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Accurately predicting losses resulting from traffic accidents holds crucial significance for accident 
prevention. Traffic accident forecasting faces challenges. For example, traffic accident forecasting 
models often exhibit suboptimal accuracy. In this study, these challenges are addressed by integrating 
the autoregressive integrated moving average (ARIMA) model with the backpropagation (BP) 
neural network model. Through parameter tuning and model optimization, the predictive accuracy 
of traffic accident losses is effectively improved, providing more precise forecasting results for 
accident prevention. Furthermore, a single model may not adequately explore the intricate nonlinear 
relationships involved due to the complex causal mechanisms of traffic accidents. To address this issue, 
neural networks are combined with the ARIMA model, and the impact of nonlinear factors in traffic 
accidents is fully considered. The ARIMA-BP forecasting method is applied to predict the number of 
traffic accidents, fatalities, injuries, and property damage in China. The results indicate that during 
the forecast period from 2016 to 2020, the average annual error rates of the ARIMA-BP model for the 
number of accidents, number of fatalities, number of injuries, and property damage are 4.16%, 3.67%, 
7.45%, and 5.94%, with an average prediction error rate of 5.31%. The ARIMA-BP model demonstrated 
2.61% and 6.24% lower error rates than the ARIMA model and BP neural network, respectively. The 
ARIMA-BP model exhibited lower average annual error rates than the individual models. This study 
substantiates the effectiveness and superiority of the ARIMA-BP prediction model in predicting traffic 
accident losses, providing a more efficient tool and theoretical basis for assessing and preventing traffic 
accident risks.
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Literature review
Traffic accident prediction involves refining and analyzing traffic accident data to understand the fundamental 
evolution patterns of accidents. Models are utilized to speculate or calculate potential future scenarios based 
on insights and accident development analyses. Numerous factors contribute to traffic accidents, including 
driver errors, mechanical malfunctions, weather conditions, fatigue, and poor road conditions1. Analyzing the 
influencing factors and primary causes of road traffic accidents allows for predicting future trends, aiming to 
reduce the quantity and severity of accidents2. Currently, widely used methods for traffic accident prediction 
include time series analysis3, regression analysis4, gray prediction5, Bayesian network prediction6, random 
forest method7, neural network models8, and combination method9,10. This study provides a literature review of 
domestic and international studies concerning time series and neural network-based traffic accident prediction 
models and combined prediction models.

Time series analysis is a commonly employed method in accident prediction due to its broad applicability 
and high interpretability. This method captures time-related patterns such as trends, seasonality, and cycles by 
considering the temporal dependencies between data points. Miller (2018) utilized the autoregressive integrated 
moving average (ARIMA) method to predict monthly transportation prices, demonstrating close estimations 
to observed data and effectively reflecting industry dynamics11. Van et al. (1996) applied a hybrid method for 
short-term traffic forecasting. This method exhibited strong transferability12. Zhang et al. (2022) combined time 
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series prediction with neural networks, emphasizing the significance of predicting traffic flow time series data for 
urban traffic planning and management13. However, time series methods have limitations, requiring sufficient 
historical data for accurate predictions, and may overfit historical data, leading to poor performance on new 
data, especially in the presence of nonlinear relationships or external interference.

As powerful machine learning methods, neural network models are versatile in various prediction 
scenarios. These models excel at learning and capturing nonlinear relationships within complex data patterns 
and structures. Abojaradeh (2015) employed the Statistical Package for Social Sciences (SPSS) to establish a 
statistical regression model to predict accident rates based on driver behavior mistakes14. Xu et al. (2020) tested 
the performance of different classifiers and found that deep neural networks (DNNs) performed the best among 
their peers, improving accident analysis and prevention15. Ye et al. (2023) introduced a novel data-driven traffic 
accident prediction decision model. This model’s effectiveness was validated using traffic management data from 
31 Chinese provinces from 2003 to 202016. Wu et al. (2023) experimentally proved the superiority of the multi-
attention dynamic graph convolution network (MADGCN). The MADGCN achieved F1-score improvements 
of 11.61% and 9.15% compared to the F1-scores of existing methods on two real traffic accident datasets17. 
Gorzelanczyk (2023) utilized neural network methods to predict accident numbers in various provinces of 
Poland, minimizing the mean absolute error and mean absolute percentage error through weight adjustments. 
This study also revealed limitations in neural network prediction methods, particularly their ability to extract 
seasonal information effectively18. Zhan et al. (2023) constructed a neural network model based on multilayer 
perceptron (MLP) and optimized it using a backpropagation algorithm to improve reserve upgrade prediction 
accuracy and reliability19. The prediction accuracy of the constructed neural network model can reach over 90%. 
Yang et al. (2022) achieved a comprehensive and accurate analysis of the severity of traffic accidents through 
multitasking and deep learning design, addressing the lack of interpretability of deep neural networks (DNNs) 
in existing research20. Zargari (2022) studies the critical role of travel time reliability in passenger selection and 
freight transportation, pointing out the impact of factors such as traffic flow, accidents, and adverse weather on 
travel time21. The results showed that the introduction of GA not only improved the stability of the model, but 
also reduced prediction errors. Meanwhile, sensitivity analysis explored the response of the planning time index 
to independent variable fluctuations.

Jiang and Luo (2022) discussed the challenges in traffic prediction, emphasizing the involvement of 
spatiotemporal data and external factors such as time, weather conditions, and driver habits. They highlighted 
the difficulty in integrating heterogeneous data as an unresolved issue in predictive research22. Tian and Zhang 
(2022) proposed a deep learning framework incorporating spatiotemporal attention mechanisms to address 
urban traffic accident prediction23. The current deep learning models in traffic flow prediction studies are often 
considered “black box models.” Therefore, the interpretability and visualization of deep learning models for 
traffic accident prediction are identified as future research directions. In summary, neural network models have 
certain limitations. These models typically require large amounts of labeled data for training, which may be 
challenging to obtain in certain domains. In addition, tuning numerous hyperparameters, including the network 
structure and learning rate, requires careful optimization. Additionally, neural network models operate as black-
box models, making interpreting their decision-making processes challenging.

To overcome the limitations of single models and enhance predictive performance, scholars worldwide have 
conducted in-depth research on ensemble prediction for accidents. Sawalha and Sayed (2006) proposed a method 
to recalibrate a negative binomial accident model before transferring it to different time and space regions, 
achieving better performance than that of a model based on a random forest24. Lin et al. (2015) introduced 
a variable selection method based on the frequent pattern tree (FP tree), outperforming a model based on a 
random forest25. Yasin and Tortum (2015) utilized an artificial neural network (ANN) to predict accidents on the 
Erzurum highway in Turkey, emphasizing the importance of the vertical curvature degree26. Yannis et al. (2017) 
evaluated existing models based on theoretical approaches, model features, implementation conditions, data 
requirements, and existing results27. Lin et al. (2021) established accident risk prediction models using naive 
Bayes, decision trees, Bayesian networks, and multilayer perceptrons (MLPs), identifying critical risk factors28. 
Ma et al. (2021) proposed a prediction model for traffic accident severity based on a single-stage autoencoder 
(SSAE) and achieved better performance than that of other models29. Hu (2021) found that the Bayesian neural 
network (BNN) outperformed other models in regression prediction based on a comparison of the mean absolute 
error (MAE) and root mean square error (RMSE)30. Guo et al. (2022) utilized a gray model (GM) to obtain 
predicted data and then trained a backpropagation (BP) neural network and demonstrated the superior accuracy 
of the GM-BP prediction model over that of the GM model31. Zheng and Wu (2015) introduced a combination 
prediction model based on the induced ordered weighted geometric average (IOWGA) operator32. This model 
integrates the GM(1,1) and Verhulst models, incorporating variable weight coefficients for each model. The 
authors proposed a combination model based on the optimal weighting (OW) method for comparison. The 
results indicated that the combined model outperformed the other three models, thus, effectively leveraging 
various models’ advantages. Bates and Grangeret (1969) proposed the concept of combination forecasting in 
196933. This approach involves appropriately combining the results of various forecasting methods to achieve 
optimal prediction results with higher accuracy compared with those of individual methods. Zhang (2003) 
applied a combination prediction model to sunspot prediction, achieving favorable predictive outcomes34.

The key to predicting traffic accident losses lies in selecting indicators and using suitable prediction models. 
Optimizing and improving the prediction model can help enhance the comprehensiveness and accuracy of the 
prediction. At present, there are mainly the following problems in the research of traffic accident loss prediction: 
(1) incomplete data. The prediction methods for traffic accident losses usually rely on historical traffic accident 
data, and the comprehensiveness and accuracy of the data are crucial for prediction research35. Research on 
traffic accident losses is limited by limited data sources and missing statistical data, resulting in insufficient data 
integrity. When predicting accident losses, the indicators measured are often too single to fully explain the severity 
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of the accident losses. (2) The applicability of the traffic accident loss model is poor. Among numerous accident 
loss prediction models, traditional prediction models generally rely on overall historical data for prediction, 
while ignoring the specific influencing factors of accidents, such as road conditions and transportation-related 
factors. These characteristic factors related to traffic accident losses are also of great significance for the accurate 
prediction of the Model36. In recent years, machine learning prediction models, such as neural network models, 
have been widely used in the field of traffic accident loss prediction. Due to their strong nonlinear mapping 
ability to traffic accident data, they continuously adjust and approximate the optimal results through training 
on a large amount of data, making them widely used. Selecting an appropriate model is crucial for improving 
accuracy and ensuring prediction comprehensiveness in the prediction process37.

In addition to the transportation field, accident prediction methods and models are also widely used in 
other fields. Dey et al. (2023) predicted the annual gasoline demand in India38. Han et al. (2023) provided a 
combination prediction method by integrating linear and nonlinear elements, providing information for 
balanced production strategies39. Lwaho and Ilembo (2023) established a model for predicting maize yield in 
Tanzania using the ARIMA model40. Mati et al. (2023) studied the performance of different prediction models 
in predicting global economic indicators and the impact of incorporating war information in the prediction 
process on prediction accuracy41. Wen et al. (2023) proposed a carbon emission prediction model based on 
the inverse error combination method for the linear and nonlinear relationship of carbon emission data42. In 
practical applications, no single model or method can universally apply to all predictive scenarios43. Therefore, 
it is crucial to choose suitable models and methods for predictions. The studies above indicate that ensemble 
prediction models possess advantages not found in single predictive models and show promising application 
prospects. The integration of ARIMA, which is effective in extracting linear information from time series44]– [45, 
and BP neural networks, which are capable of handling complex nonlinear relationships in data45]– [46, is mainly 
explored in this paper.

A systematic review of hybrid ARIMA-neural network methodologies reveals several established integration 
approaches in time series prediction. Traditional hybrid methods typically employ two main combination 
strategies: direct addition and weighted integration. The direct addition approach, as demonstrated by Lu (2021) 
in GDP forecasting, simply combines the predicted values from ARIMA and BP models, achieving a relative 
error reduction to 1.5% compared to single models47. The weighted integration method, exemplified by Wang 
(2022) in coal consumption prediction, constructs multiple linear regression using ARIMA’s linear fitting and 
BP’s nonlinear fitting as independent variables, improving prediction accuracy with fitting errors below 0.62%48. 
Recent advances in hybrid modeling have introduced more sophisticated integration frameworks. For instance, 
Hou and Chen (2024) proposed incorporating feature selection through Lasso regression before combining 
ARIMA and BPNN for carbon emission prediction, demonstrating enhanced model stability and reliability49.

However, these conventional hybrid approaches face limitations when applied to complex traffic accident 
prediction scenarios. First, simple additive or weighted combinations often fail to capture the intricate causal 
mechanisms underlying traffic accidents, as they treat the integration process as a static combination rather than 
a dynamic interaction. Second, existing hybrid models typically focus on single-target prediction, whereas traffic 
accident forecasting requires simultaneous prediction of multiple correlated targets (accidents, fatalities, injuries, 
and property damage). Third, most current approaches lack the capability to incorporate domain-specific risk 
factors and their hierarchical relationships into the model architecture. These limitations highlight the need for 
a more sophisticated integration framework specifically tailored to traffic accident prediction.

This study seeks to comprehensively understand the factors influencing traffic accidents and establish 
prediction models using ARIMA and BP neural networks. By combining the strengths of both models through 
the ARIMA-BP model, the study aims to achieve more accurate predictions. A comparative analysis of the 
accuracy and effectiveness of single and ARIMA-BP models is conducted using the same accident dataset and 
prediction periods. The goal is to determine the optimal model for traffic accident loss prediction, providing 
valuable references for safety management and sustainable development in the transportation industry. The 
ARIMA-BP combination is based on the specific needs of traffic accident prediction, which involves both linear 
and nonlinear components. While ARIMA-SVM effectively handles nonlinear data, it may overfit when dealing 
with complex, high-dimensional datasets. ARIMA-LSTM combination captures long-term dependencies but 
requires extensive data and is computationally intensive. In contrast, ARIMA-BP strikes a balance between 
accuracy and computational efficiency. It handles both linear and nonlinear patterns effectively without excessive 
complexity, making it particularly advantageous for medium-scale datasets and real-time prediction needs50.

The key innovation of the study lies in the tailored integration of the ARIMA and BP neural network models 
specifically for traffic accident prediction. While both models have been used separately in various domains, our 
approach uniquely combines them sequentially, where the ARIMA model addresses linear trends, and the BP 
neural network captures residual nonlinearities. This integration, along with the use of residual optimization, 
enhances prediction accuracy by effectively modeling the complex, multi-faceted nature of traffic accident data. 
Additionally, our application of this hybrid method to traffic safety prediction, with a focus on minimizing 
prediction errors and improving model stability, represents a novel contribution to the field. This comprehensive 
approach has not been extensively explored in traffic accident prediction, offering new insights and practical 
benefits for safety management. The novelty of accident prediction research lies in its use of technological 
means to enhance the foresight of preparation work, the accuracy of planning work, and the initiative of hazard 
investigation. These innovations are all based on modern data analysis and artificial intelligence technologies, 
which enable predictions to no longer be limited to static historical data, but to dynamically and real-time 
respond to potential risks.
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Traffic accident risk analysis
In previous studies on traffic accident prediction, there has been limited systematic analysis of traffic accident 
risk. Analyzing the factors influencing traffic accidents is crucial for selecting indicators and choosing accident 
prediction models. In reviewing the literature and analyzing road traffic accident cases, Vensim System Dynamics 
software was employed to conduct a risk analysis based on people, vehicles, traffic environments, and traffic 
systems. Figure 1 illustrates the causal flowchart of the traffic risk system analysis, which includes three levels: 
risk analysis based on people, risk analysis based on vehicles, and risk analysis based on traffic environments.

In analyzing the risk system based on people, both pedestrian and driver risks impact the overall risk 
to individuals, with driver factors being the primary cause of traffic accidents. Factors such as drivers’ poor 
psychological and mental states, inadequate driving experience and skills, and traffic regulation violations 
can increase driver risk, thereby elevating the overall risk to individuals. Pedestrian risk increases when there 
is a lack of pedestrian safety awareness and protective equipment and when pedestrians violate traffic rules, 
resulting in an overall increase in risk to individuals. In analyzing the risk system based on vehicles, vehicle 
risk is influenced by factors such as vehicle performance, operational conditions, auxiliary driving systems, 
and environmental impacts. A vehicle’s power and braking system performance significantly affects its overall 
performance. Poor performance in these systems can increase the risk associated with the vehicle. Factors 
such as high speed and excessive acceleration can destabilize vehicle operations, leading to an increased risk. 
Brake assistance and braking systems can effectively help reduce vehicle risk. Environmental factors such as 
traffic congestion and road conditions also impact vehicle risk. In analyzing the risk system based on traffic 
environments, road design elements such as the road segment length, curvature, and slope affect environmental 
risk. Factors such as excessively large curvatures and steep slopes can increase environmental risk. Road surface 
conditions, including smoothness and the presence of pits and grooves, also affect environmental risk. The 
absence of road safety facilities, such as road signs, markings, lighting, and road indicator lights, can increase 
environmental risk. Adverse weather conditions, such as rain, snow, fog, or poor visibility, can further increase 
environmental risk during driving.

The causal relationship is obtained based on the mechanism of actual traffic accidents and analysis of past 
traffic accident cases. A risk analysis diagram for the road traffic system is obtained by analyzing the causal flow 
of risks in a road traffic system. This diagram reflects the evolutionary process of safety risks in driving, where 
various factors, such as vehicle risk, pedestrian risk, and road environment risk influence the road traffic system 
risk. Therefore, in traffic accident loss prediction, it is necessary not only to consider the patterns and trends of 
accident data but also to focus on the impact of factors related to traffic accidents on predictions. It is crucial 
to comprehensively consider the dual influence of historical accident data and accident impact indicators and 
ultimately select an appropriate predictive model.

Model construction and data preprocessing
Section  “Construction of the Combined ARIMA-BP Model” introduces the model construction methods 
employed in the research on traffic accident prediction, including the theoretical formulas and modeling 
procedures for the ARIMA, BP, and ARIMA-BP models. Section  “Data sources and collection” presents the 
source and statistical results of the traffic accident data used in the study, as well as the selection criteria for 
accident indicators, laying the foundation for subsequent data fitting and model prediction.

Construction of the combined ARIMA-BP model
The ARIMA model is a time series forecasting analysis method that is also known as the integrated moving 
average autoregressive model51. Differencing is a crucial step in the ARIMA model. In the time series ARIMA(p, 

Fig. 1.  Transportation system risk analysis, including vehicle, people, and environmental risk analysis.
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d, q) model, p is the order of the autoregressive terms, q is the order of the moving average terms, and d is the 
differencing order needed to transform a nonstationary series into a stationary series. In the ARIMA model, the 
future values of the sequence are expressed as a linear function of the current and lagged terms of the lag and 
random disturbance terms. The general form of the model is shown in Eq. (1):

	 Yt = c + α1Yt−1 + ... + αpYt−1 + εt + β1εt−1 + ... + βqεt−q � (1)

The modeling process of the ARIMA model can be divided into four key steps:
Step 1: Time Series Stationarity Test. Conducting a stationarity test is a fundamental step in time series 

analysis. This test ensures that the data meets the assumptions of the ARIMA model, which is crucial for 
enhancing the model’s accuracy and predictive performance. If the data is nonstationary, it is typically 
stabilized through techniques such as differencing, de-trending, or logarithmic transformation. Step 2: Model 
Order Determination. This step involves selecting the appropriate order of the ARIMA model components 
(autoregressive, differencing, and moving average) based on the data characteristics and model selection criteria. 
Step 3: Parameter Estimation and Diagnostic Testing. This step includes estimating the model parameters and 
conducting diagnostic tests to assess the parameters’ significance, the model’s overall effectiveness, and whether 
the residuals form a white noise sequence. Step 4: Forecasting with the Established ARIMA Model. Once the 
model is validated, it forecasts future time series values based on historical data and estimated parameters. Each 
of these steps is critical to ensuring the robustness and accuracy of the ARIMA model in time series forecasting.

The BP neural network is a multilayer feedforward neural network trained using the error BP algorithm, and 
it is one of the most widely applied neural network models. The primary characteristics of the BP neural network 
are that signals propagate forward, while errors propagate backward. Specifically, the BP neural network process 
is divided into two stages. The first stage is the forward propagation of signals passing through the input and 
hidden layers and reaching the output layers. The second stage is the backward propagation of errors, adjusting 
the weights and biases from the output layer to the hidden layer and then to the input layer.

The mathematical relationship between the three layers of the neural network is expressed in Eq. (2): xi: 
Input variables to the neural network ; ω ij : Weights between the input layer and hidden layer neurons; aj : Bias 
terms added to the weighted sum of inputs in the hidden layer; Fj : Output of the hidden layer neurons after 
applying the activation function; ω jk : Weights between the hidden layer and output layer neurons; bk : Bias 
terms added to the weighted sum of hidden layer outputs in the output layer; Ok : Final output of the neural 
network; G: Activation function used in the hidden layer.

	

{
Fj = G(

∑ m

i=1ω ijxi + aj)
Ok =

∑ l

j=1Fjω jk + bk
� (2)

If the expected output of the system is set to Tk, the error E of the system can be represented by the variance 
between the actual output value and the expected target value. The specific relationship is expressed by Eqs. (3) 
and (4) as follows:

	
E = 1

2
∑

n
k=1(Tk − Ok)2� (3)

	 ek = T k − Ok � (4)

By utilizing the principles of gradient descent, the relationship between the system’s weights and biases can be 
expressed, as shown in Eqs. (5) and (6):

	

{
ω ij = ω ij + β Fj (1 − Fj)xi

∑ n

k=1Fjω jkek

ω jk = ω ij + β Fjek
� (5)

	

{
aj = aj + β Fj(1 − Fj)xi

∑ n

k=1ω jkek

bk= bk + β ek
� (6)

Regularization can be incorporated to enhance the model’s representational capacity and adaptability while 
reducing the occurrence of overfitting to the training dataset. L1 and L2 regularization are commonly used 
regularization techniques to prevent Model overfitting and improve the Model’s generalization ability. They limit 
the complexity of the Model by adding additional penalty terms to the loss function. The loss function with 
added L1 regularization and L2 regularization is expressed in Eqs. (7) and (8):

	 Ĵ(ω ; X, y) = J(ω ; X, y) + λ ∥ ω ∥1� (7)

	
Ĵ (ω ; X, y) = J (ω ; X, y) + λ

2 ∥ ω ∥2� (8)

The BP neural network model exhibits effective handling capabilities for nonlinear factors within the system, 
while the ARIMA model demonstrates robust capabilities in extracting time series patterns from accident data. 
These two models are combined for accident prediction to enhance the predictive accuracy.

Next, a residual optimization prediction combination method is employed to construct a composite 
prediction model for traffic accidents. The linear component of traffic accidents is predicted using the ARIMA 
model, and the residual data of traffic accidents are extracted. Subsequently, a BP neural network is constructed 
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to fit and predict the nonlinear factors within traffic accidents. The final prediction results are obtained through 
the residual optimization combination prediction model.

Consider a set of time series data yt as being composed of a linear autocorrelation structure Lt and a nonlinear 
structure Nt. Their relationship is expressed as in Eq. (9):

	 yt = Lt + Nt � (9)

The ARIMA-BP prediction model involves three steps:
Step 1: The initial linear component prediction using ARIMA. Let yt be the original time series data. The 

ARIMA prediction result, denoted as Lt
′ , captures the primary linear trends and seasonal patterns. The residual 

et between the original sequence and ARIMA prediction is calculated as shown in Eq. (10):

	 et = yt − Lt
′ � (10)

The residual sequence {et} encapsulates the nonlinear components and complex patterns that the linear ARIMA 
model cannot adequately capture. This nonlinear relationship can be expressed through a functional mapping f 
with random error term ϵ t, as shown in Eq. (11):

	 et = f (et−1 , et−2..., et−n) + εt � (11)

Step 2: Nonlinear residual pattern learning through BP neural network. Rather than using direct model 
combination, we employ a specialized BP neural network architecture to learn the complex nonlinear patterns 
in the residuals. The BP network incorporates domain-specific knowledge through the integration of the 13 
identified traffic indicators. The network’s prediction Nt

′  is optimized through:

	 Nt
′ = σ (Wh[ xt, e{t−1}, ..., e{t−n}] + bh) � (12)

where:
xtrepresents the vector of traffic-specific indicators
σ  denotes the activation function
Whand bh are the weight matrix and bias vector respectively
Step 3: Dynamic integration through multi-target optimization. The final prediction is obtained through a 

specialized integration framework given by Eq. (13):

	 yt
′ = Lt

′ + Nt
′ � (13)

where yt
′  is the final prediction result of the combined ARIMA-BP model.

This integration is further enhanced by a comprehensive multi-target optimization framework that 
simultaneously considers all four accident metrics:

	 Ltotal = Σ (i = 1 to 4) γi ∗ || yi − (Lt
′ + Nt

′ ) ||2 � (14)

where:
γ i represents the importance weights for each accident metric
yi corresponds to the actual values for accidents, fatalities, injuries, and property damage
The squared error term ensures robust optimization across all targets.
This methodological framework represents a significant advancement in hybrid modeling approaches 

for traffic accident prediction. The ARIMA component systematically captures linear temporal patterns and 
seasonal variations in the accident data, while the BP neural network specializes in learning complex nonlinear 
relationships through its residual optimization process. The integration of these complementary approaches 
through our multi-target optimization framework enables more comprehensive modeling of accident patterns 
than traditional single-model approaches. By simultaneously optimizing for all four accident metrics (accidents, 
fatalities, injuries, and property damage), the model maintains the intrinsic relationships between these variables 
while minimizing prediction errors across all targets. Figure 2 provides a detailed illustration of this sequential 
integration process, demonstrating the systematic flow from initial ARIMA prediction through BP-based residual 
optimization to final ensemble prediction. This architecture not only leverages the individual strengths of both 
ARIMA and BP models but also introduces additional synergistic benefits through its specialized integration 
framework and domain-specific optimizations.

Data sources and collection
The data originate from annual reports published on the National Bureau of Statistics website, as well as 
annual statistical data compiled from various indicators52. The historical statistical data for traffic accidents, 
fatalities, injuries, and property damage in China from 1990 to 2020 were compiled. The statistical analysis and 
visualization of traffic accident data in the transportation sector were conducted. Figure 3 illustrates the trends 
in the number of traffic accidents, fatalities and injuries, and property damage in China from 1990 to 2020. 
Starting in 1990, the numbers of four indicators continued to rise, reaching a peak in the early 2000s, followed 
by a sustained decline. After 2015, these four indicators exhibited a trend of continuous fluctuations, showing a 
relatively consistent pattern in their quantitative relationships.
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Traffic accident Indicator selection
In this study, indicator collection and selection were carried out by considering both the gray relational analysis 
and the research relevance. The prediction target of this study is the macroscopic loss situation in transportation 
industry accidents. Therefore, among the numerous indicators related to the transportation industry, the primary 
selected indicators include the population, economy, roads, vehicles, drivers, and industry employment. On the 
other hand, the gray relational degree method was employed to calculate the correlation between each indicator 
and the occurrence of traffic accidents. The indicators were ranked based on the relational degree values. The 

Fig. 3.  The trends of various traffic accident indicators between 1990 and 2020.

 

Fig. 2.  Methodology and procedure for establishing the ARIMA, BP, and ARIMA-BP models, integrating 
linear and nonlinear information from accident data for prediction.
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relational degree values ranged from 0 to 1, with higher values indicating a stronger correlation with the parent 
sequence (accident occurrence), implying a higher level of correlation. Generally, a gray relational degree greater 
than 0.6 is considered highly correlated53, and this criterion was used for indicator selection.

Thirteen influencing factors related to traffic accidents were selected, including the national total income, 
gross domestic product (GDP), residents’ Engel coefficient, labor force, year-end total population, and road 
mileage, as well as the quantity of road-operated vehicles, the number of private cars, the number of civilian cars, 
the volume of road freight, the volume of road passengers, the number of employees in the road transportation 
industry, and the number of motor vehicle drivers. From Table 1, it can be observed that among the 13 selected 
indicators, the labor force (in tens of thousands) has the highest correlation, with a relational degree of 0.838, 
followed by the year-end total population (in tens of thousands), with a relational degree of 0.83, and residents’ 
Engel coefficient, with a relational degree of 0.802. The relational degree values for the other influencing factors 
are all greater than 0.6. The data preprocessing method used in the study is the Min Max normalization method, 
which performs dimensionality reduction on the data to ensure the rigor of data processing.

Model predictions
ARIMA model prediction
The ARIMA model was established to predict the future occurrence of traffic accidents, fatalities, injuries, 
and property damage for the next five periods. Figure 4 illustrates the autocorrelation function (ACF) of the 
residuals of the ARIMA model, including coefficients with upper and lower confidence limits. The horizontal 
axis represents the lag number, and the vertical axis represents the autocorrelation coefficients. This model 
requires that the residuals of the time series model be a white noise sequence. As shown in Fig. 4, all correlation 

Fig. 4.  Residual autocorrelation graph of the ARIMA model, examining the residuals to ensure the 
effectiveness of the model fit.

 

Influencing Factors Correlation Ranking

Labor force 0.838 1

Total population at the end of the year 0.83 2

Residents’ Engel coefficient 0.802 3

Highway passenger volume 0.778 4

Number of employed personnel in the highway transportation industry 0.758 5

Highway mileage 0.706 6

Highway freight volume 0.702 7

Gross domestic product 0.685 8

Gross national income 0.685 9

Number of road-operating vehicles 0.682 10

Number of motor vehicle drivers 0.662 11

Number of civil vehicles owned 0.626 12

Private car ownership 0.606 13

Table 1.  Correlation coefficients between the factors influencing traffic accidents and the number of accidents 
occurring.
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coefficients are within the dashed lines, indicating that the residuals of the AR model are a white noise sequence. 
Figure 5(a) displays the fitted values of traffic accidents and the predicted values for the next five periods. It can 
be observed from the historical statistical values that the number of traffic accidents exhibits strong volatility 
and nonstationarity. The scatter plot of the predicted values indicates a growth trend in the number of accidents 
during the forecast period, with a relatively low growth rate. The ARIMA model’s goodness of fit (R²) regarding 
the number of accidents is 0.937, demonstrating excellent model performance. Table 2 presents the goodness of 
fit for various indicators, with goodness of fit values of 0.909, 0.904, and 0.857 for the death toll, injury count, 
and property damage, respectively, indicating good model fitting for these parameters.

The ARIMA model was then applied to predict the number of fatalities, injuries, and property damage. 
The model was trained on historical time series data from 1990 to 2015, the model fit was analyzed for the 
accident indicators, and predictions were made for the subsequent five periods. The fitted and predicted results 
are shown in Figs. 5(b), (c), and (d). These figures demonstrate that the model fits the historical accident data 
well, accurately capturing peaks and extreme values. The predicted results show a noticeable trend in accidents, 
fatalities, injuries, and property damage for the next five periods. Regarding prediction accuracy, the average 
annual prediction errors for the four indicators were 6.33%, 7.16%, 8.78%, and 9.40%, respectively, with the 
ARIMA model exhibiting the highest accuracy in terms of predicting the number of accidents and the lowest 
accuracy in predicting the property damage. In conclusion, the ARIMA model demonstrates good data fitting 
but requires improved prediction accuracy for the analyzed traffic accident indicators.

BP neural network prediction
The BP neural network model for prediction was implemented using MATLAB software version 2020b. 
Predictions for the number of traffic accidents, fatalities, injuries, and property damage for the next five periods 
were made by establishing a neural network model. A 3-layer neural network structure was employed, with 

Predictor Goodness of fit

Number of traffic accidents 0.937

Number of fatalities 0.909

Number of injuries 0.904

Property damage 0.857

Table 2.  Prediction of the goodness of fit for the four accident indicators.

 

Fig. 5.  Fitted and predicted values of the four indicators over time: (a) number of traffic accidents, (b) number 
of deaths, (c) number of injuries, and (d) property damage.
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13 neurons in the input layer and 4 neurons in the output layer. The number of nodes in the hidden layer was 
determined through trial and error. Different numbers of nodes were selected, the training error was calculated, 
and the model parameters were adjusted to minimize the training error. The final number of nodes in the hidden 
layer was determined to be 8, providing a fitting R coefficient of close to 1, indicating good model performance. 
Figure 6 illustrates the neural network structure for traffic accident prediction, including each accident indicator’s 
input layer, hidden layer, output layer, and variables. The data were split into training (70%), validation (15%), 
and testing (15%) sets. Thirteen selected variables from Sect. “Traffic accident indicator selection” were used 
as input indicators for the neural network. The chosen traffic accident analysis indicators included economic 
factors (national income, gross domestic product, and Engel coefficient), macro population factors (labor force, 
year-end total population, and number of motor vehicle drivers), and passenger and freight volume factors 
(road mileage, number of road operating vehicles, number of private cars, number of civilian cars, road freight 
volume, road passenger volume, and number of employees in the road transport industry). The output indicators 
comprised the number of accidents, fatalities, injuries, and property damage. The neural network model was 
trained using traffic accident data, and the output error histogram (Fig. 7) and the neural network goodness 
of fit curve (Fig.  8) indicated low errors on both the training and testing sets, demonstrating good training 
performance.

The BP neural network studied the relationships and nonlinear information in the accident data, confirming 
that economic, human, and road factors influence traffic accidents. The traffic accident indicators, to some 
extent, affect the trend changes in traffic accident losses. Figures 9 and 10 depict the mean square error curve and 
the model prediction results. It is evident that accident losses, the numbers of accidents, fatalities, and injuries, 
and property damage all show a continuous upward trend from 2016 to 2020, reaching 257,432, 82,099, 263,728, 
and 152,484, respectively, at the end of the prediction period. The BP model exhibits the highest accuracy in 
predicting the number of accidents, while the predicted values for fatalities deviate significantly from the actual 
values. Using Eq. (13), the annual average errors of the BP neural network prediction model were 6.42%, 20.32%, 
10.10%, and 9.34% for the number of accidents, fatalities, injuries, and property damage, respectively. Compared 
to the ARIMA model, the BP model predictions better reflect the fluctuation trends in the actual accident data. 
There is still considerable room for improvement in the prediction accuracy of the BP model.

ARIMA-BP model prediction results
According to the construction method of the ARIMA-BP model based on the residual optimization approach 
in Sect.  “Construction of the combined ARIMA-BP model”, an ARIMA-BP model was established using the 
controlled variable method. The input indicators of the model were kept consistent with those of the BP neural 
network. This model predicts the number of traffic accidents, fatalities, injuries, and property damage for 2016–
2020. The model predictions were then compared with the actual values of accident losses, and the prediction 
errors of the ARIMA-BP model were calculated. Furthermore, the predicted results were compared with the 
predictions of individual models to analyze and compare the forecasting effectiveness of different models. 
The annual average error rate T was employed as the measure of accuracy for different model predictions, as 
indicated in Eq. (13):

Fig. 6.  Neural network structure diagram comprising an input layer, a hidden layer, and an output layer. The 
model input and output indicators are displayed.
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Fig. 8.  The R coefficient graphs of the neural network fitting on the training set, validation set, testing set, and 
all datasets. The relationship between the target and output values is shown above each image.

 

Fig. 7.  BP model error histograms for the training set, validation set, testing set, and zero error line.
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Ti = Ri − Si

T = (Ti

Si
), i = 2015, 2016, 2017, 2018, 2019, and 2020

� (13)

The ARIMA-BP model was used to forecast the four indicators of traffic accident losses mentioned above. 
Table 3 presents the predicted values of traffic accidents, fatalities, injuries, and property damage for 2016–2020. 
The results indicate that during the forecast period from 2016 to 2020, the average annual error rates of the 
ARIMA-BP model for the four indicators—crash frequency (number of accidents) and crash severity (number 
of fatalities, number of injuries, and property damage)—are 4.16%, 3.67%, 7.45%, and 5.94%, respectively, with 
an overall average prediction error rate of 5.31%. Further comparative analysis of the forecasting performance of 
different models is presented in Fig. 11, depicting the trend of the predicted results from 2016 to 2020. The chart 
illustrates the future development of traffic accident losses. From Figs. 11 (a), (b), (c), and (d), it is evident that 
the ARIMA-BP model exhibited good forecasting accuracy for the number of traffic accidents, with predicted 
values for 2017 and 2020 closely matching the actual values. The ARIMA-BP model yielded smaller prediction 
residuals for fatalities, particularly in 2016 and 2018, compared to those of the two individual models. The model 
prediction error for the number of injuries was lower than that of the ARIMA and BP models, demonstrating the 
higher prediction accuracy for the combined model. In predicting property damage, the ARIMA-BP model also 
achieved the highest accuracy, and the curve reflects the true fluctuations in property damage during the forecast 

Fig. 10.  BP neural network model prediction results, including the numbers of accidents, fatalities, injuries, 
and property damage.

 

Fig. 9.  Neural network training mean square error curve.
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period. The analysis of the results indicates that while the BP model is accurate in some years, it lacks stability, 
resulting in a relatively low average prediction accuracy. With an overall linear trend, the ARIMA model exhibits 
improved accuracy compared to that of the BP model but fails to capture the variations in traffic accident losses. 
The combined ARIMA-BP model provides more accurate predictions for traffic accident losses than those of the 
individual models. The model trends align well with the actual data series, better reflecting the true trajectory 
of the accident data.

Discussion
This section discusses how to incorporate the nonlinear information of traffic accident data into predictions while 
ensuring prediction stability using the ARIMA-BP model accurately and effectively. The ARIMA model exhibits 
good stability as a time series model due to the constraints imposed by the historical data series characteristics, 
model parameters, and seasonal trends. The residual autocorrelation plot and model prediction results of the 
ARIMA model show that the residuals form a white noise sequence with low correlation coefficients, meeting the 
requirements for prediction. The ARIMA model relies entirely on fitting and calculating historical accident data, 
displaying a strong linear pattern in the prediction results. In the prediction process, it is essential to consider 
the impact of various complex factors on traffic safety accidents, such as road conditions, traffic flow, weather, 
and other factors. Since the complex relationships affecting accident occurrence encompass numerous nonlinear 
data information, linear models cannot adequately capture these relationships, underscoring the importance of 
effectively extracting nonlinear information from the data.

The limitation of the ARIMA model lies in its failure to consider the influence of other factors on traffic 
accidents. Thus, this model lacks mechanistic reasoning. To address the lack of mechanistic reasoning in 

Fig. 11.  Comparison of the prediction effects of different models in traffic accidents from 2016–2020. The 
predicted results of the ARIMA-BP model align most closely with the actual outcomes, while the ARIMA 
model exhibits a noticeable linear trend in its predictions, and the BP model’s forecasted results display higher 
volatility.

 

Time Accidents Injuries Fatalities Property Damage

2016 228,126 63,921 205,883 125,522

2017 201,585 62,292 201,204 112,526

2018 229,931 62,506 227,817 133,073

2019 234,583 65,741 233,378 142,576

2020 248,327 67,187 242,164 142,789

Table 3.  ARIMA-BP model prediction results.
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predictions and enhance the interpretability of the results, the nonlinear modeling capability of the BP model 
is employed to accommodate various complex data relationships, allowing for a more flexible capture of 
nonlinear patterns in time series data built upon the ARIMA model. Through optimization methods such as 
backpropagation and gradient descent, neural networks can learn the nonlinear relationships in the data. The 
multilayer structure of neural networks (input layer, hidden layer, layer, output layer) allows for representing 
complex nonlinear functions by combining multiple nonlinear transformations. Thus, this approach adequately 
considers the nonlinear information in traffic accidents, improving the prediction efficiency. An analysis of the 
results from the BP model reveals that, compared to the ARIMA model, the predictions are no longer a simple 
linear relationship. As the prediction introduces indicators related to traffic accidents and fits the model, the 
trend of predicted values aligns more closely with real accident data, better reflecting the changing trajectory 
of accident losses compared to the ARIMA model. The prediction accuracy of the BP neural network model 
fluctuates significantly, with a maximum annual average error rate of 20.32%. The prediction errors are generally 
higher than those of the ARIMA model, indicating ample room for improved accuracy.

To ensure the accuracy of traffic accident predictions and consider the nonlinear information in the data, 
this study introduces traffic accident indicators and utilizes the ARIMA-BP model for combined forecasting. 
By combining linear and nonlinear methods, the real data distribution better fits, providing higher prediction 
accuracy. The accuracy of each model is calculated for a better comparative analysis of the forecasting effects. 
The precision comparison among the ARIMA, BP, and ARIMA-BP models is illustrated in Fig. 12, where the 
selected ARIMA-BP model in the study exhibits annual average error rates of 4.16%, 3.67%, 7.45%, and 5.94%. 
In comparison, the ARIMA model achieves annual average error rates of 6.33%, 7.16%, 8.78%, and 9.40%, 
while the BP neural network model yields error rates of 6.42%, 20.32%, 10.10%, and 9.34%. The ARIMA-BP 
model demonstrates the most negligible minor prediction errors, the highest accuracy, and optimal forecasting 
performance.

The ARIMA-BP model selected in this study demonstrates superior adaptability to different types of traffic 
accident data and prediction challenges compared to single models. While standalone models, such as the BP 
neural network, may be prone to overfitting due to their complex structures, the ARIMA-BP model mitigates 
this issue by integrating multiple model frameworks. This integration reduces overfitting risk and enhances 
robustness to outliers and noisy data, as the combined strengths of ARIMA and BP provide a balanced approach 
to addressing data irregularities.

Furthermore, the ARIMA-BP model’s hybrid nature allows for greater generalizability across diverse problem 
domains. Unlike single models, which may be overly sensitive to specific data patterns, the ARIMA-BP model 
achieves more reliable predictions by effectively capturing both linear and nonlinear relationships in traffic 
accident data. This makes it particularly suitable for dynamic and multifaceted prediction problems like traffic 
safety. In addition, by comparing with similar prediction studies, it can be found that the ARIMA-BP model 
used in the research has advantages compared to other commonly used prediction methods. Here’s the revised 
paragraph:

For example, in comparison with the LSTM model, it can be found that using the ARIMA-BP model for 
prediction is more advantageous than using the LSTM-GBRT model in the context of the same Chinese traffic 
accident data54. This is manifested in more comprehensive prediction indicators, predictions of future trends in 
accident data, and smaller error rates in specific years. Both research predicted the number of traffic accident 
deaths in 2016, which is the overlapping part of the prediction periods in the two studies. The prediction accuracy 
can be compared using the results of this year. By calculating the predicted percentage error of the number of 

Fig. 12.  Prediction error rates of the ARIMA, BP, and ARIMA-BP models for accidents, fatalities, injuries, and 
property damage. The annual average error rate of the ARIMA-BP hybrid model is the lowest among the three 
models.
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deaths in traffic accidents in China in 2016, it can be seen that the error of the ARIMA-BP model is -1.31%, while 
the error of the LSTM-GBRT model is 8.42%.

To further validate these findings, we implemented our own LSTM model using the same dataset and 
prediction period as our ARIMA-BP model. A comprehensive comparison was conducted across all four 
prediction targets (accidents, fatalities, injuries, and property damage) for the years 2016–2020. Table 4 present 
the detailed comparison results. The ARIMA-BP model demonstrated consistently lower annual average error 
rates across all metrics and years, with the most significant improvement observed in Injuries predictions (5.21% 
reduction in error rate). To validate the performance differences between ARIMA-BP and LSTM models, we 
conducted Wilcoxon signed-rank tests on the annual error rates across all four prediction targets (2016–2020). 
The tests confirmed that ARIMA-BP model achieved significantly lower error rates for accidents (W = 0, p < 0.05), 
fatalities (W = 0, p < 0.05), injuries (W = 0, p < 0.05) and property damage (W = 0, p < 0.05).These results provide 
strong empirical evidence for the superior predictive capabilities of our ARIMA-BP model compared to LSTM 
approaches in traffic accident prediction tasks.

In terms of predicting inflection points in accident data, the ARIMA-BP model has the ability to predict 
inflection points, and the fluctuation trend of the predicted results is more in line with the actual data, while 
the LSTM model does not have the ability to predict inflection points. The accurate forecasting capabilities of 
the ARIMA-BP model provide significant data-driven decision support for traffic management departments. By 
offering precise predictions of accident patterns, the model aids in developing more effective traffic management 
and safety strategies. For example, management can use these forecasts to allocate resources more efficiently—
focusing on high-risk areas and critical periods to minimize the likelihood of accidents.

In summary, the ARIMA-BP model is crucial in identifying key risk factors contributing to traffic accidents. 
Through analyzing these predictive insights, traffic authorities can implement targeted preventive measures to 
mitigate these risks. For instance, if certain weather conditions or congestion levels are shown to significantly 
increase accident risks, authorities can proactively address these factors through tailored interventions such 
as public advisories, traffic rerouting, or enhanced safety measures. By adopting such data-driven preventive 
strategies, the ARIMA-BP model not only helps reduce accident rates but also minimizes casualties and property 
damage.

Conclusion
In this study, the causal relationships underlying traffic accidents were systematically analyzed, and a 
comprehensive risk assessment was conducted by examining factors related to people, vehicles, and road 
conditions. Relevant accident indicators were selected to construct the ARIMA time series, BP, and ARIMA-
BP models. Three different prediction methods were applied to forecast traffic accident losses. The accuracy 
and effectiveness of the established single and ARIMA-BP prediction models were compared and analyzed 
by calculating the error rates in predicting traffic accident losses. This study effectively enhances the precision 
of predicting traffic accident losses, offering valuable insights for future studies on traffic accident prediction. 
Integrating the ARIMA and BP models allows for better handling of linear trends and nonlinear patterns within 
this context. Moreover, we introduced a residual optimization technique that improves model performance 
specifically for the complexities of traffic data, which has not been extensively explored in previous studies. The 
conclusions are summarized as follows.

1) A systematic risk analysis of traffic accidents was conducted at the individual, vehicle, and road levels, 
resulting in a causal flowchart depicting the evolutionary relationship of traffic accident risks. Multiple factors 
influence road traffic accidents, including vehicle, pedestrian, and environmental risks. Due to the complexity 
of the mechanisms involved in traffic accidents, ARIMA and BP neural network models were selected to predict 
accident losses. These models were combined to leverage their respective advantages and address the poor 
predictive performance associated with individual models.

2) ARIMA and BP neural network models were constructed to predict traffic accident losses in the same 
forecast period, and four types of traffic accident losses were predicted. The former uses time series data directly 

Model Target 2016 2017 2018 2019 2020 Annual Average

Accidents

LSTM Error 8.93% 10.45% 9.87% 8.76% 11.23% 9.85%

ARIMA-BP Error 7.18% 0.72% 6.13% 5.27% 1.49% 4.16%

Fatalities

LSTM Error 9.1% 8.45% 9.24% 8.78% 9.13% 8.94%

ARIMA-BP Error 1.31% 2.32% 1.09% 4.74% 8.89% 3.67%

Injuries

LSTM Error 14.87% 13.92% 14.12% 14.78% 14.98% 14.53%

ARIMA-BP Error 9.07% 4.03% 11.88% 8.87% 3.41% 7.45%

Property Damage

LSTM Error 10.87% 11.56% 10.23% 12.34% 10.76% 11.15%

ARIMA-BP Error 3.94% 7.24% 3.89% 5.91% 8.70% 5.94%

Table 4.  Annual error rates comparison (%).
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for prediction, while the latter considers factors influencing traffic accidents in predictions, introducing traffic 
accident indicators. A comparison of the forecasting effects of the ARIMA models and BP neural network 
models was conducted by calculating the error rates of different prediction models. The annual average error 
rates of the former for the four accident indicators were 6.33%, 7.16%, 8.78%, and 9.40%, while the latter had 
error rates of 6.42%, 20.32%, 10.10%, and 9.34%. The ARIMA model exhibited higher prediction accuracy for 
accidents, fatalities, and injuries. This result could be attributed to the lower volatility of traffic accident data 
around the forecast period, where the differencing process applied by the ARIMA model enhanced the data 
stationarity, allowing the model’s advantage in analyzing time series data relationships to be more pronounced.

3) Employing the residual optimization method to construct the ARIMA-BP model for predicting traffic 
accident losses resulted in annual average error rates of 4.16%, 3.67%, 7.45%, and 5.94%. The ARIMA-BP 
model’s average annual error rate for the four indicators was 5.31%, compared to 7.92% for the ARIMA model 
and 11.55% for the BP model. The prediction error rates of the ARIMA-BP model were 2.61% and 6.24% lower 
than those of the ARIMA and BP neural network models, respectively. The ARIMA-BP model exhibited the 
smallest prediction errors, the highest accuracy, and the best forecasting performance. The ARIMA model’s 
predictions were approximately linear and unable to reflect the changing trend in traffic accident data, while the 
BP model’s predictions showed some volatility. The ARIMA-BP model’s predictions demonstrated the best trend 
conformity, capturing the data trend closest to the real data.

Due to the limited availability of publicly accessible data on traffic accidents, the study used annual data 
without forecasting from a monthly or quarterly perspective. Future research should continue to improve the 
forecasting effectiveness across different data dimensions, further validating the accuracy of the ARIMA-BP 
model.

Data availability
Data that support the findings of this study have been deposited in National Bureau of Statistics of China (NBS). 
(China statistical yearbook 1990-2020. China Statistics: Press 1990-2020; Beijing.)

Received: 21 April 2024; Accepted: 30 June 2025

References
	 1.	 Marcillo, P., Caraguay, V., Hernández-Álvarez, M. & Á. L., & A systematic literature review of Learning-Based traffic accident 

prediction models based on heterogeneous sources. Appl. Sci. 12 (9), 4529 (2022).
	 2.	 Shaik, M. E., Islam, M. M. & Hossain, Q. S. A review on neural network techniques for the prediction of road traffic accident 

severity. Asian Transp. Stud. 7, 100040 (2021).
	 3.	 Lim, B. & Zohren, S. Time-series forecasting with deep learning: a survey. Philosophical Trans. Royal Soc. A. 379 (2194), 20200209 

(2021).
	 4.	 Sarstedt, M., Mooi, E., Sarstedt, M. & Mooi, E. Regression analysis. A concise guide to market research: The process, data, and 

methods using IBM SPSS Statistics, 209–256. (2019).
	 5.	 Comert, G., Begashaw, N. & Huynh, N. Improved grey system models for predicting traffic parameters. Expert Syst. Appl. 177, 

114972 (2021).
	 6.	 Yang, Y., Wang, K., Yuan, Z. & Liu, D. Predicting freeway traffic crash severity using XGBoost-Bayesian network model with 

consideration of features interaction. Journal of advanced transportation, 2022. (2022).
	 7.	 Zhou, X., Lu, P., Zheng, Z., Tolliver, D. & Keramati, A. Accident prediction accuracy assessment for highway-rail grade crossings 

using random forest algorithm compared with decision tree. Reliab. Eng. Syst. Saf. 200, 106931 (2020).
	 8.	 Singh, G., Pal, M., Yadav, Y. & Singla, T. Deep neural network-based predictive modeling of road accidents. Neural Comput. Appl. 

32, 12417–12426 (2020).
	 9.	 Gutierrez-Osorio, C. & Pedraza, C. Modern data sources and techniques for analysis and forecast of road accidents: A review. J. 

Traffic Transp. Eng. (English edition). 7 (4), 432–446 (2020).
	10.	 Yassin, S. S. & Pooja Road accident prediction and model interpretation using a hybrid K-means and random forest algorithm 

approach. SN Appl. Sci. 2, 1–13 (2020).
	11.	 Miller, J. W. ARIMA time series models for full truckload transportation prices. Forecasting 1 (1), 121–134 (2018).
	12.	 Van Der Voort, M., Dougherty, M. & Watson, S. Combining Kohonen maps with ARIMA time series models to forecast traffic flow. 

Transp. Res. Part. C: Emerg. Technol. 4 (5), 307–318 (1996).
	13.	 Zhang, R. Xie Fei,Shi Jianjun,Zhao Jing,Yang Jiquan Ling Xu.(2022).Spatial-Temporal Semantic Neural Network for Time Series 

Forecasting.Journal of Physics: Conference Series(1).
	14.	 Abojaradeh, M. Development of traffic accident prediction models to improve traffic safety and to reduce traffic accident severity 

and rate in Jordan. J. Biol. Agric. Healthc., 5(2), 42–54 (2015).
	15.	 Xu, Z., Saleh, J. H. & Subagia, R. Machine learning for helicopter accident analysis using supervised classification: inference, 

prediction, and implications. Reliab. Eng. Syst. Saf. 204, 107210 (2020).
	16.	 Ye Fei-Fei,Yang Long-Hao,Wang Ying-Ming Lu Haitian. A data-driven rule-based system for China’s traffic accident prediction by 

considering the improvement of safety efficiency (Computers Industrial Engineering, 2023).
	17.	 Wu, M. et al. A multi-attention dynamic graph Convolution network with cost‐sensitive learning approach to road‐level and 

minute‐level traffic accident prediction. IET Intel. Transport Syst. 17 (2), 270–284 (2023).
	18.	 Gorzelanczyk, P. Application of neural networks to forecast the number of road accidents in provinces in Poland. Heliyon 9(1), 

e12767 (2023).
	19.	 Zhan Weiyun,Li Haitao,Wu Xuefeng,Zhang Jingyue,Liu Chenxi Zhang Dongming. Research on neural network prediction method 

for upgrading scale of natural gas reserves.Frontiers in Earth Science. (2023).
	20.	 Yang, Z., Zhang, W. & Feng, J. Predicting multiple types of traffic accident severity with explanations: A multi-task deep learning 

framework. Saf. Sci. 146, 105522 (2022).
	21.	 Zargari, S. A., Khorshidi, N. A., Mirzahossein, H., Shakoori, S. & Jin, X. Travel time reliability prediction by genetic algorithm and 

machine learning models. In Proceedings of the Institution of Civil Engineers-Transport (pp. 1–10). Thomas Telford Ltd. (2022), 
December.

	22.	 Jiang, W. & Luo, J. Graph neural network for traffic forecasting: A survey. Expert Syst. Appl. 207, 117921 (2022).
	23.	 Tian, Z. & Zhang, S. Deep learning method for traffic accident prediction security. Soft. Comput. 26 (11), 5363–5375 (2022).
	24.	 Sawalha, Z. & Sayed, T. Transferability of accident prediction models. Saf. Sci. 44 (3), 209–219 (2006).

Scientific Reports |        (2025) 15:24328 16| https://doi.org/10.1038/s41598-025-09888-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	25.	 Lin, L., Wang, Q. & Sadek, A. W. A novel variable selection method based on frequent pattern tree for real-time traffic accident risk 
prediction. Transp. Res. Part. C: Emerg. Technol. 55, 444–459 (2015).

	26.	 Yasin Çodur, M. & Tortum, A. An artificial neural network model for highway accident prediction: a case study of erzurum, 
Turkey. PROMET-Traffic&Transportation 27 (3), 217–225 (2015).

	27.	 Yannis, G., Dragomanovits, A., Laiou, A., La Torre, F., Domenichini, L., Richter,T., … Karathodorou, N. (2017, October). Road 
traffic accident prediction modelling:a literature review. In Proceedings of the institution of civil engineers-transport(Vol. 170, No. 
5, pp. 245–254). Thomas Telford Ltd.

	28.	 Lin, D. J., Chen, M. Y., Chiang, H. S. & Sharma, P. K. Intelligent traffic accident prediction model for internet of vehicles with deep 
learning approach. IEEE Trans. Intell. Transp. Syst. 23 (3), 2340–2349 (2021).

	29.	 Ma, Z., Mei, G. & Cuomo, S. An analytic framework using deep learning for prediction of traffic accident injury severity based on 
contributing factors. Accid. Anal. Prev. 160, 106322 (2021).

	30.	 Hu, Y. Traffic Fatality Rate Prediction Based on Deep Neural Network and Bayesian Neural Network (Doctoral dissertation, 
Northern Illinois University). (2021).

	31.	 Guo, Q., Guo, B., Wang, Y., Tian, S. & Chen, Y. A Combined Prediction Model Composed of the GM (1, 1) Model and the BP 
Neural Network for Major Road Traffic Accidents in China. Mathematical Problems in Engineering, 2022. (2022).

	32.	 Zheng, J. & Wu, X. Prediction of road traffic accidents using a combined model based on IOWGA operator. Periodica Polytech. 
Transp. Eng. 43 (3), 146–153 (2015).

	33.	 Bates, J. M. & Granger, C. W. The combination of forecasts. J. Oper. Res. Soc. 20 (4), 451–468 (1969).
	34.	 Zhang, G. P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003).
	35.	 Zheng, X. & Liu, M. An overview of accident forecasting methodologies. J. Loss Prev. Process Ind. 22 (4), 484–491 (2009).
	36.	 Yannis, G., Dragomanovits, A., Laiou, A., Richter, T., Ruhl, S., La Torre, F., … Li, H. Use of accident prediction models in road 

safety management–an international inquiry. Trans. Res. Proc. 14, 4257–4266 (2016).
	37.	 Zheng, Y. Measurement model of social and economic loss of traffic accident based on particle swarm optimization. Adv. Transp. 

Stud. 1, 27–36 (2022).
	38.	 Dey, B., Roy, B., Datta, S. & Ustun, T. S. Forecasting ethanol demand in India to Meet future blending targets: A comparison of 

ARIMA and various regression models. Energy Rep. 9, 411–418 (2023).
	39.	 Han, L. N., Ma, X. Z., Tan, J. D., Li, J. H. & Dong, Y. Q. Balancing material supply-demand with ARIMA and neural networks. Int. 

J. Simul. Model. 22(4), 712–722 (2023).
	40.	 Lwaho, J. & Ilembo, B. Unfolding the potential of the ARIMA model in forecasting maize production in Tanzania. Bus. Analyst J. 

44 (2), 128–139 (2023).
	41.	 Mati, S. et al. Incorporating Russo-Ukrainian war in Brent crude oil price forecasting: A comparative analysis of ARIMA, TARMA 

and ENNReg models. Heliyon 9(11), e21439 (2023).
	42.	 Wen, T., Liu, Y., Bai, Y. & Liu, H. he& Modeling and forecasting CO2 emissions in China and its regions using a novel ARIMA-

LSTM model. Heliyon, 9(11). (2023).
	43.	 Zhou, Z. H. Machine Learning (Springer Nature, 2021).
	44.	 Siami-Namini, S., Tavakoli, N. & Namin, A. S. A comparison of ARIMA and LSTM in forecasting time series. In 2018 17th IEEE. 

(2018), December.
	45.	 Mulkey, D. C., Fedo, M. A. & Loresto, F. L. Jr Analyzing a multifactorial fall prevention program using ARIMA models. J. Nurs. 

Care Qual. 38 (2), 177–184 (2023).
	46.	 Tarmanini, C., Sarma, N., Gezegin, C. & Ozgonenel, O. Short term load forecasting based on ARIMA and ANN approaches. 

Energy Rep. 9, 550–557 (2023).
	47.	 Lu, S. Research on GDP forecast analysis combining BP neural network and ARIMA model. Comput. Intell. Neurosci. 2021(1), 

1026978 (2021).
	48.	 Wang, X. Research on the prediction of per capita coal consumption based on the ARIMA–BP combined model. Energy Rep. 8, 

285–294 (2022).
	49.	 Hou, L. & Chen, H. The prediction of Medium-and Long-Term trends in urban carbon emissions based on an ARIMA-BPNN 

combination model. Energies 17 (8), 1856 (2024).
	50.	 Sayed, H. A., William, A. & Said, A. M. Smart electricity meter load prediction in Dubai using MLR, ANN, RF, and ARIMA. 

Electronics 12 (2), 389 (2023).
	51.	 Khan, S. & Alghulaiakh, H. ARIMA model for accurate time series stocks forecasting. International Journal of Advanced Computer 

Science and Applications, 11(7). (2020).
	52.	 National Bureau of Statistics of China (NBS). China Statistical Yearbook 1990–2020. China Statistics:1990–2020; Beijing (2021).
	53.	 Wagner, I. I. I. & W. E Using IBM® SPSS® statistics for research methods and social science statistics (Sage, 2019).
	54.	 Zhang, Z., Yang, W. & Wushour, S. Traffic accident prediction based on LSTM-GBRT model. J. Control Sci. Eng. 2020 (1), 4206919 

(2020).

Acknowledgements
The authors gratefully acknowledge the support by the National Science Foundation of China (Grant No. 
52004139) and the National Key R&D Program of China (No.2017YFC0804901), and the Fundamental Re-
search Funds for the Central Universities (No. FRF-TP-22-120A1).

Author contributions
Jian Liu: Conceptualization, Methodology, Project administration, Resources, Supervision, Writing - review 
&editing.Zhuqing Zhang: Writing - review &editing, Methodology, Software, Data Curation, Formal analysisBin 
Lyu: Data curation, Writing - original draft, Writing - review &editing, Formal’ analysis, Investigation.Rui Feng: 
Visualization, Writing - original draft, Writing - review & editing, Funding acquisition.Ye He: Data curation, 
Writing - original draft, Writing - review &editing.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to R.F.

Reprints and permissions information is available at www.nature.com/reprints.

Scientific Reports |        (2025) 15:24328 17| https://doi.org/10.1038/s41598-025-09888-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:24328 18| https://doi.org/10.1038/s41598-025-09888-x

www.nature.com/scientificreports/

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿A hybrid ARIMA-BP approach for superior accuracy in predicting traffic accident losses
	﻿Literature review
	﻿Traffic accident risk analysis
	﻿Model construction and data preprocessing
	﻿﻿Construction of the combined ARIMA-BP model
	﻿﻿Data sources and collection
	﻿﻿Traffic accident Indicator selection

	﻿Model predictions
	﻿ARIMA model prediction
	﻿BP neural network prediction
	﻿ARIMA-BP model prediction results

	﻿Discussion
	﻿Conclusion
	﻿References


