated by performing a rapid 1D convolution of size, where the size k is adaptively derived from 
a mapping of the channel dimension C. The module can automatically select convolution kernels of different 
sizes to capture features across different receptive field ranges and generate multi-scale feature representations35. 
Among them:

MaxPoolAvgPoolConvSigmoid
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Fig. 2.  Structure of ECAM.
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k = φ(C) = make_odd

(⌊
| log2(C) + b|

γ

⌋)
� (1)

where C = 512, γ = 2 and b = 1,  ⌊·⌋ denotes the floor function, | · | denotes the absolute value, and make_odd(·) 
denotes the function that ensures the result is an odd number.

The function φ adaptively determines the kernel size k through logarithmic mapping. It first calculates 
log2(C) + 1, then divides by γ(= 2) and takes the floor, followed by a parity check to ensure k is an odd value. 
This design enables larger channel numbers to correspond to larger kernels, allowing the capture of longer-
range inter-channel dependencies. The odd kernel size ensures the symmetry of convolution operations, which 
is beneficial for feature center alignment. When the number of channels is small, smaller kernels are used; as the 
number of channels increases, the kernel size grows accordingly, achieving adaptive cross-channel interaction 
modeling.

After the convolution operation, the features are passed through a Sigmoid activation function to generate 
the channel attention weights and are multiplied element-wise with the input features to complete the channel 
enhancement. Next, key information in the spatial dimension is captured, and spatial feature attention is then 
generated. Finally, channel attention and spatial attention are combined to produce the final channel attention 
result, enhancing the model’s ability to perceive key features and improving its selectivity for important 
information.

ECAM is used to replace the SE attention module in the original block, enabling the model to simultaneously 
focus on crucial channel and spatial features, thereby further enhancing its feature representation capability. 
Additionally, the design of ECAM improves the model’s accuracy and feature selectivity without increasing its 
complexity.

Depthwise separable convolution
Based on the traditional convolutional neural network, the deep separable convolution module (DSConv)36 
effectively reduces the number of parameters and computational complexity by decomposing standard 
convolution into depthwise convolution and pointwise convolution. Specifically, depthwise convolution is first 
performed on each channel, followed by pointwise convolution to form the output feature map.

As shown in Fig. 3. Spatial features are first extracted by a 3×3 deep convolution operation, differentiating it 
from conventional convolution as it is performed independently for each input channel. After convolution, Batch 
Normalization (BN) is applied, which stabilizes the training process and improves the model’s generalization 
ability. Next, nonlinear properties are introduced through the ReLU activation function to enhance the expressive 
power of the model. Subsequently, 1×1 convolution linearly combines information from different channels 
to achieve inter-channel interactions, further enhancing the model’s feature fusion capability while retaining 
computational efficiency. This process is followed once more by BN to ensure data distribution stability, and the 
ReLU activation function is re-applied to enhance the model’s nonlinear mapping ability.

In voiceprint recognition tasks, the speech signal encodes substantial time-frequency information, and the 
extraction of effective voiceprint features is crucial for accurately identifying individual IDs. The application of 
DSConv captures features across different frequency ranges with greater granularity and enables the model to 
process large-scale speech data more efficiently by reducing computational overhead. A key advantage of deep 
convolution is that it operates independently on each channel, thereby capturing unique patterns and preserving 
more detailed features.

Parallel residual structures
The Res2Net structure in ECAPA-TDNN enhances the model’s feature representation capability by processing 
input features through multi-scale groupings. Specifically, Res2Net divides the input features into multiple sub-
feature groups, where each sub-group undergoes convolutional operations at its respective scale, and the results 
are fused through stepwise summation. This progressive feature fusion method effectively captures multi-scale 
information from local to global, improving the model’s ability to represent complex speech signals.

In comparison to the Res2Net structure, the parallel residual structures proposed in this paper offers significant 
advantages in multi-scale feature fusion. Res2Net captures multi-scale information by processing features step 
by step. However, this approach can result in the loss of fine-grained information during the sequential feature 
transfer. In contrast, the parallel Res2Net, shown in Fig. 4, performs simultaneous convolutional operations at 
each scale, leading to more efficient multi-scale feature fusion. This parallel processing preserves the independence 
and complementarity of different scale features, further enhancing the model’s feature representation.

The parallel Res2Net module achieves parallel extraction of multi-scale features by splitting the input 
features into two parts (W1, W2), urther subdividing each part into multiple groups, and applying a sequential 
convolution process to each group of features. First, the input features are split into two parts, and the 
features in each part are further divided into multiple groups (X1, X2, X3, X4 and X ′

1, X ′
2, X ′

3, X ′
4), with 

3×3 Depthwise Conv BN ReLU

1×1 ConvBNReLU

Fig. 3.  Structure of DSC.
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each group of features passed through successive layers of 3×3 convolutions to generate new feature maps 
(y1, y2, y3, y4 and y′

1, y′
2, y′

3, y′
4). During processing, the input for each convolution layer is derived not only 

from the output of the preceding layer in the same group but is also connected to the residuals of features 
from other groups, enhancing the feature fusion between different groups. Once the convolution operation 
is complete, the features from the two parts are concatenated individually and finally integrated using 1×1 
convolution to produce the enhanced multi-scale features.

Moreover, the parallel structure mitigates the issue of information attenuation during feature transfer by 
processing features of different scales concurrently within the same hierarchy, without depending on layer-by-
layer transfer. This design avoids the risk of gradual decay or information loss that can occur after multiple 
transformations in traditional stepwise structures. By maintaining both global and local information, the parallel 
Res2Net ensures that neither local details nor global features are weakened during the fusion process, optimizing 
the integrity of the feature representation.

ECA_block with tandem structure
As shown in Fig. 5, the connection of the three SE_blocks in ECAPA-TDNN is adopted in the ECA_block 
module, which achieves more efficient feature fusion through direct jump connections. Compared to traditional 
structures, this design minimizes interference from intermediate layers, allowing global information to be 
transferred more directly to the ECAM and preserving the integrity of the input features. This reduces information 
attenuation. The design using three blocks enables a deeper fusion of features, capturing low-level, mid-level, 
and high-level representations, which significantly enhances the model’s ability to handle complex tasks. By 
leveraging direct skip connections between blocks, the model ensures efficient information flow, reducing both 
attenuation and interference, while preserving the integrity of the features. Furthermore, this design allows for a 
more effective combination of global and local features, boosting the model’s selectivity and expressiveness. The 
use of multiple blocks also improves the model’s resilience to interference, contributing to greater stability and 
faster convergence during training.

The model’s input is denoted as X0, with each block producing an output Xi. Each block operates at a 
different level, capturing features at varying granularities. In the first block, features are extracted to produce 
the output X1 = f1(X0). Similarly, in the second block, the output is given by X2 = f2(X1), and the process 
continues sequentially. The equation is defined as:

DSConv

PRes2Net+ReLU+BN

DSConv

ECAM

Fig. 5.  ECA_block with tandem structure.
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	 Xi = fi(Xi−1), i = 1, 2, . . . , n� (2)

where fi denotes the feature extraction function of the i-th block, and the output Xi captures features across 
multiple levels. The use of multiple blocks enhances the model’s capacity to represent features at various scales, 
thereby improving its overall expressiveness, particularly in tackling complex tasks.

Skip connections address the issue of vanishing or exploding gradients by transmitting information across 
layers, while also improving the stability of model training. In the design of multiple regions, the output of each 
layer not only relies on the features of the previous layer but also directly benefits from the information passed 
through skip connections. The features transmitted in each layer are denoted as Xi, and the skip connection 
adds the input of the i-th layer, X0, directly to the output of subsequent layers, resulting in the final output:

	 Y = X0 + f(X0)� (3)

This design ensures a smoother flow of information, reducing information loss and enhancing the model’s 
overall expressive capacity.

State selection space
The Selective State Space (SSS) module significantly enhances the temporal modelling capabilities in speaker 
verification and speech tasks by integrating a state space model (SSM), 1D convolution, and a selective feature 
extraction mechanism. Initially, the SSS module updates states using 1D convolution and Gated Recurrent Unit 
(GRU) networks, effectively capturing both long and short-temporal dependencies. This process is followed 
by the generation of observational features through a convolutional layer, ensuring that both local and global 
information are effectively captured. Furthermore, the SSS module employs a selective feature extraction 
mechanism that generates selective weights via an attention mechanism combining global average pooling and 
maximum pooling. This mechanism dynamically adjusts attention to important features while suppressing 
irrelevant information. The combination of 1D convolution with GRU enhances the efficiency and accuracy 
of modelling temporal dependencies by effectively capturing local patterns. Additionally, the dynamically 
generated hidden states provide the SSS module with greater adaptability in managing various sequence lengths 
and feature distributions.

The structure of the SSS module is illustrated on the left side of Figure 6. In SSS, the model first captures the 
temporal dynamics of the input data. Specifically, the input features are first processed through a convolutional 
layer, followed by batch normalization and a ReLU activation function. Long-term dependencies are then 
captured by a GRU network, which generates new temporal states by updating the hidden states recursively, 
combining the current features with past hidden states. Next, these temporal states are processed through 
another convolutional layer to extract salient features that can be used for subsequent tasks, which corresponds 
to obtaining key observations from the temporal states. Finally, the channel attention mechanism further 
amplifies these features and generates attention weights. These attention weights are applied to the observed 
features to focus on amplifying key channel information while suppressing irrelevant channel interference.

As shown on the right side of Figure 6, the SSS module is executed following the ECA_block module, 
which offers significant advantages by enhancing channel features before timing modelling. The ECA_block 
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Fig. 6.  The left figure shows the structure of the SSS module and the right figure shows the structure of 
EPCNet with the SSS module.
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module first optimizes feature selectivity, prioritizing critical channel features while suppressing irrelevant ones. 
Subsequently, the SSS module conducts dynamic timing modelling on these optimized features, capturing both 
long and short-time dependencies to ensure accurate representation of timing features. This sequential design 
not only avoids information redundancy but also ensures that the SSS module processes high-quality features, 
thereby enhancing the model’s selectivity for timing features.

Experimental settings
Experimental environment
The experiments were conducted on a Windows 10 system in the following environment: Python version 3.11.2, 
PyTorch version 2.0.1, and CUDA version 12.4. All networks were trained on an NVIDIA GeForce RTX 3090 
GPU (24 GB). The specific hyperparameter settings are shown in Table 1.

Dataset
The proposed model is evaluated using the CN-Celeb1 dataset, one of the most adopted open-source datasets.
CN-Celeb1 contains more than 130,000 discourses from 1,000 Chinese celebrities, covering 11 different genres 
in the real world. The evaluation set is the CnCeleb-test (Cn-test) covering 197 speakers and 17777 discourses. To 
ensure the generalisation of the experiments, we also use the Voxceleb1 dataset to evaluate the model efficiently, 
where Voxceleb1 contains more than 100,000 speech segments from 1,251 celebrities, covering a wide range of 
celebrities and speech scenarios, ensuring the generalisation ability of the model. The evaluation set is vox_test 
and contains 158 speakers.

Preprocessing
To ensure that only speech samples of valid length are used in the training process, the minimum and maximum 
durations of the audio data are set to 0.5 seconds and 3 seconds, respectively. The audio sampling rate is set to 16 
kHz, allowing for a comprehensive representation of the spectral information in the speech signal. Additionally, 
all audio samples are volume normalized to a target level of -20 dB, minimizing volume discrepancies that may 
arise from varying recording environments or equipment.

In the preprocessing stage, we employed a Filter Bank (Fbank) as the feature extraction method, extracting 
80-dimensional Mel filter bank features. To enhance the model’s robustness, several data augmentation techniques 
were applied during the experiments. Speed perturbation was utilized to create three types of samples with 
different speech speeds: slow, normal, and fast, thus increasing data diversity. To further improve the model’s 
adaptability to noise, noise enhancement was applied with a probability of 20%. Additionally, we employed the 
SpecAug data augmentation method to mitigate overfitting by randomly masking certain frequencies and time 
periods. Specifically, the frequency mask width ranges from 0 to 8 frequency bands, while the time mask width 
ranges from 0 to 10 time bands.

Loss function
AAMLoss (Additive Angular Margin Loss)37 was used as the loss function in the experiments to improve speaker 
differentiation by increasing the inter-class angular spacing. The initial value of the angular spacing is 0.2 and 
is gradually adjusted to 0.3. The scaling factor is 32. To further enhance the effectiveness of the model training, 
the margin scheduler is enabled to dynamically adjust the margin parameter in the loss function as the training 
progresses. The formula is given by the following equation:

	
L = − 1

N

N∑
i=1

log es·(cos(θyi
+m))

es·(cos(θyi
+m)) +

∑
j ̸=yi

es·cos θj
� (4)

where θyi  is the angle of the input sample with respect to the correct category weights. m is the angular spacing 
(margin), used to increase the angular distance between classes and enhance category differentiation. s is the 
scaling factor, used to adjust the length of the angular vectors. yi is the true category label of the input sample, 
and n is the batch size.

Hyperparameter Value

Epochs 60

Optimizer Adam

Learning rate 0.001

Weight decay 1 ∗ 10−5

Batch size (training) 128

Batch size (eval) 128

Frequency mask width [0, 8]

Time mask width [0, 10]

Table 1.  Training setup of the network.
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Training protocols and assessment indicators
The model is trained using the Adam38 optimizer with an initial learning rate of 0.0019, in conjunction with the 
WarmupCosineSchedulerLR scheduler. To prevent the model from converging too quickly in the initial stages 
and to ensure stability during training, the learning rate is gradually increased from 1 × 10−5 to 0.001 over the 
first 5 epochs. Following this period, the learning rate is gradually reduced to a minimum of 1 × 10−5. The 
model is trained for a total of 60 epochs with a batch size of 128. During the evaluation phase, the batch size 
remains at 128, while the maximum duration of the evaluation audio is limited to 20 seconds.

We test the model at the final epoch and report all system performances based on Equal Error Rate (EER), 
Minimum Detection Cost Function (minDCF), and Accuracy (ACC). EER indicates the point at which the 
rates of acceptance and rejection errors are equal. MinDCF incorporates the weights of acceptance and rejection 
errors, denoted as follows:

	 Cdef = Cmiss × Pmiss × Ptar + Cfa × Pfa × (1 − Ptar)� (5)

where ptarget = 0.01, Cfa = Cmiss = 1.

Experimental results
In this section, we perform a series of comparison experiments using the Cn-Celeb1 dataset to assess the 
feasibility of the proposed approach. To evaluate the effectiveness of the EPCNet structure, we first compare it 
against several mainstream models for voiceprint recognition, as presented in Table 2.

As shown in the table of experimental results, the performance of different models on the speech recognition 
task varies significantly. The EPCNet-TDNN (C=512) model achieves the highest accuracy, reaching 95.7%, 
with an Equal Error Rate (EER) of 0.154 and a minimum Detection Cost Function (minDCF) of 0.724, 
demonstrating a well-balanced performance that is suitable for scenarios requiring high accuracy. In contrast, 
the TDNN (C=512) and ECAPA-TDNN (C=512) models perform relatively poorly, particularly the former, 
with an EER of 0.185 and an accuracy of only 84.4%. Although the Res2Net model achieves an accuracy of 
90.1%, its EER of 0.218 and high error rate negatively affect its overall performance. The ResNetSE model is 
comparable to EResNet, with an EER of 0.157, a minDCF of 0.732, and an accuracy of 93.6%, but it remains 
weak in error rate control. While EResNet excels in EER and minDCF, there is still room for improvement in 
accuracy compared to EPCNet. The EPCNet-TDNN model is enhanced in terms of feature extraction, temporal 
modelling and channel selectivity by introducing a number of improvements. By combining ECA_Block with 
Selective State Space Model (SSS), the proposed model captures both local and global features of speech signals 
using residual networks, state space modelling and attention mechanisms.Overall, despite its large number of 
parameters, it is worthwhile in terms of performance improvement. The EPCNet-TDNN (C=512) model is 
particularly noteworthy as it excels in several metrics.

In addition to this the actual results of TDNN, ECAPA-TDNN and our proposed EPCNet-TDNN are 
compared with the number of channels of 128, 256 and 512, as shown in Tables 3, 4, 5.

As shown in the table, increasing the number of channels from 128 to 512 results in varying degrees of 
change across the metrics—EER, minDCF, and accuracy—for TDNN, ECAPA-TDNN, and the proposed model. 
When the number of channels is set to 128, the ECPNet-TDNN achieves the best performance, with an EER of 
0.194, a minDCF of 0.773, and an accuracy of 82.9%, which is considerably better than the results of TDNN and 
ECAPA-TDNN. This suggests that EPCNet-TDNN demonstrates strong feature extraction capabilities even at a 
lower number of channels. As the number of channels increases to 256, TDNN’s EER rises, while ECAPA-TDNN 
and the proposed model improve. Notably, the EER of the proposed model decreases to 0.192, and its accuracy 
significantly increases to 94.1%, demonstrating better robustness. When the channel count is further increased 
to 512, all models show a significant reduction in EER and minDCF, along with substantial improvements in 

Model EER MinDCF ACC(%) Params (M)

TDNN 0.240 0.899 70.6 0.83

ECAPA-TDNN 0.208 0.851 76.3 1.3

EPCNet-TDNN 0.194 0.773 82.9 2.3

Table 3.  Number of channels is 128.

 

Model EER minDCF ACC(%) Params (M)

TDNN(C=512)39 0.185 0.812 84.4 3.2

ECAPA-TDNN(C=512)9 0.179 0.799 89.1 6.9

Res2Net40 0.218 0.784 90.1 5.6

EResNet41 0.148 0.685 94.5 6.6

ResNetSE42 0.157 0.732 93.6 7.8

EPCNet-TDNN(C=512) 0.154 0.724 95.7 13.9

Table 2.  Model comparison.
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accuracy. In particular, the proposed model exhibits an EER of 0.154, a minDCF of 0.724, and an accuracy of 
95.7%, excelling across all metrics. Overall, the proposed model demonstrates clear performance advantages at 
different channel counts, especially at 512 channels, confirming its effectiveness in terms of EER, minDCF, and 
accuracy.

To further validate the effectiveness of the proposed enhancement strategy, we conduct an ablation experiment 
to investigate the impact of different strategies on object detection performance. Using the same test conditions, 
we adopt ECAPA-TDNN(512) as the baseline model and incrementally integrate the proposed enhancement 
strategies. Additionally, during our exploration of the ECA_block module, the structure was found to be similar 
to the three closely linked SE-Res2block modules in ECAPA-TDNN referring to it as a tandem structure (TS). 
To determine the effectiveness of this structure within the ECA_block, we conclude the ablation experiments 
by comparing the model’s performance with and without its inclusion. The experimental results are presented 
in Table 6.

In this ablation experiment, we analyze the impact of individual modules on model performance by 
systematically removing or combining different components (ECAM, DSConv, PRS, and SSS) within the 
ECAPA-TDNN framework. The experimental results indicate that the combination of these modules 
significantly influences the model’s accuracy and robustness. Notably, including ECAM and SSS modules yields 
the most substantial improvements, particularly by enhancing accuracy and reducing the Equal Error Rate 
(EER), underscoring their effectiveness in performance optimization. The synergy between these two modules 
is especially crucial for enhancing the model’s discriminative ability and stability. In comparison, the PRS and 
DSConv modules exert a more limited impact, with their minimal contributions to performance suggesting 
a relatively weak role in feature extraction. In addition, we found that when the CRB structure is introduced 
into the model, it has an effect on the model. When all modules are integrated, the model achieves optimal 
performance, indicating that the modules complement each other in feature extraction and information gain. 
Overall, the results demonstrate that the ECAM and SSS modules are pivotal to performance improvement, 
while the contribution of DSConv remains modest, with the fully integrated model achieving the best results.

In addition, to further validate the robustness of the model, we further validate the performance of our 
method in the speaker verification (SV) task on the Voxceleb1 dataset, and similarly, we compare it with several 
mainstream voiceprint recognition models in order to evaluate the effectiveness of the EPCNet structure, as 
shown in Table 7.

Table 7 shows the results of our experiments on the Voxceleb1 development dataset, comparing the EER, 
minDCF, ACC, and the number of parameters (Params) of the different models, respectively. It can be seen that 

ECAM DSConv PRS SSS TS EER minDCF ACC(%) Params(M)

0.179 0.799 89.1 6.9

✓ 0.168 0.752 91.9 6.2

✓ 0.178 0.797 89.8 6.7

✓ 0.173 0.791 90.2 6.8

✓ 0.167 0.750 92.5 14.9

✓ ✓ 0.160 0.741 94.1 14.2

✓ ✓ 0.171 0.783 91.0 6.5

✓ ✓ ✓ 0.158 0.731 94.7 14.1

✓ ✓ ✓ ✓ 0.156 0.728 95.1 -

✓ ✓ ✓ ✓ ✓ 0.154 0.724 95.7 13.9

Table 6.  Ablation experiment.

 

Model EER MinDCF ACC(%) Params (M)

TDNN 0.185 0.812 84.4 3.2

ECAPA-TDNN 0.179 0.799 89.1 6.9

EPCNet-TDNN 0.154 0.724 95.7 13.9

Table 5.  Number of channels is 512.

 

Model EER MinDCF ACC(%) Params (M)

TDNN 0.255 0.824 77.4 1.3

ECAPA-TDNN 0.209 0.793 85.3 2.5

EPCNet-TDNN 0.192 0.775 94.1 5.8

Table 4.  Number of channels is 256.
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our method (EPCNet-TDNN) performs on several performance metrics, further validating its effectiveness on 
the Voxceleb1 dataset.

Conclusions
This paper proposes an enhanced speaker verification architecture, EPCNet-TDNN, which systematically 
addresses the limitations of existing TDNN base models through a series of innovative interrelated 
improvements. The introduction of the ECAM mechanism effectively combines channel and spatial attention, 
achieving superior feature selectivity, while the parallel residual structure enables multi-scale feature extraction 
to be performed independently. The serial structure design promotes efficient information flow, while the 
selective state space module enhances temporal modeling capabilities by combining the state space model with 
the selective attention mechanism.

Comprehensive experimental validation on the CN-Celeb1 and VoxCeleb1 datasets demonstrates that 
the model achieves performance improvements across all metrics and maintains consistent performance 
improvements across different channel configurations. Ablation studies confirm that the ECAM and SSS modules 
are the primary contributors to performance improvements, and their synergistic integration achieves optimal 
results. These improvements enable more reliable speaker verification in challenging real-world scenarios, 
particularly with short audio clips and variable acoustic conditions.

The proposed architecture achieves significant progress in speaker verification. By decoupling feature 
extraction through parallel processing, EPCNet-TDNN reduces the inherent information loss in sequence-
based architectures while providing a comprehensive attention mechanism that surpasses traditional channel-
based methods. However, the increased computational complexity necessitates further research on model 
compression and efficiency optimization in the future. Future work will focus on validating generalization 
capabilities on large-scale, diverse datasets and optimizing the adaptive kernel selection mechanism and PRS 
group configuration to enhance performance across different speech features.

Data availability
The dataset used in this paper is from the publicly available dataset at: https://openslr.org/82/
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