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In this paper, fractional calculus has proven to be invaluable in disease transmission dynamics and the
creation of control systems, among other real-world problems. To investigate vaccine and treatment
dynamics for disease control, this work focuses on Kawasaki illness and uses a unique fractional
operator called the modified Atangana-Baleanu-Caputo derivative. The stability analysis, positivity,
boundedness, existence, and uniqueness, are treated for the proposed model with novel fractional
operators. Additionally, it investigates the effects of different parameters on the reproductive
number. It verifies the existence and uniqueness of the solutions to the suggested model using Banach
fixed point and the Leray-Schauder nonlinear alternative theorem. Employs Lyapunov functions to
determine the model equilibria analysis global stability. The numerical simulation and results utilized
the two-step Lagrange interpolation approach at various fractional order values. The results are
contrasted with those obtained using the widely recognized ABC method and comparisons are also
made to show the effects of the proposed method for the epidemic system. This model advances
beyond existing Kawasaki disease models by incorporating fractional-order dynamics, which

capture memory effects and long-range dependencies in biological systems, offering more accurate
representations of disease progression. The inclusion of chaos stability control provides novel insights
into managing complex, nonlinear behaviors, enhancing both theoretical understanding and potential
clinical applications.

Keywords Kawasaki disease model, Lyapunov function, Leray-Schauder nonlinear, Chaos control, MABC
operator

Infants and young children are susceptible to Kawasaki disease (KD), an inflammatory illness that affects blood
vessels throughout their bodies!. In pediatric populations across North America, Europe, and Japan, Kawasaki
disease is presently regarded as the predominant etiology of acquired heart disease>*. The prevailing consensus
has shifted regarding childhood Kawasaki disease, as it is increasingly acknowledged that the cardiovascular
sequelae associated with this condition may extend into adulthood>®. Although the exact etiology of Kawasaki
illness is still unknown, findings from our laboratory”® and other laboratories”!® support the theory that it is
most likely caused by a traditional antigen. In'""!2, it is reported that pediatric patients administered high-dose
intravenous immunoglobulin exhibit a reduced likelihood of developing coronary arteritis and, more specifically,
coronary artery aneurysms; in the absence of treatment, as many as 30% of these patients may develop such
conditions. In 60-75% of Kawasaki disease patients, intravenous immunoglobulin (IVIG) treatment results
in coronary artery aneurysms (CAA) regression'*!'%. Nevertheless, it is unclear how precisely IVIG lowers the
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incidence of cardiovascular problems'®. Around 15-20% of patients diagnosed with (KD) display suboptimal
reactions to (IVIG) treatment, and individuals within this specific category exhibit a heightened likelihood of
experiencing coronary artery aneurysms'®!7. A diverse array of both congenital and acquired immune cell
phenotypes has been correlated with the penetration of the vascular endothelial layer in Kawasaki disease. The
presence of an aggregation of monocytes, macrophages, and neutrophils within the arterial vessel walls'®1%,
in conjunction with activated CD8" T lymphocytes and TgA™ plasma cells, is observed in the post-mortem
human tissues subjected to immunohistochemical examination?. Pro-inflammatory cytokines, such as tumor
necrosis factor (TNF) and interleukin-1 beta, are released by immune cells that permeate the host organism.
These cytokines promote the growth of CAAs and damage to vascular endothelial cells?>?*. In the most badly
affected instances, Kawasaki disease is thought to be a medium-sized vasculitis that results in coronary artery
aneurysms. Aortic, axillary, brachial, and iliac artery aneurysms can sporadically develop, and there may be
systemic vascular involvement. It has not yet been documented if KD has an impact on microcirculation.

The utilization of fractional calculus in addressing practical issues, encompassing healthcare and a multitude
of other domains, has attracted considerable interest from scholars worldwide. Atangana and Baleanu developed
derivatives that incorporate non-local and non-singular kernels using the generalized Mittag-Leffler function?’.
The Atangana and Baleanu fractional operator was recently developed inside Caputo’s theoretical framework?s.
A fractional-order model for managing toxin activity and fires caused by humans is presented in the article®.
It integrates simulations and chaos control approaches. It uses a modified ABC operator to optimize the model
performance in handling complex environmental dynamics. To better understand the spread and control of
the virus,® investigates the stability and complicated dynamics of a COVID-19 epidemic model utilizing a
non-singular Mittag-Leftler law kernel. The fractional-order epidemic models in life sciences, discussing their
historical development, current applications, and future potential for more accurately modeling the spread and
control of infectious diseases®!. The dynamics and stability of a COVID-19 pandemic model under a harmonic
mean type incidence rate are examined in*? by fractional calculus analysis. The HBV epidemic model uses a
convex incidence rate and sensitivity analysis to determine the main factors affecting the virus’s propagation. A
fractional COVID-19 pandemic model** using real data from Pakistan and incorporates the ABC operator for
improved modeling accuracy. It investigates the dynamics and potential interventions for controlling the spread.
The Caputo-Fabrizio definition is used in study’ to examine a fractional-order boost converter with inductive
loads. It explores the system’s behavior, stability, and performance under fractional-order dynamics. A fractional-
order Zener model® for viscoelastic dampers, incorporating temperature-order equivalence to better capture
the damping behavior. It focuses on improving the accuracy of modeling viscoelastic materials in engineering
applications. Study®” presents a fractional-order mathematical model for the COVID-19 outbreak, accounting
for both symptomatic and asymptomatic transmissions. It analyzes the dynamics of the disease spread with
fractional derivatives for more accurate predictions and control strategies. A fractal-fractional mathematical
model to regulate the prevalence of tuberculosis*, emphasizing stability conditions, simulations, and sensitivity
analysis to evaluate the model performance in practical settings. The article®® explores new bifurcation results for
fractional-order octonion-valued neural networks that incorporate delays, examining how these delays affect the
network dynamics and stability. In?® author investigates bifurcation phenomena in fractional neural networks
with multiple delays and proposes a control scheme to manage the complex dynamics and enhance network
stability. The study?! demonstrates the existence of chaotic behavior and stability regions in a piecewise modified
ABC fractional-order leukemia model, validated through symmetric numerical simulations. The existence and
uniqueness of solutions in a modified-ABC fractional-order smoking model*, highlighting its applicability
to real-world scenarios. The use of artificial intelligence in data analysis with error recognition to improve
liver transplantation outcomes in HIV-AIDS patients®, utilizing modified ABC fractional-order operators
for enhanced precision. The research** proves the existence of solutions and introduces a numerical scheme
for a generalized hybrid class of n-coupled modified ABC-fractional differential equations, demonstrating its
effectiveness through a practical application.

The modified Atangana-Baleanu-Caputo derivative is significant for the Kawasaki disease model because it
introduces a non-local, memory-dependent mechanism that better captures the disease persistence and relapse
characteristics. This fractional approach allows the model to reflect the influence of past infection and immunity
states on current disease dynamics, providing a more accurate depiction of Kawasaki disease progression and
treatment response. The integration of fractional order derivatives into disease modeling represents a significant
advancement in epidemiological research. By capturing complex dynamics through memory effects and
non-local interactions, these models offer improved insights into disease behavior and control strategies. As
demonstrated across various studies, including those on COVID-19* and hepatitis B*, fractional calculus not
only enhances model accuracy but also informs public health interventions effectively.

This study introduces a fractional-order Kawasaki disease model using the modified Atangana-Baleanu-
Caputo derivative, which better captures the disease’s persistent and recurrent nature compared to classical
models. Analysis reveals that lower fractional orders correlate with more aggressive disease progression, while
higher orders show a dampening effect on inflammation. The MABC model demonstrates superior accuracy
in simulating Kawasaki disease dynamics compared to the standard ABC model. The findings suggest that
manipulating fractional orders could offer potential control points for disease interventions. The previous
study? utilized a classical integer-order model to investigate key interactions in the pathogenesis of Kawasaki
disease. In contrast, this study presents a new fractional-order model of Kawasaki disease, employing the
modified Atangana-Baleanu-Caputo (MABC) derivative. This approach effectively captures memory effects
and complex immune interactions, thereby improving the accuracy of simulations related to the inflammatory
processes. Additionally, the study explores chaos control and stability by using Lyapunov functions and fixed-
point theorems to analyze equilibria and the uniqueness of solutions.
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Section 1 of this article serves as an introduction, and Sect. 2 provides a general definition of the strategies that
are offered. The suggested models that are positively invariant, with equilibrium points, reproductive potential,
and sensitivity examined, are shown in Sect. 3. Part 4 evaluates the proposed model stability while accounting
for Lyapunov stability. The discrete Kawasaki disease model chaos is examined in Sect. 5. In Sect. 6, fixed point
theory is used to verify the existence and uniqueness of a system of solutions. In Sect. 7, the Atangana Baleanu
in Caputo sense fractional order system is solved using a unique numerical method. Graphs representing the
numerical results of the proposed model are presented in Sect. 8. The conclusion is given in the last section,
number 9.

Basic concepts
In this section, we will look over some basic ideas.

Definition 2.1 ?Let w € M ([0, 2]) and 7 € (0,1),2 > 0. The ABC fractional derivative of a function w(t)
defines it as

t
A _
22Dt = 120 [ Luwe, (—”(f_:))du, m
0

Definition 2.2 2The ABC fractional integral connected to the function w(#) is conceptualized as follows:

t

(?Bcftnw(t) = - g(t) + m /w(v)(t - U)nildvv 2)

0

wheren € (0,1) and

AB(n) :umﬁ. (3)

Definition 2.3 2®The MABC derivative for w € L(0, 2) and n € (0, 1) can be formulated as follows: Consider
afunction € L(0, 2). For 0 < n < 1, the MABC derivative is defined as

AB(n)

MABC DY (t) = Ty PO~ on(—ant")w(0) _Qn/(t_v)nilﬁnm (=@t —v)Nw(v)dv |, (4)

where ¢, = 1 and AB(n) = 1 — 0+ 5.
The Laplace transform

D) < DL el
Definition 2.4 #w € L(0, 2) and n € (0,1) MABC integral is
MABC n,,(4) = %&)n) [w(t) — w(0)] + gy [ 1 IT (w(t) — w(0))] - (6)
Definition 2.5 2For w’(t) € (0,00) and 7 € (0, 1) we have
]WABCIS; ]\/IABCDgw(t) = w(t) — w(0), (7)

where 1 € (0, 1) and % (n) satisfies a normalizing function %/ (1) = #'(0) = 1.
Lemma 1: Let Q € R be a differentiable function. Then,

« 1 2(t) 2* .
MABC ryn B . . MABC yn +
o' ODY | 2(t) - 2" - 2" In = ] < <1 3(1&)) SABC DN (2 (1)), 2 e RT.

Mathematical model

The Kawasaki disease model has been notably shaped by previous research?’. A four-category classification system
is explained by means of the modeling equations regarding the ways in which different concentrations impact
endothelial cell function and the inflammatory response. These equations include elements including cellular
proliferation, activation by vascular endothelial growth factors, depletion owing to inflammatory stimuli, and
intrinsic apoptosis to adequately depict the dynamics of normal endothelial cell concentration (E). Furthermore,
they yield insights into the dynamics of vascular endothelial growth factor (V), chemokines, and activated
adhesion factors (C). Ultimately, the model evaluates the dynamics of inflammatory factor concentrations (P),
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Fig. 1. Schematic diagram of the Kawasaki disease model.
Parameter | Biological meaning > Value
r Rate of normal endothelial cell proliferation 2
dy Normal endothelial cell apoptosis rates 0.5
do Rate of endothelial growth factor hydrolysis 1
ds Adhesion factors and chemokines hydrolytic rate 1
dy Rate at which inflammatory factors hydrolyze 1
k1 Injury rate of endothelial cells due to inflammatory factors 1
ko Production rate of endothelial growth factors due to inflammatory factors | 0.1
ks Activated adhesion and chemokine production by inflammation 1
ka Adhesion and chemokine production by growth factors 0.5
ks Inflammatory factor production by activated immune cells 0.16
ke Endothelial cell growth promoted by factors 0.45

Table 1. Biological parameters and their meanings.

which are regulated by adhesion factors and the activation of immune cells represents in Figure 1. Biological
parameters and their meanings are display in Table 1.

The fractional-order model is chosen for its ability to incorporate memory effects and long-range dependencies
inherent in biological systems, which integer-order models cannot capture.

O APCDIE(t) =7+ 25E — ki EP — d\ E,
MABC DIV (t) = ko EP — daV, ®)
MABCDIC(t) = ks EP + kaV — dsC,
MABC DI P(t) = ksC — da P,
under the initial conditions
EQ0)>0, V(0)>0, C(0)>0, P(0)>0 9)

Positively invariant
Lemma 2: The region 7€ R}

m={(B,V,C,P)eR, :0< N},

the system delineated in (8) in every solution, and the specified system within R? exhibits positive invariance
under the stipulation of non-negative.
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Proof The following are the results from the (8) that we shall present:

NIABCD”E(t) ‘E:O =T Z O7

MABCDIV () |y—o = ke EP > 0, "
MABCDIC(t) |cmo = ks EP + k4V >0, (10)
MABCDIP(t) [p=o = ksC > 0.

According to the system (10), the vector field is said to be localized in the region R? on each hyperplane covering
the non-negative orthant with ¢> 0. d

AsE(t) + V(t) + C(¢t) + P(t) = N,.Each subpopulation is located in [0, N], where the overall population
N is assumed to be constant. Because of this, the subpopulation E(t) + V' (t) + C(t) + P(¢) are also bounded.

Equilibrium points and R,
The Kawasaki disease model disease-free points are E° = (47,0,0,0), and the Kawasaki disease model

endemic equilibrium point is
E.=(E*,v*,Cct,P"),
+_ dadsdy
daksks + kokaks’
\/> d2k1k’3k‘5 + k2k4k57” — d1d2d3d4l€2 + d2d3d4/€2]€6 — d2k1/€2]€4k’5 + d2k2k3k57"

V+
2dok1ks(d2ks + kaka)
C+ _ \/ﬁ — d%klk‘gl% —+ k%k4l€57’ — didodsdyks + dodsdskoke — doki1kokaks + dokoksksr
o 2dadskikoks ’
pt— V= d3kiksks + k3kaksr — didadsdaks + dadsdakoke — dokikokaks + dokoksksr
- 2dadsdaki ko ’
where

= didadadiks — 2dydsdsdaky kaksks — 2d1dadadakaks — 2d1dadsdak: kakaks
— 2d1d2dsdakiksksr — 2dvdadsdakskaksr + dakikaks — 2dsdsdak kakskske
+ 2d5 K3 kokskakz + 2d5k1 kok3kir + dadsdikaks — 2dadsdak k3 kaksks
+ 2d5dsdaksksksker + dakikakiks + ddaki kakskakir + doksksker®
+ 2dadsdskskaksker + 2daki kakikar
+ 2do kS kskak2r® + kskikar?.

In the modified fractional-order Kawasaki disease model, the reproduction number is crucial for assessing the
potential spread of the disease within a population.

Let
0 0 ko
F=1{0 0 kg |,
0 0 0
do 0 0
V= |-ks ds 0].
0 —ks da

In particular, FV'! represents the spectral radius of the next generation matrix, which is the reproductive
number.

kokgksr koksT kor 0
dydadsd dydsd did
| RRRE RRE RE
FV— = d1dadsds  didsds  dida ,
0 0 0 0
0 0 0 0

rks (k2ka + kadz)

11
didadzdy ()

Ry =

It is widely recognized that when Ro < 1, the transmission of the infection will ultimately cease. Conversely, the
disease will propagate throughout the population if Ry > 1. Figure 2 shows the impact of several parameters
on Ry.
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Fig. 2. Impact of several parameters on R.

Sensitivity snalysis

Sensitivity analysis demonstrates that fractional-order parameters significantly influence system stability,
offering deeper insights into disease progression. These advantages highlight the fractional-order models
superior capability in modeling Kawasaki disease dynamics. The sensitivity of Ry is following.

0Ro _ doksks + kokaks

81" - d1d2d3d4 > O’

ORo _ _d2k3k51“ + kokaksr <0

ody Bdydsds :
ORo - ksksr _ daoksksr + kakaksr <0
dds ~ didadsdy d1d§d3d4 ’

ORo - _d2k3k’51“+ kokaksr <0

8d3 - d1d2d§d4 ’

ORo . _dzkgk’s’r‘ + kokaksr <0

ody dldgdgdi ’

aRo _ k4k51”

ks drdadads ~
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aRo o ]ﬂ57‘
ks~ didsds
6R0 kzks’r‘

ks didadsds
ORo . doksr + kokar -0
Oks  didadsds '
Positive sensitivity indices are associated with an elevation of Ro, whereas negative indices are correlated
with a reduction in this value. The sensitivity index is linked to the Ry parameter. Figure 3 elucidates critical
elements that affect transmission potential, thereby facilitating the discernment of essential variables and their
implications on the propagation of Kawasaki disease. Parameters like , k2, k3, k4, and ks in Figure 3 have a
positive sensitivity index and positively affect Ro. Increasing r, k2, k3, k4, and k5 can either increase the value of
Ry or cause an outbreak. However, parameters with a negative sensitivity index, such as d1, d2, d3, and d4, have
a negative impact on reducing the disease’s progress.

Stability analysis

To enhance comprehension of the dynamic features of the suggested model system (8) and the ways in which
control strategies impact the dynamics of infectious disease transmission, a qualitative analysis of the system is
conducted. The infectious model stability features are examined first.

Local stability
Theorem 4.1 An equilibrium free E° of the Kawasaki disease exhibits asymptotic local stability when Ry < 1.
Unstability exists if Ro > 1.

Proof For the system (8) at Ey, the Jacobian can be expressed as

keV —klp—dl Eke _ _EVkg 0 _klE

1+v 1+V (V4+1)2
ko P —d2 0 ko ¥
ks P ky —ds ksE
0 0 ks —dy

Verifying that each and every eigenvalue of the matrix J(FE°) satisfies the stability condition is both necessary
and sufficient for the equilibrium point E° to be locally asymptotically stable:

larg(Xq)| > %T (12)

Jacobian matrix has the following eigenvalues: A1 = —0.5, A2 = —0.1305, A3 = —1.4347, \y = —1.4347.Itis
obvious that the point E° is locally asympotically stable if Ry < land all the eigenvalues of .J(E°) are negative.
O

Global stability
Lyapunov first derivative
For the endemic Lyapunov function, { E, V, P, C'}, ¥42¢ DI L < 0, is the endemic equilibrium E..

Sensitivity Index
N

Fig. 3. sensitivity indices of variables in Rj.
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Theorem 4.2 The endemic equilibrium points E., in the Kawasaki disease model are globally asymptotically
stable when Ry > 1.

Proof The Lyapunov function is expressed as follows:

L(E*,V*,C*,P*) = (E— E* — E*log E) + (V VTV log )
E* v+ (13)

+ (C'fC'* fC*log%) + (PfP*fP*logli).
Using Lemma 1 and taking modified ABC derivative, we get
MABC oy (E —EE*> MABC 4 <V ;/V*> MABC pnys 4 <C - C*) MABC pn

+ (P;P ) SMABC D p,

Using system (8) we get,

E—E* keVE v-v"
é\lABCDZ;L§< = )(r+16+v—k1EP—d1E>+( T )(k}gEP_d2V)

c-c P - P*
+( )(k3EP+l€4V—d3C)+ ( )(k5C—d4P).

(15)

C P
Putting E=FE - E*, V=V -V*,C=C—-C"and P = P — P" leads to.

o PEDIL < (E ;EE) (r—i— ko (‘;;K/)_(?/_) B e E-EY(P-P)—d(E- E*))

()
()
()

" E—E* ke(E — E*)’V ke(E — E*)’V*  (E — E*)*
SMBCDtL5< ) TEO+ V-V EQ+(V-VY) B

*\ 2 * _ * _ *
_(E-EY) kP + <V*V )szPf (V VV )szP* - (V VV )sz*P

V-V . o c-cC c-C* » c-C* N
+< v >k32EP +< C )k3EP—< c >k3EP —< c )ksEP

c-c (C —C*)? P—pP* P—p* . (P—P*)?
+( )kEP C ds + P ko C — P k2 C —T(h.

ko (E— E*) (P —P*) —dy (V- V"))

Y(P—P")+ks(V-V")—d3(C—-C"))

ks (E — E*
(ks (C — C*) —dy (P — P*)),

k1 P”

Now, we write

0""PCDIL <09,

6= <E EE> Ek(ﬁl(f (_VE_*);Y)) (B _EE*)ZIQP* + (V VV*> koEP + (V V*> ko E*P*
+ <CCC> ksEP + <C CO*> ksE*P* + <PPP*> k2C,
¢ = Ek?ﬁ_(fjifv)) (& _EE*)2k1P+ (& _EE*)le + (VVV*> ks EP* + (V VV*> ks E* P
LV —Vv*)zd2 N (OOC*) kL EP" + (ccc*> ko E"P 4 (c —CC*)Qd3
N (PPP*> O +@d4.
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Itisachieved thatif @ < ¢, thisyields é\/[ABCDfL < 0,howeverwhen F = E*,V =V*, C = C*andP = P*.
0=0-—¢ = Y*B°DrIL=o0. (16)

It is possible to demonstrate the proposed model largest compact invariant set.
{(E",V",C", Pp)} (17)
By employing the Lasalles invariance principle if the system is stable then £ is also stable within it. O
Remark 1 Fractional-order derivatives in Lyapunov functions affect stability criteria by introducing a memo-
ry-dependent behavior, reflecting past states in the stability analysis, unlike standard integer-order systems. This

added memory component allows for slower convergence rates, which captures the persistent and recurrent
nature of Kawasaki disease dynamics more accurately.

Existence criteria
Lemma 5.1 The initial equation of the MABC-FDE framework, denoted as equation (8), encompasses solutions
of a nature that is elucidated in the subsequent discussion.

E(t) = E(0) + 21 (t,E(t))Jr,@”/(tfu)”*lJl (v, E (v)) dv
0 (18)

— 23, (0, E(0)) (1 + ‘I”’)t"> 7

F'in+1
where
1—n
Q=—",
2 (n)
n
Y =——.
Z T (n)
Simlerly, for others, where
I (t, B(t) =7+ %%E — ki EP — d\ E,
J2 (£, V(t)) = ko EP — d2V,
13 (t7 C(t)) = ksEP + k4V — d3C,
Ja (t, P(t)) = ksC — d4 P

A solution for the modified ABC model is determined based on the following assumptions:
W™ Consider E, E,V,V,C,C,P,P € L[0,1], is a continuous function with the higher limit, show that
IE| < T1, IV < T2, [IC|] < T8, ||P]] < T4, where Ty, T2, T3, T4 are made up only of positive constants.

To elucidate further, let us suppose that: 3; = (iﬂi — k104 — dl) , J2 = —d2, I3 = —ds and 1y = —d4.

Theorem 5.2 The J; indexed by j within the domain N7 will adhere to the Lipschitz condition contingent upon
the veracity of the assumption #*, provided that all 3; are less than 1 for each j in the specified set.

Proof We start by proving that the function J1 (¢, E) satisfies the Lipschitz condition. The implication of #*,
which we have, is used to achieve this.

-3 1| ) o ()]
N R [ E EY E R
< (1’“{‘3[2 R+ d1> IE - E|

~3u 5.

Io= (58 + kTt di).
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|32 (£, V) =12 (£, V) || = [|(=d2) V = (—d2) V||

<d ||V -V (20)
=2 ||v-V|,
:2 = d2
s 2,€) = 3 (1, O) | = || (=ds) € — (=)
<ds||c-C (1)
=2l
:3 = d3-

||]4 (t, P) — 4 (t, 15)” = H(*d4)P — (7d4) ﬁ“
<d HP—PH (22)
~allp-»

I

3, = dy. It can be discerned that the Lipschitz condition is fulfilled by the elements 11, J2, J3, J4. Further-
more, it can be conclusively shown that each of the J; for j = 1,2, 3,4 adheres to the Lipschitz condition,
thereby corroborating their legitimacy, as derived from equations (19) to (22).

Suppose there is a

mn:EmyhﬁmnE@yH?/@—m“ﬁm%E@»@

(23)
—uQ]m(LIEU))<1%-qL]t">,
F(n+1)
The next stage is to define the recursive formulae for the model, which is listed as follows:
t
En+1@)AfEXO):<QJ1U,EQ(U)473?][(t440"71L(U,E%(U»dv
0 (24)
—ugjm(uzzu))(1+-q”’t">.
F'(n+1)

In a same pattern we solve for V,C,P. O

Theorem 5.3 Should the veracity of the forthcoming assertion be substantiated, then the MABC Kawasaki dis-
ease (8) presents a solution predicated on the premise that #* must be affirmed as accurate.

Y1 = max [J1,J2,33,d4] < 1.

Proof We define function as follows:

E1(t) = Buaa (1) — (1),
E20(t) = Vasa (1) — V(¢),
E3,(t) = Coyr (t) — C(1),
‘554n(t) = Pn-H(t) - P(t):

Scientific Reports|  (2025) 15:25953 | https://doi.org/10.1038/s41598-025-09944-6 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

11| = || 231 (¢, En (t) + ff/(t —0)" ' (v, B, (V) dv — 210 (¢, E (t)) (1 + I%t7’>

_ QL@JN@%H?/@_UW1L@Jﬂ@ﬂv—Qﬂ@E@D<1+F£1Uﬂ)}

t
_ 25
=z / (t— )" T (0, B (0) =T (0, E@)l|do + 2|0 (6 Bn () -1 LE@)] )
0
t
< ff/ (t—0)" "N ||Buy — E||dv+ 271 | En_1 — E)||
0
<17+ 2T |Eas - B
<+ 2T B - B,
Ui
7, E—
BT (n+1)
where T < 1 and n — oo, E,, — FE similarly we have
162001 < 17 + 2" [Vas — V], (26)
1630l < 17 + 2" [Cos — €, @7)
1E4n]l < 17 + 27" [ Par — P, 28)

Due to the fact that &5, (t) — 0 as n — oo for j € Ni and 7T < 1, Hence prove is done.
Theorem 5.4 If the following statement is true, then the unique solution given by the MABC model (8) is:
[ +2]7; <1,j € N{.

Proof We may look at E(t), V(t), C(t), and P(t) as potential alternatives. Following that, we have:

Mﬂ=E@+QL@E@»+¥/ﬂ—m“ﬁquE@nm
0 (29)

— 21, (L, E(t)) <1 + F(v;Ijj—l)tn> )

Likewise, for additional compartments
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||E7E7’H: 21 (t,E(t))Jer/(th)"*l:ll (v, E (v))dv

_ 9%, (4 E (1)) ( I,(;Il_mt")

— |25 (L E®) +ff/ )"0 (v, E (v)) dv

_ v,
- 21y, (4 E (1)) (1 + (—Fl)tnﬂ (30)
_ g/@_vw 3 (v, B () = T (v, B ()| do
0
+2|L (L E®) -1 (LEW)|

t
< ff/(t oy || B B dv+ 23 | E - B

< [y0+ 21T |
and so
1-7+2M] |[E -E| <o, (31)
when || E — E|| = 0, the inequality (46) is true, E must equal E. In a comparable direction, we have
1-7+2% |v -V|<o, (32)
1-7+27] || -C| <o, (33)
1-+27] |P -P| <o, (34)

Therefore, the solution produced by the Kawasaki disease exhibits the property of uniqueness.

Chaos control
In this section, we use the linear feedback control method to stabilize system (8) to its equilibrium positions. The
fractional-order system in its controlled form (8) will be examined as follows:

O APEDIE(t) =7+ %5 — ki EP — diE — w1 (E — En),
(t) kQEP dQV w2 (V V1)

MABCD"(J(t) ksEP + kiV — d3C — w3 (C — C1),
(t)=

t) = ksC — dsP — wy (P P4)

MABC n
D'V (35)

where w1, wa, w3, w4 are control variables, and the system equilibrium point is E°( 8). For the system (35), the
Jacobian matrix at F° is derived as

ker kir
—dy —wl kor 0 —kd%
0 ki4 —d3 — wS %

0 0 k5 —d4 — w4

The characteristic equation of the Jacobian matrix J(E°) is given by

At di +wl —Egr 0 hr
FO) = 0 A+ dy + w2 0 =,
0 —ks A +ds + w3 W ’
0 0 —ks A+ d4 + w4
characteristic polynomial of for the equilibrium point E° is given as
CN) =X+ KN 4+ K3\ + Ki\+ K, (36)
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Kf — C+d (d1+wi)(a+b)
Ki = a+b + (dl+w11)(d1d2+d1d3+dld4+d1w2+d1w3+d1w4)

(37)

K3 = dl +w + d1d2+d1ds+d1d4+é1w2+d1w3+d1w4
dy
K — (d14+w1)(ct+d)
4 — dq )

where

a = didads + didads + didzds + didaws + didsws + didaws + didawa,

b= didsws + didaws — ksksr + diwows + dywasws + d1w3w4,

¢ = didadsws + didodsws + didsdaws — doksksr — kokaksr + didowsws + d1d3UJ2’LU4,
d = didswaws — ksksrws + diwawsws + didadsdy,

Based on linear stability theory the local dynamics of controlled discrete Kawasaki disease model (35) about

E° ( oo 0) , can be stated as following Lemma:
Ha Ial

Lemma 6.1 E° ( of controlled discrete Kawasaki disease model (35) is a sink if

)
#10.0,0)

| K1 +K3\<1+K4+K27 \K1 K3\<2(1—K4) K3 —3Kj <3,

38
K4 +K2 +K4 +K1 +K4 K2 +K4K3 <1+2K4K2 +K1K3 +K4K1K3 +K4 5 ( )

where K7, K5, K3 and K7 are depicted in Eq (37).

Proof Since J(E°) ( 00 0) about interior equilibrium solution E° ( of controlled discrete Kawasaki
W Iaa bl

#10,0,0)
disease model (35) has characteristics polynomial which is depicted in model (36).E° ( .

= O) of controlled
F.,0,0,
discrete Kawasaki disease model (35) is a sink if | KT + K3| < 1+ K] + K5, !

|KT — K3|§2(1—K4) , 5 and
Ki+Ki+ Ki + K + KUK+ KiK. <14+ 2K K + Ki K3 + Ki K KS + K3,
K35 — 3K} < 3,where K1, K5, K3 and K] are depicted in Eq (37). O

Numerical scheme
Following the equation stated in (8), we get:

= 1-n L — )" 1o (v v)) dv
BByt S o (B () + F(n)o/u Y (0B () "

1_77 Tn n

With the help of***7, we construct a numerical approach for (39) by applying Lagrange interpolation polynomials.
Substituting ¢, 11 for t yields

tn4l

_n__ — )" o (v v)) dv

E=Ey+ VE (tn)) +

P

1—-n Yn n
— %pl (O,E(O)) <1+(+1)t >

By the Lagrange interpolation, we have

b B (b)) (= tm1)  p1 (b1, B (t1)) (£ )

pr (6, (1)) = 20

t'm _tmfl tm _tmfl (41)
o B () (= tim1)  p1 (b, B (b)) (= tm)
= . 5 .
By the help of (39) and (41), we have
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1-—
E (tm+1) = Eo +

n
G b E (1)

tm41

n | p1 (i, u(t)) o .
+«@(77)F(n); h /(U tic1) (tns1 —v)" " d

tm

tn41 (42)
e (A L
_ }@*(7;; p1 (0, E(0)) (1 + r(:lntm") .
Solving the integrals, we get
Epi1 = Eo + ﬁ(n) —— o1 (tm, E (tm))
nh” - . . _ n _
+m;[m (i, B (8) ((m = G +1)" (m +2 = j +n) »
—(m—9)"(m+2—j+2n) = p1 (ti1, Eio1) (m—i+1)"""
n 1- Ui n
—(m =+ 1) (m—i)")] = e (0,8 (0) (1+W<mh> ) .
Similarly,
1—n
Vingr = Vo + 7 )P2( V (tm))
ez 2o e eV () (=41 254 "
—(m =) (m+2—j+2n) = p2 (tim1, Vie1) ((m — i+ 1)""
, 7 1—1n Yn n
—(m—j+1+n)(m—14)")] - (n)pl(O,V(O)) (1+F(n+1)(mh) > ,
Cmy1 =Co+ Z (777; p3 (tm, C (tm))
77+2 Z::ps ti,C () (m—j+1)"(m+2—j+mn) s
—(m— )" (m+2 = j+2m) = pa (i, Ci) ((m — i+ 1)
n 1— Ui Tn n
—(m—j+1+mn)(m ))]—WPS(O’C(O))<1+M(mh))v
and
Prt1 =P+ ﬁ(n) i (s P (tm))
nh R .
D Z:m t P () (m—j+1)" (m+2—j+n) ”

—(m—=49)"(m+2—j4+2n)) — ps(ti—1, Piz1) ((m —i4 1)

—(m =+ L) (m = ))] = S0 (0.0/(0)) (1 + F(n”m(mh)") :

Results of proposed scheme

The temporal dynamic characteristics pertinent to the fractional-order epidemiological model for Kawasaki
disease (8) are examined through the numerical simulations delineated in this section. It is crucial to show
that the presented work is feasible and to use large-scale numerical simulation to verify the analytical
work’s correctness. For a range of fractional values dependent on the steady-state point, the model
numerical results are computed using Atangana-Baleanu in the Caputo sense in conjunction with Mittag-
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Fig. 4. Simulation of E(f) when Ry < 1 with parametric value of .
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Fig. 5. Simulation of V() when R < 1 with parametric value of 7.

Leffler law. These simulations show how a change in value affects the model behavior. Furthermore, the
results for fractional values demonstrate higher efficiency as compared to the usual derivative. It enables
a more accurate estimation of the best amount for disease control. The actual parameters of the data are
r=2d =05,d=1,d3s=1,ds=1,k1 =1,k = 0.1, ks = 1, kg = 0.5, ks = 0.16, kg = 0.45

23, The nature of time in a days. The Kawasaki disease model dynamics for various values of ¢ € [0, 10] are
depicted in Figures 4a, 5a, 63, and 7a, which use the Atangana-Baleanu type non-singular fractional derivative.
Figures 4b, 5b, 6b, and 7b demonstrate the dynamics of the Kawasaki disease model for different values of
t € (0,1) using the non-singular fractional derivative of the Modified Atangana-Baleanu type. Figure 4
illustrates the E(f) dynamics for different fractional orders, showing that lower fractional orders correspond
to increased endothelial cell populations over time. This could relate to heightened cellular proliferation from
vascular endothelial growth factors, potentially leading to vascular issues seen in Kawasaki disease. This indicates
the possibility of targeting endothelial proliferation to reduce vascular damage. The V() dynamics shown in
Figure 5 indicate that as fractional orders 7 increase, the population of classes decreases. A decline in V(¢)
levels at higher fractional orders may dampen the growth and repair of vascular tissues, potentially weakening
endothelial function and increasing vulnerability to inflammation. This suggests that V() modulation could
be a therapeutic avenue, as lower V(f) may correlate with disease remission phases. The dynamics of C(t) are
shown in Figure 6 for various fractional orders 7. Higher fractional orders lead to a continuous decrease in the
population of classes and chemokine levels, indicating a reduced immune response in severe disease stages.
This suggests that managing chemokine levels may influence immune cell recruitment, potentially helping to
control inflammation and disease severity. Figure 7 shows that as the fractional order 7 decreases, the class
population P(¢) steadily rises. Inflammatory factors increase, particularly at lower fractional orders, indicating
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Fig. 7. Simulation of P(t) when Ry < 1 with parametric value of 7.

ongoing inflammation typical of Kawasaki disease. This persistent inflammation may lead to further vascular
damage and greater disease severity, highlighting the need for early anti-inflammatory interventions. The
trends in Figures 4, 5, 6, and 7 indicate that lower fractional orders result in heightened and sustained levels
of inflammatory factors (P) and endothelial cells (E), suggesting more aggressive disease progression. Higher
fractional orders reduce theselevels, implying a dampening effect on inflammation. This implies that manipulating
fractional orders could help modulate disease severity, offering potential control points for Kawasaki disease
interventions. The crossover behavior in Figures 4, 5, 6, and 7 suggests a shift in the influence of fractional
orders on the dynamics of each variable, reflecting transitions between different phases of Kawasaki disease. This
behavior aligns with real-life disease progression, where initial inflammatory responses peak and later decline
due to regulatory mechanisms. Such transitions validate the model’s ability to capture complex disease stages,
confirming its realism and robustness for simulating Kawasaki disease dynamics. To demonstrate that fractional
derivatives better capture Kawasaki disease dynamics, simulate both fractional and integer-order models.
The fractional model shows a gradual decline in inflammation levels, reflecting the persistent inflammatory
response in Kawasaki disease, while the integer model indicates a quicker decline. Compare to previous study?
simulations reveal that the fractional-order model exhibits more nuanced dynamics, such as delayed responses
and complex transient behaviors, aligning better with real-world biological data. By comparing graphs, it is
evident that the MABC model aligns more closely with realistic biological processes, making it a better choice
for simulating complex disease dynamics like Kawasaki disease. For public health policy, these findings provide
evidence that fractional-order models could improve predictions of Kawasaki disease outcomes and help design
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targeted therapies, especially during early stages. This model could guide resource allocation in clinical settings
by highlighting which biological processes to monitor closely in Kawasaki disease patients.

Conclusion

We examine the interactions between different parameters in the Kawasaki disease model (8) in this article. We
analyze the dynamic behavior of the system for constant controls by using the fractional operator Kawasaki disease
model. We took into consideration the recently developed modified ABC operator in our proposed problem. The
modified Atangana-Baleanu-Caputo operator offers advantages over the standard Atangana-Baleanu-Caputo
operator in terms of well-posedness and initialization. The MABC operator addresses initialization issues
present in the ABC operator, leading to more robust and reliable model simulations. This improved initialization
contributes to a more accurate representation of Kawasaki disease dynamics. Consequently, the MABC operator
provides a more effective framework for analyzing the model’s stability and control. We assert that this operator
has afforded researchers a novel pathway for investigation within their scholarly endeavors. The application of
Leray-Schauder method was employed to ascertain the existence of solutions. The examination of the global
stability of the fractional order model is conducted through the utilization of the Lyapunov function. This
new numerical method was developed and used for a Kawasaki disease mathematical model using Lagrange’s
interpolation polynomial. We pointed out that the results are more realistic and that the approach can be used
to examine dynamical systems in more detail. The effect of fractional order on the analysis of vaccination and
community effects is demonstrated using a numerical simulation. According to this study, the ABC model
yields less insightful results on compartmental population dynamics than the MABC fractional-order model.
Therefore, it may be said that MABC is particularly useful for simulating real-world issues. Readers might review
the imagined problem by using additional fixed-point approaches to see if there are multiple or unique solutions.
Additionally, they might develop new numerical systems using other techniques. Future work could extend this
model by incorporating additional biological complexities, such as immune system interactions, environmental
factors, or genetic predispositions, to enhance its applicability to Kawasaki disease. The framework could also
be adapted to model other diseases with similar dynamics, like rheumatoid arthritis or systemic vasculitis, by
adjusting parameters and fractional orders. Exploring advanced numerical methods, such as adaptive or hybrid
techniques, could improve computational efficiency and accuracy for complex systems. Collaborative efforts
with clinical researchers could further validate and refine the model for real-world applications.

Data availability
The datasets analyzed during the current study are available from the corresponding author upon reasonable
request.
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