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Prediction of the corrosion rates of
subsea pipelines via KPCA

Shiqi Xu¥2*“, Changhe Huang' & Hongda Zhao?

The development of a precise model for predicting pipeline corrosion rates is essential for ensuring

the safe operation of pipelines. To address the issues of inadequate stability and prolonged execution
time associated with traditional models, the KPCA algorithm is used here to reduce the dimensionality
of corrosion rate data for subsea pipelines, and the primary factors that influence the corrosion rate
are identified. Based on the data characteristics, four algorithms (BP, LSSVM, SVM, and RF) were
compared. Ultimately, the LSSVM algorithm was selected as the final prediction model. Then the
LSSVM prediction model is subsequently developed, and the NGO algorithm is utilized to optimize the
weights and thresholds of the LSSVM model, thereby increasing the accuracy of the prediction model
and effectively reducing prediction instability. A combined KPCA-NGO-LSSVM model is developed

to predict the corrosion rates of subsea pipelines and is compared with three other models: KPCA-
PSO-LSSVM, PSO-LSSVM, and NGO-LSSVM. The mean absolute percentage error (MAPE), root

mean square error (RMSE) and determination coefficient (R?) of the integrated KPCA-NGO-LSSVM
model are 1.791%, 0.06105 and 0.9922, respectively, these metrics are significantly lower than those
of benchmark models, a finding consistently validated across multiple experimental datasets. This
demonstrates the KPCA-NGO-LSSVM framework’s enhanced prediction accuracy and stability. The
model demonstrates effective performance in predicting the corrosion rates of subsea pipelines and
offers novel methodologies and concepts for future research in this area.
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Oil and natural gas occupy a significant position within China’s energy strategy, which is of paramount
importance to the country’s national development. Pipeline transportation is one of the most prevalent modes
of transportation for oil and gas and has evolved into the fifth largest transportation industry in China. However,
when a pipeline is in operation, because of the environment and pipeline medium, pipeline corrosion occurs,
which in turn leads to various accidents!. Corrosion is a significant factor contributing to pipeline failure, as
evidenced by relevant statistical data. Increased pipeline operation time results in a gradual reduction in strength,
ultimately leading to failure. Corrosion has been recognized as the principal cause of pipeline failure incidents.
Consequently, the corrosion rate is commonly employed as an evaluation index for pipeline corrosion*?. There
are many factors affect the corrosion rates of pipelines, such as the pipeline medium components, temperature,
flow rate, pH, and dissolved oxygen and CO, contents. These factors interact with each other and are interrelated,
forming an intricate corrosion system?. Consequently, the development of a multifactor, high-dimensional
model for accurately predicting the corrosion rate of subsea pipelines will be a focal point of future research.
Advances in computer science have led researchers worldwide to conduct extensive studies on predicting
pipeline corrosion rates through machine learning®'°. Jin et al. proposed buffer operator theory to develop an
enhanced DGM(1,1) model for forecasting pipeline corrosion rates over time, which significantly outperforms
the conventional DGM(1,1) model in terms of predictive accuracy'®. Biezma et al. proposed a fuzzy logic
method to predict and analyse the corrosion rates of pipelines, considering six influencing factors. This approach
improves both the accuracy and stability of the predictions!”. Zhang et al. employed a distinctive BP neural
network model for predicting pipeline corrosion rates, obtaining results that align more closely with measured
values and effectively illustrating the correlation between various factors and the corrosion rate!®. Nagoor et al.
employed an ANN model to predict the service life of a crude oil pipeline, achieving a prediction accuracy of
99.97%°. Bo et al. predicted the corrosion rates of pipelines via the PSO-MGM(1,1) model, and its prediction
accuracy was 16% higher than that of the MGM(1,1) model®. Xiao et al. used the WOA-BP algorithm to predict
the corrosion rates of subsea pipelines, and the average absolute percentage error of their predictions was 3.689%,
which was much lower than that of the comparison model'. Jia et al. used kernel principal component analysis
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to determine the corrosion rates of subsea pipelines and related factors and established a KPCA-SVM model?!.
This method reduces the interference of low-correlation data, improves the prediction accuracy and reduces
the prediction difficulty. Nagoor et al.employed a Bayesian regularization-based neural network framework to
predict dry airway lifespan with high accuracy, even when handling datasets containing missing parameters?2.
Xiao et al. predicted the corrosion rates of subsea pipelines via a combined PSO-TSO-BPNN model with an
average absolute percent error of 1.8441%*, which represents a significant improvement in both the accuracy and
stability of the model. The modelling methods proposed by the above scholars all have unique advantages but are
limited by the optimization algorithms and the neural network’s own limitations, which may make them unable
to obtain accurate predictions of pipeline corrosion rates for multifactorial and high-dimensional problems.

This paper presents a hybrid model, KPCA-NGO-LSSVM, for predicting the corrosion rates of subsea
pipelines, utilizing kernel principal component analysis (KPCA) and Northern Goshawk optimization (NGO)
to increase the performance of the least squares support vector machine (LSSVM). Kernel principal component
analysis (KPCA) is employed to downscale the data and determine the principal factors influencing the
corrosion rates of subsea pipelines, thus reducing the complexity of processing model data and increasing the
efficiency of modelling operations. The penalty parameter y and the kernel parameter o> are optimized through
the NGO algorithm to increase the precision of the prediction model and address the challenges of inconsistent
predictions and insufficient generalization capability. Through experimental validation and a comparison of
the error metrics, the KPCA-NGO-LSSVM model is shown to outperform existing methods. Specifically, the
mean absolute percentage error (MAPE) is reduced to less than 2%, and the root mean square error (RMSE)
is significantly lower than those of conventional models. The KPCA-NGO-LSSVM model provides reliable
technical support for accurately predicting subsea pipeline corrosion rates. This model provides a scientific basis
for optimizing corrosion protection strategies, guiding pipeline maintenance decisions, and ensuring flow safety.
Furthermore, the model has significant potential in extending the service life of subsea pipelines and reducing
operational and maintenance costs.

Principles of the NGO algorithm and LSSVM modelling

Principles of the NGO algorithm

The Northern Goshawk optimization (NGO) algorithm was introduced in 2022 by Mohammad Dehghani
and colleagues. The algorithm replicates the Northern Goshawk’s behaviour during hunting, focusing on prey
recognition, attack, pursuit, and evasion. The Northern Goshawk optimization algorithm divides the hunting
process into two phases: prey identification and attack (exploration phase) and chasing and escape (exploitation
phase)?.

Initialization
The Northern Goshawk algorithm can be represented by the following matrix for the Northern Goshawk
population:

X3 T1,1 o Tl
X=1| Xi =\ ®za - T (1)
XN Nxm XN,1 TN,j

X is the population matrix of Northern Goshawks; X, denotes the position of the ith Northern Goshawk; z;
indicates the jth-dimensional position of the ith Northern Goshawk; N is the number of Northern Goshawk
populations; and m refers to the number of dimensions in the solution problem.

In the Northern Goshawk optimization algorithm, the objective function of the problem is utilized to
compute the objective function value of each Northern Goshawk; the objective function value of the Northern
Goshawk population can be represented as a vector of objective function values:

P F(X1)
F=| F = | F(x) @)
FN Nx1 F(XN) Nx1

where F is the objective function vector of the Northern Goshawk population and F; is the objective function
value of the ith Northern Goshawk population.

Prey identification and attack (Global search)

During the initial phase of hunting, the Northern Goshawk selects a prey item at random and attacks it quickly.
This phase improves the NGO algorithm’s exploration capability by randomizing the selection of prey in the
search space. In this phase, a global search of the search space is conducted to determine the optimal region.
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During this phase, the Northern Goshawks exhibit the prey selection and attack behaviours described in
Egs. (3)-(5):

P=Xp, i=1,2,3-,N; j=1,2,3--- ,m; k=1,2--- -1, L,i+ 1,---N 3)
new,P1l __ xi,j""r(pi,j —II‘i,j),FPi < Fl (4)
] TV x4 r(xe; —pij), Fe > Fi
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XZ = new i
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(5)

Where P, denotes the location of the ith Northern Goshawk’s prey; Fp, is the objective function value for
the position of the ith Northern Goshawk’s prey; k represents a random inte%er within a specified range [1,N];
X["*“"P1 represents the updated location of the ith Northern Goshawk; A ! represents the updated position
in the jth dimension of the ith Northern Goshawk; F"°"*"" is the value of the objective function pertaining to
the ith Northern Goshawk following the update process in phase 1; r is a random number within the interval [0,
1]; and I denotes a randomly selected integer, either 1 or 2.

Chase and escape (Localized search)

After a Northern Goshawk attacks its prey, the prey will attempt to escape capture. Thus, in the concluding
phases of hunting, the Northern Goshawk must sustain its chase. The Northern Goshawks’ high pursuit speed
enables them to chase and ultimately capture prey in nearly any circumstance. The simulation of this behaviour
improves the algorithm’s capacity for local search within the search space. This hunting activity is presumed to
be in proximity to an attack position with a radius R. In the subsequent phase, it is described by Egs. (6)-(8):

IZ;M’FO =x;; + R(QT — 1).’137;,]' (6)
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Where t represents the current iteration number and T denotes the maximum iteration limit; X"

represents the updated position of the ith Northern Goshawk during the second stage; z'<*""? represents the

0,7
updated position of the jth dimension of X;"“""; and F/***""? is the value of the objective function pertaining
to the ith Northern Goshawk following the update process in the second stage.

LSSVM algorithm

Various machine learning algorithms, including backpropagation neural networks (BP), random forests (RF),
and support vector machines (SVM), have been widely used to predict corrosion rates in subsea pipelines.
While these methods have demonstrated varying degrees of success, they often face challenges in computational
efficiency and model generalizability when dealing with small-to-medium scale datasets characterized by high
dimensionality and strong nonlinearity. For instance, BP models typically require substantial computational
resources and extensive hyperparameter tuning, while SVM and ensemble methods like RF may encounter
overfitting risks in limited-data scenarios.

In contrast, Least Squares Support Vector Machines (LSSVM) show clear advantages in this particular
application setting. In our preliminary study (see Figs. 2 and 3; Table 4), LSSVM consistently demonstrated
superior performance metrics through systematic comparisons with three representative algorithms (BP, RE,
and traditional SVM), with much higher prediction accuracy and stability than the other algorithms, and this
improved performance stems from the unique mathematical formulation of the LSSVM, which converts the
quadratic optimisation problem into a system of linear equations by means of equal constraints, thus ensuring
a global optimisation solution while maintaining the simplicity of the model. ensuring a globally optimised
solution while maintaining model simplicity. In addition, its structural risk minimisation principle enhances the
generalisation capability, which is particularly important for offshore engineering applications where the cost of
in situ data collection is high and the size of the dataset is limited.

As an advanced variant of support vector machines (SVM), LSSVM addresses the original algorithm’s
computational complexity through innovative problem reformation. Where conventional SVM solves convex
quadratic programming problems, LSSVM transforms this into solving linear equations via kernel space
mapping and regularization techniques. This fundamental improvement not only accelerates computation but
also improves numerical stability, making it particularly suitable for handling the sparse, high-dimensional
corrosion datasets typical of subsea pipeline monitoring systems.

The LSSVM is an advanced learning and predictive algorithm derived from the conventional support vector
machine (SVM) algorithm. This algorithm streamlines the solution of quadratic optimization problems by
converting them into linear Eq. 2%,

The steps for using the LSSVM algorithm are as follows:

Scientific Reports |

(2025) 15:24498 | https://doi.org/10.1038/541598-025-09685-6 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

For a given value from the training dataset (z,y:), i = (21, Ti2, - - -, :rid)T is the d-dimensional input
vector, and the output data value is y;; N is the total number of training data values.

(1) To transform the input space into the feature space, a nonlinear function is employed, ¢ (;). The process
of estimating the nonlinear function is represented by Eq. (9)**:

f(z) =b+(¢(z),w) ©)
Where w is the weight vector, b is the bias term, and (.) denotes the inner product operation.

(2) The precise values of parameters w and b are determined on the basis of the fundamental principle of risk
mitigation:

l
minJ (&,€) = I &|° + e} &

= (10)
styi=o¢ (@) & +b+&  i=1,---,1
Where ¢ is the penalty factor and &; is the slack variable.
(3) Introducing the Lagrangian operator « yields the Lagrangian function:
1 1
1 2 2 , i , ,
L(@b.6a)=Zl[FI° +eY & =D ai[Fe (@) +b+& —yl (11)
i=1 i=1

(4) Setting the derivatives of f, b, &;, & to zero provides the conditions for finding the optimal solution of the
problem.

!
%:0_’207@5(%)
i=1
1
Y =0-Ya=0 (12)
i=1
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]
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(5) Eliminating the parameters f and &; in Eq. (11), we convert Eq. (12) into.

0 1 1 b 0
1 K(zi,y)+t - K (x;,z;) o vi !
: : : N Bl B Hf(x)zzail((wi,xjwb (13)
7 K (x“yi) s K (i, x5) + % an Yn i=1
Where K (z;, x;) is the kernel function, expressed as
" 262

A is the parameter of the kernel function. Data prediction can be performed by resolving the unknown data in
Egs. (13)%6%7.

KPCA-NGO-LSSVM model

Kernel principal component analysis

High-dimensional feature values can lead to the curse of dimensionality; therefore, to extract the essential
features and improve the predictive accuracy while minimizing the model complexity, kernel principal
component analysis (KPCA) is applied to reduce the data dimensions®.

Kernel principal component analysis (KPCA) is a nonlinear dimensionality reduction method that transforms
raw data into a high-dimensional feature space by utilizing a kernel function, followed by the application of
principal component analysis (PCA) within that feature space.

The principles of the KPCA algorithm are as follows:

(1) The sample set of the original running data x is nonlinearly transformed on the basis of the nonlinear

kernel function ®, which maps x, to a high-dimensional linear feature space. Then, its covariance matrix is
computed for the new sample set; i.e.,

== B @)Be)" (15)
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(2) The eigenvalues \ and eigenvectors o/ of matrix C are calculated. The following condition must be satisfied:
AV —CV =0 (16)

(3) A nonlinear function g (w;) is introduced on both sides, and the eigenvectors are represented linearly

from 7 to @ (z9); ie.,

V=) aiP (@) (17)

i=1
(4) The kernel function matrix K (4,7) = (& (i), @ (x;)) is defined and transformed:
mkd —Kd =0 (18)

where o is the eigenvector of K, the eigenvalue is mk, and the subscript i denotes an element in the input
dataset.
For any sample, the projection to the principal element F () in the feature space F is*:

TR@) = B (@) B (@)=Y ik (2:,2) (19)

Predictive modelling

Initially, the KPCA algorithm is employed to reduce the dimensionality of the data, and the NGO algorithm is
then applied to optimize the penalty parameter y and the kernel parameter A of the LSSVM algorithm, thereby
yielding a composite corrosion rate prediction model for subsea pipelines, referred to as the KPCA-NGO-
LSSVM model. The flowchart of this process is shown in Fig. 1. The NGO-LSSVM and NGO-LSSVM models
are established for validation against the integrated KPCA-NGO-LSSVM model.

Model evaluation indicators

To thoroughly assess the predictive accuracy of the KPCA-NGO-LSSVM corrosion rate model for subsea oil and
gas pipelines, the mean absolute percentage error (MAPE), root mean squared error (RMSE) and coefficient of
determination (R?) were employed as evaluation metrics:

Yi — Tq

1
MAPE = Z e x 100% (20)

%

RMSE = \/nz (i) 1)

> (yi_ 5)2
> i (xi_ %)

R? = (22)

Where z;, y; are the true and predicted values of the ith sample, respectively, fori = 1,2, --- ,n; n is the total
number of samples represented; MAPE indicates the model’s overall error; and RMSE denotes the deviation of
the predicted values from the actual values. A lower MAPE and RMSE indicate greater prediction accuracy and
better predictive performance of the model.

Example analysis

Dataset segmentation

Three distinct types of pipeline corrosion rate data from the literature were selected for algorithmic prediction.
Due to space constraints, the predictive research process is detailed only for data 1, while results for data 2 and
data 3 are presented in result form.

The data 1 in this paper are 50 subsea pipelines corrosion data from reference 3’; some of the data values are
shown in Tables 1 and 40 of which are chosen as the training set, and the remaining 10 of which are used as the
test set for model prediction and error checking.

The data 2 in this paper are 100 overseas oil and gas pipelines corrosion data from reference'; some of the
data values are shown in Tables 2, 80 of which are chosen as the training set, and the remaining 20 of which are
used as the test set for model prediction and error checking.

The data 3 in this paper are 28 subsea multiphase flow pipelines corrosion data from reference®’; some of the
data values are shown in Table 3 and 22 of which are chosen as the training set, and the remaining 6 of which are
used as the test set for model prediction and error checking.

Data preprocessing
In kernel principal component analysis, the kernel function can be used to map the original data to a high-
dimensional space, perform nonlinear dimensionality reduction, and mine the nonlinear information in the
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Fig. 1. Flowchart of the KPCA-NGO-LSSVM model.

data.?! Therefore, nine influencing factors in subsea pipeline corrosion rate for data 1 were downscaled using
KPCA. The magnitudes of the variance contributions of the nine principal components were obtained in
MATLAB 2020a, as shown in Table 4.

The magnitudes of the eigenvalues and the cumulative contributions reflect the magnitudes of the influence
of the principal components, as shown in Table 4. In this work, the first six principal components F,F, F,F,
F,, and F, with cumulative contributions greater than 85% were extracted.
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Serial Number | X, | X, |X; X, [X X, X, X X | X,

1 65.9 | 2.27 | 0.0317 |51 |0.64 |7560 |26.8 |58.5 | 141 |2.8385
2 67.7 | 2.41 | 0.0326 | 4.5 |0.628 | 8020 |19.8 | 62.3 | 150 | 2.5997
3 61.3 | 2.66 | 0.0331 | 6.1 |0.639 | 6340 |18.1 | 62.1 | 155 |2.954
4 65.8 |23 |0.0329 |6 0.443 | 6800 | 21.1 | 57.1 | 153 | 2.9615
5 41.7 | 2.39 | 0.0337 | 6.25 | 0.485 | 3560 | 18.3 | 63.9 | 161 |2.5323
6 543 | 2.5 |0.0331 | 6.1 |0.625 | 3420 |27.9 |57.8 | 155 | 2.675
7 58.5 | 2.78 | 0.0329 | 6.01 | 0.531 | 6900 | 27 57.3 | 153 | 3.0823
8 60.7 | 2.41 | 0.0326 |45 |05 8020 | 25.6 | 63 150 | 2.6291
9 475125 ]0.034 |6.1 |0.605|5700 |18.6 | 553 | 154 |2.2865
10 52 2.74 | 0.0344 | 5.95 | 0.534 | 6260 | 19.4 | 52 167 | 2.2647

Table 1. Corrosion rate data for selected subsea pipelines. Note: X is the temperature (°C), X, is the system
pressure (MPa), X, is the partial pressure of CO, (MPa), X, is the pH, X, is the medium flow rate (m-s™'), X is
the Cl” concentration (mg-L™), X, is the CO, concentration (mg-L™"), X, is the HCO,™ concentration (mg-L™),
X, is the water content (%), and X, is the internal corrosion rate value (mm.a™l).

Serial Number | X, X, X, X, X, X, X, X, Y

1 109.03 | 6.5100 | 0.0717 | 1.1824 | 35.887 | 0.7636 | 0.9033 | 0.1050 | 0.1732
2 115.12 | 6.3578 | 0.0370 | 1.6696 | 37.932 | 0.7561 | 0.8283 | 0.1240 | 0.1425
3 115.05 | 6.2169 | 0.0838 | 3.2597 | 37.306 | 0.7701 | 0.8673 | 0.1102 | 0.1448
4 110.56 | 6.3860 | 0.1065 | 1.4988 | 36.520 | 0.7601 | 0.8581 | 0.1127 | 0.1620
5 110.66 | 6.5301 | 0.0535 | 2.5883 | 37.896 | 0.7622 | 0.8601 | 0.1232 | 0.1540
6 111.61 | 6.7053 | 0.0469 | 2.3399 | 37.767 | 0.7533 | 0.8595 | 0.1227 | 0.1518
7 114.09 | 6.5905 | 0.0565 | 4.8084 | 37.097 | 0.7712 | 0.8809 | 0.1149 | 0.1452
8 111.98 | 6.6371 | 0.0581 | 3.4667 | 37.389 | 0.7535 | 0.8785 | 0.1039 | 0.1488
9 109.94 | 6.6036 | 0.0153 | 0.3675 | 36.282 | 0.7551 | 0.8926 | 0.1253 | 0.1710
10 113.18 | 6.3849 | 0.0608 | 4.3186 | 37.838 | 0.7645 | 0.8497 | 0.1150 | 0.1418
11 110.97 | 6.3393 | 0.0507 | 4.0981 | 37.618 | 0.7733 | 0.8620 | 0.1144 | 0.1517
12 119.79 | 6.5631 | 0.0277 | 7.5143 | 39.429 | 0.7639 | 0.8574 | 0.1077 | 0.1113
13 120.69 | 6.7422 | 0.0089 | 3.8390 | 36.699 | 0.7526 | 0.8660 | 0.1222 | 0.1288
14 109.38 | 6.9032 | 0.1080 | 4.4791 | 37.205 | 0.7813 | 0.8182 | 0.1272 | 0.1573
15 117.57 | 6.8163 | 0.1083 | 1.8707 | 34.693 | 0.7629 | 0.8999 | 0.1046 | 0.1574
16 116.00 | 6.5560 | 0.0337 | 5.5114 | 36.578 | 0.7557 | 0.8513 | 0.1117 | 0.1337
17 120.04 | 6.8136 | 0.0352 | 1.1180 | 36.513 | 0.7538 | 0.8814 | 0.1158 | 0.1437
18 117.17 | 6.0568 | 0.0052 | 5.7569 | 36.708 | 0.7614 | 0.9235 | 0.1071 | 0.1339
19 115.69 | 6.7876 | 0.0302 | 3.3667 | 36.601 | 0.7789 | 0.9146 | 0.1153 | 0.1537
20 117.61 | 6.2195 | 0.0345 | 4.9774 | 36.867 | 0.7591 | 0.8788 | 0.1296 | 0.1322

Table 2. Corrosion rate data for selected overseas oil and gas pipelines. Note: X, is the operating temperature
(°C), X, is the pH, X, is the O, concentration (mg-L™), X , is the CO, concentration (mg-L7Y), X, is the S
concentration (mg-L™1), X, is the N, concentration (mgL™Y), X, is the operating pressure (MPa), and Y is the
process pipeline corrosion rate value (mm.a™!).

The eigenvectors of the first six principal components selected in this paper are shown in Table 5. The
eigenvector of each principal component indicates each factor’s explanatory ability, and the closer the absolute
value is to one, the stronger its explanatory ability is, implying that the factor has a greater influence on subsea
pipeline corrosion. As shown in Table 5, F, has a greater correlation with system pressure, F, with a medium flow
rate, F, with pH, F, with water content, F, with temperature, and F, with CO, partial pressure.

Finally, the system pressure, water content, medium flow rate, pH, temperature, and CO, partial pressure
all have greater impacts on subsea pipeline corrosion rates for data 1 than the other factors. The above subsea
pipeline corrosion factors are substituted into the combined model for the next prediction.

Analysis of the forecast results

Based on the characteristics of small sample size and high-dimensional features in the dataset, we initially
selected four machine learning algorithms—BP, LSSVM, SVM and RF—for comparative analysis. The results
(Figs. 2 and 3; Tables 6and 7) demonstrate that the LSSVM model outperforms the RE, BP and SVM models in
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Serial Number | X; X, X, X, X, [ X [ X,
1 55.64 | 2515.34 | 0.92 | 251.53 | 0.53 | 4.88 | 2.79
55.09 | 2514.42 | 0.92 | 251.44 | 0.53 | 4.88 | 3.05
54.55 | 2514.42 | 0.92 | 251.35 | 0.53 | 4.88 | 3.05
54.02 | 2513.51 | 0.92 | 251.26 | 0.53 | 4.88 | 3.11
535 |2512.6 |0.92 |251.17 | 0.53 | 4.89 | 2.6

52.99 | 2511.68 | 0.93 | 251.08 | 0.53 | 4.89 | 3.11

Q|| | W

Table 3. Corrosion rate data for selected subsea multiphase flow pipelines. Note: X is the temperature (°C),
X, is the pressure (kPa), X, is the liquid-holding capacity, X, is the CO, partial pressure(MPa), X, is the liquid
flow rate (m-s™), X, is the pH, X, is the operating pressure (MPa), and X is the internal corrosion rate value
(mm.y ).

Principal component | Variance contribution (%) | Cumulative contribution (%)
F, 34.52 34.52
F, 14.83 49.35
Fy 13.22 62.57
F, 10.30 72.87
F, 8.56 81.43
Fy 5.29 86.72
F, 5.06 91.78
F, 471 96.49
F, 3.51 100.00

Table 4. Analysis of variance contribution ratios of nine principal components of the corrosion factors of a
subsea pipeline.

Serial Number | X, X, X, X, X, X X, X, X,

F, 0.18505 0.49258 0.17516 | —0.07907 0.07524 | -0.07028 0.19126 | 0.07929 0.08937
F, —-0.05535 | 0.05948 | -0.03288 | —0.09702 | 0.39367 | 0.05285 | —0.23666 | —0.04639 0.11301
Fy —0.11895 | —0.04651 | —=0.03637 | 0.30246 | —0.13388 | —0.19042 | 0.02773 | 0.03341 0.00385
F, 0.08919 0.02214 | -0.01423 0.06840 | —0.14587 | —0.05581 | —0.06286 | 0.048021 0.38108
F, 0.49622 | 0.06190 | 0.14333 | 0.20628 | 0.03046 | 0.13325 | 0.16800 | 0.079734 0.10529
F —-0.08606 | —0.05097 | 0.63598 | 0.00302 | 0.03733 | —-0.04974 | —-0.02771 | 0.0135691 | —0.02778

Table 5. Eigenvectors of each factor of the first 7 principal components of the corrosion factors of a subsea
pipeline.

terms of prediction accuracy and stability. Therefore, we adopted the LSSVM algorithm as the predictive model
for estimating the corrosion rate of submarine pipelines.

Four optimized portfolio models based on the LSSVM algorithm were subsequently developed and
compared. The results indicate that the predictive outcomes of the integrated KPCA-NGO-LSSVM model and
three other combined models after training are shown in Figs. 4 and 5, and Table 8. Figure 4 shows that the
KPCA-NGO-LSSVM model yields superior predictions and stability, followed by the NGO-LSSVM model,
whereas the KPCA-PSO-LSSVM model and PSO-LSSVM model yield the worst predictions and least stability.

As shown in Figs. 4 and 5, and Table 8, the stability of the predicted values of the KPCA-PSO-LSSVM and
PSO-LSSVM models is low overall, with maximum relative errors of 5.42% and 5.81% and average relative
errors of 3.59% and 4.27%, respectively. The predicted values of the NGO-LSSVM model exhibit good stability,
with a maximum relative error of 5.10% and an average relative error of 2.49%. The KPCA-NGO-LSSVM
model exhibits superior performance, demonstrating optimal stability in terms of the predicted values, with a
maximum relative error of 4.80% and an average relative error of 1.80%, both of which are lower than those of
the other models, indicating the most effective predictions.

Similarly, prediction studies were also performed for Data 2 and Data 3 using these four algorithms. The
comparative indicators of their prediction results are presented in Tables 10 and 11.

From Tables 9 and 10, and 11, along with the prediction results across multiple datasets, the KPCA-NGO-
LSSVM algorithm exhibits optimal stability in predicted values and significantly outperforms the NGO-LSSVM,
KPCA-PSO-LSSVM, and PSO-LSSVM algorithms in prediction accuracy.
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Fig. 2. Comparison of the predicted and real values for single models.

Conclusion

This paper presents the fundamental principles of the KPCA, NGO, and LSSVM algorithms and establishes
a composite model for predicting the corrosion rates of subsea pipelines utilizing the KPCA-NGO-LSSVM
approach. The following conclusions are derived from the validation and error analysis of the corrosion rate data
pertaining to subsea pipelines:

1

2

3

4

The KPCA algorithm was utilized for data dimensionality reduction to obtain the six factors that have the
greatest influence on the corrosion rates of subsea pipelines, i.e., system pressure, water content, pH, tem-
perature, and CO, partial pressure. The multiple correlations between the influencing factors were eliminat-
ed, the complexity of the data was reduced, and the efficiency of the modelling operation was improved.
Based on the data characteristics, four algorithms—BP, SVM, LSSVM, and RF—were selected and com-
pared. The LSSVM model has a MAPE of 7.1398%, an RMSE of 0.1939 and an R? of 0.8047, which indicated
that the LSSVM algorithm demonstrated significantly better predictive performance and stability than the
other algorithms. Therefore, LSSVM was adopted as the predictive model for estimating the corrosion rate
of subsea pipelines.

Based on prediction results from three distinct datasets, the combined KPCA-NGO-LSSVM model demon-
strates significantly superior prediction accuracy and stability compared to the other three models. These
results demonstrate that the combined KPCA-NGO-LSSVM model achieves higher prediction accuracy
and superior stability for subsea pipeline corrosion rate prediction. This model provides robust technical
support for accurately predicting corrosion rates, offering significant potential for extending the service life
of subsea pipelines and reducing operational and maintenance costs.

The predictive accuracy and stability of the algorithmic model improve with larger data samples. Conse-
quently, a comprehensive pipeline corrosion database could be developed to derive a corrosion rate predic-
tion model with broader applicability and enhanced efficacy.
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Fig. 3. Comparison of the relative errors for single models.

1 2.6183 2.8311 8.13 2.7931 6.68 2.9084 11.08 2.4635 591
2 2.5523 2.7746 8.71 2.6783 4.94 2.6423 3.53 3.1467 23.29
3 2.6956 2.3825 11.62 2.9007 7.61 3.2736 21.44 2.9323 8.78
4 2.6285 3.1707 20.63 2.7922 6.23 3.1103 18.33 2.8319 7.74
5 2.6872 2.9384 9.35 2.5053 6.77 3.0450 13.32 2.9478 9.70
6 2.6945 2.9928 11.07 2.5115 6.79 1.8556 3113 2.3388 13.20
7 2.7175 2.4148 11.14 2.5144 7.47 2.5520 6.09 2.9805 9.68
8 2.6074 2.5069 3.85 2.89251 10.93 2.4578 5.74 2.2151 15.05
9 2.6924 2.3049 14.39 2.9028 7.81 3.2441 20.49 2.9528 9.67
10 2.6647 3.1093 16.68 2.8296 6.19 3.0036 12.72 2.8341 6.36

Table 6. Statistics of the predicted values and relative errors for single models.
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Predicted Value(-)
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Model | MAPE/(%) | RMSE | R

BP 11.5568 0.3299 | 0.6652
LSSVM | 7.1398 0.1939 | 0.8047
SVM | 143837 | 0.4426 | 0.5779
RF 10.9351 03144 | 0.6921

Table 7. Comparison of the evaluation indicators for single models prediction results.
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Fig. 4. Comparison of the predicted and real values for combined models.

Scientific Reports |

(2025) 15:24498

| https://doi.org/10.1038/s41598-025-09685-6

nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

0.08

0.07

0.06

0.05

0.04

0.03

Relative Error Value(-)

0.02

0.01

0.00

—l—KPCA-NGO-LSSVM Model
—@—NGO-LSSVM Model
—A—KPCA-PSO-LSSVM Model
—9—PSO-LSSVM Model

Test Sample Number(-)

Fig. 5. Comparison of the relative errors for combined models.

1 2.6183 2.6957 2.96 2.6957 2.95 2.6995 3.10 2.7235 4.02
2 2.5523 2.6747 4.80 2.6825 5.10 2.6844 5.18 2.6444 3.61
3 2.6956 2.7079 0.46 2.7073 0.43 2.8125 4.34 2.7925 3.59
4 2.6285 2.6944 251 2.6916 2.40 2.6951 2.53 2.7451 4.44
5 2.6872 2.6994 0.45 2.7552 2.53 2.7063 071 2.6963 0.34
6 2.6945 2.6926 0.07 2.6697 0.92 2.5931 3.76 2.6231 2.65
7 27175 2.6831 1.27 2.6356 3.01 2.6245 3.42 2.5245 7.10
8 2.6074 2.6941 3.32 2.6956 338 2.6988 3,51 2.7588 5.81
9 2.6924 2.6952 0.10 2.7641 2.66 2.5978 351 2.5478 537
10 2.6647 2.7191 2.04 2.7046 1.50 2.5203 5.42 25116 5.75
Table 8. Statistics of the predicted values and relative errors for combined models.
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Model MAPE/(%) | RMSE | R?

KPCA-NGO-LSSVM | 1.7971 0.06105 | 0.9922
NGO-LSSVM 24903 0.07317 | 0.9734
KPCA-PSO-LSSVM | 3.5887 0.10140 | 0.9381
PSO-LSSVM 42671 0.12339 | 0.9232

Table 9. Comparison of evaluation indicators for the prediction results of combined models based on data 1.

Model MAPE/(%) | RMSE | R?

KPCA-NGO-LSSVM | 2.5410 0.0621 | 0.9873
NGO-LSSVM 3.7629 0.0793 | 0.9434
KPCA-PSO-LSSVM | 4.0974 0.0817 | 0.9217
PSO-LSSVM 5.2731 0.1003 | 0.9081

Table 10. Comparison of evaluation indicators for the predictive results of combined models based on data 2.

Model MAPE/(%) | RMSE | R?

KPCA-NGO-LSSVM | 3.1045 0.1035 | 0.9402
NGO-LSSVM 3.4588 0.1289 | 0.9310
KPCA-PSO-LSSVM | 4.3479 0.1566 | 0.9152
PSO-LSSVM 4.7861 0.1640 | 0.9065

Table 11. Comparison of evaluation indicators for the predictive results of combined models based on data 3.
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