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Continuous inkjet technology, as a key technology in the field of industrial printing, is favoured for its
excellent printing speed, precision and versatility. In order to achieve the accurate generation of ideal
droplets in continuous inkjet devices, this paper proposes a new parameter optimisation method,
BO-GP, which combines the Bayesian optimisation algorithm with computer vision, and after 50
rounds of iterations, it can converge to the optimal values of the control parameters, and successfully
constructs the Pareto frontier of the control parameters. In this paper, experiments were conducted

on two different device droplet image datasets, a millimetre-scale inkjet device and a microfluidic
device, respectively. Compared with the original BO in Loop method, the optimised minimum objective
function value is reduced from 0.378 to 0.331 in the millimetre-scale device, and from 0.073 to 0.046

in the microfluidic device. Moreover, the Pareto solution of the 10 sets of predicted parameters output
using the BO-GP method tends to be stable with fluctuations around 0.1, and it takes only 1 h to derive
the control conditions for achieving high roundness, high yield and uniform size droplets.

Keywords Bayesian optimisation, Objective function, Continuous inkjet printing, Multiparameter
optimisation, Computer vision

Inkjet printing is the most widespread technological application of microfluidics, which is characterised by high
droplet productivity, small size as well as extreme reproducibility. The ultimate goal of the inkjet printing process
is to precisely control droplet generation'. There are two main methods for generating droplets, continuous inkjet
(CIJ) printing and drop-on-demand (DOD) techniques®’. DOD printing is widely used in desktop printing
as it can eject smaller droplets and print detailed patterns, while CIJ can print at a much faster speed and is
therefore mainly used in industrial printing, where traceability information is mainly printed onto packaging for
food, beverages, pharmaceuticals, etc*. Both CIJ and DOD printing technologies face problems such as satellite
droplet generation, too large droplet generation and too low droplet generation speed™®. These problems reduce
the stability and accuracy of inkjet printing techniques.

Accurate droplet generation from a CIJ device requires fine-tuning of the device control parameters to
convert a continuously flowing liquid column into separated droplets. The two CIJ devices addressed in this
paper are the millimetre-scale inkjet device and the microfluidic device. As shown in Fig. 1(a), the millimetre-
scale inkjet device ejects ink from a nozzle under fluid pressure to form a continuous column of liquid. In
order to produce uniform droplets at a specified frequency, a piezoelectric actuator is typically used to apply
periodic oscillations to the liquid column, which splits to form droplets under surface tension due to Rayleigh
instability’~®. A ‘charging electrode’ is fixed at the point where the column splits to form droplets, and an electric
field is selectively applied to each droplet to control the amount of charging for each droplet. The droplets pass
through a ‘fixed electric field’ which deflects the direction of flight of the droplets according to the amount of
charge, and the deflected droplets fall onto the substrate, while the uncharged droplets are not deflected and are
collected for later printing®. In the microfluidic device of Fig. 1(b), the aqueous-phase channel is responsible for
transporting the aqueous-phase liquid and the oil-phase channel is responsible for transporting the oil-phase
liquid, and the droplets are generated in the cross-channel at the intersection of the two channels. The core
principle of droplet generation is based on capillary instability, the action of surface tension between the aqueous
and oil phases, and the shearing and separation of droplets by precisely regulating the water and oil pressures!'®!!.

Whether the liquid column separates to form droplets, the size of the generated droplets, and whether satellite
droplets are generated during the process depends not only on the fluid pressure, piezoelectric drive frequency,
nozzle translation speed, water pressure, and oil pressure, but also on the material properties of the ink, and all of
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Fig. 1. Schematic diagram of droplet production for CIJ device. (a) Inkjet device droplet production
schematic; (b) Microfluidic device droplet generation schematic.

these factors affect the accuracy of droplet formation. How to precisely tune the control parameters of the device
to produce high roundness, high yield and uniform droplet size is the focus of this study.

In different CIJ devices, the distance from the nozzle to the substrate varies, and it is difficult to obtain an
analytical relationship between the control parameters and droplet characteristics due to the complex nonlinear
relationship between the forces acting on the fluid at different length scales. Typically, researchers conduct a large
number of experiments to adjust experimental parameters to observe droplet morphology, develop proportional-
integral-derivative controllers to predict the effect of parameter combinations, or perform hydrodynamic
simulations of droplets to predict droplet behaviour'?!. Chu et al. proposed an automated monitoring and
sorting system for droplet generating equipment, which reduces the labour cost, but when applied to different
equipment it requires the real-time adjustment of process parameters'‘. Chu et al. proposed a deep learning
based automated monitoring and detection system to classify droplet images for training, but this method uses
a huge number of datasets and takes about 70 h of training time'2. Rodriguez-Rivero et al. solved the problem of
satellite droplet buildup on the print head deflector by quantifying the charge-to-mass ratio of the droplets, but
did not eliminate satellite droplet generation at the root cause'”. Solanki et al. proposed a neural network based
method to predict the features of droplet generation, but the method relies on nearly 20,000 a priori training set
of simulation results on a fluid dynamics simulator (CFD)!3. Siemenn et al. proposed BO in Loop, a machine
learning method that can quickly optimise droplets at different length scales, which requires only four iterations
to generate the required droplet optimisation parameters, but the method needs to be validated by inputting the
new predicted parameters generated in each iteration into the device'®.

Although existing droplet generation monitoring and optimisation methods can improve the automation
level, they generally have problems such as poor equipment adaptability, high computational cost, high data
demand or dependence on experimental validation. In order to achieve accurate droplet generation in the CIJ
device, this paper proposes a droplet optimisation method GP-BO that combines Bayesian optimisation (BO)
and computer vision. The computer vision module performs watershed segmentation on the input image to
separate the droplet pixels from the background, and quantifies the separated droplet pixels in combination
with an objective function, and the BO module iterates according to the size of the objective function until
convergence, and finally outputs the minimum objective function value corresponding to the predicted
parameter values. The GP-BO method is novel in that it does not require pre-processing or repeated experiments
on the device, and can converge to the optimal control parameter values after 50 rounds of Bayesian optimisation
with a small number of droplet image datasets. The method does not require a specific physical or mathematical
model to perform the optimisation, so it is much more generalisable, and the experimental results were validated
on droplet image datasets of two inkjet devices, a millimetre-scale inkjet device and a microfluidic device. The
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average experimental time of the GP-BO method is 1 h, which is a saving of nearly 1.3 h of optimisation time
compared to the BO in Loop method proposed by Siemenn et al. and the outputs of the control parameters
converge to smaller intervals and the results are more stable.

Machine learning processes such as BO can greatly improve the efficiency of exploring the parameter
space in a short period of time, and have significant advantages when dealing with complex, high-dimensional
optimisation problems'”. BO can efficiently deal with high-dimensional parameter space by constructing agent
models and collection functions to efficiently explore the high-dimensional parameter space, reducing the
number of objective function evaluations while balancing exploration and exploitation, avoiding the trapping
of into a local optimum, and can be scaled up to multi-objective optimisation to construct a Pareto frontier and
achieve multi-objective trade-offs'®1°.

Results

Experimental data set

In this paper, the experiments are validated on two droplet image datasets, millimetre-scale inkjet device and
microfluidic device droplet image datasets, this dataset is derived from!®.

The inkjet device has three control parameters: fluid pressure, piezoelectric drive frequency, and nozzle
translation speed, which affect the shape and yield of droplets on the substrate. The experimental dataset for
the millimetre-scale inkjet device consists of 140 droplet images covering the typical cases of no droplets, large
droplets, satellite droplets and ideal droplets.

The microfluidic device has two control parameters: water pressure and oil pressure. The experimental dataset
of the microfluidic device consists of 140 images of droplets formed during contraction without contacting
the contraction wall, droplets formed when contacting the contraction wall under two droplet generation
mechanisms, and the case of no droplet generation?-22,

Demonstration of GP model fitting effect

In BO, Gaussian process (GP) is used to fit a proxy model of the objective function. The predictive effects of
the GP (predicted mean and variance) are used to construct the acquisition function EI. The EI determines the
choice of the next sampling point, thus guiding the optimization process towards the globally optimal solution
(Fig. 2).

In order to assess the effect of GP on the fitting of the objective function and to ensure the accuracy of the
predicted objective function values, the objective function was fitted to the initial image, and the predicted
objective function values derived from the GP model were compared with the true objective function values
(Fi%s. 3 and 4). Two assessment indicators, namely mean square error ( M S E) and coefficient of determination
(R?), were used to test the model fitting effect, and when the MSE was lower and the R? was higher, it
indicated that the GP model was fitted well. The formulas are detailed in the supplementary Methods “Validation
of model fit section” (Fig. 5).

The effect of GP model fitting for the droplet images of the inkjet device as well as the microfluidic device
is shown in Fig. 6(D), where the horizontal coordinates are the true objective function values and the vertical
coordinates are the predicted objective function values. It can be seen that the true objective function value and
the predicted objective function value are equal, at this time the mean square error M SE = 0.0, the coefficient
of determination R? = 1.0. It shows that the GP agent model fits the objective function perfectly and the
predicted objective function values derived with this agent model are consistent with the true values.

Bayesian optimisation results

The BO optimization flowchart is shown in Fig. 6 in the “Methods” section, where the droplet image is subjected to
watershed segmentation as well as BO. The BO module uses the GP as a proxy model to fit the objective function
and updates the GP model according to the objective function, and then iteratively optimises to approximate
the global optimal solution step by step. Each round of BO outputs two minimum objective function values and
the corresponding prediction parameter values, and a total of 50 rounds of iterative optimisation are performed.
100 groups of prediction parameters and their corresponding objective function values are generated during the
optimisation process, and the 10 groups with the smallest objective function values are selected as the Pareto
front.

Figure 6(D) clearly shows the 100 sets of predicted parameters generated during the BO iteration process,
with the inkjet device corresponding to the 3D scatterplot with fitted surface and the microfluidic device
corresponding to the 2D scatterplot. During the iteration process, the EI function gradually selects points with
smaller objective function values to optimise the model until convergence. The denser the distribution of points
in the graph, the region where the optimal control parameter values are located.

The specific data of the 10 groups of Pareto frontiers with the smallest objective function values output by
BO are shown in supplementary Table S1 and supplementary Table S2. The order of ranking is in the order of
the objective function values, with the top group having the smallest objective function value representing the
optimal solution of the optimisation.

Supplementary Table S1 shows the output of the Pareto front after BO of the inkjet device. EI is chosen as
the acquisition function, and the inkjet device has three control parameters: fluid pressure, piezoelectric drive
frequency, and nozzle translation speed. From supplementary Table S1, it can be observed that when the value
of the objective function is small, the fluid pressure ranges from [0.000-0.750], the piezoelectric drive frequency
ranges from [0.106-0.165], and the nozzle translation speed ranges from [0.964-1.000], which corresponds to
the value of the objective function between [0.331-0.388]. In other words, the inkjet device is insensitive to
changes in fluid pressure, and it is the ideal control condition when the piezoelectric drive frequency is low and
the nozzle travelling speed is fast, at which time high roundness, high yield as well as droplets of uniform size
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Fig. 2. Parallel coordinate plots of predicted parameter values as well as objective function values are
generated for the CIJ devices using GP-BO and BO in Loop methods in the optimisation process, respectively.
(a)-(b) Inkjet device generates parallel coordinate plots of predicted parameter values as well as objective
function values using two optimisation methods under objective functions ! (z) and I’ (z), respectively;

(c) Microfluidic device generates parallel coordinate plots of predicted parameter values as well as objective
function values under I’ () using two optimisation methods.

can be formed. In supplementary Fig. S3, the insensitivity of the inkjet device to fluid pressure values is described
in terms of the magnitude of the SHAP eigenvalues, and the main reason for this result is the CIJ device droplet
generation mechanism. Fluid pressure provides the main energy input in CIJ to maintain the jet flow, but has less
influence on the size and spacing of droplet generation, with piezoelectrically-driven perturbations and nozzle
travelling speed dominating the dynamic generation of droplets.

Supplementary Table S2 shows the Pareto front output of the microfluidic device after BO. The microfluidic
device has two control parameters: water pressure and oil pressure. The objective function of the microfluidic
device consists only of the geometric loss Lgeom and the yield loss Ly;eiq. The objective function I’ (z) is
the mean value of the geometric loss and the yield loss I" () = 0.5Lgeom + 0.5Lyjerq. It can be observed
from supplementary Table S2 that when the objective function value is small, the water pressure takes values
in the range of [0.260-0.312] and the oil pressure takes values in the range of [0.951-1.000]. This shows that
the microfluidic device is sensitive to both control parameters, water and oil pressure, and produces desirable
droplets under low water and high oil pressure conditions.

Comparison test
In order to verify the accuracy of the output predicted parameters and objective function values of the GP-BO
optimization method in this paper, the output results of the GP-BO method in this paper are compared with
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Fig. 3. Parallel coordinate plots of the CIJ devices based on the initial sample parameter values as well as the
objective function values versus the optimised generation of predicted parameter values as well as the objective
function values using the GP-BO method. (a,b) Parallel coordinate plots of the initial sample values of the
inkjet device versus the generation of predicted parameter values as well as objective function values using the
GP-BO method under objective functions I (z) and I’ (z), respectively; (c) Parallel coordinate plots of the
initial sample values of the microfluidic device versus the generation of predicted parameter values as well as
objective function values using the GP-BO method under I’ (z).

those of the previous BO in Loop method, and the experimental results of the BO in Loop method are shown
in the literature'®. The BO in Loop method takes I’ (z) as the objective function to optimise the values of the
device control parameters. In order to eliminate the influence of satellite droplets in the inkjet device, this paper
improves on the basis of I’ (z) by adding the loss of dimensional uniformity to form the objective function
I (), which is defined in Eq. ( 7) in the “Methods” section. Since the results before and after the change in
the loss function cannot be compared directly due to the change in the loss function, the original loss function
" (x) is used to verify the feasibility of the GP-BO method, which in turn generates new predicted parameter
values under the new loss function ().

Figure 2 shows the parallel coordinate plots of the predicted parameters and objective function values
generated by the optimisation of the inkjet device and the microfluidic device using the GP-BO and BO in Loop
methods, respectively. There are 160 sets of predicted parameters as well as objective function values in each
parallel coordinate plot, 100 sets of data are generated during the GP-BO optimisation method iteration and 60
sets of data are involved in the BO in Loop method iteration.

Figure 2(a,b) show the parallel coordinate plots of the predicted parameters as well as the objective function
values generated by the inkjet device using the objective function [ (z) and !’ (z) on the two optimisation
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Fig. 4. Comparison plots of the 10 sets of minimum objective function values and corresponding predicted
parameters output by the CIJ device using the GP-BO and BO in Loop methods. (a), (b) Comparison plots of
the objective function values output by the inkjet device under objective functions ! (z) and !’ (z), and by the
microfluidic device under I’ (z) using the two optimisation methods, respectively; (c)-(d) Comparison plots
of the predicted parameter values output by the inkjet device and by the microfluidic device under I (z) using
the two optimisation methods, respectively.

methods, respectively. The lines in the graphs are named, NL for using [ (x), YL for using !’ (z), GP and BO
stand for the use of GP-BO versus BO in Loop optimisation methods, NL-GP for GP-BO optimisation of inputs
using [ (), and so on. It can be observed that the results obtained by either method are more or less the same,
with the fluid pressure being distributed over the entire area, and a lower piezoelectric drive frequency along
with a higher nozzle travelling speed corresponds to a smaller value of the objective function.

Figure 2(c) shows the parallel coordinate plots of the microfluidic device using the two-optimisation method
to generate the predicted parameter values as well as the objective function values under !’ (x). Observation
shows that it is easier to generate ideal droplets when the control parameters are at low water pressure as well as
high oil pressure.

Figure 3(a,b) show parallel coordinate plots of the parameter values versus the objective function values

before and after optimisation using the GP-BO method for the inkjet device at objective functions [ (z) and
I' (z), respectively, and for the microfluidic device at I’ (z) in Fig. 3(c). Each parallel coordinate plot involves
240 sets of parameter values as well as objective function values, 140 sets of initial sample data for the device, and
100 sets of data generated during the iterative process of the GP-BO optimisation method. The naming of the
lines in the graph is the same as in Fig. 2, and Sample represents the initial sample data. Whether it is an inkjet
device or microfluidic device, the data before optimisation is more chaotic, GP-BO method optimisation data
iteration towards a clear, gradually approaching the objective function value of the smaller region, which can be
seen in the region where the convergence of the control parameters. The above can verify the reliability of the
GP-BO optimisation method in this paper.

In order to verify that GP-BO is superior to the BO in Loop optimisation method in terms of output objective
function values and their corresponding predicted parameter values, 10 sets of results with the smallest objective
function values of the two methods are taken for comparison.
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Fig. 5. Boxplots of the 10 sets of minimum objective function values corresponding to the predicted parameter
values generated by the CIJ device using the GP-BO and BO in Loop optimisation methods, respectively. (a)
Boxplots of predicted parameter outputs optimised using the GP-BO method for the inkjet device with two
objective functions [ (x) and I’ (), and for the microfluidic device with I’ (z); (b) Boxplots of predicted
parameter outputs optimised using the BO in Loop method for the inkjet device with two objective functions
I(z)and I’ (z), and for the microfluidic device with 1" (z).

Figure 4(a,b) show line plots of 10 sets of minimum objective function values output by the inkjet device
under the objective function [ (z) and I’ (), and the microfluidic device under I’ (z) using the GP-BO and BO
in Loop methods, respectively, with the same line nomenclature as in Fig. 2. Observing Fig. 4(a), it can be seen
that when using the objective function !’ (x), the GP-BO method outputs objective function values between
[0.362-0.428] and the BO in Loop method outputs objective function values between [0.431-1.000]. When the
objective function I (x) is used, the GP-BO method outputs objective function values between [0.331-0.388]
and the BO in Loop method outputs objective function values between [0.378-0.428].

In Fig. 4(b), when the BO in Loop method uses EI as the acquisition function, the final output is instead
not as good as the first iteration, when replacing the acquisition function with LCB as well as MP], the final
optimised output objective function value is only 0.026 different from the minimum objective function value
outputted by one iteration of the EI as the acquisition function, so the method selects the results of one round of
iterations to compare with the output of the GP-BO method. When using the objective function !’ (), the GP-
BO method outputs the objective function value between [0.046-0.176], and the BO in Loop method outputs
the objective function value between [0.073-0.196].

In summary, in inkjet as well as microfluidic device, the GP-BO method outputs overall lower objective
function values than the BO in Loop optimisation method, regardless of whether the objective function I’ (z)
or [ (z) is used.

Figures 4(c)-(d) show the 10 sets of predicted parameter values output by the BO in Loop method and the
optimisation method GP-BO in this paper for the inkjet device and the microfluidic device under the same
objective function I’ (z), respectively. The bar and line graphs in the Fig. 4 represent the outputs of the BO in
Loop method and the GP-BO method, respectively, and the bar and line graph shapes of the same colour scheme
represent the same control parameter. In Fig. 4(c), the green bars and squares represent the fluid pressure, the red
bars and dots represent the piezoelectric drive frequency, and the purple bars and triangles represent the nozzle
translation speed. The BO in Loop method outputs that the fluid pressure values in the 1st, 5th, and 8th sets of
predicted parameters are 0, so they are not shown on the figure. In the inkjet device, the BO in Loop and GP-BO
methods yielded roughly the same conclusions, forming ideal droplets at lower piezoelectric drive frequencies
and faster nozzle movement. In Fig. 4(d), the pink bars and squares represent water pressure, and the green bars
and dots represent oil pressure. In the microfluidic device, the optimisation method in this paper yields similar
conclusions as the BO in Loop method, where ideal droplets are generated under low water pressure as well as
high oil pressure conditions. The specific details of the predicted parameter values are shown in Fig. 5.

Figure 5 shows the boxplots of 10 sets of predicted parameter values generated using GP-BO and BO in
Loop optimisation methods for the inkjet device as well as the microfluidic device, respectively. The horizontal
coordinates in Fig. 5 are named, NL and YL represent the use of the objective function ! (z) and I’ (), and the
suffixes are abbreviations for different control parameters, Pre, Fre, and Spe represent the three control parameters
fluid pressure, piezoelectric drive frequency, and nozzle moving speed of the inkjet device, respectively, and Wat
and Oil represent the two control parameters water and oil pressure of the microfluidic device. For example, the
column NL-Pre represents the value of fluid pressure output under the [ (z).

In Fig. 5, the purple rectangle is the box part of the box plot, the blue line is the median line, the star markers
are the mean values of each predicted parameter value, and the specific values of the mean values are shown
above the box. Compared with the BO in Loop method, the box part of the predicted parameter box plot of
the GP-BO optimisation method is smaller, which indicates that the output data are more concentrated and the
model prediction ability is more stable, removing the fluid pressure, the remaining predicted parameter values
fluctuate up and down above and below the median line no more than 0.1.
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Fig. 6. GP-BO optimisation flow chart.(A) Initialisation of the control parameters is performed to normalise
the parameter values to between [0-1]. Shown above and below are scatter plots of the initial control
parameter distributions for the millimetre-scale inkjet device as well as the microfluidic device, respectively.
(B) 140 droplet images generated under different parameter controls for each of the millimetre-scale inkjet
device as well as the microfluidic device were used as the dataset. The droplet images corresponding to the
initialised control parameter values are input into the computer vision module, and the computer vision uses
the watershed segmentation technique to separate the droplets from the background in the droplet images to
obtain all the droplet pixels in the images. (C) The separated droplets are quantified by the objective function,
and the separated droplets are scored for geometric roundness, yield, and size uniformity detection and

input into the BO module. (D) The control parameters are modelled using a GP, and the fit of the GP to the
objective function is first examined, and when the fit is perfect, the input objective function values and control
parameter values are BOd and the predicted parameter values with the smallest objective function values,
which consist of the loss of roundness, the loss of yield, and the loss of uniformity of size, are output.

Scientific Reports|  (2025) 15:25966 | https://doi.org/10.1038/s41598-025-09435-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

A clear comparison between the GP-BO and GP-BO optimisation methods in terms of the number of
optimisation iterations, the initial sample size, the number of samples involved in the optimisation process,
and the optimisation duration is presented in supplementary Table S4, which shows the mean and standard
deviation of the 12 model optimisation runs. The BO in Loop method samples the initial dataset and selects 20
groups of samples for optimisation, each optimisation generates 10 groups of predictive parameters, and the four
iterations involve a total of 60 groups of sample data. The GP-BO method iterates the optimisation of the initial
140 groups of control parameters and generates 2 groups of new predictive parameters in each iteration, and the
optimisation process involves a total of 240 groups of sample data.

The two optimisation methods have the same initial sample size, and the GP-BO method applies different
loss functions to the initial dataset, with all the experimental durations adding up to about one hour. As a whole,
the GP-BO method has more overall iterations than the BO in Loop method, but reduces the time needed to run
experiments on the device for each round of iterations, saving about 1.3 h in total optimisation time.

Discussion

The ultimate goal of the inkjet printing process is to control the precise generation of droplets, but due
to the difficulty of resolving the relationship between the control parameters and droplet characteristics,
previous researchers have done a large number of experiments or used fluid dynamics simulation software or
machine learning methods to predict the relationship between the control parameters and the droplets, but
these methods generally have poor equipment adaptability, high computational cost, or rely on experimental
validation. However, these methods generally suffer from poor equipment adaptation, high computational cost,
or dependence on experimental verification. In this paper, a multi-parameter droplet optimisation model, which
combines the BO algorithm with computer vision to optimise the droplet control parameters, is designed and
validated on two different device datasets, a millimetre-scale inkjet device and a microfluidic device.

The model is iteratively optimised for 50 rounds, with a total optimisation time of 1 h, to optimise the output
of the best control parameter values, which will generate high roundness and high yield droplets for the inkjet
device under full fluid pressure, low drive frequency and high nozzle travel speed, and for the microfluidic
device under low water pressure and high oil pressure. With the same amount of initial data, compared with the
previous BO in Loop method, the GP-BO method saves the time required to run experiments on the hardware
device for each iteration although the number of optimisations is increased, and the overall optimisation time is
saved by nearly 1.3 h, which greatly improves the optimisation efficiency. The optimisation method in this paper
is compared with the BO in Loop method in terms of the output objective function value and the predicted
parameter value, and the output minimum objective function value of the method in this paper is reduced by
0.047 in the inkjet device, and reduced by 0.027 in the microfluidic device, and the output predicted parameter
value is more stable.

The multi-parameter droplet optimisation model proposed in this paper has a good performance in control
parameter prediction, as it does not require a mathematical or physical model to perform the optimisation,
and purely relies on the objective function relationship between the control parameters and the droplet image
to guide the optimisation model, which means that the model can be applied to a wider range of devices. The
parameters are adjusted according to the actual demand, and can be converged to the optimal parameter values
in a short time, which reduces the cost of experimental trial and error.

Methods

Figure 6 illustrates the workflow diagram of the workflow proposed in this paper for multi-parameter droplet
optimisation. Processes (B)-(D) perform a total of 50 rounds of BO iterative optimisation, recording the
combinations of predicted parameter values and corresponding objective function values in each round, and
progressively improving the BO prediction of the objective function. Each round of optimisation generates two
minimum sets of objective function values and their corresponding predicted parameter values, and a total of
100 sets of objective function values as well as predicted parameter values are generated. The 10 smallest sets
of objective function values and their corresponding predicted parameter values are selected as the output of
the Pareto front, where the predicted parameter values produce droplets with high roundness, high yield, and
uniform size.

Parameter space initialisation

In this paper, we use the method of BO to learn the topology of the parameter space, which needs to be searched
globally in order to find the best control parameters. To make BO more efficient and stable, the control parameter
values are normalised.

Computer vision
Image segmentation is one of the key image processing techniques in computer vision?*?%. Watershed transform
is an efficient image segmentation algorithm that has been widely used in image preprocessing!®?. The image is
fed into the computer vision module, and the computer vision performs watershed segmentation processing on
the droplet image to separate the droplets from the background. In Fig. 6(B), the left side shows the original image
and the right side shows the watershed segmentation processing to separate the droplets from the background.
The watershed algorithm relies heavily on distance transformations and morphological operations. Otsu
threshold segmentation converts the original image to a binary image and this method automatically calculates
the binarisation threshold T to minimise the within-class variance:

o (T) = wo (T) o (T) + w1 (T) o (T) (1)
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In Eq. (1), wo and wy are the proportions of background and foreground pixels (droplets), respectively, and
o 3 and o 7 are the variances of the droplets and the background pixels. The Otsu method iterates over all the
possible thresholds 7" and selects the value that minimises o 2, (T').

The distance transform is used to calculate the shortest distance from each droplet to the nearest background
pixel in the binary image. It is calculated as:

D(z,y)= min _d((z,y),(zy)) )

(z',y')eB

d((z,y), (2", y)) = \/(Jc—cv’)“r(y—z,/’)2 G)

InEgs. (2- 3), (z,y) is the position of the droplet, B is the set of background pixels,and d((z,y), (z',y"))
denotes the Euclidean distance. The purpose of the distance transformation is to generate a gradient map with
high intensity at the centre of the droplet and low intensity at the edges.

The watershed algorithm treats the gradient map as a topographic height map and divides the area according
to the watershed filling water:

oI I(z+1ly)—1I(z—1y)

o 5 (4)
of _ I(xy+1)—1I(z,y—1) 5)
oy 2
Gradient mode calculation:
ar\2  [or\’
_ /(9L oL 6
viten = (5) + (5) ©

In Egs. (4- 6), I(z,y) represents the pixel value at position (x,y) in the image. Eq. 6 represents the magnitude
of the ‘slope’ of the intensity change in the image at point (z,y). Where the gradient is large is the ‘ridge’
between the droplet and the background, and the watershed algorithm is based on the ‘ridge’ to divide different
regions. The watershed transform constructs an initial seed region based on the minima of the gradient map and
then performs region growth until it fills the entire image®®. The watershed algorithm is executed for final image
segmentation.

Objective function

As shown in Fig. 7, droplets are separated from the background using watershed segmentation, and the separated
droplets form a set of indexed pixels Pj,o,'®. The generated droplet indexes facilitate the calculation of the size
of the objective function in each image, with the aim of minimising the value of the objective function in order
to achieve the ideal droplet with high roundness, high yield, and uniform size.

In the inkjet device, if only the droplet geometry roundness loss as well as the yield loss are considered,
the total objective function value of the image with the presence of highly rounded satellite droplets in the
initial image data set is instead small, which gives a wrong guidance to the optimisation process and makes the
result deviate from the expected one. To avoid this, a size uniformity loss is added to the objective function.
The optimisation process focuses on the effect of geometric loss and yield loss on droplets, so these two items
account for a large proportion of the objective function, while the addition of dimensional uniformity loss to
increase the objective function value of the image of the presence of satellite droplets can make the results in the
production of high roundness, high yield droplets at the same time, to avoid the generation of satellite droplets.
In Eq. (7), the objective function [ (z) is composed of Lgeom, Lyicia and Lg;ze, and the ratio of these three
loss functions is 0.425:0.425:0.15,1 () € [0,1]. The formulas for the three loss functions are detailed in the
“Objective function” section of the supplementary methods. The optimisation process focuses on the effect of
geometric loss and yield loss on the droplets, so these two items account for a larger proportion in the objective
function.

I(x) =0.425Lgeom + 0.425Ly;c1d + 0.15L 452 (7)

Bayesian optimisation
BO is an effective global optimisation strategy that has two components, a GP and an acquisition function
As shown in Table 1, the objective of the BO is to find the minimum value [* of the objective function [ (z)
corresponding to the predicted parameter value ™, which in this case controls the production of droplets with
high roundness, high yield, and uniformity in size.
In Eq. (8), z* is the }Jredicted parameter value corresponding to the minimum objective function value
I(z), " € XU, X represents the search space of x, and N is the space dimension.

19,26,27
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Fig. 7. Droplet pixels segmented out of the inkjet device as well as the microfluidic device droplet image
watershed are quantised by an objective function [ (z). The objective function consists of a geometric loss
Lgecom, ayieldloss Lyieia, and a size uniformity loss Ls;-e, based on which all droplet pixel objective
function values are calculated for each image.

Algorithm 1 GP construct the BO droplet model GP-BO

Input: The number of Pareto solutions, batch_size:

Control parameter values z € X (¥ )

Droplet images corresponding to each set of control parameter values;
BO model optimisation times, iterations.

Output: The mean square error MSE, and the coefficient of determination R?;
Select the ! (x) with the smallest objective function in the first batch_size and its corresponding prediction parameter value x_pred to form the Pareto front, * = argmin{ (z)
" =min (I (z)) 2™ € Tpreal™ € 1 (x)

While no convergence do

1. Initialise: Build the GP model and choose EI as the acquisition function.

2. Objective function calculation: [ (x) = 0.425L gcom + 0.425L 4014 + 0.15L 5 the pixels of the droplets segmented by computer vision are quantitatively analysed by
the objective function ! (z), where [ (z) € [0,1]

3. Evaluation of GP model fit: The true loss value [ () is compared with the predicted loss value [, ¢4 () for the sampling point and M SE, R? is calculated.
1(z) = lprea () if MSE = 0.0 and R® = 1.0

4. BO loops: A total of iterations of loops are executed, with the acquisition function EI guiding the selection of « to the point where the current optimal solution can be improved,
finding I () such that I () < min ({(z)), where min (I( )) is the smallest currently known value of the objective function, and I (x) ~ GP ().
end while return zpreq, ().

Table 1. Pseudo-code for the GP-BO algorithm.

GP is the most commonly used agent model in BO. In Egs. ( 9- 11), the GP consists of a mean function m (xg
given by and a covariance function k(x, ') which is used to predict how [ (z) will change when z € X
changes.

l(z) ~GP (m (), k (x,x')) )
m(z) = El ()] (10)
k (w,x/) =F [(l (z) —m(z)) (l (ac/) —m (w'))] (11)

The covariance function represents the correlation of the process, if two points x and z’ are strongly correlated,
then the correlation between [ (z) and [ (z”) is also strong.

P(lx)=N (u (z),0° (x)) (12)
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In Eq. ( 12), for a given input point z, the prediction of the objective function [ (z) by means of a GP model
results in a normal distribution of the predicted mean p (z) with uncertainty o (z).

The collection function selects the next most promising point based on the predicted mean p () and the
variance o (z)*-3°, In this paper, Expected Improvement (EI) is chosen to guide the selection of x. The EI
function is not prone to falling into local optimal solutions, and its goal is to select the point that improves the
current optimal solution, i.e., to find the I (z) making ! (z) < min (I(z))". The EI can be calculated by in Eq.
(13)

EI (z) = (p(z) —min (I (z)) = £) - ®(Z) + o () - ¢ (2) (13)

(14)

In Eq. (14), min ({( x)) is the minimum currently known value of the objective function and ¢ is a trade-off
parameter that balances the acquisition function between exploitation ( p () sampling at higher levels) and
exploration (o (x) sampling at higher levels). @ (Z) is the cumulative distribution function of the standard
normal distribution and ¢ (z) is the probability density function of the standard normal distribution.

Experimental parameter setting

In millimetre-scale inkjet device, the nozzle translation speed controls the deposition position of the droplets
on the substrate, and the fluid pressure determines the speed and flow rate of the ink from the nozzle. The inkjet
device was operated in the pressure range of 0.03-0.15 MPa, the piezoelectric actuation frequency was limited to
1-600 Hz, and the nozzle translation speed was limited to 10-36 mm/s. The operation was carried out at a flow
rate of 0.8-4 m/s for a given pressure range. The experiments were carried out in a controlled variable manner
with the fluid (dyed water) and nozzle diameter (70 1 m) controlled constant!®.

The control parameters for inkjet printing include the nozzle diameter, material properties of the ink such
as surface tension, viscosity, density, etc., which are usually expressed as dimensionless numbers>*"*2, In inkjet
printing, the Reynolds number ( Re), Ohnesorge number ( Oh), and Weber number ( We) are involved®!*?. In
the experiment, Oh ~ 0.01, We ~ 1-200, Re ~ 10-50 are fixed. Bond number = 0.001, the gravity can be
neglected.

The microfluidic device has two control parameters: water pressure and oil pressure. These two control
parameters are controlled by a flow controller and the device operates over a pressure range of 0-2,000 mbar'®.

The droplet properties of the microfluidic system are described by two factorless numbers: the capillary
number ( Ca), and the Weber number ( We).The dimensionless numbers are in the range of Ca =~ 0.05-0.5
and We ~ 0.0005-0.003, respectively.

Data availability
Data is provided within the manuscript or supplementary information files.

Received: 1 April 2025; Accepted: 27 June 2025
Published online: 17 July 2025

References
1. Hu, H. et al. Inkjet-Printed tungsten oxide memristor displaying Non-Volatile memory and neuromorphic Properties. Adv. Funct.
Mater. 34 (20), 2302290 (2024).
2. Lohse, D. Fundamental fluid dynamics challenges in inkjet printing. Annu. Rev. Fluid Mech. 54 (1), 349-382 (2022).
3. Shin, D. Y., Moon, Y. J., Ju, B. K. & Kang, K. T. Measurement of inkjet droplet speed using interference fringe by diffracted light.
Sci. Rep. 14 (1), 22364 (2024).
4. Otowa, T., Tsubouchi, S. & Suwa, Y. Analysis of the Ink-stream Break-Up phenomenon in continuous inkjet Printing. ACS Omega.
8 (38), 34442-34447 (2023).
5. Hou, M. et al. High-precision silver electrode based on PEN substrate with robust mechanical performance. Surf. Interfaces. 54,
105158 (2024).
6. Zhang, S., Fang, K., Liu, X,, Qiao, X. & Wang, J. Simplified and efficient inkjet printing of cotton fabrics using cationic colored
nanoparticles. Ind. Crops Prod. 193, 116217 (2023).
7. Maitrejean, G. et al. Comprehensive experimental dataset on large-amplitude Rayleigh-Plateau instability in continuous inkjet
printing regime. Data Brief. 52, 109941 (2024).
8. Schilling, O. Self-similar Reynolds-averaged mechanical-scalar turbulence models for Rayleigh-Taylor, Richtmyer-Meshkov, and
Kelvin-Helmholtz instability-induced mixing in the small Atwood number limit. Phys. Fluids, 33(8). (2021).
9. Briard, A., Gréa, B. ]. & Nguyen, E. Turbulent mixing in the vertical magnetic Rayleigh-Taylor instability. J. Fluid Mech. 979, A8
(2024).
10. Wang, Z. et al. High-quality semiconductor fibres via mechanical design. Nature 626 (7997), 72-78 (2024).
11. Yao, P, Li, G, Li, Y. & Gao, J. Free surface tension modelling using particle-grid hybrid method without considering gas particles.
J. Comput. Phys. 498, 112674 (2024).
12. Chu, A. B, Nguyen, D., Kaplan, A. D. & Giera, B. Image classification and control of microfluidic systems[C]//Applications of
machine learning. SPIE 11139, 23-29 (2019).
13. Solanki, S. et al. Machine learning for predicting microfluidic droplet generation properties. Comput. Fluids. 247, 105651 (2022).
14. Chu, A. et al. Automated detection and sorting of microencapsulation via machine learning. Lab. Chip.. 19 (10), 1808-1817 (2019).
15. Rodriguez-Rivero, M. C., Philpott, J. M., Hann, A. B., Harries, J. L. & Daly, R. Deflecting the Issue: The Origin of Nanoscale
Material Build-up in Continuous Inkjet Printing[C]//NIP & Digital Fabrication Conference. Society for Imaging Science and
Technology, 36: 44-53. (2020).
16. Siemenn, A. E. et al. A machine learning and computer vision approach to rapidly optimize multiscale droplet generation. ACS
Appl. Mater. Interf.. 14 (3), 4668-4679 (2022).

Scientific Reports |

(2025) 15:25966 | https://doi.org/10.1038/541598-025-09435-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

17. Tran, Q. D,, Shin, D. & Jang, G. W. Bayesian optimization-based topology optimization using moving morphable bars for flexible
structure design problems. Eng. Struct. 300, 117103 (2024).

18. Li, J., Lu, Y. & Lu, R. Detection of early decay in navel oranges by structured-illumination reflectance imaging combined with
image enhancement and segmentation. Postharvest Biol. Technol. 196, 112162 (2023).

19. Fu, Y. & Aldrich, C. Online particle size analysis on conveyor belts with dense convolutional neural networks. Miner. Eng. 193,
108019 (2023).

20. Nguyen, M. D. et al. Generalized correlation for predicting the droplet size in a microfluidic flow-focusing device under the effect
of surfactant. Phys. Fluids, 34(3). (2022).

21. Liu, Z. et al. Effects on droplet generation in step-emulsification microfluidic devices. Chem. Eng. Sci. 246, 116959 (2021).

22. Lee,]. M. etal. Generation of Tumor Spheroids Using a droplet-based Microfluidic Device for Photothermal therapy652 (Microsystems
& Nanoengineering, 2020).

23. Oza, P, Sindagi, V. A., Sharmini, V. V. & Patel, V. M. Unsupervised Domain Adaptation of Object Detectors: A survey (IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023).

24. Khan, S. et al. Transformers in vision: A survey. ACM computing surveys (CSUR), 54(10s): 1-41. (2022).

25. Kucharski, A. & Fabijanska, A. CNN-watershed: A watershed transform with predicted markers for corneal endothelium image
segmentation. Biomed. Signal Process. Control.. 68, 102805 (2021).

26. Teng, C. et al. Dual-level training of Gaussian processes with physically inspired priors for geometry optimizations. J. Chem.
Theory Comput. 18 (9), 5739-5754 (2022).

27. Horak, J. et al. Reconstructing QCD spectral functions with Gaussian processes. Phys. Rev. D. 105 (3), 036014 (2022).

28. Zhang, S., Yang, E, Yan, C., Zhou, D. & Zeng, X. An efficient batch-constrained bayesian optimization approach for analog circuit
synthesis via multiobjective acquisition ensemble. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41 (1), 1-14 (2021).

29. Lourengo, M. P. et al. Automatic structural Elucidation of vacancies in materials by active learning. Phys. Chem. Chem. Phys. 24
(41), 25227-25239 (2022).

30. Tian, Y. et al. Air entrapment of a neutral drop impacting onto a flat solid surface in electric fields. J. Fluid Mech. 946, A21 (2022).

31. Kang, S. H., Kim, S., Sohn, D. K. & Ko, H. S. Analysis of drop-on-demand piezo inkjet performance. Phys. Fluids, 32(2). (2020).

32. Ray, S, Chi, Y., Zhang, P. & Cheng, S. Head-on collision of unequal-size droplets on a wetting surface. Phys. Fluids, 35(2). (2023).

33. Li, Y. et al. Effect of pore structure and capillary number on gas-water flow patterns in carbonate rocks. SPE J. 27 (04), 1895-1904
(2022).

Acknowledgements

This work was supported by the Beijing Key Laboratory of Signal and Information Processing for High-End Print-
ing Equipment (Project Name: Beijing Institute of Graphic Communication Research Platform Construction
Project (Project No.: KYCPT202509)); The Beijing Municipal Commission of Education’s Emerging Interdisci-
plinary Platform for Publishing - Digital Inkjet Printing Technology and Multifunctional Rotary Offset Print-
ing Machine Key Technology Research and Development Platform (Project No.: 04190123001/003, Responsible
Person: Likun Lu); Case Study on the Integration of Intelligent Printing Industry and Education--Taking the
Course of Digital Inkjet Printing and Inspection as an Example (Project No.: MS2023168, Responsible Person:
Qingtao Zeng); Research on Key Technology of Artificial Intelligence for Resource Management in Transcod-
ing of Integrated Media Video (Project No.: E6202405, Responsible Person: Erqing Zhang); Beijing Institute of
Graphic Communication Advantageous Discipline Construction Project (Project No.: 21090525004); Beijing
Institute Of Graphic Communication Discipline Construction and Postgraduate Education Special (Project
Name: Construction of a Comprehensive Platform for Deepening Reform and Quality Enhancement of Gradu-
ate Education in Drop-on-demand Publishing Inkjet Printing Technology (Project No.: 21090325003)).

Author contributions
T. Li conducted the experiment and wrote the main manuscript text. K. Liao conducted the experiment with T.
Li. L. Lu and Q. Zeng supervised and guided this study. All authors reviewed the manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/1
0.1038/s41598-025-09435-8.

Correspondence and requests for materials should be addressed to L.L.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Scientific Reports|  (2025) 15:25966 | https://doi.org/10.1038/s41598-025-09435-8 nature portfolio


https://doi.org/10.1038/s41598-025-09435-8
https://doi.org/10.1038/s41598-025-09435-8
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommo
ns.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Scientific Reports|  (2025) 15:25966 | https://doi.org/10.1038/s41598-025-09435-8 nature portfolio


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Machine learning based multi-parameter droplet optimisation model study
	﻿Results
	﻿Experimental data set
	﻿Demonstration of GP model fitting effect
	﻿Bayesian optimisation results
	﻿Comparison test

	﻿Discussion
	﻿Methods
	﻿Parameter space initialisation
	﻿Computer vision
	﻿Objective function
	﻿Bayesian optimisation
	﻿Experimental parameter setting

	﻿References


