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The multifaceted effects of the presence of thiophenic compounds on the environment are significant 
and cannot be overlooked. As heterocyclic compounds, thiophene and its derivatives play a significant 
role in materials science, particularly in the design of organic semiconductors, pharmaceuticals, and 
advanced polymers. Accurate prediction of their thermophysical properties is critical due to its impact 
on structural, thermal, and transport properties. This study utilizes state-of-the-art machine learning 
and deep learning models to predict high-pressure density of seven thiophene derivatives, namely 
thiophene, 2-methylthiophene, 3-methylthiophene, 2,5-dimethylthiophene, 2-thiophenemethanol, 
2-thiophenecarboxaldehyde, and 2-acetylthiophene. The critical properties including critical 
temperature (Tc), critical pressure (Pc), critical volume (Vc), and acentric factor (ω), together with 
boiling point (Tb), and molecular weight (Mw) were used as input parameters. Models employed include 
Decision Tree (DT), Adaptive Boosting Decision Tree (AdaBoost-DT), Light Gradient Boosting Machine 
(LightGBM), Gradient Boosting (GBoost), TabNet, and Deep Neural Network (DNN). The statistical 
error evaluation showed that the LightGBM model showed superior performance with an average 
absolute percent relative error (AAPRE) of 0.0231, a root mean square error of 0.3499, and coefficient 
of determination (R2) of 0.9999. The leverage method showed that 99.10 percent of the data was valid. 
These findings highlight the effectiveness of using critical properties as inputs and underscore the 
potential of the LightGBM model for reliable high-pressure density prediction of thiophene derivatives. 
This provides a robust tool for advancing materials science applications, and offers valuable insights for 
material design under extreme conditions.
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Heterocyclic thiophenic compounds1, which contain sulfur in a five-membered ring structure, are increasingly 
significant in environmental studies due to their widespread use in various industrial applications, including 
pharmaceuticals, agrochemicals, and organic electronics. Their environmental impact is multifaceted, as they 
can persist in ecosystems, leading to potential toxicity to aquatic life and soil microorganisms. In aquatic 
ecosystems, the presence of thiophenic compounds, which can enter water bodies through industrial discharge, 
runoff, and wastewater, often leads to detrimental effects on aquatic life2. In soil, thiophenic compounds can 
inhibit microbial activity and alter soil chemistry. The stability of these compounds makes them resistant 
to typical biodegradation processes, accumulating in sediments and organic tissues of wildlife. In air, the 
presence of thiophenic compounds can significantly affect the air environment, and lead to both direct and 
indirect environmental consequences, primarily through industrial emissions, combustion processes, and the 
degradation of fossil fuels. Petroleum-derived transportation fuels contain considerable amounts of organic 
sulfur compounds, including benzothiophene, dibenzothiophene, and thiophene. Combustion of sulfur-
rich fuels releases sulfur oxides (SOx), primarily sulfur dioxide (SO2)3. This colorless, odorless, and corrosive 
gas poses serious environmental concerns, playing a key role in acid rain formation, the greenhouse effect, 
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photochemical pollution, and eutrophication4–9. Consequently, understanding and mitigating the properties of 
sulfur compounds is crucial for reducing their environmental and industrial impact.

Heterocyclic compounds represent a fascinating category of aromatic substances. These compounds 
represent one of the most extensive and structurally diverse families in organic chemistry, characterized by a 
broad spectrum of intermolecular interactions. Their remarkable diversity makes them a crucial and complex 
area of study. Alongside carbon and hydrogen, heterocyclic compounds commonly contain heteroatoms like 
sulfur, oxygen, and nitrogen1,10. The most prevalent types of heterocyclic compounds include five-membered 
rings (such as furan, thiophene, dioxolane, imidazole, and pyrrole) and six-membered rings (like morpholine 
and pyridine), which are commonly found in a variety of sources including plants, herbs, animals, coal, and 
petroleum. Due to their diverse properties and applications across various fields, thiophene-based materials are 
found everywhere, including medicine11–16, material sciences17–19, or for use in organic electronic devices and 
molecular electronics20–22. Thiophene-based compounds, particularly their derivatives, are widely utilized as 
chemo-sensors. They serve as effective fluorescence signaling promoters for detecting organic acids, metal ions, 
and cations23,24. Their unique electronic properties and structural diversity render thiophene compounds vital 
in advanced technologies, such as optoelectronic devices OLEDs, OFETs, OTFTs, OSCs, OLFETs and various 
sensors25–36. 2-thiophenecarboxaldehyde and 2-Thiophenemethanol find applications in material sciences, 
nanoparticles, and biotechnology37–47. 2-Acetylthiophene finds applications in food flavoring and the synthesis 
of drugs for anxiety, inflammation, and parasitic infections, as well as in the production of metal complexes48–55.

To maximize the performance of these chemicals in industrial processes, it is crucial to enhance our 
understanding of their various physicochemical properties. It is essential to emphasize volumetric properties like 
density and its related characteristics, including isobaric expansibility and isothermal compressibility, especially 
under high-temperature and high-pressure conditions. Density serves as a fundamental material property with 
significant implications for process mechanics and engineering in chemical plants. Furthermore, understanding 
a compound’s density offers valuable insights into its molecular arrangement and packing behavior. Analyzing 
density variations with temperature or pressure allows for the determination of key parameters such as isothermal 
compressibility, isobaric expansibility, and internal pressure. However, traditional methods for determining 
density are often labor-intensive and susceptible to experimental errors.

Equations of state (EoS) and empirical relationships, while widely used for predicting thermophysical 
properties, often suffer from limitations such as the need for simplifying assumptions, poor accuracy under 
extreme conditions, and reliance on substance-specific constants that may not be available or accurate for all 
compounds. These models may also lack the flexibility to capture complex, nonlinear relationships inherent 
in experimental data, especially for structurally diverse compounds like thiophenes56–60. In contrast, machine 
learning (ML) and deep learning (DL) models offer several advantages, including the ability to learn directly 
from data without predefined functional forms, adapt to nonlinear patterns, and generalize across a wide range 
of conditions and molecular structures. They also enable the integration of diverse input features and provide 
high predictive accuracy, making them powerful tools for property estimation tasks where traditional models 

Fig. 1.  Effect of input parameters on density.
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fall short61–64. Recently, Machine learning has been widely used for modelling of thermophysical properties, 
enabling faster predictions, enhanced accuracy, and exploration of complex systems efficiently63,65–77.

To address these challenges, this study leverages machine learning (ML) and deep learning (DL) methods for 
prediction of the density of seven thiophene-based heterocyclic compounds. An important innovation followed 
in this work is the use of critical properties including critical temperature (Tc), critical pressure (Pc), critical 
volume (Vc), and acentric factor (ω), together with boiling point (Tb), and molecular weight (Mw) as input 
parameters to predict the density of thiophene derivatives. These parameters inherently reflect the molecular 
structure, intermolecular interactions, and phase transition characteristics, which are essential for accurately 
predicting density under various conditions. Choosing the right input parameters is crucial for developing 
accurate and reliable predictive models, as they directly influence the model’s ability to capture the underlying 
physical and chemical relationships. Using such physically meaningful and experimentally accessible inputs 
not only improves model performance and generalizability, but also ensures that predictions remain grounded 
in real-world chemical behaviour. In this work, in addition to machine learning models (DT, AdaBoost-
DT, LightGBM and GBoost), we also used two deep learning models (TabNet and DNN) for high-pressure 
density prediction. By modelling the complex relationships between molecular structure and density, these 
computational approaches provide an efficient and scalable alternative to experimental methods. The findings 
not only enhance our understanding of thiophene derivatives but also demonstrate the potential of ML and DL 
in advancing predictive materials science, particularly for applications in pharmaceuticals, organic electronics, 
and sustainable energy solutions.

Theory and methodology
Dataset construction and description
This study delas with the density predictions for seven compounds from the thiophene family containing different 
functional groups (see Fig. S1 in Supplementary Material). Density prediction was studied in a wide temperature 
range (283.15–338.15 K) and pressure range (0.1–65 MPa), including 1336 data points1. The experimental 
data for these compounds (thiophene, 2-methylthiophene, 3-methylthiophene, 2,5-dimethylthiophene, 
2-thiophenemethanol, 2-thiophenecarboxaldehyde, and 2-acetylthiophene) were obtained from literature78–80. 
Also, the critical properties of the compounds were extracted directly from the experimental data reported 
in sources81. As the ML/DL models were used in this work for thiophenic materials, at specified temperature 
and pressure ranges (283.15–338.15 K and 0.1–65 MPa), the potential reduced applicability of these models 
for molecules with different functional groups or different temperature and pressure ranges not present in the 
current dataset should be considered.

The thermal map presented in Fig.  1 shows a clear relationship between the density of thiophenes and 
temperature (T), pressure (P), critical temperature (Tc), critical pressure (Pc), critical volume (Vc), acentric 
factor (ω), boiling point (Tb), and molecular weight (Mw). This thermal map shows that P, Mw,  Tc, Tb, Vc, ω 
have a direct relationship with the density of thiophene. Meanwhile, T and Pc have an inverse relationship with 
density. Fig. 1 shows that strong correlations between some descriptors may lead to overfitting by introducing 

Model name Hyperparameter search range Best hyperparameters

AdaBoost-DT
estimator__max_depth: [3, 5, 7]
n_estimators: [50, 100, 200]
learning_rate: [0.01, 0.1, 1]

estimator__max_depth: 7
n_estimators: 200
learning_rate: 1

Decision Tree (DT)
max_depth: [3, 5, 7, 10]
min_samples_split: [2, 5, 10]
min_samples_leaf: [1, 2, 4]
max_features: [None, ‘sqrt’, ‘log2’]

max_depth: 10
min_samples_split: 2 
min_samples_leaf: 1
max_features: None

Gradient Boosting (GBoost)
n_estimators: [50, 100, 200, 300, 400]
max_depth: [2, 4, 8, 10, 12, 16]
subsample: [0.25, 0.5, 0.75, 1]
learning_rate: [0.01, 0.03, 0.05, 0.07, 0.1]

n_estimators: 300
max_depth: 8
subsample: 0.25
learning_rate: 0.03

LightGBM

n_estimators: [300, 500, 800]
max_depth: [3, 5, 7]
subsample: [0.7, 0.75]
learning_rate: [0.05, 0.01]
colsample_bytree: [0.3, 0.4]
subsample_freq: [1, 2]
num_leaves: [5, 8, 10]

n_estimators: 800
max_depth: 7
subsample: 0.75
learning_rate: 0.05
colsample_bytree: 0.4
subsample_freq: 2
num_leaves: 10

Deep Neural Network (DNN)

module__hidden_layers: [1–3] 
module__neurons: [16, 32, 64]
module__activation: [‘relu’, ‘tanh’]
optimizer__lr: [0.001, 0.01, 0.1]
batch_size: [10, 20, 40]
max_epochs: [50, 100]

module__hidden_layers: 1  
optimizer__lr: 0.001
module__activation: relu
module__neurons: 64
batch_size: 10
max_epochs: 100

TabNet

n_d: [8, 16]
n_a: [8, 16]
n_steps: [3, 5]
gamma: [1.0, 1.3, 1.5, 2.0]
lambda_sparse: [1e-3, 1e-2]
optimizer_params: [‘lr’: 1e-4, ‘lr’: 1e-3, ‘lr’: 1e-2, ‘lr’: 2e-2]

n_d: 16
n_a: 16
n_steps: 3
gamma: 1.0
lambda_sparse: 0.001 
optimizer_params: ‘lr’: 0.02

Table 1.  Hyperparameter search ranges and optimized values for each machine learning model.
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redundancy and multicollinearity into the model. To address this issue, we applied data normalization to ensure 
all features contribute equally during training, preventing those with larger scales from dominating the learning 
process. Additionally, we employed k-fold cross-validation to evaluate model performance across multiple data 
splits, which helps in selecting models that generalize well rather than fitting noise in the training data. Together, 
these techniques enhance the robustness and reliability of the model by reducing the risk of overfitting and 
improving predictive performance on unseen data.

Box plots offer valuable insights into outliers, median values, as well as minimum and maximum data points. 
The dataset comprises five key features: minimum, Q1 (the median of the lower half of the dataset), median (the 
middle value of the dataset), Q3 (the median of the upper half of the dataset), and maximum values. This figure 
consists of two main components: a pair of whiskers and a box. The lower whisker represents the minimum 
value, while the upper whisker indicates the maximum. The box itself spans from Q1 to Q3, illustrating data 
distribution. Additionally, the horizontal line in the center marks the median value. The box plots representing 
the input and target variables for temperature (T), pressure (P), critical temperature (Tc), critical pressure (Pc), 
critical volume (Vc), acentric factor (ω), boiling point (Tb), molecular weight (Mw) and density (ρ) are presented 
in Fig. S2 in Supplementary Material.

Predictive analytics
Enhancing accuracy can be achieved through grid search cross-validation82. This method systematically explores 
various models and hyperparameter combinations by testing each one individually and validating the results. The 
goal of grid search is to identify the optimal combination that yields the best model performance for prediction 
tasks83. Typically, grid search is integrated with k-fold cross-validation to establish a reliable evaluation metric 
for classification models82,84. In scikit-learn85 the `GridSearchCV` function can be utilized to implement the 
grid search algorithm for identifying the optimal hyperparameters86. In this study, we used GridSearchCV to 
tune hyperparameters. Table 1 shows the hyperparameter search ranges used for machine learning and deep 
learning models, along with the optimal values identified through Grid Search.

Machine learning models
Decision tree (DT)
The decision tree (DT) method is a widely recognized machine learning approach for both classification and 
regression tasks87. It derives its name from its hierarchical, tree-like structure, which operates similarly to a 
flowchart and is constructed using a partitioning process. Over time, various decision tree algorithms have been 
introduced, including ID3, C4.5, CART, CHAID, and MARS. The primary aim of DT learning is to establish a 
framework capable of effectively predicting variations in a response variable or categorizing data within a test 
dataset. To accomplish this, DT employs a branching structure where internal nodes represent decision points 
based on attributes, and leaf nodes indicate predicted output label88,89. One of the strengths of the DT algorithm 
is its robustness to missing data and outliers, making it well-suited for both categorical and continuous variables. 
To prevent overfitting, key hyperparameters such as the minimum number of samples per leaf node and the 
maximum depth of the tree can be adjusted. Additionally, DT regression provides an intuitive way to examine 
the relationships between input and output variables, with its graphical representation serving as a practical tool 
for predicting continuous target values90. Fig. S3 presents a schematic representation of the DT model.

Adaptive boosting decision tree (AdaBoost-DT)
Freund and Schapire introduced the adaptive boosting method (Adaboost) in 199791 to develop a classifier. 
An adaptive resampling technique selects training samples, with classifiers being trained iteratively. During 
each iteration, misclassified samples are assigned more weight. Therefore, the final classifier is derived from a 
weighted aggregation of predictions from all trained models in the ensemble92. When paired with the AdaBoost 
algorithm, the DT, typically considered a weak classifier, is expected to achieve notably improved performance. 
The AdaBoost-DT model is implemented in Python 3.7 using the AdaBoost class from the scikit-learn library.

Gradient boosting (GBoost)
The Gradient Boosting Regressor (GBoost) is an ensemble learning technique that builds a series of decision 
trees in a sequential manner, where each successive tree is trained to minimize the errors made by the previous 
one. GBoost is an iterative learning algorithm designed to enhance predictive performance by combining 
multiple weak learners into a more robust model93. As the number of weak models increases, the model’s error 
progressively reduces94. Furthermore, boosting addresses the bias-variance trade-off by initially constructing a 
weak learner and progressively enhancing its performance by sequentially adding new trees. Each newly added 
tree focuses on correcting the errors made by its predecessor by prioritizing the training instances with the 
highest prediction errors95. In essence, the new tree assigns greater importance to the misclassified rows from 
the previous iteration. A schematic representation of the GBoost concept is shown in Fig. S4.

Deep neural network (DNN)
A Deep Neural Network (DNN) is a type of neural network that consists of multiple hidden layers. In recent 
years, DNNs have gained widespread popularity, largely due to advancements in computational resources and 
increased accessibility to high-performance computing96,97. An appropriate network architecture is essential for 
ensuring the effective performance of a neural network. A standard DNN comprises an input layer, one or more 
hidden layers, and an output layer. The input and output layers define the model’s inputs and expected outputs, 
while the hidden layers play a key role in extracting meaningful features from the given dataset. Each layer 
consists of numerous neurons that apply mathematical operations to the input data. Throughout the training 
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process, the model refines its performance by adjusting neuron-associated weights (w) and biases (b), a process 
guided by optimization techniques like gradient descent98.

Light gradient boosting machine (LightGBM)
In 2016, Guolin Ke et al.99 presented a new machine learning model, LightGBM, based on gradient boosting 
theory. Unlike other machine learning approaches, LightGBM requires less memory. LightGBM and XGBoost 
support parallel computations, but LightGBM outperforms the previous XGBoost model with faster training 
speed and lower memory usage. This reduction in memory occupation results in decreased communication 
costs during parallel learning. LightGBM stands out due to its decision tree-based architecture, which leverages 
gradient-based one-side sampling (GOSS), exclusive feature bundling (EFB), and a histogram-based learning 
strategy with a depth-constrained, leaf-wise growth mechanism100. Gradually based one-sided sampling 
(GOSS) can strike a desirable balance between the sample size and the accuracy of LightGBM’s decision tree. In 
LightGBM, an efficient algorithm called EFB is employed to group those parameters that rarely have nonzero 
values simultaneously (see Fig. S5 in Supplementary Material for the leaf-wise tree growth strategy). As decision 
trees deepen, overfitting tendencies increase, leading to more undesirable leaf directions. LightGBM’s crucial 
parameters enable it to handle large volumes of data, perform at high speed, and achieve higher accuracy in 
predictions101. However, when LightGBM leads to overfitting, setting a maximum depth limit for the leaf 
nodes can result in higher efficiency99,102. Concerning the construction of a LightGBM model, parameters and 
computations can be described as follows103,104:

	 X = {(xj , yj)}N
j=1� (1)      

After minimizing the loss function L, the value of f(x) was predicted:

	 L (y, f (x)) : f̂ (x) = argminEx,y.L(y, f (x))� (2)

In conclusion, the training process of each tree can be described as follows:

	 Wq(x), q ∈ (1, 2, 3, . . . , N)� (3)

In the given equation, N represents the leaf count in a tree, q indicates the decision rules employed in a single 
tree, and W signifies the weight term of each leaf node. To minimize the objective function using Newton’s 
method, the outcome of each stage’s training is adjusted as follows:

Models

Statistical parameters

AAPRE APRE RMSE SD R2

LightGBM

 Train 0.02126 0.00040 0.32131 0.00031 0.99998

 Test 0.03034 − 0.00231 0.44628 0.00043 0.99997

 Total 0.02308 − 0.00014 0.34998 0.00033 0.99998

AdaBoost-DT

 Train 0.12346 0.00041 1.78314 0.00163 0.99961

 Test 0.18487 0.00811 2.61380 0.00240 0.99921

 Total 0.13578 0.00196 1.97794 0.00181 0.99953

GBoost

 Train 0.01967 0.00001 0.29777 0.00029 0.99998

 Test 0.05051 0.00212 0.70362 0.00067 0.99994

 Total 0.02585 0.00044 0.41254 0.00039 0.99997

DT

 Train 0.05648 − 0.00096 1.02467 0.00098 0.99987

 Test 0.25361 0.01116 3.03449 0.00282 0.99894

 Total 0.09602 0.00216 1.63904 0.00154 0.99968

TabNet

 Train 0.18276 − 0.06131 2.81115 0.00258 0.99905

 Test 0.17718 − 0.07547 2.64649 0.00245 0.99919

 Total 0.18164 − 0.06415 2.77890 0.00255 0.99908

DNN

 Train 0.09832 0.07863 1.44123 0.00125 0.99975

 Test 0.09970 0.07394 1.46719 0.00127 0.99975

 Total 0.09860 0.07769 1.44647 0.00126 0.99975

Table 2.  Statistical error analysis for the models developed in this work. The best results are in bold.
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Gt

∼=
N∑

i=1

L[yi, Ft−1 (xi) + ft(xi)]� (4)

TabNet
TabNet is a deep learning model specifically designed for tabular data105. Unlike traditional deep learning 
models, it directly processes raw data without requiring manual feature engineering. TabNet employs a sparse 
attention mechanism to dynamically select relevant features, enhancing both interpretability and efficiency. Its 
core components include106:

Feature Transformer: Processes input data and generates complex feature representations.
Attentive Transformer: Determines which features should be selected at each decision step using a sparse 

attention mechanism.
Masking Mechanism: Guides the feature selection process to improve model transparency and efficiency.
Aggregation: Combines the selected features from multiple steps to produce the final output.
TabNet is built on a multi-step decision-making process, refining its feature selection iteratively107. Its 

architecture integrates a feature transformer, an attentive transformer, and a masking mechanism, making it 
a powerful model for structured data tasks. Empirical studies demonstrate its high performance and strong 
generalization capabilities across various datasets108,109.

Statistical error analysis
The following statistical parameters were used to compare the performance of the model used in this study. 
(ρpred) represents the density predicted by the deep learning and machine learning models, and (ρexp) represents 
the experimental values of the density.

average percent relative error (APRE)

	
AP RE = 1

n

n∑
i=1

(ρiexp − ρipred)
(ρiexp) � (5)

average absolute percent relative error (AAPRE)

	
AAP RE = 1

n

n∑
i=1

∣∣∣∣
(ρiexp − ρipred)

(ρiexp)

∣∣∣∣� (6)

root mean square error (RMSE)

	
RMSE =

√∑n

i=1(ρiexp − ρipred)2

n
� (7)

standard deviation (SD)

	
SD =

√√√√∑n

i=1
(ρiexp−ρipred)

ρiexp

2

n − 1
� (8)

coefficient of determination (R2)

	
R2 = 1 −

∑n

i=1(ρiexp − ρipred)2

∑n

i=1

(
ρiexp − ρiexp

)2 � (9)

Results and discussion
Table 2 provides an overview of the statistical performance metrics for six models: LightGBM, AdaBoost-DT, 
GBoost, DT, TabNet, and DNN. The assessment was conducted on training (1068 data points), testing (268 data 
points), and the complete dataset (1336 data points). The performance metrics in the table clearly demonstrate 
that LightGBM outperforms both deep learning models TabNet and DNN as well as other traditional machine 
learning models in predicting the density of seven thiophene-based compounds. LightGBM achieves the lowest 
errors across all key metrics, including AAPRE (0.03034 test), RMSE (0.44628 test), and SD (0.00043 test), while 
maintaining an exceptionally high R2 of 0.99997 on the test set. Although the LightGBM model demonstrates 
extremely high accuracy and low error metrics, suggesting excellent predictive performance, we acknowledge 
the importance of assessing the risk of overfitting. To address this, we employed k-fold cross-validation during 
model training, which ensures the model’s performance is consistent across multiple data subsets and not just 
the training set. The close alignment between training and test performance, along with low standard deviation 
in error metrics, indicates that the model generalizes well and is not overfitting. Nonetheless, we remain cautious 
and have included model validation measures to confirm its robustness and reliability. In contrast, TabNet and 
DNN show significantly higher prediction errors, with TabNet yielding an RMSE of 2.64649 and DNN 1.46719 
on the test set, indicating weaker generalization. This superior performance of LightGBM is primarily due to the 
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Fig. 2.  Cross-plot of the developed models for density prediction.
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inherent suitability of tree-based models for structured, tabular data such as the molecular descriptors used in 
this study. Tree-based models like LightGBM can naturally model non-linear feature interactions and manage 
small to medium datasets more efficiently, without requiring extensive tuning. Meanwhile, deep learning 
models like TabNet and DNN face architectural limitations in tabular contexts they often struggle to generalize 
well without large datasets, are prone to overfitting, and require complex hyperparameter optimization. These 
findings highlight LightGBM’s superior accuracy, as further illustrated in Fig. S6 (Supplementary Material).

The Taylor diagram [78] provides a visual representation of key statistical metrics R2, RMSE, and standard 
deviation (SD) to assess how well the predicted density aligns with experimental data. In this diagram, models 
with higher accuracy appear closer to the reference measurement point, while those with greater error deviate 
further. Among the evaluated models, LightGBM demonstrates the closest alignment with experimental data for 
both training and test sets, confirming its superior predictive accuracy (see Fig. S7 in Supplementary Material).

Fig. 3.  Error distribution diagrams of the models.
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Graphical analysis
Graphical error analysis is a method for evaluating a model’s performance. This graphical tool is handy for 
comparing the performance of multiple models. Various schematic analyses were conducted in this study to 
demonstrate the effectiveness of the developed model. Graphical curves, including cross-plots, error distributions, 
group errors, and cumulative frequencies, were used to illustrate the reliability of the developed models.

Cross-plot
A cross plot is a type of scatter plot that visualizes the relationship between actual and predicted values by 
aligning them along a 45○ line that passes through the origin. Fig. 2 plots the predicted values of the models 
against the experimental data. The greater the concentration of points on the Y = X line, the greater the accuracy 
of the model. As can be seen in Fig. 2, all models perform well and the points on the ideal line are aligned.

Error distribution plot
Fig. 3 shows the distribution of relative errors of the proposed models in the training and testing processes. The 
lower the data density near the line Y = 0 the greater the model error and the lower the accuracy for predicting 
density. As a result, the GBoost and LightGBM models have lower relative error than the proposed models for 
the training and testing data, thus they have higher accuracy for density prediction.

Cumulative frequency graph
The cumulative frequency plot of absolute relative error (%) for the models used in this study is shown in Fig. 4. 
This figure clearly shows the higher accuracy of the GBoost and LightGBM models than other proposed models 
for density prediction. In addition, the TabNet model has a higher error than other models.

This study also explores error frequency by creating histograms of relative error. Fig. 5 displays histograms 
of relative error for six developed models. In the LightGBM model, most data points have errors between − 0.25 
and 0.25, centering around zero relative error. Data with errors outside the range of − 0.25 to 0.25 for the DT, 
AdaBoost-DT, TabNet and DNN models indicates that these models have less coverage than LightGBM for both 
the training and testing data.

The obtained results for the error values (see Fig. S8 in Supplementary Material) show that LightGBM model 
produces the smallest error distribution range, from − 0.1337 to 0.1321. The GBoost model ranges from − 0.2130 
to 0.2028, while other models show a higher error distribution range than these two models.

Fig.  6 compares the effect of input parameters (critical temperature, critical pressure, critical volume, 
molecular weight, boiling temperature, together with operational determination temperature and pressure), 
on absolute relative error (%) for all models. As can be observed, in all ranges of molecular weight, boiling 
temperature, critical temperature, critical pressure, critical volume, temperature, and pressure, the LightGBM 
model has the least error compared to other models, which confirms the high accuracy of this model.

A comparative analysis of the relative error among the proposed models offers valuable insights into 
identifying the most accurate predictive approach. This visual assessment demonstrates the strong alignment 
between experimental data and the predictions generated by the LightGBM model, as depicted in Fig. S9 of the 
Supplementary Materials.

Fig. 7 illustrates the percentage of relative error for the LightGBM model across the studied materials. The 
consistently low relative error across all materials underscores the model’s high precision in predicting density. 

Fig. 4.  Cumulative frequency distribution of the models developed in this study.
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This minimal deviation further confirms the reliability and effectiveness of the LightGBM model in accurately 
estimating density values.

Model trend analysis
To assess how well the developed models capture the expected density trends, Fig. 8 presents the LightGBM 
model’s predicted values as a function of temperature and pressure. The plots illustrate that at fixed pressures of 
7.0 and 65 MPa, density decreases with rising temperature. Conversely, at constant temperatures of 303.15 K and 
338.15 K, increasing pressure results in higher density.

Fig. 5.  Histograms of relative error for the proposed models in density prediction.
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Sensitivity analysis
The relevancy factor (r) and the output of the LightGBM model are employed to assess the relative significance 
of input variables in predicting density. The correlation coefficient for each input parameter is determined using 
the following formula [63, 64]:

	

r (Ik, y) =
∑n

i=1(Ii,k − Ik)(yi − y)√∑n

i=1(Ii,k − Ik)2∑n

i=1(yi − y)2
� (10)

Ii,k  and Ik  represent the ith average values of the kth input, respectively. K represents pressure temperature or 
other input parameters. yi and y  represent the ith predictive value and average. The parameter (r) varies between 

Fig. 6.  AARE of all models proposed in this work for different input parameter ranges.
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− 1 and 1, reflecting the correlation between independent and dependent variables. A positive (r) suggests that 
as the input variable increases, the output also rises, whereas a negative (r) implies an inverse correlation. And 
he closer (r) are to 1, the stronger the association between the model’s input and output values. The findings of 
the sensitivity analysis on the results of the LightGBM model, as the best-obtained model, are presented visually 
in Fig. 9. The relevancy factor plot clearly shows how each input parameter influences the model’s prediction of 
density, with boiling point (Tb), critical volume (Vc), and critical temperature (Tc) having the highest positive 
relevancy, indicating they are the most influential features. This aligns well with established physicochemical 
principles of thiophenes, where thermophysical properties such as density are strongly governed by phase 
behavior and intermolecular interactions both of which are reflected in critical and boiling point properties. For 
example, the strong correlation of Tb (0.7302) suggests that vaporization characteristics significantly impact the 
density profile. Similarly, the contributions of Tc (0.5683), Vc (0.5857), and ω (0.5131) highlight the importance 
of molecular structure and dispersion forces, which are central to understanding thiophene derivatives due to 
their aromatic and heterocyclic nature. The negative relevancy of Pc (− 0.4949) and T (− 0.1675) further supports 
the idea that increased external pressure or system temperature can reduce the predictability of density if not 
properly accounted for by structural properties. Overall, this plot confirms that the selected features not only 
enhance model performance but also reflect fundamental chemical behavior.

Implementation of the Leverage method
After following statistical and graphical analyses that confirmed the superiority of the LightGBM model 
over other approaches, an additional outlier detection method was applied to identify data points that could 
adversely affect model predictions and to validate the reliability domain of the proposed model. The Williams 
plot visualizes standardized residuals (R) against hat values (H), providing insights into potential outliers. The 
key parameters for constructing this plot are determined using the following calculations77,110,111:

Hat matrix (H):

	 H = X
(
XT X

)−1
XT � (11)

Here, XT represents the transpose of the matrix X, which is a (y × z) matrix. In this case, y refers to the number 
of data points, and z refers to the number of input variables used by the model.

• Leverage limit (H*):

	
H∗ = 3 × (z + 1)

y
� (12)

Fig. 7.  Box plots displaying the relative error distribution for various thiophene compounds.
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Fig. 9.  Sensitivity analysis on the LightGBM model.

 

Fig. 8.  Top: Effect of temperature change on density at constant pressures 7 and 65 MPa; Bottom: Effect of 
pressure change on density at constant temperatures 303.15, and 338.15 K.
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• standardized residuals (SR):

	
Ri = ej√

MSE (1 − Hj) � (13)

where ej is the ordinary residual of the jth index, MSE is the mean square error, and Hj is the jth Leverage value. 
H values greater than H* are outside the range of applicability of the model. In addition, data points with H 
values less than H* and R values greater than 3 or less than − 3 are considered suspected data. Data points with 
H values less than H* and R values between − 3 and 3 are considered valid data112. As illustrated in Fig. 10, 
over 99% of the dataset is deemed valid, with only 12 out of 1336 data points identified as potential anomalies. 
Williams chart analysis shows that 99.10% of the data falls within the acceptable range.

Conclusion
In this study, the critical properties including critical temperature (Tc), critical pressure (Pc), critical volume 
(Vc), and acentric factor (ω), together with boiling point (Tb), and molecular weight (Mw) were used as input 
parameters for machine / deep learning models to predict the density of thiophenes. Accurate density prediction 
is vital for understanding and mitigating the environmental and industrial impact of sulfur compounds in 
fuels. In this work, in addition to four machine learning models (DT, AdaBoost-DT, LightGBM, and GBoost) 
we also used two deep learning models (TabNet and DNN) for density prediction. Results revealed that the 
LightGBM model outperformed the others, with the lowest errors in statistical evaluations (AAPRE = 0.02308, 
APRE = − 0.00014, RMSE = 0.34998, and an R2 = 0.99998). Graphical evaluations further confirmed the 
LightGBM model’s high accuracy in predicting thiophene density across training and test datasets. In addition, 
the comparison of the experimental data and predicted values by the LightGBM model at constant temperatures 
of 303.15 and 338.15 K and constant pressures of  7 and 65 MPa proved the accuracy of the prediction. Using the 
relevance factor, the impact of input characteristics on the model’s target parameter was also investigated. The 
Leverage technique revealed that all data points appeared trustworthy and valid, except for a few that fell into the 
suspected data region. In summary, applying the Leverage method confirmed the data integrity and effectiveness 
of the proposed LightGBM model. This study distinguishes itself through its comprehensive dataset, a broader 
range of thiophene derivatives, and the incorporation of advanced machine/deep learning models. The findings 
provide a robust foundation for optimizing the properties of thiophene derivatives, supporting innovations in 
fuel refinement, environmental sustainability, and advanced material applications.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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