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Continuous inkjet technology, as a key technology in the field of industrial printing, is favoured for its 
excellent printing speed, precision and versatility. In order to achieve the accurate generation of ideal 
droplets in continuous inkjet devices, this paper proposes a new parameter optimisation method, 
BO-GP, which combines the Bayesian optimisation algorithm with computer vision, and after 50 
rounds of iterations, it can converge to the optimal values of the control parameters, and successfully 
constructs the Pareto frontier of the control parameters. In this paper, experiments were conducted 
on two different device droplet image datasets, a millimetre-scale inkjet device and a microfluidic 
device, respectively. Compared with the original BO in Loop method, the optimised minimum objective 
function value is reduced from 0.378 to 0.331 in the millimetre-scale device, and from 0.073 to 0.046 
in the microfluidic device. Moreover, the Pareto solution of the 10 sets of predicted parameters output 
using the BO-GP method tends to be stable with fluctuations around 0.1, and it takes only 1 h to derive 
the control conditions for achieving high roundness, high yield and uniform size droplets.

Keywords  Bayesian optimisation, Objective function, Continuous inkjet printing, Multiparameter 
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Inkjet printing is the most widespread technological application of microfluidics, which is characterised by high 
droplet productivity, small size as well as extreme reproducibility. The ultimate goal of the inkjet printing process 
is to precisely control droplet generation1. There are two main methods for generating droplets, continuous inkjet 
(CIJ) printing and drop-on-demand (DOD) techniques2,3. DOD printing is widely used in desktop printing 
as it can eject smaller droplets and print detailed patterns, while CIJ can print at a much faster speed and is 
therefore mainly used in industrial printing, where traceability information is mainly printed onto packaging for 
food, beverages, pharmaceuticals, etc4. Both CIJ and DOD printing technologies face problems such as satellite 
droplet generation, too large droplet generation and too low droplet generation speed5,6. These problems reduce 
the stability and accuracy of inkjet printing techniques.

Accurate droplet generation from a CIJ device requires fine-tuning of the device control parameters to 
convert a continuously flowing liquid column into separated droplets. The two CIJ devices addressed in this 
paper are the millimetre-scale inkjet device and the microfluidic device. As shown in Fig. 1(a), the millimetre-
scale inkjet device ejects ink from a nozzle under fluid pressure to form a continuous column of liquid. In 
order to produce uniform droplets at a specified frequency, a piezoelectric actuator is typically used to apply 
periodic oscillations to the liquid column, which splits to form droplets under surface tension due to Rayleigh 
instability7–9. A ‘charging electrode’ is fixed at the point where the column splits to form droplets, and an electric 
field is selectively applied to each droplet to control the amount of charging for each droplet. The droplets pass 
through a ‘fixed electric field’ which deflects the direction of flight of the droplets according to the amount of 
charge, and the deflected droplets fall onto the substrate, while the uncharged droplets are not deflected and are 
collected for later printing4. In the microfluidic device of Fig. 1(b), the aqueous-phase channel is responsible for 
transporting the aqueous-phase liquid and the oil-phase channel is responsible for transporting the oil-phase 
liquid, and the droplets are generated in the cross-channel at the intersection of the two channels. The core 
principle of droplet generation is based on capillary instability, the action of surface tension between the aqueous 
and oil phases, and the shearing and separation of droplets by precisely regulating the water and oil pressures10,11.

Whether the liquid column separates to form droplets, the size of the generated droplets, and whether satellite 
droplets are generated during the process depends not only on the fluid pressure, piezoelectric drive frequency, 
nozzle translation speed, water pressure, and oil pressure, but also on the material properties of the ink, and all of 

Beijing Key Laboratory of Signal and Information Processing for High-End Printing Equipment, Beijing Institute of 
Graphic Communication, Beijing 102600, China. email: lklu@bigc.edu.cn

OPEN

Scientific Reports |        (2025) 15:25966 1| https://doi.org/10.1038/s41598-025-09435-8

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-09435-8&domain=pdf&date_stamp=2025-7-17


these factors affect the accuracy of droplet formation. How to precisely tune the control parameters of the device 
to produce high roundness, high yield and uniform droplet size is the focus of this study.

In different CIJ devices, the distance from the nozzle to the substrate varies, and it is difficult to obtain an 
analytical relationship between the control parameters and droplet characteristics due to the complex nonlinear 
relationship between the forces acting on the fluid at different length scales. Typically, researchers conduct a large 
number of experiments to adjust experimental parameters to observe droplet morphology, develop proportional-
integral-derivative controllers to predict the effect of parameter combinations, or perform hydrodynamic 
simulations of droplets to predict droplet behaviour12,13. Chu et al. proposed an automated monitoring and 
sorting system for droplet generating equipment, which reduces the labour cost, but when applied to different 
equipment it requires the real-time adjustment of process parameters14. Chu et al. proposed a deep learning 
based automated monitoring and detection system to classify droplet images for training, but this method uses 
a huge number of datasets and takes about 70 h of training time12. Rodriguez-Rivero et al. solved the problem of 
satellite droplet buildup on the print head deflector by quantifying the charge-to-mass ratio of the droplets, but 
did not eliminate satellite droplet generation at the root cause15. Solanki et al. proposed a neural network based 
method to predict the features of droplet generation, but the method relies on nearly 20,000 a priori training set 
of simulation results on a fluid dynamics simulator (CFD)13. Siemenn et al. proposed BO in Loop, a machine 
learning method that can quickly optimise droplets at different length scales, which requires only four iterations 
to generate the required droplet optimisation parameters, but the method needs to be validated by inputting the 
new predicted parameters generated in each iteration into the device16.

Although existing droplet generation monitoring and optimisation methods can improve the automation 
level, they generally have problems such as poor equipment adaptability, high computational cost, high data 
demand or dependence on experimental validation. In order to achieve accurate droplet generation in the CIJ 
device, this paper proposes a droplet optimisation method GP-BO that combines Bayesian optimisation (BO) 
and computer vision. The computer vision module performs watershed segmentation on the input image to 
separate the droplet pixels from the background, and quantifies the separated droplet pixels in combination 
with an objective function, and the BO module iterates according to the size of the objective function until 
convergence, and finally outputs the minimum objective function value corresponding to the predicted 
parameter values. The GP-BO method is novel in that it does not require pre-processing or repeated experiments 
on the device, and can converge to the optimal control parameter values after 50 rounds of Bayesian optimisation 
with a small number of droplet image datasets. The method does not require a specific physical or mathematical 
model to perform the optimisation, so it is much more generalisable, and the experimental results were validated 
on droplet image datasets of two inkjet devices, a millimetre-scale inkjet device and a microfluidic device. The 

Fig. 1.  Schematic diagram of droplet production for CIJ device. (a) Inkjet device droplet production 
schematic; (b) Microfluidic device droplet generation schematic.
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average experimental time of the GP-BO method is 1 h, which is a saving of nearly 1.3 h of optimisation time 
compared to the BO in Loop method proposed by Siemenn et al. and the outputs of the control parameters 
converge to smaller intervals and the results are more stable.

Machine learning processes such as BO can greatly improve the efficiency of exploring the parameter 
space in a short period of time, and have significant advantages when dealing with complex, high-dimensional 
optimisation problems17. BO can efficiently deal with high-dimensional parameter space by constructing agent 
models and collection functions to efficiently explore the high-dimensional parameter space, reducing the 
number of objective function evaluations while balancing exploration and exploitation, avoiding the trapping 
of into a local optimum, and can be scaled up to multi-objective optimisation to construct a Pareto frontier and 
achieve multi-objective trade-offs18,19.

Results
Experimental data set
In this paper, the experiments are validated on two droplet image datasets, millimetre-scale inkjet device and 
microfluidic device droplet image datasets, this dataset is derived from16.

The inkjet device has three control parameters: fluid pressure, piezoelectric drive frequency, and nozzle 
translation speed, which affect the shape and yield of droplets on the substrate. The experimental dataset for 
the millimetre-scale inkjet device consists of 140 droplet images covering the typical cases of no droplets, large 
droplets, satellite droplets and ideal droplets.

The microfluidic device has two control parameters: water pressure and oil pressure. The experimental dataset 
of the microfluidic device consists of 140 images of droplets formed during contraction without contacting 
the contraction wall, droplets formed when contacting the contraction wall under two droplet generation 
mechanisms, and the case of no droplet generation20–22.

Demonstration of GP model fitting effect
In BO, Gaussian process (GP) is used to fit a proxy model of the objective function. The predictive effects of 
the GP (predicted mean and variance) are used to construct the acquisition function EI. The EI determines the 
choice of the next sampling point, thus guiding the optimization process towards the globally optimal solution 
(Fig. 2).

In order to assess the effect of GP on the fitting of the objective function and to ensure the accuracy of the 
predicted objective function values, the objective function was fitted to the initial image, and the predicted 
objective function values derived from the GP model were compared with the true objective function values 
(Figs. 3 and 4). Two assessment indicators, namely mean square error ( MSE) and coefficient of determination 
( R2), were used to test the model fitting effect, and when the MSE was lower and the R2 was higher, it 
indicated that the GP model was fitted well. The formulas are detailed in the supplementary Methods “Validation 
of model fit section” (Fig. 5).

The effect of GP model fitting for the droplet images of the inkjet device as well as the microfluidic device 
is shown in Fig. 6(D), where the horizontal coordinates are the true objective function values and the vertical 
coordinates are the predicted objective function values. It can be seen that the true objective function value and 
the predicted objective function value are equal, at this time the mean square error MSE = 0.0, the coefficient 
of determination R2 = 1.0. It shows that the GP agent model fits the objective function perfectly and the 
predicted objective function values derived with this agent model are consistent with the true values.

Bayesian optimisation results
The BO optimization flowchart is shown in Fig. 6 in the “Methods” section, where the droplet image is subjected to 
watershed segmentation as well as BO. The BO module uses the GP as a proxy model to fit the objective function 
and updates the GP model according to the objective function, and then iteratively optimises to approximate 
the global optimal solution step by step. Each round of BO outputs two minimum objective function values and 
the corresponding prediction parameter values, and a total of 50 rounds of iterative optimisation are performed. 
100 groups of prediction parameters and their corresponding objective function values are generated during the 
optimisation process, and the 10 groups with the smallest objective function values are selected as the Pareto 
front.

Figure 6(D) clearly shows the 100 sets of predicted parameters generated during the BO iteration process, 
with the inkjet device corresponding to the 3D scatterplot with fitted surface and the microfluidic device 
corresponding to the 2D scatterplot. During the iteration process, the EI function gradually selects points with 
smaller objective function values to optimise the model until convergence. The denser the distribution of points 
in the graph, the region where the optimal control parameter values are located.

The specific data of the 10 groups of Pareto frontiers with the smallest objective function values output by 
BO are shown in supplementary Table S1 and supplementary Table S2. The order of ranking is in the order of 
the objective function values, with the top group having the smallest objective function value representing the 
optimal solution of the optimisation.

Supplementary Table S1 shows the output of the Pareto front after BO of the inkjet device. EI is chosen as 
the acquisition function, and the inkjet device has three control parameters: fluid pressure, piezoelectric drive 
frequency, and nozzle translation speed. From supplementary Table S1, it can be observed that when the value 
of the objective function is small, the fluid pressure ranges from [0.000-0.750], the piezoelectric drive frequency 
ranges from [0.106–0.165], and the nozzle translation speed ranges from [0.964-1.000], which corresponds to 
the value of the objective function between [0.331–0.388]. In other words, the inkjet device is insensitive to 
changes in fluid pressure, and it is the ideal control condition when the piezoelectric drive frequency is low and 
the nozzle travelling speed is fast, at which time high roundness, high yield as well as droplets of uniform size 

Scientific Reports |        (2025) 15:25966 3| https://doi.org/10.1038/s41598-025-09435-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


can be formed. In supplementary Fig. S3, the insensitivity of the inkjet device to fluid pressure values is described 
in terms of the magnitude of the SHAP eigenvalues, and the main reason for this result is the CIJ device droplet 
generation mechanism. Fluid pressure provides the main energy input in CIJ to maintain the jet flow, but has less 
influence on the size and spacing of droplet generation, with piezoelectrically-driven perturbations and nozzle 
travelling speed dominating the dynamic generation of droplets.

Supplementary Table S2 shows the Pareto front output of the microfluidic device after BO. The microfluidic 
device has two control parameters: water pressure and oil pressure. The objective function of the microfluidic 
device consists only of the geometric loss Lgeom and the yield loss Lyield. The objective function l′ (x) is 
the mean value of the geometric loss and the yield loss l′ (x) = 0.5Lgeom + 0.5Lyield. It can be observed 
from supplementary Table S2 that when the objective function value is small, the water pressure takes values 
in the range of [0.260–0.312] and the oil pressure takes values in the range of [0.951-1.000]. This shows that 
the microfluidic device is sensitive to both control parameters, water and oil pressure, and produces desirable 
droplets under low water and high oil pressure conditions.

Comparison test
In order to verify the accuracy of the output predicted parameters and objective function values of the GP-BO 
optimization method in this paper, the output results of the GP-BO method in this paper are compared with 

Fig. 2.  Parallel coordinate plots of predicted parameter values as well as objective function values are 
generated for the CIJ devices using GP-BO and BO in Loop methods in the optimisation process, respectively. 
(a)-(b) Inkjet device generates parallel coordinate plots of predicted parameter values as well as objective 
function values using two optimisation methods under objective functions l (x) and l′ (x), respectively; 
(c) Microfluidic device generates parallel coordinate plots of predicted parameter values as well as objective 
function values under l′ (x) using two optimisation methods.
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those of the previous BO in Loop method, and the experimental results of the BO in Loop method are shown 
in the literature16. The BO in Loop method takes l′ (x) as the objective function to optimise the values of the 
device control parameters. In order to eliminate the influence of satellite droplets in the inkjet device, this paper 
improves on the basis of l′ (x) by adding the loss of dimensional uniformity to form the objective function 
l (x), which is defined in Eq. ( 7) in the “Methods” section. Since the results before and after the change in 

the loss function cannot be compared directly due to the change in the loss function, the original loss function 
l′ (x) is used to verify the feasibility of the GP-BO method, which in turn generates new predicted parameter 
values under the new loss function l (x).

Figure 2 shows the parallel coordinate plots of the predicted parameters and objective function values 
generated by the optimisation of the inkjet device and the microfluidic device using the GP-BO and BO in Loop 
methods, respectively. There are 160 sets of predicted parameters as well as objective function values in each 
parallel coordinate plot, 100 sets of data are generated during the GP-BO optimisation method iteration and 60 
sets of data are involved in the BO in Loop method iteration.

Figure 2(a,b) show the parallel coordinate plots of the predicted parameters as well as the objective function 
values generated by the inkjet device using the objective function l (x) and l′ (x) on the two optimisation 

Fig. 3.  Parallel coordinate plots of the CIJ devices based on the initial sample parameter values as well as the 
objective function values versus the optimised generation of predicted parameter values as well as the objective 
function values using the GP-BO method. (a,b) Parallel coordinate plots of the initial sample values of the 
inkjet device versus the generation of predicted parameter values as well as objective function values using the 
GP-BO method under objective functions l (x) and l′ (x), respectively; (c) Parallel coordinate plots of the 
initial sample values of the microfluidic device versus the generation of predicted parameter values as well as 
objective function values using the GP-BO method under l′ (x).
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methods, respectively. The lines in the graphs are named, NL for using l (x), YL for using l′ (x), GP and BO 
stand for the use of GP-BO versus BO in Loop optimisation methods, NL-GP for GP-BO optimisation of inputs 
using l (x), and so on. It can be observed that the results obtained by either method are more or less the same, 
with the fluid pressure being distributed over the entire area, and a lower piezoelectric drive frequency along 
with a higher nozzle travelling speed corresponds to a smaller value of the objective function.

Figure 2(c) shows the parallel coordinate plots of the microfluidic device using the two-optimisation method 
to generate the predicted parameter values as well as the objective function values under l′ (x). Observation 
shows that it is easier to generate ideal droplets when the control parameters are at low water pressure as well as 
high oil pressure.

Figure  3(a,b) show parallel coordinate plots of the parameter values versus the objective function values 
before and after optimisation using the GP-BO method for the inkjet device at objective functions l (x) and 
l′ (x), respectively, and for the microfluidic device at l′ (x) in Fig. 3(c). Each parallel coordinate plot involves 
240 sets of parameter values as well as objective function values, 140 sets of initial sample data for the device, and 
100 sets of data generated during the iterative process of the GP-BO optimisation method. The naming of the 
lines in the graph is the same as in Fig. 2, and Sample represents the initial sample data. Whether it is an inkjet 
device or microfluidic device, the data before optimisation is more chaotic, GP-BO method optimisation data 
iteration towards a clear, gradually approaching the objective function value of the smaller region, which can be 
seen in the region where the convergence of the control parameters. The above can verify the reliability of the 
GP-BO optimisation method in this paper.

In order to verify that GP-BO is superior to the BO in Loop optimisation method in terms of output objective 
function values and their corresponding predicted parameter values, 10 sets of results with the smallest objective 
function values of the two methods are taken for comparison.

Fig. 4.  Comparison plots of the 10 sets of minimum objective function values and corresponding predicted 
parameters output by the CIJ device using the GP-BO and BO in Loop methods. (a), (b) Comparison plots of 
the objective function values output by the inkjet device under objective functions l (x) and l′ (x), and by the 
microfluidic device under l′ (x) using the two optimisation methods, respectively; (c)-(d) Comparison plots 
of the predicted parameter values output by the inkjet device and by the microfluidic device under l′ (x) using 
the two optimisation methods, respectively.
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Figure  4(a,b) show line plots of 10 sets of minimum objective function values output by the inkjet device 
under the objective function l (x) and l′ (x), and the microfluidic device under l′ (x) using the GP-BO and BO 
in Loop methods, respectively, with the same line nomenclature as in Fig. 2. Observing Fig. 4(a), it can be seen 
that when using the objective function l′ (x), the GP-BO method outputs objective function values between 
[0.362–0.428] and the BO in Loop method outputs objective function values between [0.431-1.000]. When the 
objective function l (x) is used, the GP-BO method outputs objective function values between [0.331–0.388] 
and the BO in Loop method outputs objective function values between [0.378–0.428].

In Fig. 4(b), when the BO in Loop method uses EI as the acquisition function, the final output is instead 
not as good as the first iteration, when replacing the acquisition function with LCB as well as MPI, the final 
optimised output objective function value is only 0.026 different from the minimum objective function value 
outputted by one iteration of the EI as the acquisition function, so the method selects the results of one round of 
iterations to compare with the output of the GP-BO method. When using the objective function l′ (x), the GP-
BO method outputs the objective function value between [0.046–0.176], and the BO in Loop method outputs 
the objective function value between [0.073–0.196].

In summary, in inkjet as well as microfluidic device, the GP-BO method outputs overall lower objective 
function values than the BO in Loop optimisation method, regardless of whether the objective function l′ (x) 
or l (x) is used.

Figures 4(c)-(d) show the 10 sets of predicted parameter values output by the BO in Loop method and the 
optimisation method GP-BO in this paper for the inkjet device and the microfluidic device under the same 
objective function l′ (x), respectively. The bar and line graphs in the Fig. 4 represent the outputs of the BO in 
Loop method and the GP-BO method, respectively, and the bar and line graph shapes of the same colour scheme 
represent the same control parameter. In Fig. 4(c), the green bars and squares represent the fluid pressure, the red 
bars and dots represent the piezoelectric drive frequency, and the purple bars and triangles represent the nozzle 
translation speed. The BO in Loop method outputs that the fluid pressure values in the 1st, 5th, and 8th sets of 
predicted parameters are 0, so they are not shown on the figure. In the inkjet device, the BO in Loop and GP-BO 
methods yielded roughly the same conclusions, forming ideal droplets at lower piezoelectric drive frequencies 
and faster nozzle movement. In Fig. 4(d), the pink bars and squares represent water pressure, and the green bars 
and dots represent oil pressure. In the microfluidic device, the optimisation method in this paper yields similar 
conclusions as the BO in Loop method, where ideal droplets are generated under low water pressure as well as 
high oil pressure conditions. The specific details of the predicted parameter values are shown in Fig. 5.

Figure 5 shows the boxplots of 10 sets of predicted parameter values generated using GP-BO and BO in 
Loop optimisation methods for the inkjet device as well as the microfluidic device, respectively. The horizontal 
coordinates in Fig. 5 are named, NL and YL represent the use of the objective function l (x) and l′ (x), and the 
suffixes are abbreviations for different control parameters, Pre, Fre, and Spe represent the three control parameters 
fluid pressure, piezoelectric drive frequency, and nozzle moving speed of the inkjet device, respectively, and Wat 
and Oil represent the two control parameters water and oil pressure of the microfluidic device. For example, the 
column NL-Pre represents the value of fluid pressure output under the l (x).

In Fig. 5, the purple rectangle is the box part of the box plot, the blue line is the median line, the star markers 
are the mean values of each predicted parameter value, and the specific values of the mean values are shown 
above the box. Compared with the BO in Loop method, the box part of the predicted parameter box plot of 
the GP-BO optimisation method is smaller, which indicates that the output data are more concentrated and the 
model prediction ability is more stable, removing the fluid pressure, the remaining predicted parameter values 
fluctuate up and down above and below the median line no more than 0.1.

Fig. 5.  Boxplots of the 10 sets of minimum objective function values corresponding to the predicted parameter 
values generated by the CIJ device using the GP-BO and BO in Loop optimisation methods, respectively. (a) 
Boxplots of predicted parameter outputs optimised using the GP-BO method for the inkjet device with two 
objective functions l (x) and l′ (x), and for the microfluidic device with l′ (x); (b) Boxplots of predicted 
parameter outputs optimised using the BO in Loop method for the inkjet device with two objective functions 
l (x) and l′ (x), and for the microfluidic device with l′ (x).
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Fig. 6.  GP-BO optimisation flow chart.(A) Initialisation of the control parameters is performed to normalise 
the parameter values to between [0–1]. Shown above and below are scatter plots of the initial control 
parameter distributions for the millimetre-scale inkjet device as well as the microfluidic device, respectively. 
(B) 140 droplet images generated under different parameter controls for each of the millimetre-scale inkjet 
device as well as the microfluidic device were used as the dataset. The droplet images corresponding to the 
initialised control parameter values are input into the computer vision module, and the computer vision uses 
the watershed segmentation technique to separate the droplets from the background in the droplet images to 
obtain all the droplet pixels in the images. (C) The separated droplets are quantified by the objective function, 
and the separated droplets are scored for geometric roundness, yield, and size uniformity detection and 
input into the BO module. (D) The control parameters are modelled using a GP, and the fit of the GP to the 
objective function is first examined, and when the fit is perfect, the input objective function values and control 
parameter values are BO’d and the predicted parameter values with the smallest objective function values, 
which consist of the loss of roundness, the loss of yield, and the loss of uniformity of size, are output.
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A clear comparison between the GP-BO and GP-BO optimisation methods in terms of the number of 
optimisation iterations, the initial sample size, the number of samples involved in the optimisation process, 
and the optimisation duration is presented in supplementary Table S4, which shows the mean and standard 
deviation of the 12 model optimisation runs. The BO in Loop method samples the initial dataset and selects 20 
groups of samples for optimisation, each optimisation generates 10 groups of predictive parameters, and the four 
iterations involve a total of 60 groups of sample data. The GP-BO method iterates the optimisation of the initial 
140 groups of control parameters and generates 2 groups of new predictive parameters in each iteration, and the 
optimisation process involves a total of 240 groups of sample data.

The two optimisation methods have the same initial sample size, and the GP-BO method applies different 
loss functions to the initial dataset, with all the experimental durations adding up to about one hour. As a whole, 
the GP-BO method has more overall iterations than the BO in Loop method, but reduces the time needed to run 
experiments on the device for each round of iterations, saving about 1.3 h in total optimisation time.

Discussion
The ultimate goal of the inkjet printing process is to control the precise generation of droplets, but due 
to the difficulty of resolving the relationship between the control parameters and droplet characteristics, 
previous researchers have done a large number of experiments or used fluid dynamics simulation software or 
machine learning methods to predict the relationship between the control parameters and the droplets, but 
these methods generally have poor equipment adaptability, high computational cost, or rely on experimental 
validation. However, these methods generally suffer from poor equipment adaptation, high computational cost, 
or dependence on experimental verification. In this paper, a multi-parameter droplet optimisation model, which 
combines the BO algorithm with computer vision to optimise the droplet control parameters, is designed and 
validated on two different device datasets, a millimetre-scale inkjet device and a microfluidic device.

The model is iteratively optimised for 50 rounds, with a total optimisation time of 1 h, to optimise the output 
of the best control parameter values, which will generate high roundness and high yield droplets for the inkjet 
device under full fluid pressure, low drive frequency and high nozzle travel speed, and for the microfluidic 
device under low water pressure and high oil pressure. With the same amount of initial data, compared with the 
previous BO in Loop method, the GP-BO method saves the time required to run experiments on the hardware 
device for each iteration although the number of optimisations is increased, and the overall optimisation time is 
saved by nearly 1.3 h, which greatly improves the optimisation efficiency. The optimisation method in this paper 
is compared with the BO in Loop method in terms of the output objective function value and the predicted 
parameter value, and the output minimum objective function value of the method in this paper is reduced by 
0.047 in the inkjet device, and reduced by 0.027 in the microfluidic device, and the output predicted parameter 
value is more stable.

The multi-parameter droplet optimisation model proposed in this paper has a good performance in control 
parameter prediction, as it does not require a mathematical or physical model to perform the optimisation, 
and purely relies on the objective function relationship between the control parameters and the droplet image 
to guide the optimisation model, which means that the model can be applied to a wider range of devices. The 
parameters are adjusted according to the actual demand, and can be converged to the optimal parameter values 
in a short time, which reduces the cost of experimental trial and error.

Methods
Figure 6 illustrates the workflow diagram of the workflow proposed in this paper for multi-parameter droplet 
optimisation. Processes (B)-(D) perform a total of 50 rounds of BO iterative optimisation, recording the 
combinations of predicted parameter values and corresponding objective function values in each round, and 
progressively improving the BO prediction of the objective function. Each round of optimisation generates two 
minimum sets of objective function values and their corresponding predicted parameter values, and a total of 
100 sets of objective function values as well as predicted parameter values are generated. The 10 smallest sets 
of objective function values and their corresponding predicted parameter values are selected as the output of 
the Pareto front, where the predicted parameter values produce droplets with high roundness, high yield, and 
uniform size.

Parameter space initialisation
In this paper, we use the method of BO to learn the topology of the parameter space, which needs to be searched 
globally in order to find the best control parameters. To make BO more efficient and stable, the control parameter 
values are normalised.

Computer vision
Image segmentation is one of the key image processing techniques in computer vision23,24. Watershed transform 
is an efficient image segmentation algorithm that has been widely used in image preprocessing19,25. The image is 
fed into the computer vision module, and the computer vision performs watershed segmentation processing on 
the droplet image to separate the droplets from the background. In Fig. 6(B), the left side shows the original image 
and the right side shows the watershed segmentation processing to separate the droplets from the background.

The watershed algorithm relies heavily on distance transformations and morphological operations. Otsu 
threshold segmentation converts the original image to a binary image and this method automatically calculates 
the binarisation threshold T to minimise the within-class variance:

	 σ2
w (T ) = ω0 (T ) σ2

0 (T ) + ω1 (T ) σ2
1 (T )� (1)
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.
In Eq. ( 1), w0 and w1 are the proportions of background and foreground pixels (droplets), respectively, and 

σ 2
0 and σ 2

1 are the variances of the droplets and the background pixels. The Otsu method iterates over all the 
possible thresholds T  and selects the value that minimises σ 2

w (T ).
The distance transform is used to calculate the shortest distance from each droplet to the nearest background 

pixel in the binary image. It is calculated as:

	
D (x, y) = min

(x′,y′)∈B
d

(
(x, y) ,

(
x′, y′))

� (2)

	 d
(
(x, y) ,

(
x′, y′))

=
√

(x − x′)2 + (y − y′)2� (3)

.
In Eqs. ( 2- 3), (x, y) is the position of the droplet, B is the set of background pixels, and d((x, y) , (x′ , y′ )) 

denotes the Euclidean distance. The purpose of the distance transformation is to generate a gradient map with 
high intensity at the centre of the droplet and low intensity at the edges.

The watershed algorithm treats the gradient map as a topographic height map and divides the area according 
to the watershed filling water:

	
∂I

∂x
= I (x + 1, y) − I (x − 1, y)

2
� (4)

	
∂I

∂y
= I (x, y + 1) − I (x, y − 1)

2 � (5)

.
Gradient mode calculation:

	
| ∇I (x, y) |=

√(
∂I

∂x

)2
+

(
∂I

∂y

)2
� (6)

In Eqs. ( 4- 6), I(x, y) represents the pixel value at position (x, y) in the image. Eq. 6 represents the magnitude 
of the ‘slope’ of the intensity change in the image at point (x, y). Where the gradient is large is the ‘ridge’ 
between the droplet and the background, and the watershed algorithm is based on the ‘ridge’ to divide different 
regions. The watershed transform constructs an initial seed region based on the minima of the gradient map and 
then performs region growth until it fills the entire image25. The watershed algorithm is executed for final image 
segmentation.

Objective function
As shown in Fig. 7, droplets are separated from the background using watershed segmentation, and the separated 
droplets form a set of indexed pixels Pdrop

16. The generated droplet indexes facilitate the calculation of the size 
of the objective function in each image, with the aim of minimising the value of the objective function in order 
to achieve the ideal droplet with high roundness, high yield, and uniform size.

In the inkjet device, if only the droplet geometry roundness loss as well as the yield loss are considered, 
the total objective function value of the image with the presence of highly rounded satellite droplets in the 
initial image data set is instead small, which gives a wrong guidance to the optimisation process and makes the 
result deviate from the expected one. To avoid this, a size uniformity loss is added to the objective function. 
The optimisation process focuses on the effect of geometric loss and yield loss on droplets, so these two items 
account for a large proportion of the objective function, while the addition of dimensional uniformity loss to 
increase the objective function value of the image of the presence of satellite droplets can make the results in the 
production of high roundness, high yield droplets at the same time, to avoid the generation of satellite droplets. 
In Eq. ( 7), the objective function l (x) is composed of Lgeom, Lyield and Lsize, and the ratio of these three 
loss functions is 0.425:0.425:0.15, l (x) ∈ [0,1]. The formulas for the three loss functions are detailed in the 
“Objective function” section of the supplementary methods. The optimisation process focuses on the effect of 
geometric loss and yield loss on the droplets, so these two items account for a larger proportion in the objective 
function.

	 l (x) = 0.425Lgeom + 0.425Lyield + 0.15Lsize� (7)

Bayesian optimisation
BO is an effective global optimisation strategy that has two components, a GP and an acquisition function19,26,27.

As shown in Table 1, the objective of the BO is to find the minimum value l∗ of the objective function l (x) 
corresponding to the predicted parameter value x∗, which in this case controls the production of droplets with 
high roundness, high yield, and uniformity in size.

In Eq. ( 8), x∗ is the predicted parameter value corresponding to the minimum objective function value 
l (x), x∗ ∈ X(N), X(N) represents the search space of x, and N  is the space dimension.
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GP is the most commonly used agent model in BO. In Eqs. ( 9- 11), the GP consists of a mean function m (x) 
given by and a covariance function k(x, x′ ) which is used to predict how l (x) will change when x ∈ X(N) 
changes.

	 l (x) ∼ GP
(
m (x) , k

(
x, x′))

� (9)

	 m (x) = E [l (x)]� (10)

	 k
(
x, x′) = E

[
(l (x) − m (x))

(
l
(
x′) − m

(
x′))]

� (11)

The covariance function represents the correlation of the process, if two points x and x′  are strongly correlated, 
then the correlation between l (x) and l (x′ ) is also strong.

	 P (lx) = N
(
µ (x) , σ2 (x)

)
� (12)

Algorithm 1 GP construct the BO droplet model GP-BO

Input: The number of Pareto solutions, batch_size:
Control parameter values x x ∈ X(N)

Droplet images corresponding to each set of control parameter values;
BO model optimisation times, iterations.

Output: The mean square error MSE, and the coefficient of determination R2;
Select the l (x) with the smallest objective function in the first batch_size and its corresponding prediction parameter value x_pred to form the Pareto front, x∗ = arg min l (x)
l∗ = min (l (x)) x∗ ∈ xpred l∗ ∈ l (x)

While no convergence do
1. Initialise: Build the GP model and choose EI as the acquisition function.
2. Objective function calculation: l (x) = 0.425Lgeom + 0.425Lyield + 0.15Lsize  the pixels of the droplets segmented by computer vision are quantitatively analysed by 
the objective function l (x),   where l (x) ∈ [0,1]

3. Evaluation of GP model fit: The true loss value l (x) is compared with the predicted loss value lpred (x) for the sampling point and MSE, R2  is calculated. 
l (x) = lpred (x) if MSE = 0.0 and R2 = 1.0

4. BO loops: A total of iterations of loops are executed, with the acquisition function EI guiding the selection of x to the point where the current optimal solution can be improved, 
finding l (x) such that l (x) < min (l( x )), where min (l( x )) is the smallest currently known value of the objective function, and l (x) ∼ GP (·).
end while return xpred , l (x).

Table 1.  Pseudo-code for the GP-BO algorithm.

 

Fig. 7.  Droplet pixels segmented out of the inkjet device as well as the microfluidic device droplet image 
watershed are quantised by an objective function l (x). The objective function consists of a geometric loss 
Lgeom, a yield loss Lyield, and a size uniformity loss Lsize, based on which all droplet pixel objective 
function values are calculated for each image.
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In Eq. ( 12), for a given input point x, the prediction of the objective function l (x) by means of a GP model 
results in a normal distribution of the predicted mean µ (x) with uncertainty σ (x).

The collection function selects the next most promising point based on the predicted mean µ (x) and the 
variance σ (x)28–30. In this paper, Expected Improvement (EI) is chosen to guide the selection of x. The EI 
function is not prone to falling into local optimal solutions, and its goal is to select the point that improves the 
current optimal solution, i.e., to find the l (x) making l (x) < min (l( x ))17. The EI can be calculated by in Eq. 
( 13)

	 EI (x) = (µ (x) − min (l (x)) − ξ) · Φ (Z) + σ (x) · ϕ (Z)� (13)

	
Z = µ (x) − min (l (x)) − ξ

σ (x) � (14)

In Eq. ( 14), min (l( x )) is the minimum currently known value of the objective function and ξ  is a trade-off 
parameter that balances the acquisition function between exploitation ( µ (x) sampling at higher levels) and 
exploration ( σ (x) sampling at higher levels). Φ (Z) is the cumulative distribution function of the standard 
normal distribution and φ (z) is the probability density function of the standard normal distribution.

Experimental parameter setting
In millimetre-scale inkjet device, the nozzle translation speed controls the deposition position of the droplets 
on the substrate, and the fluid pressure determines the speed and flow rate of the ink from the nozzle. The inkjet 
device was operated in the pressure range of 0.03–0.15 MPa, the piezoelectric actuation frequency was limited to 
1–600 Hz, and the nozzle translation speed was limited to 10–36 mm/s. The operation was carried out at a flow 
rate of 0.8–4 m/s for a given pressure range. The experiments were carried out in a controlled variable manner 
with the fluid (dyed water) and nozzle diameter (70 µ m) controlled constant16.

The control parameters for inkjet printing include the nozzle diameter, material properties of the ink such 
as surface tension, viscosity, density, etc., which are usually expressed as dimensionless numbers2,31,32. In inkjet 
printing, the Reynolds number ( Re), Ohnesorge number ( Oh), and Weber number ( W e) are involved31,33. In 
the experiment, Oh ≈ 0.01, W e ≈ 1-200, Re ≈ 10–50 are fixed. Bond number ≈ 0.001, the gravity can be 
neglected.

The microfluidic device has two control parameters: water pressure and oil pressure. These two control 
parameters are controlled by a flow controller and the device operates over a pressure range of 0–2,000 mbar16.

The droplet properties of the microfluidic system are described by two factorless numbers: the capillary 
number ( Ca), and the Weber number ( W e).The dimensionless numbers are in the range of Ca ≈ 0.05–0.5 
and W e ≈ 0.0005–0.003, respectively.

Data availability
Data is provided within the manuscript or supplementary information files.
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