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The development of a precise model for predicting pipeline corrosion rates is essential for ensuring 
the safe operation of pipelines. To address the issues of inadequate stability and prolonged execution 
time associated with traditional models, the KPCA algorithm is used here to reduce the dimensionality 
of corrosion rate data for subsea pipelines, and the primary factors that influence the corrosion rate 
are identified. Based on the data characteristics, four algorithms (BP, LSSVM, SVM, and RF) were 
compared. Ultimately, the LSSVM algorithm was selected as the final prediction model. Then the 
LSSVM prediction model is subsequently developed, and the NGO algorithm is utilized to optimize the 
weights and thresholds of the LSSVM model, thereby increasing the accuracy of the prediction model 
and effectively reducing prediction instability. A combined KPCA-NGO-LSSVM model is developed 
to predict the corrosion rates of subsea pipelines and is compared with three other models: KPCA-
PSO-LSSVM, PSO-LSSVM, and NGO-LSSVM. The mean absolute percentage error (MAPE), root 
mean square error (RMSE) and determination coefficient (R2) of the integrated KPCA-NGO-LSSVM 
model are 1.791%, 0.06105 and 0.9922, respectively, these metrics are significantly lower than those 
of benchmark models, a finding consistently validated across multiple experimental datasets. This 
demonstrates the KPCA-NGO-LSSVM framework’s enhanced prediction accuracy and stability. The 
model demonstrates effective performance in predicting the corrosion rates of subsea pipelines and 
offers novel methodologies and concepts for future research in this area.
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Oil and natural gas occupy a significant position within China’s energy strategy, which is of paramount 
importance to the country’s national development. Pipeline transportation is one of the most prevalent modes 
of transportation for oil and gas and has evolved into the fifth largest transportation industry in China. However, 
when a pipeline is in operation, because of the environment and pipeline medium, pipeline corrosion occurs, 
which in turn leads to various accidents1. Corrosion is a significant factor contributing to pipeline failure, as 
evidenced by relevant statistical data. Increased pipeline operation time results in a gradual reduction in strength, 
ultimately leading to failure. Corrosion has been recognized as the principal cause of pipeline failure incidents. 
Consequently, the corrosion rate is commonly employed as an evaluation index for pipeline corrosion2,3. There 
are many factors affect the corrosion rates of pipelines, such as the pipeline medium components, temperature, 
flow rate, pH, and dissolved oxygen and CO2 contents. These factors interact with each other and are interrelated, 
forming an intricate corrosion system4. Consequently, the development of a multifactor, high-dimensional 
model for accurately predicting the corrosion rate of subsea pipelines will be a focal point of future research.

Advances in computer science have led researchers worldwide to conduct extensive studies on predicting 
pipeline corrosion rates through machine learning5–15. Jin et al. proposed buffer operator theory to develop an 
enhanced DGM(1,1) model for forecasting pipeline corrosion rates over time, which significantly outperforms 
the conventional DGM(1,1) model in terms of predictive accuracy16. Biezma et al. proposed a fuzzy logic 
method to predict and analyse the corrosion rates of pipelines, considering six influencing factors. This approach 
improves both the accuracy and stability of the predictions17. Zhang et al. employed a distinctive BP neural 
network model for predicting pipeline corrosion rates, obtaining results that align more closely with measured 
values and effectively illustrating the correlation between various factors and the corrosion rate18. Nagoor et al. 
employed an ANN model to predict the service life of a crude oil pipeline, achieving a prediction accuracy of 
99.97%19. Bo et al. predicted the corrosion rates of pipelines via the PSO-MGM(1,1) model, and its prediction 
accuracy was 16% higher than that of the MGM(1,1) model20. Xiao et al. used the WOA-BP algorithm to predict 
the corrosion rates of subsea pipelines, and the average absolute percentage error of their predictions was 3.689%, 
which was much lower than that of the comparison model1. Jia et al. used kernel principal component analysis 
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to determine the corrosion rates of subsea pipelines and related factors and established a KPCA-SVM model21. 
This method reduces the interference of low-correlation data, improves the prediction accuracy and reduces 
the prediction difficulty. Nagoor et al.employed a Bayesian regularization-based neural network framework to 
predict dry airway lifespan with high accuracy, even when handling datasets containing missing parameters22. 
Xiao et al. predicted the corrosion rates of subsea pipelines via a combined PSO-TSO-BPNN model with an 
average absolute percent error of 1.8441%4, which represents a significant improvement in both the accuracy and 
stability of the model. The modelling methods proposed by the above scholars all have unique advantages but are 
limited by the optimization algorithms and the neural network’s own limitations, which may make them unable 
to obtain accurate predictions of pipeline corrosion rates for multifactorial and high-dimensional problems.

This paper presents a hybrid model, KPCA-NGO-LSSVM, for predicting the corrosion rates of subsea 
pipelines, utilizing kernel principal component analysis (KPCA) and Northern Goshawk optimization (NGO) 
to increase the performance of the least squares support vector machine (LSSVM). Kernel principal component 
analysis (KPCA) is employed to downscale the data and determine the principal factors influencing the 
corrosion rates of subsea pipelines, thus reducing the complexity of processing model data and increasing the 
efficiency of modelling operations. The penalty parameter γ and the kernel parameter σ2 are optimized through 
the NGO algorithm to increase the precision of the prediction model and address the challenges of inconsistent 
predictions and insufficient generalization capability. Through experimental validation and a comparison of 
the error metrics, the KPCA-NGO-LSSVM model is shown to outperform existing methods. Specifically, the 
mean absolute percentage error (MAPE) is reduced to less than 2%, and the root mean square error (RMSE) 
is significantly lower than those of conventional models. The KPCA-NGO-LSSVM model provides reliable 
technical support for accurately predicting subsea pipeline corrosion rates. This model provides a scientific basis 
for optimizing corrosion protection strategies, guiding pipeline maintenance decisions, and ensuring flow safety. 
Furthermore, the model has significant potential in extending the service life of subsea pipelines and reducing 
operational and maintenance costs.

Principles of the NGO algorithm and LSSVM modelling
Principles of the NGO algorithm
The Northern Goshawk optimization (NGO) algorithm was introduced in 2022 by Mohammad Dehghani 
and colleagues. The algorithm replicates the Northern Goshawk’s behaviour during hunting, focusing on prey 
recognition, attack, pursuit, and evasion. The Northern Goshawk optimization algorithm divides the hunting 
process into two phases: prey identification and attack (exploration phase) and chasing and escape (exploitation 
phase)23.

Initialization
The Northern Goshawk algorithm can be represented by the following matrix for the Northern Goshawk 
population:
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.
X is the population matrix of Northern Goshawks; Xi denotes the position of the ith Northern Goshawk; xi,j  

indicates the jth-dimensional position of the ith Northern Goshawk; N is the number of Northern Goshawk 
populations; and m refers to the number of dimensions in the solution problem.

In the Northern Goshawk optimization algorithm, the objective function of the problem is utilized to 
compute the objective function value of each Northern Goshawk; the objective function value of the Northern 
Goshawk population can be represented as a vector of objective function values:
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.
where F is the objective function vector of the Northern Goshawk population and Fi is the objective function 

value of the ith Northern Goshawk population.

Prey identification and attack (Global search)
During the initial phase of hunting, the Northern Goshawk selects a prey item at random and attacks it quickly. 
This phase improves the NGO algorithm’s exploration capability by randomizing the selection of prey in the 
search space. In this phase, a global search of the search space is conducted to determine the optimal region. 
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During this phase, the Northern Goshawks exhibit the prey selection and attack behaviours described in 
Eqs. (3)-(5):

	 Pi = Xk, i = 1, 2, 3 · · · , N ; j = 1, 2, 3 · · · , m; k = 1, 2 · · · i-1, i, i + 1, · · · N � (3)

	
xnew,P 1

i,j = { xi,j + r (pi,j − Ixi,j) , FPi < Fi

xi,j + r (xi,j − pi,j) , FPi ⩾ Fi
� (4)

	
Xi = { Xnew,P 1

i , F new,P 1
i < Fi

Xi, F new,P 1
i ⩾ Fi

� (5)

.
Where Pi denotes the location of the ith Northern Goshawk’s prey; FPi  is the objective function value for 

the position of the ith Northern Goshawk’s prey; k represents a random integer within a specified range [1,N]; 
Xnew,P 1

i  represents the updated location of the ith Northern Goshawk; xnew,P 1
i,j  represents the updated position 

in the jth dimension of the ith Northern Goshawk; F new,P 1
i  is the value of the objective function pertaining to 

the ith Northern Goshawk following the update process in phase 1; r is a random number within the interval [0, 
1]; and I denotes a randomly selected integer, either 1 or 2.

Chase and escape (Localized search)
After a Northern Goshawk attacks its prey, the prey will attempt to escape capture. Thus, in the concluding 
phases of hunting, the Northern Goshawk must sustain its chase. The Northern Goshawks’ high pursuit speed 
enables them to chase and ultimately capture prey in nearly any circumstance. The simulation of this behaviour 
improves the algorithm’s capacity for local search within the search space. This hunting activity is presumed to 
be in proximity to an attack position with a radius R. In the subsequent phase, it is described by Eqs. (6)-(8):

	 xnew,P 2
i,j = xi,j + R(2r − 1)xi,j � (6)

	
R = 0.02(1 − t

T
)� (7)

	
Xi = { Xnew,P 2

i , F new,P 2
i < Fi

Xi, F new,P 2
i ⩾ Fi

� (8)

.
Where t represents the current iteration number and T denotes the maximum iteration limit; Xnew,P 2

i

represents the updated position of the ith Northern Goshawk during the second stage; xnew,P 2
i,j  represents the 

updated position of the jth dimension of Xnew,P 2
i ; and F new,P 2

i  is the value of the objective function pertaining 
to the ith Northern Goshawk following the update process in the second stage.

LSSVM algorithm
Various machine learning algorithms, including backpropagation neural networks (BP), random forests (RF), 
and support vector machines (SVM), have been widely used to predict corrosion rates in subsea pipelines. 
While these methods have demonstrated varying degrees of success, they often face challenges in computational 
efficiency and model generalizability when dealing with small-to-medium scale datasets characterized by high 
dimensionality and strong nonlinearity. For instance, BP models typically require substantial computational 
resources and extensive hyperparameter tuning, while SVM and ensemble methods like RF may encounter 
overfitting risks in limited-data scenarios.

In contrast, Least Squares Support Vector Machines (LSSVM) show clear advantages in this particular 
application setting. In our preliminary study (see Figs.  2 and 3; Table 4), LSSVM consistently demonstrated 
superior performance metrics through systematic comparisons with three representative algorithms (BP, RF, 
and traditional SVM), with much higher prediction accuracy and stability than the other algorithms, and this 
improved performance stems from the unique mathematical formulation of the LSSVM, which converts the 
quadratic optimisation problem into a system of linear equations by means of equal constraints, thus ensuring 
a global optimisation solution while maintaining the simplicity of the model. ensuring a globally optimised 
solution while maintaining model simplicity. In addition, its structural risk minimisation principle enhances the 
generalisation capability, which is particularly important for offshore engineering applications where the cost of 
in situ data collection is high and the size of the dataset is limited.

As an advanced variant of support vector machines (SVM), LSSVM addresses the original algorithm’s 
computational complexity through innovative problem reformation. Where conventional SVM solves convex 
quadratic programming problems, LSSVM transforms this into solving linear equations via kernel space 
mapping and regularization techniques. This fundamental improvement not only accelerates computation but 
also improves numerical stability, making it particularly suitable for handling the sparse, high-dimensional 
corrosion datasets typical of subsea pipeline monitoring systems.

The LSSVM is an advanced learning and predictive algorithm derived from the conventional support vector 
machine (SVM) algorithm. This algorithm streamlines the solution of quadratic optimization problems by 
converting them into linear Eq. 24.

The steps for using the LSSVM algorithm are as follows:
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For a given value from the training dataset (xi, yi), xi = (xi1, xi2, · · · , xid)T  is the d-dimensional input 
vector, and the output data value is yi; N is the total number of training data values.

	(1)	 To transform the input space into the feature space, a nonlinear function is employed, ϕ (xi). The process 
of estimating the nonlinear function is represented by Eq. (9)25:

	 f (x) = b + ⟨ϕ (x) , ω⟩� (9)

Where ω is the weight vector, b is the bias term, and ⟨.⟩ denotes the inner product operation.

	(2)	 The precise values of parameters ω and b are determined on the basis of the fundamental principle of risk 
mitigation:

	




minJ (−→ω , ξ) = 1
2 ∥−→ω ∥2 + c

l∑
i=1

ξ2
i

s.t.yi = ϕ (xi) −→ω + b + ξi i = 1, · · · , l

� (10)

Where c is the penalty factor and ξi is the slack variable.

	(3)	 Introducing the Lagrangian operator α yields the Lagrangian function:

	
L (−→ω , b, ξ, α) = 1

2∥−→ω ∥2 + c

l∑
i=1

ξ2
i −

l∑
i=1

αi [−→ω ϕ (xi) + b + ξi − yi]� (11)

	(4)	 Setting the derivatives of −→ω , b, ξi, α to zero provides the conditions for finding the optimal solution of the 
problem.
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	(5)	 Eliminating the parameters −→ω  and ξi in Eq. (11), we convert Eq. (12) into.
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Where K (xi, xj) is the kernel function, expressed as

	
K (xi, xj) = exp

(
−∥xi − xj∥2

2δ2

)
� (14)

A is the parameter of the kernel function. Data prediction can be performed by resolving the unknown data in 
Eqs. (13)26,27.

KPCA-NGO-LSSVM model
Kernel principal component analysis
High-dimensional feature values can lead to the curse of dimensionality; therefore, to extract the essential 
features and improve the predictive accuracy while minimizing the model complexity, kernel principal 
component analysis (KPCA) is applied to reduce the data dimensions28.

Kernel principal component analysis (KPCA) is a nonlinear dimensionality reduction method that transforms 
raw data into a high-dimensional feature space by utilizing a kernel function, followed by the application of 
principal component analysis (PCA) within that feature space.

The principles of the KPCA algorithm are as follows:

	(1)	 The sample set of the original running data xk  is nonlinearly transformed on the basis of the nonlinear 
kernel function Φ, which maps xk  to a high-dimensional linear feature space. Then, its covariance matrix is 
computed for the new sample set; i.e.,

	

−→
C = 1

m

m∑
j=1

−→φ (xj)−→φ (xj)T � (15)

Scientific Reports |        (2025) 15:24498 4| https://doi.org/10.1038/s41598-025-09685-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	(2)	 The eigenvalues λ and eigenvectors −→v  of matrix C are calculated. The following condition must be satisfied:

	 λ−→v − C−→v = 0� (16)

	(3)	 A nonlinear function −→φ (xi) is introduced on both sides, and the eigenvectors are represented linearly 
from −→ν  to −→φ (xi); i.e.,

	

−→v =
m∑

i=1

αi
−→φ (xi)� (17)

	(4)	 The kernel function matrix 
−→
K (i, j) = ⟨−→φ (xi) , −→φ (xj)⟩ is defined and transformed:

	 mk−→α − K−→a = 0� (18)

where −→α  is the eigenvector of K, the eigenvalue is mk, and the subscript i denotes an element in the input 
dataset.

For any sample, the projection to the principal element −→φ (x) in the feature space F is29:

	

−→v −→φ (x) =
m∑

i=1

αi
−→φ (xi) −→φ (xj) =

m∑
i=1

αi
−→
K (xi, x)� (19)

Predictive modelling
Initially, the KPCA algorithm is employed to reduce the dimensionality of the data, and the NGO algorithm is 
then applied to optimize the penalty parameter γ and the kernel parameter A of the LSSVM algorithm, thereby 
yielding a composite corrosion rate prediction model for subsea pipelines, referred to as the KPCA-NGO-
LSSVM model. The flowchart of this process is shown in Fig. 1. The NGO-LSSVM and NGO-LSSVM models 
are established for validation against the integrated KPCA-NGO-LSSVM model.

Model evaluation indicators
To thoroughly assess the predictive accuracy of the KPCA-NGO-LSSVM corrosion rate model for subsea oil and 
gas pipelines, the mean absolute percentage error (MAPE), root mean squared error (RMSE) and coefficient of 
determination (R2) were employed as evaluation metrics:

	
MAP E =

∑
n
i=1

1
n

∣∣∣yi − xi

xi

∣∣∣ × 100%� (20)

	
RMSE =

√
1
n

∑ n

i=1
(yi − xi)2� (21)

	

R2 =

∑ n

i=1

(
yi−

−
x
)2

∑ n

i=1

(
xi−

−
x
)2 � (22)

Where xi, yi are the true and predicted values of the ith sample, respectively, for i = 1, 2, · · · , n; n is the total 
number of samples represented; MAPE indicates the model’s overall error; and RMSE denotes the deviation of 
the predicted values from the actual values. A lower MAPE and RMSE indicate greater prediction accuracy and 
better predictive performance of the model.

Example analysis
Dataset segmentation
Three distinct types of pipeline corrosion rate data from the literature were selected for algorithmic prediction. 
Due to space constraints, the predictive research process is detailed only for data 1, while results for data 2 and 
data 3 are presented in result form.

The data 1 in this paper are 50 subsea pipelines corrosion data from reference 30; some of the data values are 
shown in Tables 1 and  40 of which are chosen as the training set, and the remaining 10 of which are used as the 
test set for model prediction and error checking.

The data 2 in this paper are 100 overseas oil and gas pipelines corrosion data from reference31; some of the 
data values are shown in Tables 2,  80 of which are chosen as the training set, and the remaining 20 of which are 
used as the test set for model prediction and error checking.

The data 3 in this paper are 28 subsea multiphase flow pipelines corrosion data from reference32; some of the 
data values are shown in Table 3 and 22 of which are chosen as the training set, and the remaining 6 of which are 
used as the test set for model prediction and error checking.

Data preprocessing
In kernel principal component analysis, the kernel function can be used to map the original data to a high-
dimensional space, perform nonlinear dimensionality reduction, and mine the nonlinear information in the 
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data.21 Therefore, nine influencing factors in subsea pipeline corrosion rate for data 1 were downscaled using 
KPCA. The magnitudes of the variance contributions of the nine principal components were obtained in 
MATLAB 2020a, as shown in Table 4.

The magnitudes of the eigenvalues and the cumulative contributions reflect the magnitudes of the influence 
of the principal components, as shown in Table 4. In this work, the first six principal components F1, F2, F3, F4, 
F5, and F6, with cumulative contributions greater than 85% were extracted.

Fig. 1.  Flowchart of the KPCA-NGO-LSSVM model.
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The eigenvectors of the first six principal components selected in this paper are shown in Table  5. The 
eigenvector of each principal component indicates each factor’s explanatory ability, and the closer the absolute 
value is to one, the stronger its explanatory ability is, implying that the factor has a greater influence on subsea 
pipeline corrosion. As shown in Table 5, F1 has a greater correlation with system pressure, F2 with a medium flow 
rate, F3 with pH, F4 with water content, F5 with temperature, and F6 with CO2 partial pressure.

Finally, the system pressure, water content, medium flow rate, pH, temperature, and CO2 partial pressure 
all have greater impacts on subsea pipeline corrosion rates for data 1 than the other factors. The above subsea 
pipeline corrosion factors are substituted into the combined model for the next prediction.

Analysis of the forecast results
Based on the characteristics of small sample size and high-dimensional features in the dataset, we initially 
selected four machine learning algorithms—BP, LSSVM, SVM and RF—for comparative analysis. The results 
(Figs. 2 and 3; Tables 6and 7) demonstrate that the LSSVM model outperforms the RF, BP and SVM models in 

Serial Number X1 X2 X3 X4 X5 X6 X7 X8 Y

1 109.03 6.5100 0.0717 1.1824 35.887 0.7636 0.9033 0.1050 0.1732

2 115.12 6.3578 0.0370 1.6696 37.932 0.7561 0.8283 0.1240 0.1425

3 115.05 6.2169 0.0838 3.2597 37.306 0.7701 0.8673 0.1102 0.1448

4 110.56 6.3860 0.1065 1.4988 36.520 0.7601 0.8581 0.1127 0.1620

5 110.66 6.5301 0.0535 2.5883 37.896 0.7622 0.8601 0.1232 0.1540

6 111.61 6.7053 0.0469 2.3399 37.767 0.7533 0.8595 0.1227 0.1518

7 114.09 6.5905 0.0565 4.8084 37.097 0.7712 0.8809 0.1149 0.1452

8 111.98 6.6371 0.0581 3.4667 37.389 0.7535 0.8785 0.1039 0.1488

9 109.94 6.6036 0.0153 0.3675 36.282 0.7551 0.8926 0.1253 0.1710

10 113.18 6.3849 0.0608 4.3186 37.838 0.7645 0.8497 0.1150 0.1418

11 110.97 6.3393 0.0507 4.0981 37.618 0.7733 0.8620 0.1144 0.1517

12 119.79 6.5631 0.0277 7.5143 39.429 0.7639 0.8574 0.1077 0.1113

13 120.69 6.7422 0.0089 3.8390 36.699 0.7526 0.8660 0.1222 0.1288

14 109.38 6.9032 0.1080 4.4791 37.205 0.7813 0.8182 0.1272 0.1573

15 117.57 6.8163 0.1083 1.8707 34.693 0.7629 0.8999 0.1046 0.1574

16 116.00 6.5560 0.0337 5.5114 36.578 0.7557 0.8513 0.1117 0.1337

17 120.04 6.8136 0.0352 1.1180 36.513 0.7538 0.8814 0.1158 0.1437

18 117.17 6.0568 0.0052 5.7569 36.708 0.7614 0.9235 0.1071 0.1339

19 115.69 6.7876 0.0302 3.3667 36.601 0.7789 0.9146 0.1153 0.1537

20 117.61 6.2195 0.0345 4.9774 36.867 0.7591 0.8788 0.1296 0.1322

Table 2.  Corrosion rate data for selected overseas oil and gas pipelines. Note: X1 is the operating temperature 
(°C), X2 is the pH, X3 is the O2 concentration (mg·L−1), X4 is the CO2 concentration (mg·L−1), X5 is the S 
concentration (mg·L−1), X6 is the N2 concentration (mg·L−1), X7 is the operating pressure (MPa), and Y is the 
process pipeline corrosion rate value (mm.a−1).

 

Serial Number X1 X2 X3 X4 X5 X6 X7 X8 X9 X0

1 65.9 2.27 0.0317 5.1 0.64 7560 26.8 58.5 141 2.8385

2 67.7 2.41 0.0326 4.5 0.628 8020 19.8 62.3 150 2.5997

3 61.3 2.66 0.0331 6.1 0.639 6340 18.1 62.1 155 2.954

4 65.8 2.3 0.0329 6 0.443 6800 21.1 57.1 153 2.9615

5 41.7 2.39 0.0337 6.25 0.485 3560 18.3 63.9 161 2.5323

6 54.3 2.5 0.0331 6.1 0.625 3420 27.9 57.8 155 2.675

7 58.5 2.78 0.0329 6.01 0.531 6900 27 57.3 153 3.0823

8 60.7 2.41 0.0326 4.5 0.5 8020 25.6 63 150 2.6291

9 47.5 2.5 0.034 6.1 0.605 5700 18.6 55.3 154 2.2865

10 52 2.74 0.0344 5.95 0.534 6260 19.4 52 167 2.2647

Table 1.  Corrosion rate data for selected subsea pipelines. Note: X1 is the temperature (°C), X2 is the system 
pressure (MPa), X3 is the partial pressure of CO2 (MPa), X4 is the pH, X5 is the medium flow rate (m·s−1), X6 is 
the Cl− concentration (mg·L−1), X7 is the CO2 concentration (mg·L−1), X8 is the HCO3

− concentration (mg·L−1), 
X9 is the water content (%), and X0 is the internal corrosion rate value (mm.a−1).

 

Scientific Reports |        (2025) 15:24498 7| https://doi.org/10.1038/s41598-025-09685-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


terms of prediction accuracy and stability. Therefore, we adopted the LSSVM algorithm as the predictive model 
for estimating the corrosion rate of submarine pipelines.

Four optimized portfolio models based on the LSSVM algorithm were subsequently developed and 
compared. The results indicate that the predictive outcomes of the integrated KPCA-NGO-LSSVM model and 
three other combined models after training are shown in Figs. 4 and 5, and Table 8. Figure 4 shows that the 
KPCA-NGO-LSSVM model yields superior predictions and stability, followed by the NGO-LSSVM model, 
whereas the KPCA-PSO-LSSVM model and PSO-LSSVM model yield the worst predictions and least stability.

As shown in Figs. 4 and 5, and Table 8, the stability of the predicted values of the KPCA-PSO-LSSVM and 
PSO-LSSVM models is low overall, with maximum relative errors of 5.42% and 5.81% and average relative 
errors of 3.59% and 4.27%, respectively. The predicted values of the NGO-LSSVM model exhibit good stability, 
with a maximum relative error of 5.10% and an average relative error of 2.49%. The KPCA-NGO-LSSVM 
model exhibits superior performance, demonstrating optimal stability in terms of the predicted values, with a 
maximum relative error of 4.80% and an average relative error of 1.80%, both of which are lower than those of 
the other models, indicating the most effective predictions.

Similarly, prediction studies were also performed for Data 2 and Data 3 using these four algorithms. The 
comparative indicators of their prediction results are presented in Tables 10 and 11.

From Tables 9 and 10, and 11, along with the prediction results across multiple datasets, the KPCA-NGO-
LSSVM algorithm exhibits optimal stability in predicted values and significantly outperforms the NGO-LSSVM, 
KPCA-PSO-LSSVM, and PSO-LSSVM algorithms in prediction accuracy.

Serial Number X1 X2 X3 X4 X5 X6 X7 X8 X9

F1 0.18505 0.49258 0.17516 −0.07907 0.07524 −0.07028 0.19126 0.07929 0.08937

F2 −0.05535 0.05948 −0.03288 −0.09702 0.39367 0.05285 −0.23666 −0.04639 0.11301

F3 −0.11895 −0.04651 −0.03637 0.30246 −0.13388 −0.19042 0.02773 0.03341 0.00385

F4 0.08919 0.02214 −0.01423 0.06840 −0.14587 −0.05581 −0.06286 0.048021 0.38108

F5 0.49622 0.06190 0.14333 0.20628 0.03046 0.13325 0.16800 0.079734 0.10529

F6 −0.08606 −0.05097 0.63598 0.00302 0.03733 −0.04974 −0.02771 0.0135691 −0.02778

Table 5.  Eigenvectors of each factor of the first 7 principal components of the corrosion factors of a subsea 
pipeline.

 

Principal component Variance contribution (%) Cumulative contribution (%)

F1 34.52 34.52

F2 14.83 49.35

F3 13.22 62.57

F4 10.30 72.87

F5 8.56 81.43

F6 5.29 86.72

F7 5.06 91.78

F8 4.71 96.49

F9 3.51 100.00

Table 4.  Analysis of variance contribution ratios of nine principal components of the corrosion factors of a 
subsea pipeline.

 

Serial Number X1 X2 X3 X4 X5 X6 X0

1 55.64 2515.34 0.92 251.53 0.53 4.88 2.79

2 55.09 2514.42 0.92 251.44 0.53 4.88 3.05

3 54.55 2514.42 0.92 251.35 0.53 4.88 3.05

4 54.02 2513.51 0.92 251.26 0.53 4.88 3.11

5 53.5 2512.6 0.92 251.17 0.53 4.89 2.6

6 52.99 2511.68 0.93 251.08 0.53 4.89 3.11

Table 3.  Corrosion rate data for selected subsea multiphase flow pipelines. Note: X1 is the temperature (°C), 
X2 is the pressure (kPa), X3 is the liquid-holding capacity, X4 is the CO2 partial pressure(MPa), X5 is the liquid 
flow rate (m·s−1), X6 is the pH, X7 is the operating pressure (MPa), and X0 is the internal corrosion rate value 
(mm.y−1).
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Conclusion
This paper presents the fundamental principles of the KPCA, NGO, and LSSVM algorithms and establishes 
a composite model for predicting the corrosion rates of subsea pipelines utilizing the KPCA-NGO-LSSVM 
approach. The following conclusions are derived from the validation and error analysis of the corrosion rate data 
pertaining to subsea pipelines:

	(1)	 The KPCA algorithm was utilized for data dimensionality reduction to obtain the six factors that have the 
greatest influence on the corrosion rates of subsea pipelines, i.e., system pressure, water content, pH, tem-
perature, and CO2 partial pressure. The multiple correlations between the influencing factors were eliminat-
ed, the complexity of the data was reduced, and the efficiency of the modelling operation was improved.

	(2)	 Based on the data characteristics, four algorithms—BP, SVM, LSSVM, and RF—were selected and com-
pared. The LSSVM model has a MAPE of 7.1398%, an RMSE of 0.1939 and an R2 of 0.8047, which indicated 
that the LSSVM algorithm demonstrated significantly better predictive performance and stability than the 
other algorithms. Therefore, LSSVM was adopted as the predictive model for estimating the corrosion rate 
of subsea pipelines.

	(3)	 Based on prediction results from three distinct datasets, the combined KPCA-NGO-LSSVM model demon-
strates significantly superior prediction accuracy and stability compared to the other three models. These 
results demonstrate that the combined KPCA-NGO-LSSVM model achieves higher prediction accuracy 
and superior stability for subsea pipeline corrosion rate prediction. This model provides robust technical 
support for accurately predicting corrosion rates, offering significant potential for extending the service life 
of subsea pipelines and reducing operational and maintenance costs.

	(4)	 The predictive accuracy and stability of the algorithmic model improve with larger data samples. Conse-
quently, a comprehensive pipeline corrosion database could be developed to derive a corrosion rate predic-
tion model with broader applicability and enhanced efficacy.

Fig. 2.  Comparison of the predicted and real values for single models.
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Sample number Real value

BP LSSVM SVM RF

Projected value/
(mm.a−1)

Relative error/
(%)

Projected value/
(mm.a−1)

Relative
error/
(%)

Projected value/
(mm.a−1)

Relative error/
(%)

Projected value/
(mm.a−1)

Relative error/
(%)

1 2.6183 2.8311 8.13 2.7931 6.68 2.9084 11.08 2.4635 5.91

2 2.5523 2.7746 8.71 2.6783 4.94 2.6423 3.53 3.1467 23.29

3 2.6956 2.3825 11.62 2.9007 7.61 3.2736 21.44 2.9323 8.78

4 2.6285 3.1707 20.63 2.7922 6.23 3.1103 18.33 2.8319 7.74

5 2.6872 2.9384 9.35 2.5053 6.77 3.0450 13.32 2.9478 9.70

6 2.6945 2.9928 11.07 2.5115 6.79 1.8556 31.13 2.3388 13.20

7 2.7175 2.4148 11.14 2.5144 7.47 2.5520 6.09 2.9805 9.68

8 2.6074 2.5069 3.85 2.89251 10.93 2.4578 5.74 2.2151 15.05

9 2.6924 2.3049 14.39 2.9028 7.81 3.2441 20.49 2.9528 9.67

10 2.6647 3.1093 16.68 2.8296 6.19 3.0036 12.72 2.8341 6.36

Table 6.  Statistics of the predicted values and relative errors for single models.

 

Fig. 3.  Comparison of the relative errors for single models.
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Fig. 4.  Comparison of the predicted and real values for combined models.

 

Model MAPE/(%) RMSE R2

BP 11.5568 0.3299 0.6652

LSSVM 7.1398 0.1939 0.8047

SVM 14.3837 0.4426 0.5779

RF 10.9351 0.3144 0.6921

Table 7.  Comparison of the evaluation indicators for single models prediction results.
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Sample Number Real Value

KPCA-NGO-LSSVM NGO-LSSVM KPCA-PSO-LSSVM PSO-LSSVM

Projected Value/
(mm.a−1)

Relative Error/
(%)

Projected Value/
(mm.a−1)

Relative
Error/
(%)

Projected Value/
(mm.a−1)

Relative Error/
(%)

Projected Value/
(mm.a−1)

Relative Error/
(%)

1 2.6183 2.6957 2.96 2.6957 2.95 2.6995 3.10 2.7235 4.02

2 2.5523 2.6747 4.80 2.6825 5.10 2.6844 5.18 2.6444 3.61

3 2.6956 2.7079 0.46 2.7073 0.43 2.8125 4.34 2.7925 3.59

4 2.6285 2.6944 2.51 2.6916 2.40 2.6951 2.53 2.7451 4.44

5 2.6872 2.6994 0.45 2.7552 2.53 2.7063 0.71 2.6963 0.34

6 2.6945 2.6926 0.07 2.6697 0.92 2.5931 3.76 2.6231 2.65

7 2.7175 2.6831 1.27 2.6356 3.01 2.6245 3.42 2.5245 7.10

8 2.6074 2.6941 3.32 2.6956 3.38 2.6988 3.51 2.7588 5.81

9 2.6924 2.6952 0.10 2.7641 2.66 2.5978 3.51 2.5478 5.37

10 2.6647 2.7191 2.04 2.7046 1.50 2.5203 5.42 2.5116 5.75

Table 8.  Statistics of the predicted values and relative errors for combined models.

 

Fig. 5.  Comparison of the relative errors for combined models.
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Data availability
The authors declare that the data supporting the findings of this study are available within the paper (Data 1 from 
paper 30: https://doi.org/10.27393/d.cnki.gxazu.2020.000585), (Data 2 from paper 31: ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​2​7​6​4​3​/​d​.​
c​n​k​i​.​g​s​y​b​u​.​2​0​2​3​.​0​0​0​1​9​2​​​​​)​, (Data 3 from paper 32: https://doi.org/10.26995/d.cnki.gdqsc.2020.000788).
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