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Monitoring species’ presence in an ecosystem is crucial for conservation and understanding habitat 
diversity, but can be expensive and time consuming. As a result, ecologists have begun using the DNA 
that animals naturally leave behind in water or soil (called environmental DNA, or eDNA) to identify 
the species present in an environment. Recent work has shown that when used to identify species, 
convolutional neural networks (CNNs) can be as much as 150 times faster than ObiTools, a traditional 
method that does not use deep learning. However, CNNs are black boxes, meaning it is impossible 
to “fact check” why they predict that a given sequence belongs to a particular species. In this work, 
we introduce an interpretable, prototype-based CNN using the ProtoPNet framework that surpasses 
previous accuracy on a challenging eDNA dataset. The network is able to visualize the sequences of 
bases that are most distinctive for each species in the dataset, and introduces a novel skip connection 
that improves the interpretability of the original ProtoPNet. Our results show that reducing reliance on 
the convolutional output increases both interpretability and accuracy.
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Species monitoring is vital to maintaining the health of our ecosystems. By observing and cataloging which 
species are present within a given area, we gain valuable insights into the biodiversity of that environment. This 
foundational knowledge is important for research and understanding, as well as conservation efforts focused 
on individual flora and fauna populations. Additionally, species monitoring allows us to detect the presence of 
invasive species, which is critical for preventing the spread of harmful non-native organisms and safeguarding 
the natural balance of ecosystems1. By monitoring multiple ecosystems, it also becomes possible to compare 
biodiversity spatially and track the movement of species over time. Monitoring biodiversity is increasingly 
relevant as the effects of climate change drive species away from their historic ranges. For example, this is seen in 
the Gulf of Maine where water is warming and affecting many fish, especially Atlantic herring, winter flounder, 
haddock, and alewife2.

Species monitoring has traditionally been conducted using physical observation, trail cameras, acoustic 
monitoring, and trawling. However, these methods can be costly and time-intensive (physical observation, trail 
cameras), invasive and damaging to ecosystems (trawling), and require skilled labor (acoustic monitoring). 
Environmental DNA (eDNA) metabarcoding provides an alternative approach to species monitoring that is 
more thorough and versatile while also being less invasive, time consuming, and expensive. Species monitoring 
using eDNA metabarcoding works by collecting environmental samples that contain genetic materials naturally 
shed by all species into their environment, whether that be through excrement, urine, skin, death, or by other 
means. Traces of DNA can then be extracted from water or sediment—in this work, we will focus on eDNA 
collected from water. By pumping collected water samples through a filtration capsule, it is possible to collect 
some of these DNA traces. Amplifying and sequencing the desired gene fragment produces a DNA sequence 
that can be used to identify the species. For a detailed description of eDNA metabarcoding, see Ruppert et al.3.

The last step in the eDNA metabarcoding process has traditionally involved comparing the collected sequences 
against a reference database. This reference database is created by taking a known species and sequencing its 
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DNA, then repeating that process for multiple organisms in order to capture the natural variations in the species’ 
DNA. Doing this for multiple species creates a list which can be used to identify the species that produced a new, 
collected DNA sequence. Usually, comparison is done in large batches of collected sequences, given that eDNA 
can produce millions of reads. For example, the dataset used in Flück et al. has two million sequences4. Although 
determining all of the species present in a sample is the goal, the sheer scale of the number of sequences makes 
the process time-consuming. This comparison step is an ideal candidate for machine learning (ML). Once a 
model has been trained, using it to classify sequences can be rapid. In fact, Flück et al. created a model that was 
150 times faster than the bioinformatics software ObiTools, while achieving similar accuracy4.

Although deep neural networks are fast, they are generally black boxes. This means that they perform 
manipulations of the input data in a complex formula, and it is impossible for a human to readily understand all 
of the reasons why a model makes a prediction. There are many ways to approach this problem. One category 
of explanations is post-hoc methods, which attempt to explain a model after it has been trained. Post-hoc 
approaches include SmoothGrad5, GradCam6, and Grad-CAM + +7 in the category of saliency visualization. The 
category of activation maximization includes multifaceted feature visualization8 and acceleration-based activity 
recognition9. Perturbation-based approaches include LIME10, SHAP11, and Fong et al.12, who used extremal 
perturbations and smooth masks. TCAV13 is a concept-based explanation. These methods can be beneficial 
because they can foster trust in the model’s predictions, help identify bias in a model or dataset, and possibly find 
the reason for incorrect predictions.

However, these post-hoc explainability methods have no guarantee of being faithful to the underlying 
black-box model. For this reason, post-hoc approaches can be unhelpful or misleading if one relies on these 
explanations to truthfully explain decisions. Interpretable ML models—models which are constrained to follow 
a transparent reasoning process—overcome this limitation. Interpretability has many benefits. First, if the actual 
decision-making process of a model is comprehensible to humans, it becomes easier to rely on its outputs. 
Second, humans can use information about the model’s reasoning to debug and manually make fixes to a network, 
based on instances where the model is making decisions using irrelevant features. Third, interpretability aids in 
assessing the model’s ability to generalize to new data. If we know how a model is making decisions, then we 
can infer how well the decision-making process would work in new environments. Fourth, interpretability can 
yield new insights about a domain, potentially uncovering correlations or pieces of knowledge in the data that 
are not obvious. For these reasons, the incorporation of interpretability into machine learning models is not a 
hindrance, but a desirable trait that has important benefits14.

In this work, we built an interpretable convolutional neural network (CNN)-based model for species 
classification. We used the same dataset as Flück et al., which contained fish sequences from South America4. 
We first built a non-interpretable CNN, which we called the base network. This model took a DNA sequence 
as an input, and gave a species prediction as an output. This model shared the same objective as Flück et al., 
which was to allow fast and accurate species identification4. After creating this base network, we removed the 
linear classification layer and added a prototype layer to the backbone, based off of the ProtoPNet from Chen 
et al.15. In addition to producing a species prediction, this final model learned prototypes, short subsequences 
of DNA, upon which decisions were made. The goal of this step was to add interpretability such that humans 
may understand the reasons behind a prediction by looking at which prototypes were most highly activated. 
This layer also provided insights via its prototypes, since the learned prototypes make it possible to view the 
DNA sequences that best distinguish each species. In addition to applying the ProtoPNet to the domain of 
DNA sequences instead of its original application of images, this work introduces a novel mechanism for 
connecting the input directly to prototypes learned by ProtoPNet, such that both the original sequence and the 
convolved input are used in decision making. In making use of the raw input, rather than fully relying on an 
incomprehensible convolved output, the decisions of this model are more interpretable to humans.

In this paper, we will first describe the dataset, data processing, the CNN, and the ProtoPNet in the Methods 
section. This section will explain the novel aspect of the raw input comparison (the skip connection), and the 
application of the ProtoPNet in the new domain of eDNA. In the Results section, we will convey our outcomes in 
terms of both quantitative metrics and visualizations. We will also show two key hyperparameters in our model, 
and how they affected performance. In the Discussion section, we will reflect on our results, compare this work 
to other work, and mention future possibilities of research.

Methods
In this section we describe the dataset and our preprocessing methods, and then show how we constructed a 
ProtoPNet for classifying eDNA sequences. We also briefly explain the ProtoPNet itself.

Dataset and preprocessing
The dataset used in this work was introduced by Flück et al.4. It consists of 12S ribosomal fish DNA samples from 
French Guiana in South America, collected from the Maroni and Oyapock rivers. This area holds 368 species 
of freshwater fish. The samples were collected from 200 different sites between 2014 and 2020. The sequences 
comprise an average of 64 bases. We mimicked the data preprocessing steps of Flück et al. in order to make our 
results directly comparable to theirs. We used data with the tag, primer, and their reverse complements removed. 
Additional details pertaining to the collection and processing of the dataset are presented in the paper from 
Flück et al.4.

Offline preprocessing occurred before any model was run. First, we removed any sequence whose species had 
less than two sequences in the dataset. This operation eliminated 212 species and 30% of all of the sequences in 
the dataset. This resulted in an average of 3.02 sequences per species (with a standard deviation of 4.36), making 
it easier to split the data into training and test sets.
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We used the same training and test sets as Flück et al.4, who reserved 70% of the data for training and reserved 
30% for testing, stratified based on species. For the ProtoPNet, we used a static validation set. For the base CNNs, 
we added fivefold cross validation to the training procedure. Because many species had fewer than 5 sequences 
in the training partition, there was no clear way to partition the training set into five folds. We addressed this by 
oversampling the entire dataset (except for the test set), before splitting it into folds, such that there was at least 
one instance of each class to allocate to each fold. To perform oversampling, we first found the class that had 
the most sequences—for example, in one fold, the class with the greatest number of sequences contained eight 
sequences. Then, for each species, we duplicated randomly chosen sequences from the species until that species 
had eight sequences in total. This made the training and validation datasets perfectly balanced for each class. 
To get genuine test results, we did not artificially add or remove any sequences to the test set like we did with 
the training set. As a result, the test set is not balanced. We report all results using performance on the test set.

We also performed online data augmentation during training. Upon loading each training sequence, 0–2 
random nucleotide bases were inserted at random positions, and 0–2 random nucleotide bases were removed. 
There was also a 5% mutation rate, meaning that every base had a 5% chance of being switched to one of the 
other three base pairs. We also explored other training and testing noise levels, as discussed in the Metrics 
subsection of the Results section.

To provide consistent inputs to the network, each sequence was either truncated or padded to the same 
length. Considering the distribution of the number of bases in the sequences, we tried a variety of lengths ranging 
from 60 to 70. No value in this range showed superior performance, so we used a length of 70 throughout our 
experiments. Truncation was performed by removing bases from the end of the sequence, and padding was 
performed by adding ‘N’ characters.

Like the ‘N’ character, not every character in a sequence was a member of {A,T,G,C}. Errors naturally occur 
during the eDNA collection process, such that we may be unsure about what base is located at a particular 
position. Sometimes, for example, we may know that the base is either ‘A’ or ‘T’ (since we know it is not ‘G’ or 
‘C’). These uncertainties are encoded as different characters. If we knew that the base at some position was either 
‘A’ or ‘C’, then we would put an ‘M’ at that position. If the base could be any of the four bases, we would put an 
‘N’. The full list of encodings is called the IUPAC ambiguity codes.

CNNs, which have been successful in working with images, were used in this situation by reframing the 
DNA sequences as one-dimensional “pictures” with four channels, as shown in Fig. 1. Each of the four channels 
corresponded to one of the four bases. Each base was turned into a four-dimensional one-hot vector, where 
the first channel (index 0) represented ‘A’, the second channel (index 1) ‘T’, the third channel (index 2) ‘C’, and 
the fourth channel (index 3) ‘G’. This turned each DNA sequence into an array of 4 channels and length 70. 
We encoded ambiguities as the average of the one-hot vectors for each possible nucleotide. For example, H 
(indicating the base is either ‘A’ or ‘C’ or ‘T’) would turn into [1/3, 1/3, 1/3, 0]. Taking these steps transformed 
the DNA sequence into an image-like input that was digestible by a CNN.

To summarize, after offline preprocessing is finished (removal of species with fewer than two sequences and 
oversampling), the training and evaluation begins. As each individual sequence is fetched, it is preprocessed with 
online augmentation (insertions, deletions, mutation, and encoding). Then, the array is fed to the CNN.

Developing the ProtoPNet
The Prototypical Part Network (ProtoPNet), introduced by Chen et al., is a deep learning architecture designed 
to make interpretable predictions with explanations that have true fidelity15. Unlike black-box models, a 
ProtoPNet learns and uses prototypes—representative examples of each class—to classify data. This approach 
provides interpretability by directly linking model decisions to recognizable features in the data, making it easier 
to understand why the model makes its predictions.

The ProtoPNet developed for this application consists of three primary components: a backbone 
f : R4×linput → Rd×l that computes a latent representation of a given input sequence, a prototype layer 
g : Rd×l → Rm that compares a set of learned prototypes to this latent representation, and a final linear layer 
h : Rm → Rc that maps from the similarity between the input and each prototype to a final classification. Here, 
4 is the number of channels of an input eDNA sequence, linput the length of the input eDNA sequence, d the 
dimension of the latent representation extracted by the backbone,  the length of the latent representation, m 
the number of prototypes learned, and c the number of output classes. A prediction ŷ ∈ Rc is formed for each 

Fig. 1.  How DNA sequences become “images”, vectors of 1 s and 0 s that are fed to the model. The example on 
the right shows how ambiguity codes are turned into decimals. {A, T, C, G} is along the channel dimension, so 
the input is of shape (4, 70).
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input sequence x ∈ R4×linput  as ŷ = h ◦ g ◦ f (x) . We describe each of these components in the context of 
this application below. In our experiments, we used linput = 70, d = 512, l = 35, m = 468, and c = 156.

Backbone
At the core of the ProtoPNet is a backbone network f  that condenses input data into a compact latent space. 
Since our application involves sequential data, we selected a 1D convolutional neural network (CNN) with Leaky 
ReLU activations as the backbone, after evaluating nearly 25,000 hyperparameter and architecture combinations 
to find optimal performance in classifying species. The final selected architecture consisted of a single 1D 
convolutional layer with Leaky ReLU activations, followed by a max-pooling of size 2 and stride 2.

For a given input sequence x ∈ R4×linput , let x(a) ∈ R4 denote the input vector at position 
a (a = 1, . . . , linput). Let z = f (x) denote the latent representation of input x produced by f , and let z(a) ∈ Rd 
denotes the latent vector at position a of z (a = 1, . . . , l). As a result of the max-pooling in the CNN backbone, 
every position z(a) in the latent representation produced by f  corresponds to two input positions x(2a−1) and 
x(2a). Once trained, this CNN backbone served as the foundation for building the ProtoPNet architecture, 
providing a condensed representation of inputs that facilitated prototype comparison.

Prototype layer
The prototype layer g computes how “similar” each of the m learned prototypes is to a given input sequence. 
In particular, g contains a set of prototypes P = {Pj}m

j=1, where each prototype Pj ∈ Rd×lproto  is a learnable 
sequence of lproto vectors in the latent space of the CNN. We denote the a-th position of a prototype Pj  as 
p

(a)
j ∈ Rd (a = 1, . . . , lproto). Intuitively, we interpret each prototype to represent a prototypical DNA 

subsequence of 2lproto bases, since each latent position corresponds to two bases in the input DNA sequence. 
In our experiments, we use lproto = 5, which means each prototype represents a subsequence of 10 bases in the 
original input space.

Let zstack
a = stack

(
z(a), z(a+1), . . . z(a+lproto−1)

)
, where “stack” denotes the operation of stacking 

multiple vectors into a single vector, and let pstack
j = stack

(
p

(1)
j , p

(2)
j , . . . , p

(lproto)
j

)
. Using a 1D 

convolution, we can calculate the cosine similarity at a given position between each prototype Pj  and an input 

z as s(a)
j =

⟨pstack
j ,zstack

a ⟩
∥pstack

j
∥

2
∥zstack

a ∥2
. Taken over all prototypes and positions, we can combine these similarities 

into a single activation map S ∈ [−1,1]m×(l−lproto+1). This map represents how similar each of the 
m prototypes is to each subsection of the input sequence, offering an additional layer of interpretability by 
showing where and how each prototype activates. We compute the maximum similarity to a prototype across 

locations as smax
j = max

a∈{1,2,...,l−lproto+1}
s

(a)
j , and the output of the prototype layer g is then computed as 

g (z) = stack (smax
1 , smax

2 , . . . , smax
m ) . Each prototype is assigned to correspond to a particular class, 

and encouraged through training and network construction to contribute to reasoning for that class. In our 
experiments, we used 3 prototypes per class. Since there are 156 classes, the total number of prototypes used by 
our ProtoPNet model is 468. As in the original ProtoPNet, each prototype is also constrained to be the latent 
subsequence of a training sequence from the same class. This ensures that every prototype can be visualized 
using the corresponding subsequence of a training instance.

Although the ProtoPNet is interpretable in the fact that it uses prototypes directly to produce predictions, it 
is still a “black box” in one critical area: the backbone. The convolutions in the backbone are not interpretable, 
which is problematic because prototypes are compared to the latent representation extracted by the CNN 
backbone – not the input itself. The usage of a CNN backbone is the only aspect that is holding the ProtoPNet 
back from being completely interpretable.

To alleviate this issue, we introduce a novel extension to ProtoPNet: the skip connection. Rather than 
comparing prototypes exclusively to the CNN’s representation of the input, we added a skip connection 
that includes the raw input sequence in prototype comparison, bypassing the backbone entirely. Comparing 
prototypes to the raw input is completely interpretable and does not utilize the CNN backbone.

However, as discussed in the Results section, we observed two conflicting phenomena. First, when we 
compare prototypes only to the raw input sequence, the overall network performs poorly due to overfitting. In 
contrast, when we compare prototypes only to the CNN’s representation of the input sequence, we found that 
prototypes made unintuitive comparisons. As such, we compute the similarity between a prototype and an input 
sequence as a weighted average of these two comparisons, where the weight is a hyperparameter. In the CNN 
implemented for this work, each latent position corresponds to two raw input positions, where each raw input 
position is represented using a four-dimensional vector along the channel axis. As such, we add eight channels to 
each prototype, which are compared to the concatenation of the two four-dimensional vectors directly from the 
input sequence. In particular, we learn an additional input space component Qj ∈ R8×lproto  for each prototype 
j. We then compute the weighted similarity to the j-th prototype at position a as:

	
s

′(a)
j = κ

⟨pstack
j , zstack

a ⟩
∥pstack

j ∥
2
∥zstack

a ∥2
+ (1 − κ)

⟨qstack
j , xstack

a ⟩
∥qstack

j ∥
2
∥xstack

a ∥2
,
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where qstack
j  is defined analogously to pstack

j , xstack
a = stack

(
x(a), x(a+1), . . . x(a+2lproto−1)

)
. With 

this skip connection, the output of prototype layer g is g (z) = stack (s′max
1 s′max

2 , . . . , s′max
m ), where 

s′max
j = max

a∈{1,2,...,l−lproto+1}
s

′(a)
j  is the maximum weighted similarity to the j-th prototype across all positions. 

We refer to κ as the latent weight. We experimented with different latent weights, ranging from completely 
using the latent comparison (κ = 1) to using only the raw input comparison (κ = 0). This is illustrated in 
Supplementary Figure S1. The use of the latent weight κ reduces reliance on the uninterpretable latent output 
from the CNN backbone. The ProtoPNet architecture that incorporates this skip connection is shown in Fig. 2.

Final linear layer
Following Chen et al.15, the weights in the final linear layer h, which map prototype activations to class scores, 
are initialized with values of 1 or −0.5. Weights connecting a prototype to its assigned class are set to 1, 
encouraging these prototypes to contribute positively, while all other weights are set to −0.5. We chose to use 
three prototypes per class. This initialization strategy, combined with an L1 penalty to push weights between 
prototypes and classes other than their assigned class toward zero, promotes a classification approach based on 
positive associations with each class’s prototypes (“this looks like a prototype from class A, so I predict class A”) 
rather than negative associations (“this does not look like a prototype from class A, so I predict class Z”).

Training
We trained our ProtoPNet by minimizing cross entropy and two additional loss functions: cluster loss and 
separation loss, as defined by Chen et al.15 and as adapted to our setting. Formally, we define cluster and 
separation loss as:

lclst = − 1
n

∑n

i=1 max
j∈{1,2,...,m}:class(j)=yi

gj (f (xi)) and lsep = 1
n

∑n

i=1 max
j∈{1,2,...,m}:class(j) ̸=yi

gj (f (xi)),

respectively, where xi denotes the i-th eDNA sequence in the training dataset and yi the corresponding 
class label, class (j) is the class associated with the j-th prototype, gj (·) denotes the j-th output of g (i.e., 
gj (f (x)) = s′max

j  for an input x), and n is the number of samples in the training dataset. Cluster loss ensures 
that at least one prototype closely represents each input, encouraging each class’s prototypes to form distinct 

Fig. 2.  How the model makes a prediction using the skip connection. The skip connection is separate from 
the feature extraction, and contributes to learning intuitive prototypes. The output of the convolution and 
the stacked raw input are concatenated. This array is then compared to every single prototype. Since a single 
prototype is only of length 5 and this array is of length 35 due to pooling, the comparison step produces a 
similarity score (using cosine similarity) at 31 different positions within the array. The maximum of these 
scores is taken as the overall score for a given prototype. Then, each prototype’s score is fed into a single fully-
connected linear layer with no bias, which produces a confidence output for each of the 156 classes. The class 
with the highest confidence becomes the model’s prediction.
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clusters. Separation loss encourages samples of one class to remain distant from prototypes of other classes, 
refining each prototype’s distinctiveness.

In keeping with Chen et al.15, our training involved three key steps:

	1.	 Prototype Training: We train only the prototypes using stochastic gradient descent, freezing other parame-
ters.

	2.	 Projection Step: Each prototype is set equal to the nearest training subsequence of the same class in the 
latent space, ensuring that prototypes directly represent specific input features.

	3.	 Final Layer Optimization: We adjust the weights in only the last layer to account for the newly aligned pro-
totypes. Weights in the CNN backbone and the prototypes are frozen.

We repeated these steps iteratively, with adjustments made to jointly train both the convolutional layers and 
prototypes in later iterations. Importantly, we ended training after the final layer optimization (not after the 
prototype training) to preserve the proximity between learned prototypes and input representations of the same 
class, and to ensure that each prototype is tied to a training subsequence and can therefore be visualized by 
humans.

This training framework enhanced both classification accuracy and prototype quality, creating a model 
where each prototype is not only representative but also contributes meaningfully to the final predictions. 
By visually associating each prototype with an actual training input, ProtoPNet clarifies its decision-making 
process, allowing users to trace predictions back to specific, meaningful data features. For further technical 
details, we refer readers to Chen et al.15, where the foundational principles of ProtoPNet are elaborated in depth.

Our model took the input, which was of length 70, and compressed it to a latent length of 35. For details about 
the hyperparameters we found for our model, refer to Supplementary Table S2. The hyperparameters were found 
by splitting the training dataset into a smaller training set and a validation set, training ProtoPNet models with 
various hyperparameter settings on the smaller training set, and evaluating the models on the validation set. The 
hyperparameters from the best performing model on the validation set are the hyperparameters we chose for 
training the final model on the entire training set. In particular, based on experiments conducted on a validation 
set, we set the number of prototypes per class to three. Keeping the number of prototypes low helped minimize 
the risk of overfitting.

Results
In this section we will compare the results of our CNN and ProtoPNet with each other, with a set of baselines, 
and with previous work. We will study the impact of latent weight and prototype length, and then visualize 
learned prototypes and their respective subsequences.

Metrics
To validate the use of deep learning for this application, we compared our results to a suite of baseline ML 
models. We evaluated k-nearest neighbors, naïve bayes, support vector machine, logistic regression, decision 
tree, random forest, XGBoost, and AdaBoost classifiers. The data fed to these models was the same data fed to 
the CNN models. Sequences were truncated or padded to 70 bases for consistency with the neural networks, 
and oversampling was performed to make the class distribution uniform. These baseline models were trained on 
a tabular dataset constructed with a k-mer representation. K-mer representations are the count of the number 
of times any sequence of length k occurs in a given sequence. For example, for k = 2, the possible k-mers are: 
[AA AT AC AG TA TT TC TG CA CT CC CG GA GT GC GG]. The frequency of each of these in a given 
sequence would form the input vector to the above classifiers—for example, the 2-mer representation of AAC 
(if we use the order from above) would be [1 0 1 0 0 … 0]. We used k-mers of length 3, 5, and 8, and trained 
and evaluated each baseline with all three of these datasets. We chose these lengths since k-mers shorter than 3 
would not encode useful information, while k-mers greater than 8 would require more computational resources. 
Intermediate k-mer lengths (4, 6, and 7) were not included, because based on our preliminary investigation 
using logistic regression, using these k-mer lengths did not significantly contribute to improving the model’s 
performance relative to the selected lengths. Since including ambiguity codes as their own features made the 
number of features much higher and typically decreased accuracy, we randomly assigned the ambiguity codes 
to be one of the possible nucleotide bases. For example, ‘N’ was turned into a random pick from {A,T,C,G}. The 
results of the most accurate model from each model type are presented in Table 1. The best baseline test result, 
with no noise added to the test set, was achieved by logistic regression trained on k-mers of length 8. The full 
tables of results, which show all of the models and hyperparameters we evaluated, are available in the GitHub 
repository.

In the wild, a small number of errors naturally occur in the PCR amplification and sequencing process, 
resulting in extra variation between sequences within a species. Given that the reference databases already 
contain sequences obtained through this process, they inherently include these natural errors and variations. 
To further simulate challenging real-world conditions and ensure robustness, we tested different levels of added 
noise for the training and test sets. Discovering an appropriate amount of noise to add to the training set helped 
prevent overfitting, making the models better generalize to new data. Following Flück et al.4 and Busia et al.16, for 
training we used a 5% mutation rate, added between 0 and 2 bases, and removed between 0 and 2 bases for each 
sequence. For testing, we used a 2% mutation rate and a single insertion and deletion for each sequence. We refer 
to this as noise level 1. We also added noise level 2, which doubled the noise level 1 with a 10% mutation rate, 
between 0 and 4 insertions, and between 0 and 4 deletions for the training set. The test set noise was also doubled 
at this level, with a 4% mutation rate and 2 insertions and 2 deletions per sequence. We also included evaluations 
at noise level 0, where no mutations, insertions, or deletions were performed on any training or test sequences.
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For the CNN, we saw that deeper models were not only less interpretable but less accurate, as shown in Fig. 3. 
For the skip connection, our validation data showed us that a latent weight of 0.7 performed almost equally as 
well as a latent weight of 1, and that weights between 0.7 and 1 actually performed better than a latent weight of 
1. Given that lower latent weight is more interpretable (discussed more below), we chose a latent weight of 0.7. 
The optimal hyperparameters we found for the CNN and ProtoPNet are available in Supplementary Tables S1 
and S2, respectively.

We also tested transformer models with 1, 2, and 3 multi-headed self-attention layers to assess whether 
attention-based models could serve as a strong backbone. Specifically, we trained and evaluated these transformers 
using the same dataset as our CNN classifiers. As shown in Fig. 3, the transformers did not outperform the CNNs 
in terms of test accuracy, with deeper transformers performing much worse than the 1-layer transformer and the 
CNNs. This is likely due to the greater complexity of transformers, which tend to overfit more severely compared 
to CNNs. This may also reflect the nature of eDNA classification, where short- to medium-term context may be 
more useful for species identification, while long-term dependencies have less impact. CNNs are better suited 
for capturing these shorter-range patterns, making them more effective for this task compared to transformers, 
which excel at modeling long-range interactions but may not offer an advantage in this context. Therefore, in this 
work, we used a CNN backbone for creating our ProtoPNet.

While the baseline results are presented in Table 1, the neural network results are presented in Table 2. Our 
models improve upon the previous work from Flück et al.4, and we also present high baseline accuracies using 
k-mer lengths of 5 and 8. When trained with noise but tested without noise, our ProtoPNet, which was built on 
top of our CNN, not only adds interpretability but also improves on the base CNN’s performance. The fact that 
our ProtoPNet not only matched but even sometimes surpassed the accuracy of the black-box CNN on which 
it is based demonstrates that adding interpretability does not come at the expense of accuracy. We found that 
every one of the baseline models achieved higher accuracy when trained on data with no added noise than when 
trained on data with high added noise. In contrast to the simpler baseline models, the more complex CNN and 
ProtoPNet performed better when trained with noise, rather than when trained without noise. In conjunction 
with the findings from Fig. 3, this shows that complicated models can overfit and perform more poorly without 
adding noise to augment the data. For the CNN and ProtoPNet, adding noise aids in reducing this overfitting 

Test Noise Level (Trained on Noise = 1) 0 0 1 1 2 2

Method Test Acc Test F1 Test Acc Test F1 Test Acc Test F1

Logistic regression
k-mer = 5 95.43 ± 0.00 0.936 ± 0.00 93.14 ± 0.00 0.910 ± 0.00 86.86 ± 0.00 0.833 ± 0.00

SVM
k-mer = 5 95.43 ± 0.00 0.936 ± 0.00 92.57 ± 0.00 0.900 ± 0.000 86.86 ± 0.00 0.820 ± 0.00

Naïve Bayes
k-mer = 5 93.71 ± 0.00 0.922 ± 0.00 91.43 ± 0.00 0.890 ± 0.00 86.86 ± 0.00 0.825 ± 0.00

1-nearest neighbor
k-mer = 5 94.29 ± 0.00 0.929 ± 0.00 89.14 ± 0.00 0.861 ± 0.00 79.43 ± 0.00 0.760 ± 0.00

200-Tree RF
k-mer = 5 95.81 ± 0.33 0.943 ± 0.37 91.81 ± 0.33 0.897 ± 0.69 83.81 ± 1.44 0.791 ± 0.97

XGBoost portion = 0.2 k-mer = 5 94.67 ± 0.66 0.929 ± 0.72 87.24 ± 0.33 0.837 ± 0.74 76.57 ± 1.51 0.711 ± 1.85

Decision Tree
k-mer = 5 69.52 ± 1.75 0.636 ± 1.54 44.00 ± 1.51 0.373 ± 1.98 33.15 ± 2.06 0.274 ± 2.19

Logistic regression
k-mer = 8 96.57 ± 0.00 0.953 ± 0.00 91.43 ± 0.00 0.888 ± 0.00 86.29 ± 0.00 0.8170 ± 0.00

SVM
k-mer = 8 95.43 ± 0.00 0.937 ± 0.00 87.43 ± 0.00 0.838 ± 0.00 72.57 ± 0.00 0.696 ± 0.00

Naïve Bayes
k-mer = 8 95.43 ± 0.00 0.939 ± 0.00 90.29 ± 0.00 0.883 ± 0.00 87.43 ± 0.00 0.838 ± 0.00

1-nearest neighbor
k-mer = 8 93.71 ± 0.00 0.916 ± 0.00 75.43 ± 0.00 0.739 ± 0.00 60.57 ± 0.00 0.594 ± 0.00

200-Tree RF
k-mer = 8 95.43 ± 0.57 0.938 ± 0.87 89.52 ± 2.38 0.869 ± 2.38 82.86 ± 0.57 0.780 ± 0.95

XGBoost portion = 0.6 k-mer = 8 88.19 ± 0.66 0.851 ± 0.63 67.62 ± 0.87 0.626 ± 1.19 59.05 ± 3.15 0.531 ± 4.10

Decision Tree
k-mer = 8 77.15 ± 1.51 0.720 ± 1.26 52.95 ± 1.44 0.475 ± 1.22 40.38 ± 1.19 0.348 ± 1.17

Table 1.  The best baseline model accuracies and F1 scores on test sets with different levels of noise. Since the 
baseline models that achieved the best accuracies for test noise levels 0 and 1 were trained on training noise 
level 1, the results that we show here were all models trained on training noise level 1. The hyperparameters 
shown are those that produced the highest test accuracy at the given noise level for each model type. K-mer 
lengths 5 and 8 both produced high accuracies, while k-mer length 3 produced lower accuracies and is not 
shown in this table. ± indicates standard deviation for n >= 3 runs. The full lists of baseline results, including 
results when trained on all of the hyperparameters we tried, as well as other training noise levels, are available 
in the GitHub repository.
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Test noise level Training noise level
Flück
et. al Best baseline Our updated CNN Our transformer Our ProtoPNet latent = 0.7 Our ProtoPNet latent = 1

Accuracy on different noise levels

0 0 84.38 ± 1.19 96.57 ± 0.00 89.33 ± 0.71 83.77 ± 1.38 87.54 ± 0.76 89.94 ± 1.18

0 1 90.10 ± 0.87 96.57 ± 0.00 94.48 ± 0.97 87.77 ± 0.77 95.31 ± 0.23 95.66 ± 0.46

0 2 89.33 ± 1.32 93.14 ± 0.00 94.10 ± 2.69 90.97 ± 0.48 94.63 ± 0.46 95.66 ± 0.28

1 0 26.10 ± 2.31 96.00 ± 0.00 50.86 ± 5.38 20.11 ± 6.12 41.37 ± 2.57 61.71 ± 0.96

1 1 80.76 ± 1.19 93.14 ± 0.00 92.95 ± 0.27 79.31 ± 3.46 89.94 ± 1.00 91.66 ± 0.78

1 2 80.76 ± 0.87 92.00 ± 0.00 94.29 ± 1.23 79.77 ± 4.07 88.57 ± 1.77 90.74 ± 0.56

2 0 12.00 ± 0.57 92.57 ± 0.00 31.43 ± 3.36 6.97 ± 1.30 40.91 ± 2.93 47.31 ± 4.68

2 1 60.57 ± 4.98 88.57 ± 0.00 87.43 ± 0.00 61.94 ± 2.70 86.74 ± 1.32 90.51 ± 1.12

2 2 64.38 ± 2.16 81.14 ± 0.00 90.86 ± 0.47 67.77 ± 1.32 85.37 ± 0.78 88.00 ± 1.20

F1 on different noise levels

0 0 0.800 ± 0.01 0.950 ± 0.00 0.868 ± 0.02 0.796 ± 0.02 0.833 ± 0.01 0.895 ± 0.01

0 1 0.877 ± 0.01 0.953 ± 0.00 0.930 ± 0.01 0.843 ± 0.01 0.904 ± 0.00 0.915 ± 0.01

0 2 0.871 ± 0.01 0.915 ± 0.00 0.929 ± 0.00 0.882 ± 0.01 0.908 ± 0.00 0.910 ± 0.00

1 0 0.223 ± 0.03 0.942 ± 0.00 0.404 ± 0.03 0.163 ± 0.05 0.388 ± 0.01 0.653 ± 0.04

1 1 0.771 ± 0.02 0.910 ± 0.00 0.900 ± 0.01 0.754 ± 0.04 0.839 ± 0.00 0.860 ± 0.01

1 2 0.775 ± 0.01 0.896 ± 0.00 0.923 ± 0.02 0.754 ± 0.05 0.829 ± 0.00 0.839 ± 0.01

2 0 0.087 ± 0.01 0.904 ± 0.00 0.247 ± 0.03 0.046 ± 0.01 0.428 ± 0.03 0.566 ± 0.07

2 1 0.532 ± 0.05 0.838 ± 0.00 0.860 ± 0.02 0.563 ± 0.03 0.795 ± 0.02 0.764 ± 0.02

2 2 0.576 ± 0.02 0.790 ± 0.00 0.893 ± 0.02 0.619 ± 0.02 0.777 ± 0.02 0.767 ± 0.03

Table 2.  Neural network accuracies and F1 scores on test sets for the different noise levels. The baseline 
models performed worse when trained on high noise than no noise, while the CNNs, transformers, and 
ProtoPNets were the opposite. This shows that additional noise helps mitigate overfitting for CNNs, 
transformers, and ProtoPNets. The majority of the best baseline models were produced by logistic regression 
models. Baseline models were trained on k-mer = 3, 5, and 8. Offline augmentation was used for the baselines 
and Flück et. al4., while online augmentation was used for our CNN and ProtoPNet. Accuracies for Flück et. al. 
differ from their paper due to a lack of a binarization threshold. ± indicates standard deviation for n = 3 runs.

 

Fig. 3.  Test accuracies for our updated CNN models trained on noise level 1 and tested on noise level 0. This 
illustrates that a single-layer CNN achieved accuracy that was similar to CNNs with two, three, and four layers. 
Deeper CNNs required more computation and were less interpretable, which is why we chose a single-layer 
CNN. Error bars are standard deviation for n = 5 runs. The output dimension of every layer is 512.
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and improves performance, meaning that these models are reliable options for situations where sequencing 
errors are common.

Hyperparameter analysis
It is possible to change a single parameter in the ProtoPNet while freezing the rest and observing the change in 
results. This type of study was performed for all the hyperparameters, but this section shows two in particular: 
prototype length and latent weight. When we were first developing the ProtoPNet, we found that the optimal 
prototype length was close to the length of the latent representation. However, as we modified the other 
hyperparameters and achieved higher accuracies, we found that the optimal prototype length became much 
shorter. For the final set of hyperparameters based on validation data, the best prototype length was 5. Figure 4 
shows that for the test data, the optimal prototype length was 3.

A primary novel contribution of this work is comparing the prototypes not only to the latent representation, 
but also to the raw input. The combination of both aspects is useful because each position of the latent 
representation captures context around the two corresponding bases, while the raw input does not consider such 
context. A latent weight of 0 makes prototype comparisons completely comprehensible, as the prediction is only 
based on the comparison of the prototypes to the raw input. However, it sacrifices performance since this direct 
comparison cannot capture any context around a given subsequence. A latent weight of 1 makes it impossible 
for a layperson to readily understand why a decision is made. This is because a model with a latent weight of 1 
compares the prototypes exclusively with the incomprehensible latent representation of the input produced by 
the CNN backbone. Unexpectedly, the best accuracies were not produced by models that used a latent weight of 
1; the best latent weight was 0.7 on the validation set and 0.8 on the test set. A model using a latent weight as low 
as 0.5 achieved higher accuracy than a model using a latent weight of 1. As shown in Fig. 5, decreasing reliance 
on convolutional layers not only increases interpretability, but increases accuracy as long as the latent weight 
does not fall below 0.5.

Visualizations
Visualizing the prototypes learned in the ProtoPNet is important, as it allows humans to extract meaningful 
insights from prototypes, identify unhelpful prototypes that are based on spurious correlations, and see why 
the model makes the predictions it does. We will first show how the prototypes are used to make a prediction 
in Fig. 6. Given a randomly selected sequence from our test set, Fig. 6 shows why the model predicts that the 
sequence belongs to the species Gymnotus anguillaris. Rows a—c show the three prototypes for Gymnotus 

Fig. 4.  Test accuracies of ProtoPNet models with varying prototype lengths, at 0.7 latent weight. The best 
prototype lengths were short. The test results here show that the best prototype length would be 3, though 
we chose a prototype length of 5 based on the validation results. The ProtoPNet models here were trained on 
noise level 1 and tested on noise level 0. Note that the y-axis ranges from 84 to 98% accuracy for purposes 
of comparison. Error bars are standard deviation for n = 5 runs. The fact that the ideal length based on the 
validation and the test set were similar shows that the validation set had good generalizability.
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anguillaris. Each of these prototypes is compared against the sequence (as well as the convolved sequence, as 
determined by the latent weight). This produces three comparison scores, each of which is multiplied by its 
respective weight in the classification layer. The results are summed for each class, and the class with the highest 
sum is chosen as the prediction. In rows d—f we can see the prototypes for the species Japigny kirschbaum. The 
sum of the comparison scores for its three prototypes multiplied by their last layer weights is lower than that 
for Gymnotus anguillaris, which is why Japigny kirschbaum is not the predicted class.

To better understand our prototypes, we can run a sequence through the model and look at all of the most 
activated prototypes, regardless of the class to which they contribute. In Fig. 7, we can see that the two most 
activated prototypes for a given sequence of Cyphocharax gouldingi have near maximal similarity values. These 
prototypes have exact matches in the original input sequence, as shown in the figure.Since the two most activated 
prototypes are from the correct class, they are well-formed and meaningful. Similarly, the matched subsequence 
of the third-ranked prototype, though from an incorrect class, appears visually identical to the prototype. 
However, it has an activation lower than the maximum possible value (which is 1) because the context around 
this subsequence is a poorer match for the prototype than the first two cases, and this comparison includes a 
non-zero latent weight. If the latent weight had been 0, all three maximum activations would have been 1.00. As 
we look at prototypes with lower maximum activations, the differences between the prototypes and the matched 
subsequences become larger.

Visualization is also useful for comparing the interpretability resulting from different latent weights. In Fig. 8, 
we examine the three test sequences on which a given prototype activates most highly. Note that the prototypes 
for different latent weights differ because the prototypes for each latent weight come from different models. 
Figure 8 shows that, with a latent weight of 0, each prototype matched perfectly to its target species, but also 
matched perfectly to several other species. This means that the model did a poor job of learning prototypes 
that were discriminative between classes, likely because the model could not consider the context around these 
subsequences. This explains the reason why models with lower latent weights achieve lower accuracies in Fig. 4. 
On the other hand, with a latent weight of 1, we see more base-pair mismatches between each prototype and 
its most similar test subsequences. This is because the model is not obligated to make any direct comparison 
between the input and prototype base pairs when the latent weight is 1. An intermediate latent weight generally 

Fig. 5.  Test accuracies from ProtoPNet models trained at different latent weights. These models used prototype 
length 5, and were trained on noise level 1 and tested on noise level 0. This shows that slightly lowering the 
reliance on the convolved output actually increases accuracy. For latent weights lower than 0.5, the higher the 
reliance on the convolved input, the better the test accuracy. However, for latent weights above 0.5, the test 
accuracies were within 1% of each other. Choosing a lower latent weight makes decisions more interpretable, 
so we wanted to choose the lowest latent weight without sacrificing significant accuracy. We selected a latent 
weight of 0.7 based on the validation data, but the test results here show that the latent weight could have been 
lowered to as low as 0.5 without a significant penalty to accuracy. Note that the y-axis spans from 88 to 97% 
accuracy for purposes of comparison. Error bars are standard deviation for n = 5 runs.
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Fig. 7.  The most activated prototypes from across all classes for a given test sequence. This example shows that 
the class has two well-formed prototypes, since they both activate nearly perfectly and are the most activated 
prototypes out of all of the prototypes. The third-most activated prototype is from a different class. Although it 
visually matches the raw subsequence perfectly, it achieves a slightly lower maximum activation than the other 
two since the unseen latent component reduces its activation.

 

Fig. 6.  The reasoning process for a test sequence; how prototypes produce a comparison score and contribute 
to the weighted sum to create a score for each class. There are three prototypes per class. The prototypes 
in rows a-c are from the class Gymnotus anguillaris and contribute to the score for that class, and the three 
prototypes from rows d-f are from class Japigny kirschbaum and contribute to the score for that class. Since the 
score for Gymnotus anguillaris is the highest of any class, the model predicts that class as the species.
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provides better alignment between each prototype and its most similar test subsequences than a latent weight 
of 1.

Discussion
In this section, we reflect on the differences between DNA and image classification and explain why the novel skip 
connection in this paper benefits interpretability. We discuss limitations of our model, compare our approach 
to previous work, and talk about challenges specific to our dataset. Finally, we mention areas of possible future 
work and summarize our results.

This work faced interesting challenges in terms of visualization and interpretability within the domain of 
DNA classification. In the original paper, ProtoPNet was used as an image classifier for birds. Prototypes were 
easily visualizable by any observer, as they often pictured an orange beak, a pair of skinny legs, or a distinctive 
wing pattern. In the domain of DNA, our prototypes can still be visualized, but their information cannot be 
assessed as easily. While it is easy for a layman to intuitively recognize distinctive parts of images of birds, that 
is not the case for DNA. Thus, by learning prototypes, our model actually generates a form of new knowledge in 
discovering the most distinctive parts of DNA. While these prototypes may be more difficult to understand than 
image-based prototypes, this information could be used for in-depth research on DNA in novel applications.

This work also introduces a novel mechanism to connect the raw input directly to latent prototypes, addressing 
the key reason why the ProtoPNet is not entirely interpretable. The benefit of using latent representations is that 
a CNN can learn to be invariant to variations that are common within a species. For example, if a mutation in 
the k-th base pair is common within a species, a CNN may learn that any nucleotide at that position is equally 

Fig. 8.  The three closest test subsequences from any class to a given prototype sequence. X represents a base 
mismatch between the visualized prototype and the raw test sequence. As shown in the figure, at a latent 
weight of 0, each prototype matches perfectly with the closest test subsequences, but those test subsequences 
often belong to incorrect classes. On the other hand, at a higher latent weight, there are more base-pair 
mismatches between a prototype and its most similar test subsequences, but those test subsequences are more 
likely from the same class as the corresponding prototype. This also explains why higher latent weights produce 
higher accuracies, since they learn prototypes that better capture the most discriminative features of their 
assigned classes.
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acceptable and should not impact the overall classification or prediction. Matching using raw input sequences 
alone does not have this capacity; it would produce a lower similarity score for individuals with some mutated 
base pairs, and would produce overly specific representations that fail to generalize across individuals within the 
same species. This leads to overfitting because the model learns to rely on exact sequence matches, including rare 
or insignificant variations, rather than capturing broader, biologically relevant patterns. The downside of using 
the latent representation is that any use of a multi-layer neural network poses a challenge to interpretability since 
it can perform complex non-linear transformations of an input. By providing a way of relying less on the latent 
representation of the input, we put humans in control of the balance between interpretability and accuracy. For 
our application, we found that the relationship was not linear; decreasing the latent weight by a small amount 
actually increased the accuracy. Based on evaluation on our validation data, we found that we could reduce the 
latent weight to as low as 0.7 and still achieve accuracy similar to results when using a latent weight of 1. Test 
data showed that we could have lowered this number even further. In another domain, it could be possible to 
bring the latent weight even lower while achieving the same accuracy. Adding this flexibility made it so that our 
framework is applicable to a variety of applications in which both model interpretability and accuracy can be 
maximized.

Using our model for species analysis has several limitations. While the eDNA metabarcoding process itself 
is a sensitive and efficient method for detecting and assessing biodiversity, it has limitations when used alone 
for quantifying absolute abundance. Environmental factors can affect eDNA degradation rates, and eDNA can 
be transported in different ways, making time and location information less reliable. Among other challenges, 
it also requires a reference database to exist (for comparison or for model training), which may have errors or 
be incomplete17. Another limitation is that our model cannot be used to detect the presence of species that 
are not already in the training set (i.e., the unseen species). Recent work has addressed this issue with various 
approaches. For example, Zito et al.18 used a non-parametric Bayesian approach to detecting new species at each 
taxonomic level from DNA barcodes. Impiö and Raitoharju19proposed a hybrid approach that integrates DNA 
barcoding and image-based monitoring to detect outlier species. Nanni et. al20. proposed an ensemble approach 
that integrates neural networks with support vector machines (SVM), which can assign known samples to 
specific species and grouping unknown ones at the genus level using both images and DNA barcodes. Using a 
similar technique, Nanni et al.21 developed a hybrid neural network-SVM model for identifying known insects 
while grouping unknown insects at the genus level. In future work, we plan to incorporate the ability to detect 
novel species into our model.

We used several sequences from the NCBI GenBank, a database distinct from our dataset, to further validate 
our learned prototypes. Since environmental factors can lead to degradation in eDNA readings, DNA drawn 
directly from the tissue of target species is considered the gold standard for confirming the biological validity 
of DNA classification models. We found that prototypes from our model produced strong Smith-Waterman 
alignment scores across three rare species with samples in the NCBI GenBank – Guianacara geayi (accession 
LC069581.1), Cichla ocellaris (accession LC069581.1), and Apteronotus albifrons (accession U33639.1). In 
particular, for each of these samples, at least one prototype of the correct class produced an alignment score 
greater than the average alignment of prototypes from other species. This validates that our model – trained 
using eDNA – has learned biologically valid prototypes that align well with the DNA drawn directly from 
individuals of the target species.

The success of our model for DNA classification came from a shallow architecture and small prototypes. Both 
our base model and the model developed by Flück et al.4 used a shallow depth of one or two convolutional layers. 
Unlike Flück et al., we used only one fully-connected layer, rather than two or three. These findings suggest that 
deep, complex models are not necessary for classifying DNA sequences. The idea of a small part of the DNA 
being able to classify the entire sequence has been explored before. Busia et al.16 experimented with different 
read lengths, meaning that they tried to classify smaller sections of sequences, instead of looking at the entire 
sequences. They found that classifying sequences of length 50 was just as effective as classifying sections of length 
250. Their findings support the idea that small sections of the DNA hold the key to differentiating species.

In our experiments, we adjusted the prototype length to prevent both overfitting and underfitting. We found 
that a model with shorter prototypes tend to perform better, as shown in Fig. 5. This is because increasing the 
prototype length could lead to overfitting, as the model is compelled to capture more details from the specific 
training sequence the prototype is derived from, even if those details are biologically irrelevant. While longer 
prototypes may improve precision by incorporating more information, they also tend to reduce recall by 
becoming too specific and failing to generalize across variations. This tradeoff between precision and recall likely 
contributes to the observed reduction in test accuracy with longer prototypes. On the other hand, prototypes 
must still be long enough to effectively discriminate between classes and capture their unique characteristics.

One distinctive challenge we encountered was the small dataset we used to train the model—there were only 
1.86 sequences per class on average, before processing. Although Dully et al.22 used a random forest instead of a 
neural network, they also experimented with datasets with few sequences per class. They found that their model 
achieved a similar performance when trained on the entire dataset (more than 12,500 sequences per species) 
as when trained on the challenging dataset (with only 50 sequences per species). They also found that accuracy 
did not change when the dataset was balanced or unbalanced. Similarly, they saw that the number of species 
being classified did not affect the accuracy. This is starkly different from most machine learning applications, 
where more classes, fewer data points, and an unbalanced dataset makes for a more difficult problem. Our work 
contributes to the theory that these supposedly difficult datasets are tractable for eDNA classification. To build 
a dataset, one could use synthetic gene fragments. Kronenberger et al.23 used solid-phase DNA synthesis and 
DNA assembly to create artificial DNA sequences, which improved accuracy. Using synthetic data could avoid 
throwing away much of a dataset when enforcing a minimum number of examples per class.
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Hase et al.24 tackled the problem of predicting the taxonomy of images, in addition to predicting the class 
alone. Similarly, Busia et al.16 was able to directly predict the genus, family, and order, in addition to the species. 
Although Flück et al.4 found difficulty doing that with this dataset, there are many methods that could be used 
to achieve that goal other than extrapolating that information from the species, such as separating out each 
classification into its own model.

The paper to which we compare our results, Flück et al.4, included training and evaluation on uncleaned 
data—sequences with tags and primers (base pair sequences added during the sequencing process) still attached, 
and with reverse complements not added. Coming out of the sequencer, DNA sequences will have tags and 
primers, and may be forward or backward reads. In this work, the tag is 17 bases long, and the primer is 20 bases 
long. The format of raw sequences is < tag > < forward primer > < original sequence > < reverse complement of 
reverse primer > < reversed tag >. Because of the presence of these extra bases, we can preprocess eDNA data to 
remove everything but the actual relevant sequence. Flück et al. tried creating a model using raw data without 
preprocessing, with the idea that the model would learn to ignore all but the relevant bases in the sequence, and 
preprocessing would not be necessary. They achieved 2% lower accuracy for raw data than for preprocessed data. 
Although this accuracy drop is small, simple preprocessing (removing the tags and primers, and adding reverse 
complements) takes a negligible amount of time. For this reason, we trained and evaluated only on preprocessed 
data in order to achieve the highest possible accuracy. Additionally, Flück et al. focused on minimizing false 
positives, whereas our approach did not prioritize this aspect. In particular, they incorporated a 0.9 binarization 
threshold into their approach, where the model would refrain from making predictions for any sequence about 
which it was less than 90% confident. The choice to use or not use a binarization threshold would depend on 
whether a model is being used to search for rare and invasive species, or if it is being used to classify known 
species with high confidence and accuracy.

There are many variations of the ProtoPNet that could be used to extend this work. Wang et al.25 created the 
Transparent Embedding Space Network (TesNet), which has a standardized latent space in which prototypes are 
basis vectors that are close to orthogonal and exist within a hypersphere. Another avenue is to use the ideas of 
Nauta et al.26 and replace the fully-connected layer with a decision tree, where each node in the tree is associated 
with a particular prototype, and the classes are the leaf nodes. This change creates a global classifier that shows 
explanations for the model as a whole. Rymarczyk et al.27 allowed prototypes to be shared among multiple classes 
in ProtoPShare, and Rymarczyk et al.28 also integrated this sharing process into the training stage in ProtoPool. 
Prototype visualization could be improved with visual-attribute explanations as performed by Nauta et al.29, or 
by citing multiple training inputs as performed by Ma et al.30.

Very recently, advances in large language models (LLMs) have spurred interest in their application to 
DNA sequence classification. LLMs, typically used in natural language processing tasks, have been adapted 
for genomic sequences by treating DNA as a form of “language.” In particular, several models inspired by 
LLMs31–33 have been explored for DNA sequence classification tasks, although the application of LLMs or gLMs 
(genomic language models)34,35 remains limited. Many focus on synthetic sequence generations36–38, and are 
trained on entire genomes to infer biological functions39,40, instead of being trained on short metabarcoding 
sequences for taxonomic classification as was done in this study. While LLMs trained on DNA sequences show 
promise, their performance has been mixed, particularly when they are not fine-tuned for domain-specific 
applications32. Following the work by Mourad and Batut33, we fine-tuned a pre-trained genetic LLM by adding 
a linear classification head over its hidden states to adapt it for our species classification task. With this setup, 
we observed a maximum accuracy of 75.4% when both training and test data had no noise (level 0), with lower 
accuracies in all other noise settings. This result highlights the limitation of using LLMs for tasks with relatively 
small datasets, as is the case in our study, and suggests that LLMs require extensive fine-tuning on larger datasets 
in order to outperform traditional methods.

To summarize, we were first able to make a CNN that was 94.48% accurate on the test set, surpassing the 
accuracy of previous work. We then used this network to produce a latent space for a ProtoPNet, creating the 
first adaptation of the ProtoPNet to DNA sequence data. We introduced a novel method of incorporating the 
raw input in order to create more intuitive prototypes and predictions, rather than a traditional ProtoPNet which 
reasons only using latent representations. This interpretable model performed better than the non-interpretable 
models, achieving over 95% test accuracy when trained at noise level 1 and tested with no noise. This aids in 
dispelling the notion that interpretability comes at the price of accuracy. Unlike other work previously done 
on eDNA, this model explicitly learns prototypes, which represent short sequences of nucleotide bases that 
characterize each species. Prototypes can then be visualized to evaluate model performance and glean insights. 
Additionally, we performed this work on a small, challenging dataset of fish DNA sequences from a diverse 
ecosystem. In the big picture, our work is beneficial for conservation efforts through ecosystem monitoring, as 
well as furthering eDNA research by improving the speed and insights of species classification.

Data availability
The data used in this paper was obtained from Flück et al.4, who assembled the dataset based on sequences col-
lected in other works42–48. Specifically, partial data used in this study can be downloaded from ​h​t​t​p​s​:​/​/​d​a​t​a​d​r​y​a​
d​.​o​r​g​/​d​o​w​n​l​o​a​d​s​/​f​i​l​e​_​s​t​r​e​a​m​/​1​3​8​6​0​​​​ and ​h​t​t​p​s​:​​/​/​d​a​t​a​​d​r​y​a​d​.​​o​r​g​/​d​o​​w​n​l​o​a​​d​s​/​f​i​l​​e​_​s​t​r​e​​a​m​/​3​6​9​​5​3​7​4. Complete data 
can be obtained by request from the corresponding authors of Flück et al.4, Benjamin Flück (benjamin.flueck@
usys.ethz.ch) and Loic Pellissier (loic.pellissier@usys.ethz.ch). This data is covered under Creative Commons 
4.0.

Code availability
The code produced in this study for model training, analysis, and visualization, as well as the logs of intermedi-
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ate and final results, is available in our eDNA GitHub repository, https://github.com/SamWaggoner/eDNA.
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