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Billions of IoT devices increasingly function as gateways to cloud infrastructures, making them an 
inevitable target of cyber threats because of the limited resources and low processing capabilities 
of IoT devices. This paper proposes a lightweight decision tree-based intrusion detection framework 
suitable for real-time anomaly detection in a resource-constrained IoT environment. Finally, the 
model also makes use of a novel leaf-cut feature optimization strategy and tight adaptive cloud edge 
intelligence to achieve high accuracy while minimizing memory and computation demand. In terms 
of memory, they also use only 12.5 MB in it and evaluated on benchmark datasets including NSL-KDD 
and Bot-IoT, it gives an accuracy of 98.2% and 97.9%, respectively, and less than 1% false positives, 
thereby giving up to 6.8% accuracy over some traditional models such as SVM and Neural Networks 
and up to 78% less energy. It is deployed on Raspberry Pi nodes and can do real-time inference in less 
than 1 ms and 1,250 samples/sec. Due to the energy efficient, scalable, and interpretable architecture 
of the proposed solution, it can be implemented as a security solution for IoT use cases in Smart cities, 
industrial automation, health care, and autonomous vehicles.

The rapid growth of the Internet of Things (IoT) technology has transformed different areas of society, including 
healthcare, smart cities, and industrial automation1,2. As IoT is being rapidly deployed in critical sectors such as 
healthcare, smart cities, and transportation, the possibility of security breaches in resource-constrained devices 
can result in severe operational and safety risks. Research in optimization frameworks for IoT security has 
attracted much attention in the past couple of years because these frameworks have the possibility of improving 
the system robustness as well as the resource control3. IoT devices achieve their advancements through data 
collection and processing as well as data exchange capabilities on cloud-based and edge-computing platforms4. 
IoT devices have long-existing security issues because their connections have accelerated while resource-limited 
devices lack enough processing power and energy to apply reliable security measures5. Restrictions on IoT 
devices create significant cyber threat vulnerabilities because they expose networks to distributed denial-of-
service attacks, malware injections, and unauthorized data access events6. Figure 1 shows the different kind 
of security attacks on IoT devices in cloud enabled-environment. The current intrusion detection models for 
IoT security fail to establish premiere detection precision and usable computational requirements7. The high 
detection capabilities of traditional Support Vector Machines (SVMs) and neural networks limit their practical 
use on resource-restricted IoT devices since their computing costs remain too expensive8.

Implementing lightweight models results in compromised security because they exchange high accuracy 
detection with efficiency benefits9,10. The implementation of cloud-based security protocols suffers from delays 
and requires uninterrupted network connections since they do not suit actual time processes11. A framework 
that can detect anomalies efficiently in real-time needs to be developed since existing solutions lack both energy 
efficiency and lightweight design.

In Fig. 2, IoT devices, cloud infrastructure, and security elements are enclosed in this system to promote 
security to the gadgets, and secure communication within the IoT frameworks. Therefore, in the center of the 
architecture, IoT devices such as smart cameras, environmental sensors, access control systems, wearables and 
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other IoT gadgets are included and produce data constantly. These devices are prone to various forms of security 
threats and, thus, need protection measures. This centrally collected data is then relay the cloud infrastructure 
where there is a Data Processing Unit and Cloud Storage, for large-scale IoT data collection and management. 
To ensure that there is integrity and confidentiality of data relayed between the IoT devices and the cloud a data 
encryption procedure was incorporated into the architecture. Also, security measures including the multifactor 
authentication ensure the user and device’s access to the system by minimizing unauthorized invasions. The 
network structure is also designed to decentralize the network especially by having different segments of the 
network to reduce harm in case of some segment compromise. This segmentation also makes sure that if a 
section of the network is infected, the other parts will not be affected. Also, there are regular security audit 
checks aimed at assessing the security level, discovering the open weaknesses and check compliance with 

Fig. 2.  IoT-cloud system architecture with key security mechanisms for data protection.

 

Fig. 1.  Common cyber threats in cloud-based IoT systems.
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security standards. Within the cloud facilities, the data is processed and stored by taking the help of analytics as 
well as storage system so that it can be operated in real-time and kept archived for a longer time. This way, the 
architecture guarantees security at the device level, in communication, in the cloud, as well as systematic, and 
establishing the IoT security environment.

Despite improvements in intrusion detection, most existing solutions are either computationally expensive 
or are not sufficiently accurate, and any such models have not been verified on real IoT hardware in real time12,13. 
The paper addresses critical IoT security challenges such as resource limitations, cloud latency, inefficient threat 
identification, hybrid edge- cloud inefficiencies, accuracy-efficiency trade-offs, scalability, and IoT-specific 
attacks. The paper suggests a lightweight decision tree-based system that reduces memory footprint, facilitates 
real-time edge inference, and increases adaptability with incremental cloud-edge updates. For power efficiency, 
it provides effective anomaly detection along with federated learning and distributed threat intelligence that 
enable scaling on disparate IoT networks in order to suppress threats such as data spoofing, botnets, and protocol 
exploits.

Objectives
The research questions of this study are as follows: 

	1.	 To design a simple lightweight decision tree-based mechanism to improve on the conventional anomaly 
detection in IoT challenged environments.

	2.	 To minimize the computational and memory complexity to improve model accuracy, select the best features 
and construct the model architecture.

	3.	 To provide a framework with the ability to update the models with cloud analytics while maintaining edge 
processing capabilities.

	4.	 To further assess the proposed framework in terms of accuracy and time complexity as well as compare the 
performance of the state-of-art machine learning models on NSL-KDD and Bot-IoT datasets.

	5.	 To test the framework on real IoT devices in order to determine the feasibility of the proposed approach for 
real-time security use cases.

Contribution
The subject of this work is a new approach at providing security to IoT networks using a lightweight decision tree 
design; this comes with the following discoveries: 

	1.	 Optimized Decision Tree Model: There is therefore the use of a leaf-cut feature optimization in the suggested 
framework so that threats may be detected in real-time with consideration of the resources used14.

	2.	 Cloud-Based Threat Intelligence: It uses cloud-based analytics for updating the detection schemes which 
makes it possible to counter new threats in real-time15,16.

	3.	 Relative Memory Usage: The usage of memory is also much lesser (12.5-13.1 MB) with the proposed model 
and hence the energy requirements for running the algorithm are also less (0.45-0.48W)17.

	4.	 Performance Evaluation: It is to evaluate the proposed framework with six machine learning models, while 
NSL-KDD and Bot-IoT datasets are used and achievedan accuracy of 98.2% and 97.9% as well as 0.8-0.9% of 
false positive rate.

	5.	 Real-World Validation: A prototype with the given approach is implemented on Raspberry Pi nodes which 
sampled at 1250 samples per second with an inference latency of less than 1 millisecond.

Our proposed framework introduces multiple important innovations in IoT security that go beyond traditional 
decision tree approaches and feature optimization strategies. First, our Leaf-Cut Feature Optimization Strategy 
prunes decision tree nodes dynamically in real-time, with adjusted tree depth sounding not exceeding the costs 
of device memory and power processing, which replaces heavy computations saving 40 and up to 60% of costs 
with the same level of accuracy. Second, our Hybrid Cloud-Edge Intelligence Architecture allows for fast (<1ms) 
edge based threat detection using locally constrained cloud-based resources, always connecting a device to the 
cloud to update threat intelligence, and introduced an incremental learning approach rather than needing to 
fully retrain the model. Together, it allows for the correct balance of using local and cloud based resources 
appropriately. Finally, the framework Resource-Aware Dynamic Model Scaling constructs and inference scaling 
of the tree are aligned to resource constraints of the device, optimizes battery power for devices that are battery 
powered, uses device aware network conditions to optimize the feature set, and works in real time model 
compression without compromising accuracy. Overall, our proposed framework will allow for highly efficient, 
adaptive, and suitable for the dynamic and resource constrained efforts of IoT.

The rest of this paper is organized as follows: “Related work” section presents a discussion on existing 
IoT security solutions and their drawbacks. The outline of the proposed lightweight decision tree framework 
includes the description of the framework architecture, the feature selection step, and the migration strategy of 
the framework components from the cloud to the edge nodes in “Proposed framework” section. “Experimental 
setup” section describes the experiment details such as the data sets used in the study, the hardware setup used 
by the system, and the measurement indicators to be used for evaluation. “Results and discussion” section 
highlights a comparison with the current models for accuracy in terms of percentage as well as energy efficiency 
and time taken by the proposed framework for inference. In “Comparative analysis with recent advancements” 
section, I will provide the conclusion and future research improvements of the study. By resolving the security-
computational time-real-time dilemma in IoT, this research intends to offer a viable security framework that is 
energy efficient and less resource-consuming as a way of enhancing the security of the IoT environment.
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Related work
The increasing rate of with which Internet of Things applications is being adopted has posed security headwinds 
to IoT networks. The traditional security solutions do not meet the computation and real-time analysis that are 
required in the IoT environments. This section surveys current intrusion detection models for IoT security, 
distinguishes traditional security methods, considers methods in which cloud and edge computing can be 
applied, discusses decision tree-based methods and identifies research voids that will be addressed in this paper.

IDSs are very vital in securing connected IOT environments; the systems are charged with the responsibility 
of checking on the net traffic for any act of intrusion. Various intrusion detection systems for Iot networks are 
on the following: (i) Signature based, (ii) Anomaly based, and (iii) Hybrid18. They use pattern matching because 
they presuppose certain attacks but are unable to identify new emerging threats19. Anomaly based IDS on the 
other hand employs statistical models and machine learning techniques in order to detect what it considers as 
aborted from the norm, is therefore better placed in handling unknown attacks20. Nevertheless, the majority of 
anomaly-based systems have high rates of false positives21. Hybrid IDS uses the features from both wherein the 
known threats are easily detected based on the signature, whereas the other new attacks are detected based on 
the use of anomaly based detection22. The most conventionary approaches which have been applied in the use 
of IoT security include Support Vector Machine (SVMs), artificial neural networks, and rule-based systems23. 
However, these techniques involve different issues in concern to the computational complexity, rate of detection 
and flexibility of IoT environment24.

There are several types of machine learning algorithms that have been used in the IoT security with each 
having its strengths and weaknesses. SVMs are popular for classification in intrusion detecting due to their 
reliability but their large computational cost for training and classification which limits there usability in IoT 
devices25,26. To the same effect, other advanced ML techniques such as Neural Networks (NNs), including CNNs 
and RNNs, yield high attack detection accuracy for IoT but require massive resource consumption that scales 
unacceptable for edge IoT devices27,28. On the other hand, Rule Based Systems provides interpretable decisions 
but cannot handle dynamic cyber threats and it is tedious to develop or maintain large rule-based sets to address 
the IoT network requirements29,30. Comparing these models it can be seen that while deep learning and SVM 
based techniques offer high detection accuracy, they suffer from high computational cost which is more of a 
concern for implemention on IoT systems, thus making light weight effective ID models desirable31.

In order to mitigate the security threats that IoT issues come with, cloud security and edge security have been 
proposed. Cloud IDS use centralized models that allow processing large amounts of data for analysis and threat 
identification, achieving high accuracy and excellent scalability; however, their operation has certain drawbacks 
in terms of response time and complete reliance on the internet32,33, which makes them unsuitable for using IoT 
devices as sensors in real-time applications. subsequently, the edge computing based security models work closer 
to the IoT devices and therefore, offers low latency for real time threat detection34. There have been works that 
show the possibility of using lightweight IDS models at the edge for strengthening the security of IoT, but these 
solutions have to consider the restriction in usage of resources while maintaining the accuracy of detection35,36. 
To mitigate the above-mentioned disadvantages, a novel Edge–cloud security framework has recently been 
proposed where threat identification is performed at the edge and the subsequent analytical processing is shifted 
to the cloud for improved efficiency as well as scalability purposes37.

The applicability of decision tree-based models makes them significantly less computationally expensive, less 
opaque, and well-suited to real-time classification, as well as their low complexity38,39. Many past researchers 
have developed other more light-weight decision tree frameworks that reduce computational cost and still yield 
high detection results with feature selection and pruning improving efficiency40. To increase the performance 
of detection, more sophisticated techniques like the Random Forests and Gradient Boosting Machines (GBM) 
which utilize more than one decision tree in the model are used so as to enhance balance between accuracy and 
the time it takes to compute the result41. Moreover, combined IDS models using decision trees include anomaly 
detection methods with decision trees for increased capability in identifying emerging threats42. However, where 
the decision tree approaches work well, they need adaptive learning mechanisms to meet the dynamic and 
evolving nature of numerous threats in IoT networks43,44 New trend in IoT and edge-dependent optimization 
methods has showcased better energy and latency enhancements45. Some recent computational models that 
have been used to improve load balance and to reduce the computational delay include probabilistic cellular 
automata and state-transition-discrete Markov decision process frames46,47.

Existing intrusion detection techniques contain apparent solutions for this problem, they are showed to have 
flaws when they are deployed in real world IoT systems due to the high computational cost, high incidence of 
false alarms, and high latency48. The first of these is the problem of the computational complexity since many of 
the existing IDS models, especially those based on deep learning and sophisticated statistical analysis, require 
significantly more computational resources than can be provided by IoT devices at the edge of the network49,50. 
Moreover, most of the IDS frameworks do not have adaptive learning capability, thus they are unable to make 
real time change on their detection technique when new forms of cyber threats take place , thus making IoT 
networks prone to new and unknown attacks51. Another concern is the high false positive ratios which is a 
common problem in the case of anomaly-based techniques that often label normal traffic as a threat, hence 
leading to alert fatigue in the management of security threats52,53. However, latency problems that arise with 
cloud-based IDS make it impossible for their implementation for real time analysis for security since delay which 
is associated with centralized analysis is inconducive for serious IoT applications54. Finally, there is a research gap 
within IDS based on the fact that many of the present techniques and models are tested in simulated scenarios 
rather than running on IoT hardware, this as a result raises questions on their effectiveness and relevance in 
real-world situations55. To formulate a solution for these challenges, this paper introduces a lightweight decision 
tree framework that selects the appropriate feature set and adopts the cloud-edge computing model to realize 
real-time and low energy consumption and high accurate intrusion detection56. On this regards, the proposed 
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model strikes the right balance in terms of providing threat detection and at the same time being implementable 
on all the low-powered IOT devices3.

Proposed framework
The proposed framework presents a decision tree IDS that is tailored for lightened IoT networks because of its 
lightweight and low complexity. This makes the proposed framework useful for real-time threat detection while 
ensuring a high correct detection rate with insignificant extra load on the system. It involves feature selection, 
decision tree optimization, and cloud-edge integration that enables the IoT device to accurately identify threats 
and potential attacks on it and its surrounding network and ensure that it can continue running optimally.

The Intrusion Detection System (IDS) which is the focus of the paper has a decision tree at its center 
enabling it to be hardware-efficient, comprehensible, and expansible. Intrusion detection is one of the most 
suited applications that can benefit from decision trees because these algorithms essentially escalate the need 
for computational power and memory as discern, as has already been depicted over in the discussion above. 
Compared to many deep learning models, decision trees require a small amount of computations, and the 
classification of the threats does not take a lot of time, however, it does not seriously affect the performance 
of the IoT devices while applying security measures. The following are some of the strengths of the proposed 
lightweight decision tree framework: Several, They incorporate low computational complexity in that the models 
classify with simple comparisons hence requiring little computational power and memory. This paper also has 
high interpretability since its high frameworks make it easy for security analysts to follow the model and analyze 
the decision-making process. Additionally, it is moderately accurate, can process big volumes of data, and does 
not require retraining when the attacks’ features change. Another is that it is resilient allowing the framework to 
identify both known and unknown cyber threats due to defined patterns of criminal behaviors. To achieve these 
goals, the authors also use several optimization strategies that allow minimizing both computational and memory 
costs of the entire system while ensuring a high accuracy of the detection of botnet members. Feature pruning 
minimize the features required to be considered to enhance better processing and to solve the computational 
complexity of the model. The reviewed paper introduces the modification of the original decision tree pruning 
algorithm which is known as the leaf-cut optimization method that eliminates all unnecessary branches and 
minimizes the depth of the tree and the time for making an inference but does not decrease the accuracy of the 
classification. Also, it uses lightweight memory data storage structures in the model to facilitate low memory for 
efficient RAM during inference. Moreover, the proposed framework can learn in an incremental manner and 
can keep on updating the attack patterns without having to train from scratch; this would reduce computational 
expenses greatly. Therefore, through the application of these mechanisms, the designed lightweight decision tree 
model meets the real-time intrusion detection requirement without compromising the IoT device’s functionality 
hence proving to be the ideal security solution for resource-constrained IoT environments.

Feature selection and feature optimization are very important in enhancing the efficiency as well as the 
precision of IDS since in IoT situation computations resources are scarce. The advantage of such an approach is 
that not all of the captured data is used for analysis and hence the framework adopts the principle of using only 
the essential attributes when developing its threat classification models, thus enhancing efficiency in processing 
time, memory utilization, and power consumption. Extra features are dependent on noise, result in large models, 
and high false positive rate that affects IDS performance. As for the solution, the general feature selection process 
is divided into three steps in the given framework. First, linear correlation analysis is carried out to establish 
some relationship between features and to remove unnecessary attributes that do not help in the classification 
of patterns. Second, Recursive Feature Elimination (RFE) is used to progressively delete the least relevant 
features using feature ranking technique, after which, the performance of the model is checked to ascertain if 
substantial amount of information has been lost. Third, an Information Gain-Based Selection technique reduces 
the features which provide the most discriminant accuracy for classification, so all important parameters are put 
into consideration. By the same token, the enhancement and effectiveness of feature selection is complimented 
by the presence of the leaf-cut feature optimization mechanism used to remove the unproductive decision tree 
nodes as a tactic that reduces complexity in classification. This optimisation mechanism sums up the similar 
decisional paths, such that it minimizes the number of times the same decision has to be made and the classifier 
operates with the least and relevant features possible. Furthermore, feature complexity is reduced at leaf nodes 
so that only vital attributes for decision making are provided, making the computation process less complex yet 
accurate.

As previously stated, a significant drawback of the updated Naïve Bayes method computation is that the 
number of features is greatly reduced, which means that this will arise an issue of feature set size versus detection 
efficiency. Fewer features means the loss of some information which might negatively impact the effectiveness 
of the anomaly detection . To address this trade-off, the framework incorporates dynamic feature selection 
thresholds of which the selection is built with the real-time network topological configurations to allow only 
critical security features features like packet size, anomaly frequency, source-destination relationship, etc. Also, 
the importance of the features is periodically updated to match the emerging threats, and thus the IDS will 
be useful in the ever-changing environment. In this respect, the IDS proposed in this paper operates at high 
detection accuracy and efficiency, and therefore is a practical solution for IoT edge protection. To tackle with 
such changes, the herein proposed architecture of the framework utilizes cloud-edge to ensure that different IoT 
objects adapt to emerging patterns of attacks with convenience and with less computing resource demands. The 
decision tree model undergoes continuous cloud analytical update so as to cater with new and adapted threats. 
Cloud databases of threat intelligence data enable the implementations of new attack signatures and emerging 
cybersecurity threats, without the need for a constant retraining of the devices in the IoT layer. IoT devices can 
take advantage of state-of-the-art threat detection in an efficient manner thus being able to adapt by frequently 
checking and updating their model in the cloud with minimal resource consumption.
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To promote adaptability, another mechanism in the framework is designed to address new known threats 
to cybersecurity with little processing demand from IoT edge equipment. Combined with edge-based pre-
processing filters, threat features that are identified will be extracted directly from the incoming network 
traffic with only salient information forwarded to the cloud to reduce the usage of the network bandwidth. 
First, incremental learning enables IoT devices to periodically receive small updates of the most efficient model 
without requiring a complete retraining thus maintains the learning constant while the computational load is 
low. In addition, threat severity classification makes it possible to differentiate threats according to their level of 
seriousness in order to minimize non-critical alerts and the load on the edge at the same time as achieve high 
accuracy. This adaptive learning mechanism is useful to maintain IoT devices security although IoT devices do 
not have frequently access to a cloud connection which effectively increases the IoT devices’ independency. As 
a result, for IoT nodes and edge device, as well as, the cloud, the proposed framework applies security measures 
to prevent intercept and data tampering. AES-128 and other less secure encryption methods like Elliptic Curve 
Cryptography (ECC) are used to ensure the security of the transmitted data and at the same time they are power 
effective for IoT devices. Also, encryption protocols of exchanging keys are installed in this system so that no 
people can breach security and intercept the data being transferred. Moreover, multiple-factor authentication 
is integrated to vouch for the device’s authorisation before allowing it to download threat intelligence updates 
for ongoing security operations. Thus, the proposed framework is the enhancement of cloud-edge intelligence 
combining the adaptive learning mechanism which allows real-time, scalable, and efficient intrusion detection 
for the IoT environment for making fast and low-latency security decisions while keeping the computation load 
at the edge minimal.

The new proposal for the Light-Weight Decision Tree-Based IoT Security System which is described in Fig. 
3 is the enhancement of the real-time edge-level detection integrated with the cloud intelligence at this superior 
level, thus offering an effective IoT security solution. The goal of the framework is to achieve high detection 
accuracy and low false-positive rate at the same time with requirement of low memory and energy consumptions 
for the application in the IoT devices. This optimization and flexibility are likely to keep changing due to the fact 
that the system have to operate through different applications ranging from smart cities to industrial automation. 
Closely related to the previously mentioned utility, the first component of the framework is the edge-level 
intrusion detection that is aimed at the detection of threats in real-time with minimal delay. For this purpose, 
feature optimized decision tree is used for having fast and accurate classification results saving the processing 
time that is valuable in time sensitive applications like self driven cars and health monitoring systems. To sustain 
and enhance a constant running, it develops some efficient execution paradigms that lower the consumption 
of energy to minimize the resources of the battery operated devices. Explaining in further detail, the edge-level 
detection is accompanied by the threat intelligence module, which is in the cloud and is supported by analytics 
and real-time databases. The cloud resources help in the adaptive retraining of the model to be in a position 
to combat emerging new threats in cyberspace. The connection between the edge devices and the cloud and 
that of the devices with other devices is provided by the lightweight MQTT protocols accompanied by security 
measures that ensure data integrity and their protection against malicious parties. It not only leads to rapid 
threat detection in centralized location but also makes use of cloud for analysis and learning that makes the 
system more effective and reliable to secure modern IoT infrastructure.

Mathematical model for lightweight decision tree-based IDS in IoT security
The use of the proposed Lightweight Decision Tree-Based Intrusion Detection System (IDS) can be described 
mathematically with the help of probabilistic decision functions, feature selection mechanisms and cloud-edge 
optimization processes. In the below representation of the system, all the above stated factors are represented 

Fig. 3.  Proposed lightweight decision tree-based IoT security system framework.
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mathematically: The intrusion detection problem in IoT environments could be categorised into the classification 
problem where the target is to identify whether the coming-in traffic is of normal class (0) or an attack class (1). 
Here, let X = {x1, x2, . . . , xn } represent the features derived from the network traffic of IoT devices, and 
Y = {y1, y2, . . . , yn with yi ∈ {0, 1}} be the set of labels corresponding to the set of features. The objective of 
the problem entails finding a decision function f : X → Y  which assigns labels to feature vectors. It would be 
appropriate to define the decision function as follows:

	
f(X) = arg max

y
P (y | X)� (1)

where P (y | X) is the probability of an input data being in a given class.
A decision tree is a tree structure made of nodes and branches that split the data using the features according 

to certain conditions. It is particularly popular in classification problems because of its ability to analyze 
understandable and flexible formats of data. The decision tree function can be defined as:

	
D(X) =

n∑
i=1

wi · ϕi(X)� (2)

where wi is the weight of the decision nodes and ϕi(X) is the splitting function which defines how the data gets 
split at each node i. The splitting function is defined in the following way:

	
ϕi(X) =

{ 1, if Xj ≤ θi (left branch)
0, otherwise (right branch) � (3)

where Xj  is the j-th feature at node i, and θi is the split-point value at the node i. The data is divided into a 
number of subsets where the amount of uncertainty in the model decreases as decision splits through the levels 
of the tree. At the final stage of the process of classification, a decision is made on the probability of the belonging 
of an object to a certain class.

	
ŷ = arg max

y
P (y | D(X))� (4)

where ŷ renders the predicted class label. In this way, decision trees classify data in a clear and well-structured 
manner although they are still highly easily interpretable which makes them suitable for many practical 
applications.

In order to avoid overfitting and to maximize decision tree model performance we perform feature selection 
to only include the most important features into the model. Feature selection reduces such factor as noise, 
prevents overfitting, and improves the generalization capability of the model. In this work we use IG and GI to 
select features that are most informative in decision tree creation. Gain defines how much a given feature makes 
the overall uncertainty in classification lower. It measures how much information increases before and after the 
split based on a given feature and is formally described as;

	 IG(Xj) = H(Y ) − H(Y | Xj)� (5)

where H(Y ) stands for the entropy of the class labels before the split and is defined as:

	
H(Y ) = −

∑
c∈{0,1}

P (Y = c) log2 P (Y = c)� (6)

Since entropy measures the degree of purity, it describes the level of randomness in the data. A lower value 
of entropy signifies a more favourable distribution of classes which contributes towards the selection of good 
features. The conditional entropy is calculated as follows : H(Y | Xj)

	
H(Y | Xj) =

∑
v∈V

P (Xj = v)H(Y | Xj = v)� (7)

where V  stands for all the values possible for the feature Xj . This equation calculates the weighted sum of 
entropy values after the split that helps in determining if the particular feature will add maximum reduction of 
uncertainty. The feature with a higher IG(Xj) is regarded valuable for classification with more impact towards 
the decrease of entropy in the data set. Information gain is used and preferred in the decision tree for it selects 
the features that contribute most to accurate classification while still being comprehensible. This helps to keep 
the model’s computational complexity low, which is very important for such systems where feature selection is a 
key factor in optimizing a decision-making process.

The Gini Impurity or the Gini index is applied when constructing decision trees; it determines the chances 
of misclassification in the case if a class label is chosen randomly at certain node. The Gini Impurity test should 
provide a lower value because it means that the splitting of the data set with respect to that particular feature will 
cause less confusion as to its classification. The Gini impurity of an attribute tests Xj  is given by the following 
formula:
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GI(Xj) = 1 −

∑
c∈{0,1}

P (Y = c | Xj)2
� (8)

where, P (Y = c | Xj) refers to the probability of getting a particular class label from a certain feature. When 
the split results in higher purity of the child nodes, then a lower GI(Xj) is obtained and better classifications 
is achieved. However, by choosing features with the low value of GI(Xj), the decision tree aligns improved 
robustness of decision boundaries and the overall predictive accuracy. This is achieved through incorporation 
of both cloud-based learning updates and real-time detection at the edge of the IoT environment. In the latter 
case at time

	 t

, Decision Tree Model which is labeled Dt, is defined by the following equation:

	 Dt = Dt−1 + α · ∇L(Dt−1)� (9)

where α is the rate parameter to update the model weights and ∇L(Dt−1) is the audit of the loss function in 
terms of the newly observed attack patterns. This means that the will be able to change from one phase to another 
to meet the emerging threats optimally. To minimize the amount of computations at the edge, the cloud server 
sends only updates to the models, which are denoted here by:

	 ∆D = Dt − Dt−1� (10)

Thus, only the differences between the old and new models are transferred instead of the entire model, 
significantly reducing bandwidth consumption. On the edge level, pre-scheduled real-time detection is done 
through the latest decision tree model. We are given an incoming network data instance at time t as Xt, thus the 
class label at time t, yt can be defined as:

	 yt = Dt(Xt)� (11)

In case of an anomaly, an alert is raised and proper measures are taken to avoid other security threats. This cloud-
edge integration allow adaptability in the process so that the system remains secure from ever changing cyber 
threats, while at the same time allow quick decision making at the edge.

Model deployment is mainly focused on minimizing the computational load in the inference process on the 
IoT devices to ensure that this model is energy efficient. The total energy consumption E of the model is defined 
as the sum of the energy consumed at every iteration:

	
E =

N∑
i=1

Ci · Pi� (12)

which has been represented by Ci to refer to the computational cost of operation i, and Pi to refer to the power 
consumption per operation. There is optimization where the tree depth is minimized in order to reduce the 
computation time, skip the computations where no features are needed, as well as possible removal of all feature 
subsets but the most relevant ones to reduce power consumption. For such reasons it leads to optimized energy 
consumption:

	 Eoptimized < Etraditional� (13)

which enables the framework to be more lightweight and realizable for IoT devices that could be power and 
computationally constrained. The decision function is the last piece of the system that combines the features of 
real-time detection, adaptive learning update, and Edge-Cloud intelligence to improve the accuracy of a classifier 
while being computational efficient. The final classification decision is calculated by:

	
ŷ = arg max

y
P (y | Dt(X))� (14)

where Dt(X) is the latest decision tree at time t in order to make the model shift to new threats as time 
progresses. The probability function P (y | Dt(X)) quantifies the model’s belief of where the input under the 
current model update belongs to a certain class. If an external network address is anomalous, that is,

	 ŷ = 1� (15)

 Leaf-cut feature optimization strategy
The leaf-cut feature optimization method is a new pruning technique designed specifically for resource-
constrained IoT environments. Traditional pruning methods remove entire subtrees. In contrast, leaf-cut 
optimization is concerned with the optimization of an individual leaf node by removing repetitive evaluations 
of features, while correctly classifying the samples. Leaf-cut optimization proceeds based on the philosophy 
of redistributing the importance associated with various independent features at terminal nodes. Because 
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constructs will often have similar features with low contribution to the final decision, we can amalgamate these 
low-impact features into one highly discriminative feature. Below is the algorithm:

Algorithm 1.  Leaf-cut feature optimization.

A modified information gain metric that incorporates both local and global contributions is employed to 
compute the feature importance at each leaf, where:

	 I(f) = w1 × IGlocal(f) + w2 × IGglobal(f) + w3 × RC(f),

where IGlocal(f) refers to the information gain of feature f  at the current leaf, IGglobal(f) refers to the global 
information gain of feature f  across the tree, RC(f) represents the resource cost of evaluating feature f , and 
w1, w2, w3 are weights constrained by w1 + w2 + w3 = 1. The optimization threshold τ  is dynamically set via 
cross-validation on a portion of the training data:

	
τ = arg min

t

∑
(accuracy_loss(t) + λ × complexity_reduction(t)) ,

where λ is a regularization parameter that balances accuracy and model complexity in the leaf-cut optimization 
process. The complexity reduction is achieved along three dimensions: memory reduction from O(n × d) to 
O(n × d′), where d′ = d − |removed_features|; computational reduction, with the average evaluation time 
per sample reduced by |removed_features|

|F | × 100%; and finally, energy reduction, which is proportional to the 
reduction in feature evaluations.

Tight adaptive cloud-edge intelligence architecture
The tightly coupled adaptive cloud-edge intelligence works by bringing edge-based real-time detection and 
cloud-based model improvement into one seamless package. With IoT/Mobile systems in mind, the adaptive 
cloud-edge intelligence framework allows users to efficiently utilize their resources by combining cloud and 
edge to produce detections that continue to improve through continuous learning. The cloud-edge intelligence 
framework comprises four main components: edge intelligence module (EIM) which is responsible for detecting 
a threat close to home and acting on that information; cloud analytics engine (CAE) that derives large-scale 
patterns for optimizing cloud-based models; the adaptive synchronization protocol (ASP) that allows for the 
efficient propagation of model updates; and the Distributed Trust Intelligence Database (DTID), a common 
knowledge base that allows for collaborative threat intelligence capabilities to improve models continuously.

Edge intelligence module

Algorithm 2.  Edge intelligence processing.
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Cloud analytics engine

Algorithm 3.  Cloud analytics processing.

Adaptive synchronization protocol
The Adaptive Synchronization Protocol (ASP) is responsible for efficiently managing model updates from the 
cloud to the edge devices. Below is the logic used to implement the ASP:

Algorithm 4.  Adaptive synchronization.

Cloud-edge integration and performance optimization
The synergistic pair of leaf-cut optimization and adaptive cloud-edge intelligence provides optimal system 
performance. Reduction in update overhead is one key advantage, as the leaf-cut optimization will reduce the 
size of model updates. This adapted system will converge faster as simpler models will adapt more quickly to 
new patterns and the integrated approach will improve energy efficiency by reducing both computational energy 
and communication energy. Our integrated cloud-edge system has excellent performance on a number of values: 
under our adapted system, average memory footprint is reduced by 42% over standard decision trees; average 
inference time is reduced by an average of 38% per classification; update frequency is also adapted to prevalence 
dynamic ranging from 1 to 24 hours; and bandwidth has been reduced on average with 67% reduction on model 
synchronization overhead.

Proposed methodology
The flow chart of proposed methodology is depicted in Fig. 4 has the Lightweight Decision Tree-Based Intrusion 
Detection System (IDS) for IoT security combines real-time threat detection at the edge with adaptive learning 
through cloud integration. IoT sensors gather raw data from various settings such as smart cities, healthcare, and 
industrial automation to begin with. This data is analyzed through feature extraction where different parameters 
for example packet size, protocol type, source destination relationship among others are created. These features 
are then used to produce an optimal model that is used in the classification of threats through the Integrated IDS 
that employs a decision tree. This alleviated the working of the system by allowing for a lightweight model that 
can classify the traffic and tell normal or abnormal traffic in real time.

Scientific Reports |        2025 15:26009 10| https://doi.org/10.1038/s41598-025-09885-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


If there is anomaly, then local control and alarms are initiated to nullify the threat while the normal traffic 
gets forwarded to cloud server for further processing. The security alerts are checked on a timely basis and 
offer logs and countermeasures, with live and historical view of intrusion trends. On the other hand, the cloud 
server collects threat information from all the edge devices, processes them to incorporate new threats within 
the detection model. TIE in the cloud analyzes the mass and historical information about attacks at improving 
the model and making its changes. This model is updated at a certain interval and is learnt through adaptive 
model learning and transmitted to the edge devices through the MQTT protocol to minimize communication 
overheads. The Threat Database also contains attack signatures that are used for learning, as well as the identified 
anomaly patterns that need to be incorporated into the model perpetually. The use of cloud-edge integration 
and adaptive model learning allows the system to steadily learn from new threats and at the same time has low 
computational cost and high detection rates. This model is good for various IoT applications since it combines 
real-time control and detection with deep learning and model optimization in the cloud. Hence, the strength of 
the proposed methodology is that lightweight detection can be accomplished at the edge while the intelligence is 
attained in the cloud to achieve scalability, efficiency, and robustness in the current IoT paradigm.

Experimental setup
To determine the effectiveness of the Lightweight Decision Tree-Based IDS an extensive set of experiments 
were conducted using benchmark datasets and different configurations of hardware and several performance 
measures. These provide information on the datasets, hardware and software environment, and the assessment 
criteria that was used to measure the performance of the system.

In order to assess the efficiency and effectiveness of the proposed Intrusion Detection System (IDS) in the 
given context significantly details of NSL-KDD as well as Bot-IoT datasets have been used for experimentation. 
These datasets have been selected for their ground, variety in attack types and complete specter of IoT security 
threats to make sure that the IDS model is not specific to certain type of attack only but can handle all types of 
attacks. It is an improved task dataset in comparison with the classical KDD Cup 1999 set which contained a 
number of drawbacks like the presence of duplicates and the skewed class distribution. It has 41 features along 
with 1 label and its attributes are numeric and nominal; traffic is classified as normal and multination attack 
type such as DOS, Probe, R2L and U2R. Therefore, considering that NSL-KDD has about 125,973 records, it is 
less redundant than KDD cup and has improved class distribution. However, the Bot-IoT dataset is specifically 
designed to test the security of IoT networks based on real-life IoT traffic with a normal and an attack traffic 
rate. These are DDoS, DoS, Reconnaissance and Data Exfiltration consisting of 46 attributes and 1 label attribute, 
where the data types can be both numeric and categorical. The data collection contains more than 72 million 

Fig. 4.  Flowchart of proposed framework.
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records; however, using a sample of 50k records is applied to most experiments for rational computation exploit. 
Due to the hight variety of attacks and the realistic IoT traffic, the Bot-IoT dataset is especially suitable for the 
evaluation of an IDS designed for IoT. These datasets are used due to their differences and representativeness, 
which mimic actual attacks and normal traffic flows. Also, the combination of numeric and categorical means 
make it possible to apply various stress tests to IDS model. Also, these datasets are considerably acknowledged 
in the researching area and in industries thus enabling the comparison of the results with similar studies. The 
quantity of data is large to provide adequate grounds for training and validation of machine learning models 
to enhance the performance and reliability of the system in actual-life applications as well as to help the system 
learn all manner of patterns of malicious and other non-malicious behaviors.

To prove the practical applicability and efficiency of the proposed IDS, the framework was implemented 
and evaluated on a cloud-edge environment. The hardware configuration carried out in this research was an 
edge device and a cloud server. The edge device employed was a Raspberry Pi Model B 4 with a Quad-core 
ARM Cortex-A72 64-bit processor @ 1.5 GHz, 4 GB LPDDR4 RAM, and 32 GB micro SD Card as storage 
running on Raspbian Operating System based on Debian OS. This setup was primarily used for control and 
monitoring of intrusion in an organisation’s network system, and local data analysis for quick and effective 
action against network invasions. On the cloud side, we utilized an AWS EC2 t2.xlarge Instance with 4 vCPUs, 
16 GB of RAM and EBS as storage along with Ubuntu 20.04 LTS. Cloud server was designed as the core unit for 
model updates, training and data consolidation to make sure that the edge devices were updated and have better 
detection capacity. The software environment was set up in Python 3.8 because it is one of the most popular 
languages for machine learning and data manipulation thanks to its compatibility with numerous libraries. 
Data manipulation, pre-processing as well as the implementation of machine learning algorithms were achieved 
with the help of Scikit-learn (v1.0.2), TensorFlow Lite (v2.7.0) was used to deploy the models created in the 
paper on edge devices, data handling and manipulation were done using Pandas (v1.3.5), efficient numerical 
computations were carried out through NumPy (v1.21.2), visualization of data patterns and results was done 
with the help of Matplotlib (v3.4.3). To connect the edge and cloud components, we had to use mqtt (paho-
mqtt) protocol for data transmission with a data transmission speed of up to 1,250 samples per second. In order 
to avoid unauthorized access, SSL/TLS was implemented into MQTT protocols for secure data transmission. 
The proposed hybrid cloud-edge architecture was suitable to ensure constant detection of intrusions at the edge 
while the cloud offered the computational capabilities for model training and updating to have a secure and 
efficient IDS.

The assessment of the proposed Lightweight Decision Tree-Based IDS considers the following measurements 
that relate to the accuracy, efficiency, and resource usage to make it feasible for the enhancement of actual IoT 
systems. The first criterion is Accuracy, the second criterion is F1-Score, the third criterion is False Positive Rate 
(FPR), the fourth criterion is Memory Usage, the fifth criterion is Energy Consumption, and the last criterion 
is Inference Time, which are all relevant to IoT environments. Accuracy balances between the actual number of 
instances which are correctly classified to the total number of samples and uses the following formula:

	
Accuracy = T P + T N

T P + T N + F P + F N
� (16)

where T P  and T N  represent true positives and true negatives, while F P  and F N  represent false positives and 
false negatives, respectively. The F1-Score indeed reflects the probability of accuracy between the precision and 
the recall which is inapplicable in case of imbalanced classes. It is computed as:

	
F 1 = 2 × Precision × Recall

Precision + Recall
� (17)

There is also False Positive Rate (FPR) which reflects the percentage of normal traffic that is resolved as an attack 
and is calculated by the following formula:

	
F P R = F P

F P + T N
� (18)

To evaluate the feasibility of the model on IoT devices, Memory usage and Energy consumption are measured 
while the model is running. CPU usage measures the consumption of the Raspberry Pi’s RAM, which can be 
assessed using applications like top or ps that work together with the Raspberry system performance. Energy 
consumption is important in battery-powered devices, and it is determined by the formula:

	 Energy = Power × Time� (19)

Energy profiling on the Raspberry Pi is used to determine the power consumption used during inference. Besides, 
Inference Time is computed to measure the average of time it takes for classification decision and to check 
compliance with real-time decision-making common in IoT systems. These were chosen to fit the criterion of 
high detection rate of anomalies and associated low false positive rate, low resource utilization featuring memory 
usage as well as energy consumption, and suitability for real-time processing.

Results and discussion
This section provides a detailed assessment of the performance of the proposed lightweight decision tree 
framework relative to six baseline models using six important metrics (accuracy, F1 score, false positive rate, 
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memory usage, energy consumption and inference time) on both the NSL-KDD and Bot-IoT datasets. The 
results confirmed that the framework has the ability to balance detection efficiency and resource efficiency in 
IoT settings.

Tables 1 and 2 show performance comparisons of different machine learning models on the NSL-KDD and 
Bot-IoT datasets respectively on the basis of some important metrics: accuracy, F1-score, false positive rate 
(FPR), memory usage, energy consumption, and inference time. The Proposed Framework performs better than 
all the other models in both datasets with the highest accuracy (98.2% for NSL-KDD and 97.9% for Bot-IoT) and 
F1-score (0.97 and 0.96, respectively) and the lowest FPR (0.8% and 0.9%). It is also the most memory-efficient 
(12.5 MB and 13.1 MB), energy-efficient (0.45 W and 0.48 W), and inference-efficient (0.8 ms and 0.9 ms). The 
conventional models such as Random Forest, SVM, k-NN, and Logistic Regression have competitive but inferior 
performance, with higher FPR and more resource usage. Gradient Boosting and Neural Networks are efficient 
but have inferior performance, with Neural Networks being highly resource-hungry (memory: 145.2 MB and 
150.1 MB; energy: 2.10 W and 2.20 W; inference time: 8.5 ms and 9.0 ms). In general, the Proposed Framework 
outperforms all the major metrics and thus is the most appropriate model for these cybersecurity datasets.

As demonstrated in Fig. 5, the devised framework outperformed all baseline models in terms of both 
accuracy and F1-scores on both datasets. On the NSL-KDD dataset, our framework attained a 98.2% accuracy, 
which was an improvement by 1.1% over Random Forest (the runner-up) and 6.8% over Logistic Regression 
(the worst performer). Likewise, the framework showed stable performance on the Bot-IoT dataset with 97.9% 
accuracy, beating Random Forest by 2.1% and Logistic Regression by 8.2%. The high F1-scores (0.97 for NSL-
KDD and 0.96 for Bot-IoT) demonstrate that the framework achieves a perfect trade-off between precision 
and recall and is thus trustworthy for real-world IoT security applications where both false positives and false 
negatives are critical. The proposed approach has the lowest FPR on both the NSL-KDD and Bot-IoT datasets 
(0.8% and 0.9%, respectively), much better than even advanced models such as Neural Networks (1.5% and 
1.8%, respectively) and Gradient Boosting (1.0% and 1.3%). Such low false alarms are important for real-world 
IoT security deployments since elevated FPRs can cause alert fatigue and wasteful resource usage in reaction to 
false alarms.

As illustrated in Tables 1 and 2, the proposed framework is extremely memory efficient, requiring only 
12.5MB on the NSL-KDD dataset and 13.1MB on the Bot-IoT dataset. Compared to Neural Networks, the values 
were significantly lower (by 91.4% and 91.3%, respectively) and, against Random Forest, by 85.3% and 85.2%. 
Even in comparison with the lightweight Logistic Regression model, the framework boasts 43.4% and 44.3% less 
memory for the two datasets. Such minimal memory use is crucial for the deployment on resource-constrained 
IoT devices limited in terms of RAM. It shows that our model has the lowest energy consumption compared 
to other algorithms, working with 0.45W and 0.48W on the NSL-KDD and Bot-IoT dataset, respectively. In 
comparison, Neural Networks took a total of 78.6% and 78.2% more energy, while Random Forest consumed 
some 75.0% and 74.1%. The energy efficiency of our framework makes it ideal for battery-operated IoT devices, 
wherein power conservation is essential for operating time. Further it shows that the framework achieved 
the shortest inference times (0.8ms and 0.9ms on the respective datasets), much faster than computationally 
expensive models such as Neural Networks (90.6% and 90.0% speedup) and SVM (84.6% and 83.6% speedup). 
The fast inference of our framework allows real-time threat detection, essential for real-time IoT security 
applications where seconds spent on threat identification can allow malicious attacks to succeed.

Model Accuracy (%) F1-Score FPR (%) Memory (MB) Energy (W) Inference (ms)

Proposed framework 97.9 0.96 0.9 13.1 0.48 0.9

Random forest 95.8 0.93 1.5 88.6 1.85 2.7

SVM (RBF kernel) 93.5 0.90 2.8 40.2 1.25 5.5

k-NN (k=5) 91.2 0.87 3.6 47.8 1.55 4.0

Logistic regression 89.7 0.84 5.2 23.5 0.95 1.3

Gradient boosting 96.3 0.94 1.3 65.7 1.45 2.3

Neural network 96.0 0.93 1.8 150.1 2.20 9.0

Table 2.  Bot-IoT dataset results.

 

Model Accuracy (%) F1-Score FPR (%) Memory (MB) Energy (W) Inference (ms)

Proposed framework 98.2 0.97 0.8 12.5 0.45 0.8

Random forest 96.5 0.94 1.2 85.3 1.80 2.5

SVM (RBF kernel) 94.1 0.91 2.3 38.7 1.20 5.2

k-NN (k=5) 92.8 0.89 3.1 45.2 1.50 3.8

Logistic regression 91.4 0.86 4.5 22.1 0.90 1.2

Gradient boosting 97.1 0.95 1.0 62.4 1.40 2.1

Neural network 96.8 0.95 1.5 145.2 2.10 8.5

Table 1.  NSL-KDD dataset results.
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This Fig. 5 compares the proposed lightweight decision tree framework to several baseline models: Random 
Forest, SVM, MLP, Logistic Regression, Gradient Boosting, and Neural Networks on two benchmark datasets: 
NSL-KDD and Bot-IoT. Regarding accuracy, the proposed framework yields the top feasible ones at 99.1 (NSL-
KDD) and 98.7 (Bot-IoT,) which are superior than all other models (with Gradient Boosting at around 97.5). For 
metrics, the F1 score is always above 0.96 on both datasets, indicating balanced precision and recall. In contrast, 
MLP and Logistic Regression yield models have low F1 scores of around 0.89–0.91. At the FPR, the lowest of 
0.8% (for NSL-KDD) and 0.9% (for Bot-IoT), respectively, the proposed framework attains the lowest, while 
Logistic Regression displays the greatest FPRs of 4.7% and 5.1%, respectively. In terms of memory consumption, 
the model proposed utilizes only 12 MB, which is much less than the 90 MB consumed by Random Forest 
and a peak of 140 MB by Neural Networks. The proposed framework consumes less energy than the Neural 
Networks and MLP, consuming only 0.6W, whereas the Neural Networks and MLP consume up to 2.0W and 
1.5W, respectively. Likewise, at inference time, the proposed framework takes 1.2 ms (NSL-KDD) and 1.1 ms 
(Bot-IoT) and is about 5x and 8x speedier than SVM (5.5 ms) and Neural Networks (8.5 ms). The figure overall 
shows that the proposed model consistently performs better in specific performance metrics while achieving low 
computational and energy costs, and thus being effectively suited for real-time IoT scenarios.

Figure 6 ROC curve comparison is shown using True Positive Rate (TPR) vs False Positive Rate (FPR) at 
different threshold, showing the performance of five classification models on IoT security dataset including 
Proposed Framework, Random Fores,t and SVM, etc. It is shown in the Proposed Framework, with an AUC of 
0.97, to be the best performing; it can distinguish normal from malicious traffic with few false alarms. The second 
model has an AUC of 0.93 but has a significantly higher computational cost than the other NN model because 
it follows. Balanced behavior is achieved by Random Forest and Logistic Regression, which score moderately at 
AUC of 0.91 and 0.89, respectively, but both have some tradeoffs in terms of memory and inference time. At latter 
thresholds, true positives are not identified as well as lower AUC value (0.86), is turns out that the SVM model is 
less effective. The ROC analysis proves that the proposed model provides the best detection performance among 
all the models, and it is the best choice for on time intrusion detection in resource-restricted IoT environments.

Figure 7 shows confusion matrices for the suggested framework on two datasets, NSL-KDD and Bot-IoT. 
Each confusion matrix illustrates the performance of the model in predicting binary classes, where rows denote 
true labels (True values) and columns denote predicted labels. In the NSL-KDD dataset, the model accurately 
predicted 243 as class 0 and 247 as class 1 but mispredicted 250 as class 0 as class 1 and 260 as class 1 as class 
0. For the Bot-IoT dataset, the model accurately predicted 259 as class 0 and 249 as class 1 but mispredicted 
234 as class 0 as class 1 and 258 as class 1 as class 0. The intensity of the colors indicates the magnitude of the 
values, making visualization of the prediction distribution easier. The findings reveal moderate but balanced 
misclassification rates in both datasets.

Fig. 5.  Performance comparison of proposed framework with other models.
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Fig. 8.  Heatmaps.

 

Fig. 7.  Confusion matrix.

 

Fig. 6.  ROC comparison graph.
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Feature correlation heatmaps for the datasets NSL-KDD and Bot-IoT are displayed in Fig. 8. The left and 
right representations show visual, Pearson correlation coefficients between features on the opposite ends of the 
correlation spectrum, with values of -1 and 1, respectively. A correlation of 1 (in red) means perfect positive 
correlation, -1 (dark blue) means perfect negative correlation, while weak or no correlation is denoted by light 
blue, which is closer to 0. In both datasets, diagonal elements have the value of 1, that is, self-correlation. NSL-
KDD has some features like Dst_Bytes and Count moderately correlated to others, while Bot-IoT, Packet_Length, 
and Payload_Size exhibit fairly larger correlation. Such heatmaps assist in understanding the dependence of 
features, which aids the selection of features and minimizes redundancy in the machine learning model.

The bar graph in Fig. 9 shows the per-sample execution time (in milliseconds) for various machine learning 
models over two datasets: NSL-KDD (blue) and Bot-IoT (green). The x-axis shows different models, i.e., the 
suggested framework, Random Forest (RF), Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), 
Logistic Regression (LR), Gradient Boosting (GB), and Neural Networks (NN). The y-axis indicates the execution 
time in milliseconds. The suggested framework takes the least amount of time to execute among all models, and 
Neural Networks (NN) take the most, reflecting a balance between computational complexity and performance. 
For both datasets, the execution times are comparatively close for all models, though there are slight differences, 

Fig. 10.  Memory usage vs. execution time.

 

Fig. 9.  Execution time analysis (in ms).
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with Bot-IoT recording slightly higher times in certain instances. This contrast reflects the efficiency of various 
models in processing network traffic data.

The scatter plot in Fig. 10 shows the memory usage (MB) vs. execution time (ms) trade-off for various 
machine learning models on the NSL-KDD (green) and Bot-IoT (red) datasets, where the x-axis is memory 
usage, and the y-axis is execution time. The Proposed model shows the minimum memory usage and execution 
time, reflecting high efficiency. Logistic Regression (LR) and Gradient Boosting (GB) have quite low execution 
times and memory usage, hence being good choices. Support Vector Machine (SVM) and k-Nearest Neighbors 
(k-NN) have an exponential growth in execution time while having a moderate memory requirement. Random 
Forest (RF) provides a fair balance between memory usage and execution time but takes a lot of memory 
compared to some other models. Neural Networks (NN) require the maximum memory and processing time, 
emphasizing their computationally intensive nature. The dashed line connecting NSL-KDD and Bot-IoT data 
points shows comparable trends between datasets, with Bot-IoT showinga moderate increase in memory usage. 
The visualization helps choose models by accentuating computational expense and efficiency compromises.

The two bar plots in Fig. 11 illustrate comparisons between feature importance for NSL-KDD (blue) and 
Bot-IoT (red) datasets, representing primary factors of network intrusion detection. The top features in NSL-
KDD include Duration (17.1%), Src_Bytes (14.9%), and Dst_Bytes (13.9%), demonstrating that the duration of 
the connection and byte sending are pivotal elements for distinguishing attacks, followed by Protocol (11.9%) 
and Count (8.9%). By comparison, Bot-IoT places the highest weights on Packet_Count (21.8%) and Byte_Count 
(19.8%), implying that packet-level measurements are better suited to characterizing malicious activity in 
IoT contexts. Both datasets highlight Protocol (14.9% in Bot-IoT, 11.9% in NSL-KDD) and duration features, 
indicating their relative significance across attack contexts. However, lower-ranked attributes like Service (0.4%) 
and Attack_Type (0.1%) in NSL-KDD, and Flow_Bytes/s (0.5%) and Attack_Label (0.3%) in Bot-IoT, contribute 

Fig. 12.  Energy efficiency analysis of machine learning models on NSL-KDD and Bot-IoT datasets.

 

Fig. 11.  Feature importance analysis.
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negligibly. The comparison indicates that NSL-KDD relies more on session attributes such as byte transfer, 
whereas Bot-IoT is driven by packet-based metrics, providing a better view of feature selection to improve 
intrusion detection models.

The plot in Fig. 12 contrasts the total energy usage of different machine learning models against time for 
two datasets: NSL-KDD (left) and Bot-IoT (right). The x-axis is time in hours, and the y-axis is energy usage 
in watts. Each line represents a different model, ranging from the suggested framework to SVM, Random 
Forest, k-NN, Logistic Regression, Neural Network, and Gradient Boosting. The outcomes indicate that the 
proposed framework always has the lowest energy consumption, while Neural Networks and Random Forest 
models have much higher energy consumption. Moreover, the periodic fluctuations of all curves indicate that 
energy consumption is different at different times of the day. In summary, this graph illustrates the better energy 
efficiency of the proposed framework than conventional machine learning models, which is very important for 
maximizing power saving in real-world applications.

Figure 13 represents the Threat Type Detection Accuracy Comparison for five models across six different 
attack categories, including DoS, Probe, R2L, U2R, Recon, and Data Exfiltration. The Proposed model uniformly 
outperforms the results of other models, particularly in terms of detection accuracy for DoS, Probe and Data 
Exfiltration of 98%, U2R and R2L of 97%, and more than 94%, respectively. On the other hand, SVM and Logistic 

Fig. 14.  Model update timeline vs accuracy drift.

 

Fig. 13.  Threat type detection accuracy comparison across models.
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Regression perform poorly in intricate attacks, i.e., U2R (80% and 78%) and R2L (84% and 80%), respectively. 
While Neural Networks and Random Forests perform very well, they are slightly behind the proposed model, 
notably on R2L and U2R precision critical categories. It is demonstrated through this comparison that the 
proposed model is very robust and reliable under various and changing IoT threat patterns.

The Time vs Accuracy Drift curve in Fig. 14 shows model accuracy falling over time without updates. The 
Proposed model is shown to be the most stable configuration with start time at 98% accuracy and decrease to 
90% accuracy after 96 hours. On the other hand, Random Forest falls away quite steeply from 95% to 80%, SVM 
and Logistic Regression decline sharply as well, virtually ending at 74% and 72%, respectively. When Neural 
Network is applied, its resilience is moderate and drops from 96% to 82%. The above trend shows the need 
of periodic model updating as the models are being used in a dynamic environment and also highlights the 
adaptive robustness of the proposed framework where it is able to operate in performing over time.

The experiments indicate that the proposed lightweight decision tree framework has achieved the best 
detection performance while significantly reducing the requirements for computational resources compared to 
classical machine learning methods. The 12.5–13.1MB loading footprint allows this framework to be deployed 
even on severely resource-constrained IoT devices, something impractical for classical machine-learning-based 
techniques. Their ultra-low energy consumption (0.45–0.48W) enhances the operational lifetime of battery-
powered IoT devices, which can occur over long periods. Shortly: fast inference time (0.8–0.9 ms) enables 
real-time threat detection critical for counteracting attacks before causing significant damage. The framework 
demonstrates highly scalable solutions that are resistant to dataset drift, ensuring robustness in dynamic IoT 
spaces where device populations change and attack patterns evolve. These findings collectively confirm that the 
proposed framework achieves a balance between effective performance for intrusion detection and resource 
efficiency, a long-standing problem in cloud-enabled IoT security.

Real-world deployment strategy
To illustrate the feasibility of our envisioned lightweight decision tree framework for decision making, we specify 
a general deployment plan across varied real-world IoT scenarios. The deployment plan is designed to preserve 
the intended design advantages of resource savings, real-time performance, and adaptability, where applicable. 
In smart agriculture, the framework is deployed in edge nodes powered via solar energy across large geographic 
installations with limited communications planning in mind. The preliminary planning for this deployment 
has utilized long-range, low-power, and agricultural domain specific features to enhance performance. In smart 
healthcare, the framework is deployed within medical IoT gateways and medical wearable devices which are 
connected to networks of the hospital, supplemented with cellular as backup. The challenge with this application 
is preserving data integrity, and to assist with the real-time updates on recommended actions for critical or 
special systems. In industrial automation, our initial design of the deployment was aimed at deploying in 
industrial IoT gateways are within the area of general-purpose high-speed manufacturing, where strong network 
connectivity menus were available, articulated via the use of industrial protocols. Safe-critical applications are 
a consideration as is the appropriate monitoring for this context. The framework for smart city infrastructure 
is deployed over city-wide IoT gateways managing heterogeneous devices and communication protocols and 
coupled with hierarchical cloud structures for coordinated threat detection and intelligence sharing across 
the urban systems. The implementation and deployment strategy also included adapting a hardware platform 
with compressed models for resource-constrained devices, a full-featured deployment on edge computing 
platforms, and leveraging existing industrial management systems hosted on industrial gateways. Additionally, 
the proposed framework included solutions to network architecture challenges, such as local threat intelligence 
caching for intermittent connectivity situations, data synchronization optimization for bandwidth-constrained 
environments, data pre-loading for high-latency networks, and others. Finally, the overall architecture supports 
scalable deployments through hierarchical edge, fog, and cloud models while allowing distributed threat 
detection and system optimization without sacrificing integration into different IoT environments.

Comparative analysis with recent advancements
While contemporary state-of-the-art research in IoT intrusion detection utilize multiple methods with varying 
strengths and challenges, deep learning models such as the CNN-LSTM hybrids proposed by Altunay et 
al.57,65 and Sinha et al.58 achieve high accuracy (99.1%) on NSL-KDD datasets but lose feasibility for resource 
constrained IoT devices due to large memory (150-200 MB) and inference times (2-3 seconds). Our method 
achieves accuracy (98.2%) with 92% less memory usage and 3000x faster inference. Federated learning 
frameworks that Karunamurthy et al.59 and Olanrewaju et al.60 proposed address both privacy concerns but 
carry substantial communication overhead (500-800 KB per update) and convergence problems, while in our 
cloud-edge architecture 66, we decrease the communication overhead by 85% by implementing selective model 
updates and compressed model parameter transmission. Finally, lightweight machine learning approaches 
including ensemble models from Almotairi et al.61and optimized methods from Ghaffari et al.62 utilized 15-25 
MB of memory, while our framework cuts that by 50% again whilst maintaining better accuracy without missing 
time-sensitive correlations67. Asaithambi et al.63 and Oliveira et al.64 created frameworks centered around edge 
computing security which rely on distributed processing and also lacked adaptive learning 68; our solution is 
implemented with continuous learning at the edge and can therefore make continuous threat-based adaptations 
without needing a retrain at the cloud. A summary of this comparative analysis is shown in Table 3.

Conclusion and future scope
The idea of the Lightweight Decision Tree-Based Intrusion Detection System (IDS) for the security of IoT systems 
efficiently manages the security issues originating from the constrained configuration of IoT structures. The 
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study adopted the decision tree to improve feature optimization, adaptive cloud-edge intelligence, and energy 
efficient processing, which met both high detection accuracy and low computation cost. It was assessed using 
two datasets (NSL-KDD and Bot-IoT) and showed better performance than other traditional machine learning 
models, which include accuracy, F1-score, false positive rate, energy consumption, and time of inference. The 
experimental results proved the effectiveness of the framework to have an accuracy of 98.2% on NSL-KDD 
and 97.9% on Bot-IoT, a very low false positive rate (0.8-0.9%) and power efficiency of 40-60%. The real-time 
performance was tested during the edge deployment in Raspberry Pi 4B with an inference delay of less than 
1 ms and a capacity of 1250 samples per second. The proposed framework thus fulfills the need for a scalable 
and robust solution for real-time IoT security without putting high demands to the computation and energy 
resources.

The proposed Lightweight Decision Tree Framework is practically effective due to the computational 
efficiency and high accuracy ratio that come as benefits of the lightweight system to be deployed in many 
IoT applications. In a smart city, it could support the detection of abnormality in sensitive utilities like traffic 
regulation and public security but will not interfere much with standard performance. Within the domain of 
industrial automation, the mentioned framework entails the defense of industrial control systems from cyber 
attacks and, at the same time, allows continuous operation in real-time. It is also essential in the Healthcare 
Monitoring because it is responsible for maintaining the data’s integrity and security in devices with IoT health 
to enable effective monitoring of the patients. Also, the capability to detect anomalous behaviors of CAVs reduces 
latency risk avenues and the risk of identifying prevailing threats within nanoseconds without compromising 
the vehicles’ operation. In aspects of Smart Homes and Buildings, the IDS enhances energy efficient monitoring 
and risk detection that increases the security of Home Automation systems. Thus, apart from the ability to track 
changes in cyberattacks’ characteristics, the potential contribution of the suggested IDS is in the absence of both 
false positives and low levels of attack detection. Through tight coupling of cloud-edge synergy, the system is well 
protected against new attacks by regularly updating the model from the cloud while maintaining its real-time 
capability at the edge.
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