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This paper proposes a dynamic event triggering mechanism whose triggering characteristics can be 
designed for a robust sliding mode controller to solve the lateral motion control problem of intelligent 
electric vehicle in the presence of bounded matched disturbances. The motivation of current work 
mainly aims to alleviate unnecessary computing and communication of energy-constrained vehicle 
control systems by a large margin while ensuring its stability and robustness. The main contributions 
of the paper are summarized as follows. We design a continuous-time robust sliding mode controller 
which is proved to have the capability to effectively suppress the bounded matched disturbances. 
We derive a new dynamic event triggering rule, under which the positive minimum value and the 
evolution characteristics of the inter-event times are able to be designed. We analyze the stability via 
the Lyapunov theory, exclude Zeno behavior and prove that the semi-global robust event-separation 
property holds for the above constructed event-triggered control system theoretically. We numerically 
evaluate the effectiveness of our theoretical results and the advantages of the proposed method which 
is highlighted in an overtaking case for the intelligent electric vehicle. To the best of our knowledge, 
this is the first paper which studies lateral motion control of vehicle with the consideration of the 
robustness not only for the stability but also for the positive minimum inter-event times.

Keywords  Intelligent electric vehicle, Lateral dynamics, Sliding mode control, Dynamic event triggering 
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Intelligent electric vehicle (IEV) is capable of handling complex transportation scenario and replacing people in 
extreme working conditions, so in many areas it possesses favorable application potential. Generally speaking, 
motion control is the most crucial component of a vehicle system. When the road curvature is relatively small, 
the motion control system can be decoupled into longitudinal control and lateral control1 and the latter occupies 
a central position in vehicle control technology, whose main task is to accomplish reference trajectory tracking. 
Although this research direction has attracted a crowd of researchers’ attentions in recent years, many excellent 
results have been obtained, for example, the widely used PID algorithm2,3, the mature linear quadratic regulator 
(LQR)4,5, and sliding mode control (SMC)6,7, as well as the fuzzy control8,9 and model predictive control 
(MPC)10,11, etc., the various challenges still remain. This paper focuses mainly on the resource-constrained 
lateral motion control problem for the IEV.

It is worth noting that the previously mentioned control methods are all based on time triggering mechanisms. 
Nevertheless, the IEV integrates sensing, communication, computation, complex controller, actuator and 
other modules12. If we would like to adapt the lateral motion control algorithm into its practical engineering 
applications, the resources (computing, communication and energy)-constrained problem must be considered 
seriously13,14. It is extremely possible that time-triggered control methods will lead to unnecessarily heavy 
workloads that consistently take up a large amount of computation and communication resources of various 
embedded systems15,16, nevertheless sometimes these valuable resources could be saved and more efficiently 
allocated to other tasks. On the other hand, in most current application scenarios, the communication among 
spatially distributed sensors, actuators and microprocessors for the IEV are networked and wireless17. Therefore, 
research on lateral motion control for the IEV has to create novel scheme to deal with limited network channel 
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bandwidth and computing capability together with limited battery energy, otherwise these issues will most likely 
influence the overall performance of the IEV and the task scheduling18,19.

The introduction of event triggering mechanism (ETM) into the control system is an extremely promising 
solution to the above-mentioned problem, and it is extremely applicable, not only to intelligent electric vehicle 
systems, but also to the control problems of various systems, for which some excellent research results are 
available nowadays. For instance, for nonlinear multi-agent systems, a distributed adaptive event-triggered 
control scheme is proposed via command filter and backstepping technique by Li et al.20 to solve the consensus 
tracking problem. Furthermore, focusing on uncertain cyclic switched stochastic nonlinear systems, Yan 
et al.21 proposed a novel mode-dependent event-triggered optimized mechanism for the subsystem, which 
could effectively improve the overall performance of the system and lessen the communication workload. The 
control method with ETM determines the sampling instants at which the control system carries out a series of 
operations such as computation, communication, and updating the control input, according to some specific 
event triggering rules. This means that it is possible to alleviate the computation and communication loads of 
the networked/embedded control systems, to sharply reduce the number of the control updates, and to further 
lessen the mechanical wear and energy consumption. Therefore, this work aims to develop a control method 
based on ETM which allows to allocate system resources more rationally, thereby increasing resource utilization 
rate, saving energy, and improving the overall performance of the IEV.

Nonetheless, there are still various problems that need to be addressed in order to apply ETM to IEV platforms. 
Among them, the difficulty in designing and changing the triggering characteristics of event-triggered control 
system for the IEV is an extremely critical point, in which the triggering characteristics refer to the triggering 
threshold, the variable range and evolution rate of the triggering signals22, the event triggering frequency, 
and inter-event times, e.t.c. In existing ETM (such as the relative, absolute, and mixed ETM23), the triggering 
threshold in the triggering rule is fixed, with a small adjustable range, while the triggering number is on the high 
side. Subsequently, we noticed that some adaptive ETMs have been studied to break the fixed triggering rule. 
For example, Zhu et al.24 investigated a novel dynamically adaptive ETM for optimization tracking control of 
Stochastic nonlinear systems, which adjusts the triggering threshold online. Zhang et al.25 proposed an adaptive 
event-triggered dual-mode MPC algorithm for lateral reference trajectory tracking of unmanned vehicle.

Although some studies have tuned the triggering frequency by creating adaptive triggering thresholds, the 
variable range and evolution rate of adaptive variables may still be difficult to design or change. Besides, Zeno 
behavior is also noteworthy. Although most of the existing ETMs applied to actual systems can theoretically 
exclude the possibility of Zeno behavior, in real-world environments, it is inevitable to be affected by external 
disturbances26, which probably leads to the phenomenon of accumulation of events. Another side, in the 
presence of disturbances, it is extremely significant to prove whether they hold the event-separation property 
(RESP)27,28 and whether they can still exclude Zeno behaviour. However, at present, few studies have discussed 
and analyzed the RESP of the constructed event-triggered control systems.

On the basis of the above discussion, separate from existing event-triggered control methods29–31, our aim 
is to introduce a system-specific design and implementation of a dynamic ETM with designable triggering 
characteristics. Therein, a robust sliding mode controller (RSMC) is designed and RESP is analyzed for event-
triggered lateral motion control dynamic system of IEV with bounded disturbances. The major contributions of 
this paper can be summarized as follows:

•	 We design a new dynamic event-triggered RSMC (abbreviated as DET-RSMC) to address the lateral con-
trol issue of perturbed IEV. In contrast to the time-triggered control mechanism32,33, this dynamic ETM can 
effectively reduce computation and communication loads through decreasing the number of control input 
updates, thereby conserving constrained resources and minimising actuation hardware loss in IEV.

•	 Different from the existing static ETMs34,35, the proposed triggering rule is dynamic, while its triggering char-
acteristics are easy to design. This means that more or less triggering numbers can be generated by adjusting 
the maximum value and evolution rate of the triggering signals, and consequently the desired triggering 
characteristics can be obtained.

•	 For the possible effects of disturbances during the movement of IEV in reality36, in the proposed control 
method, we not only design the time-triggered controller and extend it to the event-triggered RSMC, but also 
theoretically prove that the dynamic ETM allows the system to hold a semi-global RESP. This property could 
effectively suppress external disturbances and avoid potential Zeno behavior, as confirmed by our simulation 
results. It is worth mentioning that the above two aspects are not discussed or not considered simultaneously 
in the current research on dynamic ETMs with disturbances37,38.

The rest of this paper is organized as follows. Section "Problem formulation" presents the dynamics model of 
the vehicle and problem formulation. In Section "Main results", a RSMC is designed and a dynamic ETM with 
designable triggering characteristics is proposed. Stability proof and robust analysis are provided in section 
"Stability and feasibility analysis". The simulation results are shown in Section "Simulation results". Finally, 
Section "Conclusions" concludes the whole paper, with some remarks and prospects.

In this paper, the following notation is adopted: The set of real numbers is denoted as R, and then the set of 
positive real numbers and the set of non-negative real numbers are represented by R≥0 and R>0, respectively. 
Rn indicates the n-dimensional Euclidean space. Next, | · | expresses the absolute value. || · || denotes the 2-norm 
of a vector or the induced 2-norm of a matrix.
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Problem formulation
The target of lateral control for IEV is to minimize the lateral displacement of the vehicle vis-a-vis a specific 
reference path. To define the control problem and design the controller, we consider a widely dynamic bicycle 
model shown in Fig. 1.

Based on the dynamics of a vehicle’s lateral displacement error e relative to a reference path26:

	 ë = Vx(β̇ + ψ̇) − Vx
2ρ,� (1)

and the dynamical equations for the side slip angle β and yaw rate ψ̇, system state variables can be denoted 
x = [β, ψ̇, e, ė]T, and the control input is the steering wheel angle δ. The corresponding parameters and 
nomenclature are listed in Table 1.

Then, in order to eliminate the lateral displacement error, for a given road curvature ρ and Vx, our control 
objective is to arrive at e = ė = 0. At the desired equilibrium point, it can be defined the desired reference state 
x⋆ as

	

x⋆ =




β⋆

ψ̇⋆

0
0


 =




Lrρ − Lf mV 2
x ρ

µCr (Lf + Lr)
Vxρ

0
0


 ,� (2)

and the desired reference control input δ⋆ as

	
δ⋆ = (Lf + Lr) ρ + mV 2

x ρ (LrCr − Lf Cf )
µCf Cr (Lf + Lr) ,� (3)

which are proved in39. Then, by constructing the error variable

Symbol Description

X/Y/Z Vehicle coordinate system X/Y/Z axis

β Side slip angle

ψ̇ Yaw rate

e Lateral displacement error

δ Steering wheel angle

µ Road friction coefficient

ρ Road curvature

m Vehicle mass

CG Center of gravity of vehicle

Iz Yaw moment inertia of vehicle

Vx/Vy Vehicle longitudinal / lateral velocity

Lf /Lr Axle-CG distance of front / rear wheel

Cf /Cr Tire cornering stiffness of front / rear wheel

Fyf /Fyr Lateral tire force of front / rear wheel

Table 1.  Parameters and nomenclature.

 

Fig. 1.  Dynamic bicycle model.
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x̃ = x − x⋆ =




β − β⋆

ψ̇ − ψ̇⋆

e
ė


 =




β̃
˙̃ψ
e
ė


 ,

δ̃ = δ − δ⋆,

� (4)

we can write the error dynamics as

	 ˙̃x(t) = Ax̃(t) + Bδ̃(t),� (5)

where

	

A =




− µ(Cf +Cr)
mVx

−1 − µ(Lf Cf −LrCr)
mV 2

x
0 0

− µ(Lf Cf −LrCr)
Iz

−
µ
(

L2
f

Cf +L2
rCr

)
IzVx

0 0
0 0 0 1

− µ(Cf +Cr)
m

− µ(Lf Cf −LrCr)
mVx

0 0




,

B =
[

µCf

mVx
; µLf Cf

Iz
; 0; µCf

m

]T
.

� (6)

Assumption 1  The derivative of road curvature ρ satisfies |ρ̇| ≤ λ, λ and vehicle longitudinal speed Vx are 
considered as continuous and bounded constants corresponding to the reality situation. Then, the reference side 
slip angle β⋆, yaw rate ψ̇⋆, and steering wheel angle δ⋆ are bounded |β⋆| ≤ β⋆

M , |ψ̇⋆| ≤ ψ̇⋆
M , and |δ⋆| ≤ δ⋆

M . 
Therefore, the error variable x̃ always remains bounded, satisfying x̃ ∈ Ω ⊂ R4.

More details of this section can be found in other papers using the same dynamic bicycle model26,39.

Main results
With respect to IEV, considering the limited resources of the embedded system, especially the scenarios of 
wireless communication application , it is necessary to design a class of control method that can accomplish 
the lateral control target under disturbances while reducing communication and computational loads. In this 
section, we will achieve the above goal through the following two steps: Firstly, design a continuous-time 
RSMC that can ensure the asymptotic stability of the error dynamics. Secondly, propose a DET-RSMC design 
and implementation method, which reduces the resource consumption of communication and computation. 
Furthermore, the triggering characteristics of the proposed ETM can be designable.

Continuous-time RSMC design
During the motion of IEV, it is inevitable to contemplate the effect of matched disturbances on the lateral control 
system. Hence, we rewrite the error dynamics of the system (5) as

	 ˙̃x(t) = Ax̃(t) + B
(
δ̃(t) + ξ(t)

)
,� (7)

Assumption 2  ξ(t) denotes a bounded matched disturbance term, supt≥0 |ξ(t)| ≤ ξ̄ and ξ̄ > 0.

According to the lateral control objective of minimizing the lateral displacement e, constructing the sliding 
variable

	 s(t) = ė(t) + ve(t),� (8)

where v is a positive constant. Then, the stable sliding manifold for the system (7) is defined as

	 S := {x̃ ∈ Ω | s = cx̃ = 0},� (9)

where c = [0 0 v 1]. According to the dynamical expressions of ė, β as well as ψ̇26, the derivative of sliding 
variable s can be written as:

	

ṡ =ë + vė

= − µ (Cf + Cr)
m

β − µ (Lf Cf − LrCr)
mVx

ψ̇ − V 2
x ρ + vė + µCf

m
(δ + ξ).

� (10)

Then, replacing with error variables (4), we can get

	 ṡ(t) = Gx̃(t) + d(δ̃(t) + ξ(t))� (11)

with
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G =
[

−µ (Cf + Cr)
m

, −µ (Lf Cf − LrCr)
mVx

, 0, v

]
,

d = µCf

m
,

F = −G

d
.

� (12)

Next, depending on the improved exponential reaching law ṡ = −K1|s|α sign(s) − K2 sign(s) that we 
derived, the continuous time RSMC can be obtained:

	
δ̃(t) = F x̃(t) − 1

d
(K1|s(t)|α + K2) sign(s(t)) − ξ(t),� (13)

where K1 > 0, K2 > 0, 0 < α < 1, sign(s(t)) is a signum function described by

	
sign(s(t)) :=

{
1 if s > 0,
0 if s = 0,

−1 if s < 0.
� (14)

Since the disturbance term ξ(t) is unknown in the continuous-time RSMC (13), let it be ξd(t). Additionally, 
according to the Assumption 2, there is always −ξ̄ ≤ ξd(t) ≤ ξ̄. Then, (13) is written as

	
δ̃(t) = F x̃(t) − 1

d
(K1|s(t)|α + K2) sign(s(t)) − ξd(t).� (15)

Theorem 1  The continuous-time RSMC (13) that fulfills K1 > 0, K2 > 0, 0 < α < 1, and ξd(t) = ξ̄ sign(s(t)) 
can drive the sliding variable s to the sliding manifold (9) and asymptotically stabilize the disturbed error dynamics 
(7).

Proof  Substituting (15) into (11) gives

	 ṡ = −K1|s|α sign(s) − K2 sign(s) − dξd + dξ.� (16)

Consider the Lyapunov candidate function as Vc = 1
2 sTs, differentiating for Vc and using (16),

	

V̇c = sTṡ

= −sT (K1|s|α + K2) sign(s) − sTd(ξd − ξ).
� (17)

Therefore, ξd(t) = ξ̄ sign(s(t)) is selected so that the disturbance term in the disturbed error dynamics (7) is 
effectively suppressed, always ensuring that V̇c < 0. Then, here is

	

V̇c ≤ − (K1|s|α + K2) ||s|| − d(ξ̄ − ξ)||s||
≤ − (K1|s|α + K2) ||s||.

� (18)

The proof is complete. □
As a result, we get the continuous time RSMC:

	

δ̃(t) =F x̃(t) − 1
d

(K1|s(t)|α + K2) sign (s(t))

− ξ̄ sign (s(t)) .
� (19)

Remark 1  The proposed RSMC requires the prior knowledge of the disturbance upper bound ξ̄. It has to be 
argued that this dependency may appear restrictive, but modern sensor technologies and data-driven estimation 
methods (e.g., real-time monitoring of vehicle dynamics, historical disturbance profiles, or worst-case scenario 
analysis) can provide conservative yet practical bounds for in many engineering applications. Therefore, we do 
not further explore adaptive mechanisms for ξ̄-free designs. However, this simplification aligns with existing 
industrial practices where safety margins are often predefined based on prior system knowledge.

DET-RSMC With designable triggering characteristics
For almost all ETMs that exist, the triggering characteristics is fixed once designed, and the evolution rate of the 
triggering signal is difficult to be adjusted based on explicit theories, subsequently generating inter-event times 
or frequency that may not be desired. To overcome this problem, this subsection proposes a dynamic ETM, 
rendering the triggering characteristics designable and adjustable.

Before introducing the dynamic ETM, define the measurement error η(t) as

	
η(t) = x̃ (tk) − x̃(t), ∀t ∈ [tk, tk+1)
η̇(t) = − ˙̃x(t). � (20)
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Among them, k ∈ N≥0, tk  represents the k-th triggering instant, and {tk} denotes the sequence of triggering 
moments generated by the ETM. It should be noted that at each triggering instant tk , the measurement error 
will be reset to 0, that is, η(tk) = 0.

Now, we propose a dynamic triggering rule below:

	
t0 = 0,

tk+1 = inf {t > tk : εσ + Φ(χ(t)) ≤ ∥G∥∥η(t)∥} , � (21)

where constant ε > 0, design parameter σ ∈ [0, 1), and Φ(χ(t)) resembles a countdown variable with the 
following expression

	
Φ(χ(t)) = 1

2θ
χ(t)(1 + sign(χ(t) − ε)),� (22)

which has the other design parameter θ ∈ R≥0. The differential equation of the dynamic variable χ(t) is 
formulated as

	
χ(0) = χ̄ > ε,

χ̇(t) = −l(χ(t)) − (χ(t) − εσ + ∥G∥||η(t)∥) |s(t)|, � (23)

where we set the initial value of the dynamic variable χ(0) also its maximum value to be χ̄ ∈ R>0, and l(χ(t)) 
is a locally Lipschitz-continuous function.

Based on the above dynamic triggering rule (21) and the continuous-time RSMC (19), design the event-
triggered RSMC:

	
δ̃(t) =F x̃ (tk) − 1

d
(Kd1 |s (tk)|α + Kd2) sign (s (tk)) − ξ̄ sign (s (tk)) , ∀t ∈ [tk, tk+1) . � (24)

Noteworthy, F, d, α, etc. are the same as in (19), whereas the relevant descriptions of Kd1 and Kd2 are presented 
in the next section. Furthermore, with respect to x̃ (tk), there are

	

˙̃x(tk) = 0, ∀t ∈ (tk, tk+1) ,

x̃
(
t+
k

)
= x̃ (tk) ,

� (25)

which means that the event-triggering RSMC (24) will only be updated at each triggering moment tk  determined 
by the triggering rule (21). Specifically, during the time between two adjacent triggering moments, the error 
variable x̃ communicated to the controller is no longer updated real-time, and consequently the control input δ̃ 
always held unchanged by δ̃tk , which can be realized by a Zero-order-hold.

Remark 2  On the basis of dynamic triggering rule (21) and event-triggering RSMC (24), Fig. 2 presents the 
control architecture of this system. Φ(χ(t)) dynamically varies depending on the values of the dynamic variable 
χ(t), and the triggering threshold of triggering rule is no longer fixed. By selecting different ε, σ, θ and l(χ(t)) 
the evolution rate of Φ(χ(t)) can be designed in a certain degree, and then the evolution rate of the triggering 

Fig. 2.  Architecture for the disturbed lateral control system of IEV under DET-RSMC (The blue line denotes 
transmission via local data exchange).

 

Scientific Reports |        (2025) 15:23837 6| https://doi.org/10.1038/s41598-025-09816-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


signal can be changed, which leads to desired inter-event times and event-triggering frequency. Therefore, it is 
named that this dynamic ETM with designable triggering characteristics.

Stability and feasibility analysis
In the proposed DET-RSMC which unlike the SMC under continuous time mechanism that realizes the ideal 
sliding motion, the trajectory of error variable x̃ will be in the vicinity of the sliding manifold S, realizing 
practical sliding mode as defined below.

Definition 1  (Practical sliding mode40,41) For ∀r ∈ R>0, if exists a time tr > 0 such that when t > tr  the sliding 
variable s always has |s(t)| ≤ r, then the system is said to be in practical sliding mode.

For the purpose of proving the existence of practical sliding mode for the system (7), it is necessary to ensure 
that the DET-RSMC enables the sliding trajectory of x̃ to be bounded within a desired range. First, it is required 
to prove the boundedness of dynamic variable χ(t) in triggering rule (21).

Lemma 1  Considering the dynamic variable χ(t) (23), given the following two sets:

	
Λχ := {χ(t) ∈ R : 0 ≤ χ(t) ≤ χ̄},
Λε := {χ(t) ∈ R : 0 ≤ χ(t) ≤ ε}, � (26)

there is always χ(t) ∈ Λχ and there exists a time tε > 0 such that χ(t) ∈ Λε when t ≥ tε.

Proof  Recalling the dynamic triggering rule (21), it is known that when t ≥ 0, we have

	 εσ + Φ(χ(t)) > ∥G∥∥η(t)∥.� (27)

Substituting (23) and (22) into the above inequality yields

	

χ̇(t) ≥ −l(χ(t)) − χ(t)|s(t)| − Φ(χ(t))|s(t)|

≥ −l(χ(t)) − χ(t)|s(t)| − 1
2θ

χ(t) (1 + sign(χ(t) − ε)) |s(t)|

≥ −l(χ(t)) −
(

1 + 1
θ

)
χ(t)|s(t)|,

� (28)

where the equal sign holds if and only if |s(t)| = 0. Then, based on Comparison Lemma, one obtains that 
χ(t) ≥ 0 when t ≥ 0. Choose the Lyapunov function with respect to the dynamic variable χ as Vχ = 1

2 χ2, and 
deriving it produce

	

V̇χ = −l(χ)χ − χ2|s| + (εσ − ∥G∥||η∥) χ|s|
≤ −l(χ)χ − χ2|s| + χε|s|
≤ −l(χ)χ − χ(χ − ε)|s|.

� (29)

Hence when χ > ε, that is, when χ(t) ∈ Λχ \ Λε, one gets

	 V̇χ ≤ −l(χ)χ.� (30)

So, here is always 0 ≤ χ(t) ≤ χ̄, and χ̇(t) ≤ 0 would lead to χ(t) converge to Λε after t ≥ tε. □
Next, we prove that under the DET-RSMC, there exists the practical sliding mode for the system (7), meaning 
that the stability can be guaranteed.

Theorem 2  Consider the system (7), the dynamic triggering rule (21) which determines the triggering instants tk  
and the event-triggered RSMC (24) with parameters satisfying

	 Kd1 > 0, Kd2 ≥ εσ.� (31)

For all t ≥ 0, the trajectory of sliding variable s(t) will reach and remain within the set Γ̄ in finite time, and be 
bounded in the set Γ after the finite time tε, where

	

Γ̄ :=
{

x̃ ∈ Ω : ∥s(t)∥ < ∥c̃∥(ε+Φ(χ(t)))
∥G∥

}
,

Γ :=
{

x̃ ∈ Ω : ∥s(t)∥ < ∥c̃∥ε
∥G∥

}
,

� (32)

and the invariant set Γ ⊂ Γ̄.
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Proof  Construct the Lyapunov candidate of the sliding variable s(t) as V1 = 1
2 sT(t)s(t). Between two adjacent 

triggering moments, i.e., at t ∈ [tk, tk+1), the time derivative of V1 is given by

	

V̇1(s) =s(t)ṡ(t)
=s(t)

(
Gx̃(t) + dδ̃ (tk) + dξ(t)

)

=s(t)(Gη(t) − Kd1 |s (tk)|α sign (s (tk))
− Kd2 sign (s (tk)) − dξ̄ sign (s (tk)) + dξ(t))

≤|s(t)|∥G∥∥η(t)∥ − Kd1 |s (tk)|α s(t) sign (s (tk))
− Kd2s(t) sign (s (tk)) − dξ̄s(t) sign (s (tk)) + d|ξ(t)∥s(t)|.

� (33)

In the following, the trajectory of the sliding variable and the existence of practical sliding mode will be analyzed 
step by step in two cases. □

Case 1  When 0 ≤ t < tε, by Theorem 1, it follows that χ(t) ∈ Λχ \ Λε. Based on Lyapunov function V1 and 
dynamic variable χ, consider the new Lyapunov function V2(s, χ) = V1(s) + χ, and its derivative can be writ-
ten as

	

V̇2(s, χ) =V̇1(s) + χ̇

≤ − Kd1 |s (tk)|α s(t) sign (s (tk)) − Kd2s(t) sign (s (tk))
− dξ̄s(t) sign (s (tk)) + d|ξ(t)||s(t)|
− l(χ(t)) − χ(t)|s(t)| + εσ|s(t)|.

� (34)

For s(t) /∈ Γ̄, where Γ̄ is the maximum deviation when t ∈ [tk, tk+1) generated by the sliding variable s(t) after 
reaching the manifold S, it is clear that the trajectory of the s(t) moves towards the sliding mode surface from 
its initial position. And hence always sign (s (tk)) = sign(s(t)) with respect to any triggering moment tk , then 
(34) becomes

	

V̇2(s, χ) ≤ − Kd1 |s (tk)|α |s(t)| − Kd2|s(t)| − dξ̄|s(t)|
+ d|ξ(t)||s(t)| − l(χ(t)) − χ(t)|s(t)| + εσ|s(t)|,
≤ −Kd1 |s (tk)|α |s(t)| − (Kd2 − εσ) |s(t)|
− d

(
ξ̄ − |ξ(t)|

)
|s(t)| − l(χ(t)) − χ(t)|s(t)|,

� (35)

where σ ∈ [0, 1), the disturbance 0 ≤ |ξ(t)| ≤ ξ̄, and l(·) is locally Lipchitz-continuous. Thus, further obtaining

	 V̇2(s, χ) ≤ −Kd1 |s (tk)|α |s(t)| − (Kd2 − εσ) |s(t)|,� (36)

where Kd1 > 0 and Kd2 ≥ εσ ensure that

	 V̇2(s, χ) < 0� (37)

always holds when s(t) /∈ Γ̄ and χ(t) ∈ Λχ \ Λε. Since V1(s) = V2(s, χ) − χ, where both V2(s, χ) and χ(t) 
are decreasing, it can be concluded that V1(s) is also decreasing. Thus, the trajectory of s(t) will move to the Γ̄ 
within a finite time.

For s(t) ∈ Γ̄, if sign (s (tk)) = sign(s(t)), then there is also V̇2(s, χ) < 0, which can ensure the reachability 
of the sliding surface, and the trajectory of s(t) will pass through the sliding mode surface. Afterwards, 
sign (s (tk)) ̸= sign(s(t)), s(t) will move away from the sliding mode surface until the next triggering moment. 
After the next triggering moment, there will be sign (s (tk)) = sign(s(t)), which is the same as the above 
situation. In this way, s(t) moves in a zigzag path around the sliding manifold S, and when t ∈ [tk, tk+1), the 
maximum deviation generated by s(t) can be calculated as follows

	

|s (tk) − s(t)| = |cx̃ (tk) − cx̃(t)|
≤ ∥c∥∥η(t)∥

<
∥c∥ (εσ + Φ(χ(t)))

∥G∥

<
∥c∥(ε + Φ(χ(t)))

∥G∥ ,

� (38)

prove that the trajectory of s(t) will reach and always remain within the set Γ̄.

Case 2  When t ≥ tε, it follows that χ(t) ∈ Λε. At this point, by (22), there is Φ(χ(t)) = 0, and according to the 
dynamic triggering rule (21), the inequality εσ > ∥G∥∥η(t)∥ always holds, so we can rewrite (33) as:
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V̇1(s) ≤ − Kd1 |s (tk)|α s(t) sign (s (tk)) − Kd2s(t) sign (s (tk)) + εσ|s(t)|
− dξ̄s(t) sign (s (tk)) + d|ξ(t)||s(t)|.

� (39)

Similar to Case 1, s(t) moves in a zigzag path. When sign (s (tk)) = sign(s(t)), we also get

	 V̇1(s) ≤ −Kd1 |s (tk)|α |s(t)| − (Kd2 − εσ) |s(t)|,� (40)

which renders V̇1(s) < 0 on the basis of Kd1 > 0 and Kd2 ≥ εσ. And if sign (s (tk)) ̸= sign(s(t)), the 
maximum deviation generated by s(t) as t ∈ [tk, tk+1) becomes

	
|s (tk) − s(t)| <

∥c̃∥ε

∥G∥ .� (41)

Therefore, it is proved that after the finite time tε, the trajectory of s(t) converges to the set Γ. This completes 
the proof.
□

Finally, in the DET-RSMC designed above, we need to prove that the inter-event times are limited by a positive 
value to avoid potential Zeno behavior, which ensures the feasibility of execution on a hardware platform.

Theorem 3  Consider the system (7) with the event-triggered RSMC (24), in which the sequence of triggering in-
stants tk  generated by the dynamic triggering rule (21), the inter-event times can be expressed as τχ := tk+1 − tk

. There always exists a minimum inter-event time τmin, and τχ > τmin > 0, where

	
τmin = 1

∥A∥ ln
(

1 + εσ + Φ(χ(t))
Υ (∥x̃(tk)∥) + ω̄

· ∥A∥
∥G∥

)
.� (42)

Proof  From the dynamic triggering rule (21), the minimum inter-event time can be obtained by calculating the 
time required for the value of ∥η(t)∥ to grow from 0 to (εσ + Φ(χ(t))) /∥G∥.

In view of (20), defining Tk := {t ∈ (tk, tk+1] : ∥η(t)∥ = 0}, for all t ∈ (tk, tk+1] \Tk , the time between 
all two adjacent event-triggering instants, deriving |η(t)∥ yields

	

d

dt
∥η(t)∥ ≤

∥∥∥∥
dx̃(t)

dt

∥∥∥∥
≤

∥∥Ax̃(t) + B
(
δ̃ (tk) + ξ(t)

)∥∥

≤∥A∥∥η(t)∥ + ∥A + BF ∥ ∥x̃ (tk)∥︸ ︷︷ ︸
Υ(∥x̃(tk)∥)

+ ∥B∥


Kd1

(
∥c̃∥ε
∥G∥

)α

+ Kd2

d
+ 2 ∥ξ(t)∥




︸ ︷︷ ︸
ω(∥ξ(t)∥)

,

� (43)

where ω(∥ξ(t)∥) is bounded, and it is easy to obtain ω(∥ξ(t)∥) ≤ ω(∥ξ̄∥). Then, defining ω̄ = ω(∥ξ̄∥), we have

	
d

dt
∥η(t)∥ ≤ ∥A∥∥η(t)∥ + Υ (∥x̃(tk)∥) + ω̄.� (44)

For the above inequality and its initial condition ∥η(tk)∥ = 0 by applying the comparison lemma, the solution 
is provided:

	

∥η(t)∥ ≤ ∥A∥∥η(t)∥ + Υ (∥x̃(tk)∥) + ω̄

≤
∫ t

tk

η∥A∥(t−v) (Υ (∥x̃(tk)∥) + ω̄) dv

= Υ (∥x̃(tk)∥) + ω̄

∥A∥
(
η∥A∥(t−tk) − 1

)
,

� (45)

where t ∈ (tk, tk+1] \Tk . Consequently, the time required for the value of ∥η(t)∥ to grow from 0 to 
(εσ + Φ(χ(t))) /∥G∥ can be calculated by

	

εσ + Φ(χ(t))
∥G∥ = ∥η (tk+1)∥

≤ Υ (∥x̃(tk)∥) + ω̄

∥A∥
(
η∥A∥τχ − 1

)
,

� (46)

and hence the minimum inter-event time τmin can be solved as
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τmin = 1

∥A∥ ln
(

1 + εσ + Φ(χ(t))
Υ (∥x̃(tk)∥) + ω̄

· ∥A∥
∥G∥

)
.� (47)

In summary, there is always

	 τχ ≥ τmin > 0� (48)

holds, with the result that potential Zeno behavior is excluded, and the proof is complete. □
In addition, we further analyze the above dynamic triggering rule (21) and the minimum inter-event time τmin.

Theorem 4  The proposed dynamic ETM are capable to generate larger inter-event times than the absolute ETM 
such as31. Meanwhile, the disturbed system (7) under DET-RSMC has semi-global RESP.

Proof  According to Lemma 1, there is always χ̇(t) < 0 and coupled with the expression (22) for the countdown 
variable, it can be known that Φ(χ(t)) always decreases from a maximum (initial value). And after time tε, 
Φ(χ(t)) = 0 is kept invariant. Therefore, we can obtain Φ(χ(t)) ≥ 0. Besides, the dynamic triggering rule (21) 
will become the following absolute triggering rule

	
t0 = 0,

tk+1 = inf {t > tk : εσ ≤ ∥G∥∥η(t)∥} , � (49)

and at this time, the minimum inter-event time τ ′
min can be derived

	
τ ′

min = 1
∥A∥ ln

(
1 + εσ

Υ (∥x̃(tk)∥) + ω̄
· ∥A∥

∥G∥

)
.� (50)

As a result, it is obvious that τmin ≥ τ ′
min, which means that when the same triggering threshold are selected in 

dynamic and absolute ETM, the inter-event times generated by the proposed dynamic ETM are enlarged.
The RESP is worth discussing for practical systems such as IEV. In accordance with Assumption 1, 

Assumption2 and (50), for all x̃ ∈ Ω, Υ (∥x̃(tk)∥) is bounded, which we denote by Υ (∥x̃(tk)∥) ≤ Ῡ. Then, 
defining θ = εσ∥A∥/∥G∥ and p =

(
Ῡ + ω̄

)
/θ, we have

	
τmin ≥ τ ′

min = 1
∥A∥ ln (1 + p) > 0,� (51)

which matches the results of semi-gobal RESP27. Therefore, it can be concluded that this event-triggered control 
system has semi-gobal RESP. □

Remark 3  Event separation properties can be categorized into two types based on whether they are robust or 
not, and each has three more detailed divisions - local, semi-global and global. If the event-triggered control sys-
tem does not even possess the local RESP, it implies when the system is subject to external disturbances, a high 
probability of event accumulation (extremely high triggering frequency in a short time) or even Zeno behavior.

Remark 4  The proposed DET-RSMC enables the disturbed system (7) to have a semi-global RESP, which is 
a property that effectively suppresses external disturbances and avoids Zeno behavior as well as event accu-
mulation27. It is worth noting that if an event-triggered control system whose state variable is x, the external 
disturbance term is ξ and the inter-event time is τ , the system has a semi-global RESP but not a global RESP, 
then limsup||x||→∞τ(x, ξ) = 0. However, this is not a problem for practical systems such as lateral control of 
intelligent electric vehicle, where the state variables are always bounded.

Remark 5  It is worth noting that in most of the existing static ETMs, the triggering threshold is fixed, and se-
lecting a larger triggering threshold does result in larger event inter-event times, but behind it is the tolerance 
of larger measurement errors, which will most likely affect the control performance (larger lateral displacement 
errors). Should a large error not be desired, a large control gain is necessary. However, in a practical control sys-
tem, the large control gain may lead to phenomena such as overshooting or input saturation. In proposed control 
method, the control gain Kd1 and Kd2, with only the latter depending on the triggering parameter, imply the 
capability to obtain longer inter-event times by increasing the thresholds ε and σ without the requirement for 
larger control gains.

Simulation results
The DET-RSMC designed for lateral control of IEV is demonstrated in experimental validation within this 
section. In simulation, the dynamic bicycle model parameter values are employed refer to the actual vehicle 
statistics as follows: m = 1723 kg, Iz = 4175 kg · m2, Lf = 1.232 m, Lr = 1.468 m, Cf = 66900 N/rad, 
and Cr = 62700 N/rad. Select ε = 0.5 and σ = 0.3 in the dynamic triggering rule (21). By Theorem 1 and 
Theorem 2, the gains of the event-triggered RSMC (24) are chosen as Kd1 = 1.5, α = 0.7 and Kd2 = 0.3. Thus, 
on the basis of the above parameters, we can design the dynamic variable χ(t) and Φ(t) as follows
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χ(0) = χ̄ = 10,

χ̇(t) = −0.2χ(t) − χ(t)|s(t)| + (εσ − ∥G∥||η(t)∥) |s(t)|,

Φ(χ(t)) = 1
5χ(t)(1 + sign(χ(t) − ε)).

� (52)

Taking into account external disturbances, we introduce the disturbance term ξ(t) that directly affect the control 
input δ(t) in the disturbed system (7). Therefore, we assume that the IEV is always subjected to a bounded 
disturbance of ξ̄ = 0.005 while in motion, which has exceeded 10% of the maximum value of the control input 
throughout this simulation. We believe that this is actually more than realistic enough for the disturbance to 
make a difference and demonstrate the robustness of the proposed scheme. And we design the sliding variable 
s = cx̃ = [0, 0, v, 1] x̃ = [0, 0, 0.5, 1] x̃. For the disturbed error dynamics system, setting the initial state 
x̃ = [0; 0; 0; 0], maintaining the longitudinal velocity Vx = 15m/s and the road friction coefficient µ = 0.8 
throughout the simulation.

Lane-changing overtaking is a representative scenario of the lateral control problem of a vehicle in real 
driving. We verify the effectiveness of the proposed method by two consecutive lane-changing overtaking in the 
simulation, as shown in Fig. 3. The entire simulation time is 25 s and the sampling period is 0.01 s. Based a lane-
changing overtaking reference trajectory, which is satisfied Assumption 1, we firstly implement three different 
methods to achieve the lateral control target: the continuous time RSMC (19), DET-RSMC, and DET-RSMC 
with disturbances. Figure 4 presents the actual trajectories of three control methods. It can be seen that the 
trajectory of the continuous-time RSMC is almost the same as the other two methods, which further proves the 
effectiveness of the proposed solution. In order to show the simulation results of the proposed method more 
clearly, we omit the results based the continuous time in the later figures.

In the simulation, the variation curves of side slip angle β, yaw rate ψ̇ and lateral displacement error e are 
illustrated in Fig. 5, and the control input δ̃ calculated by event-triggered RSMC (24) is provided in Fig. 6. The 
control input is step-shaped, i.e., between two adjacent triggering moments, the control input remains the same 
as the value at the previous triggering moment, which effectively reduces the number of control input update. 
For a comparison of control update numbers, we provide in Table 2 and Fig. 7. It can be clearly known that 

Fig. 4.  Trajectory of IEV with different control method.

 

Fig. 3.  Two consecutive lane changing overtaking.
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the proposed DET-RSMC achieves the desired lateral control target and leads to a reduction in control update 
numbers exceeding 43% in this simulation case, thus improving the resource utilization of embedded control 
system and alleviating the communication load in controller area network (CAN) or wireless network.

Concerning dynamic triggering rule (21) together with related expressions (22) and (23), we demonstrate 
the evolution of dynamic variable χ(t) and Φ(t) in Fig. 8. The dynamic variable χ(t) decreases from its initial 
value χ(0) = χ̄ = 10, but is always larger than 0. And when χ(t) < ε, there is Φ(t) = 0, as described in Lemma 
1. Then, Fig. 9 presents the trajectory of s(t). Corroborating Theorem 2, s(t) reaches and remains within the set 
Γ̄ after finite time, which is not very obvious in the figure because the designed reference trajectory is in a lane 

Strategy Update numbers

Continuous time RSMC (0.01 s) 2500

DET-RSMC 1417

DET-RSMC with disturbances 1402

Table 2.  Comparison of control update numbers.

 

Fig. 6.  Control input based the RSMC.

 

Fig. 5.  Evolution of side slip angle β, yaw rate ψ̇ and lateral displacement error e.
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Fig. 9.  Trajectory of s(t).

 

Fig. 8.  Dynamic variable χ(t) and Φ(t).

 

Fig. 7.  Cumulative number of control update.
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change overtaking condition with a relatively high speed. However, it can be clearly seen that after time tε, s(t) 
is bounded in set Γ.

Besides, Fig. 10 shows the inter-event times generated by DET-RSMC With and without disturbances. And 
in conjunction with the above simulation results, we conclude that the designed DET-RSMC has the ability 
to suppress external disturbances. Next, the following simulations are carried out to further demonstrate the 
robustness of the proposed control method as well as the designability of the triggering characteristics. Keeping 
all the parameters and reference trajectory settings unchanged in the previous simulation, and ensuring that the 
lateral displacement error e generated during the motion process is within 0.1 m, different σ( in the dynamic 
triggering rule (21)) and l(χ(t))( in the dynamic variable dynamics equation (23)) are selected, and then the 
statistics of control update numbers are provided in Table 3.

According to Table 3, it is known that by designing the evolution rate and the effective range (the definition 
of the set Λε( 32)) of dynamic variable χ can increase or decrease the triggering frequency, and thereby adjust 
the control update numbers and the generated inter-event times, which we suggest that it could be the most 
reasonable and effective adjustment. Certainly, it is also effective to change the settings of other parameters, 
such as χ̄( maximum value of dynamic variables), etc., but we consider it not intuitive or regular enough. In 
addition, we also present the case of the static triggering rule in Table 3, i.e., always keeping Φ(χ(t)) = 0. 
As mentioned in Theorem 4, the control update numbers and the average inter-event times generated by the 
proposed DET-RSMC are always larger than the average inter-event times generated by the static triggering rule 
(49) similar to some previous work31,42, which implies that it is possible to reduce the control update numbers 
without necessarily choosing a larger triggered threshold to produce larger inter-event times. Besides, it is worth 
remarking that each simulation compares the two cases are compared for each simulation: without disturbances 
ξ(t) and with disturbances ξ(t). This confirms that for the system executing DET-RSMC, due to its semi-global 
RESP and the event-triggered RSMC (24), when subjected to disturbances, although there is a certain degree of 
floating in the control update numbers, it can still effectively reduce the computation and communication loads 
and also exclude Zeno behavior and event accumulation.

Remark 6  We need to have a brief discussion on the selection of some of the design parameters. In event-trig-
gered RSMC (24), when Kd1 and Kd2 are selected with larger values, it makes the global convergence speed fast-
er, but it should be noted that larger values will aggravate the chattering. Meanwhile, when α → 1, the chattering 
is obvious, but when α → 0, the convergence speed of the sliding variables will be slowed down. Regarding the 
effect of selecting the values of ε and l(χ(t)) towards the proposed DETM-RSMC, we can get it clearly from 
Table 3: ε acts as the static part of the dynamic triggering rule, and a larger ε implies a lower triggering frequency, 

without ξ(t) / with 
ξ(t)

ε

ε = 0.1 ε = 0.6 ε = 0.9

l(χ(t))

0.05χ(t) 529 / 535 488 / 490 413 / 480

0.3χ(t) 1828 / 1800 1584 / 1596 1212 / 1251

1.5χ(t) 2344 / 2340 1966 / 1967 1475 / 1413

Φ(χ(t)) = 0 2498 / 2496 2045 / 2035 1579 / 1473

Table 3.  Statistics on control update numbers.

 

Fig. 10.  Inter-event times.
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but subsequently there is an increase in the lateral displacement error, which may affect the control performance. 
l(χ(t)) mainly contributes to regulating the evolution rate of the dynamic variables χ, and χ̄ is the variable range 
of the triggering signal, which together affect the triggering frequency. Intuitively, the larger χ̄, the fewer control 
update number, but after a longer inter-event time during trajectory tracking process, more controller update 
numbers may be required to compensate. In summary, the DET-RSMC proposed in this paper, when appro-
priately extended to different application scenarios, can effectively adjust the trigger frequency and inter-event 
times by designing the evolution rate and effective range of dynamic variable χ. However, in actual applications, 
it is definitely not advisable to have a lower triggering frequency and longer inter-event times. It is also necessary 
to comprehensively consider the required control performance, such as error and steady-state time.

Finally, we compare the proposed DET-RSMC in this paper with some typical control schemes based on ETM 
for and present it in Table 4, where the symbol × denotes that it was not considered and the symbol \ denotes 
that it was not discussed, even having some kind of RESP. Dynamic triggering rule, robustness of controller and 
RESP, all three are extremely important in our opinion for the execution of ETM in practical systems. Among 
them, the dynamic triggering rule indicates whether there is an intrinsic dynamic variable to break the fixed 
triggering threshold. Moreover, disturbances are inevitable in reality, the practical system is highly susceptible 
to disturbances, and an arbitrarily small disturbance may lead to event accumulation or even Zeno behavior. 
However, in this paper, we not only consider the robustness of the controller, but also analyze the robustness of 
the inter-event times - an event-triggered RSMC is designed as well as the event-triggered control system with 
the semi-global RESP is proved. We believe that this is the first dual measure taken to block external disturbances 
such that the DET-RSMC may be a much more comprehensive solution to the actual lateral control problem.

Conclusions
This paper focuses on the lateral motion control of IEV under bounded disturbances. The proposed RSMC, 
which can effectively suppress external disturbances, ensures the stability of the lateral control system. Then, the 
RSMC is redesigned with a dynamic ETM, whose triggering characteristics have a certain degree of designability, 
e.g., the evolution range and evolution rate of the dynamic variable can be designed, so that the triggering 
frequency and the inter-event times can be adjusted. Above all, the proposed DET-RSMC implementation 
scheme is able to fulfill the desired lateral control target as well as provide advantages over existing control 
systems based on static ETMs. Besides, in this paper, not only the effect of disturbances on stability but also 
the deterioration on the inter-event times are considered. We prove that the control system implementing this 
DET-RSMC has the semi-global RESP such that no Zeno behavior occurs due to external disturbances. We 
simultaneously consider the robustness of the control law and the robustness of the inter-event times, which is 
absent in current control systems based on dynamic ETMs. Future extensions will integrate online disturbance 
estimation to eliminate the reliance on prior knowledge of disturbances, thereby enhancing applicability in more 
scenarios. Meanwhile, higher-order SMC schemes based on dynamic ETM are considered to further reduce the 
chattering phenomenon.
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