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In this paper, fractional calculus has proven to be invaluable in disease transmission dynamics and the 
creation of control systems, among other real-world problems. To investigate vaccine and treatment 
dynamics for disease control, this work focuses on Kawasaki illness and uses a unique fractional 
operator called the modified Atangana-Baleanu-Caputo derivative. The stability analysis, positivity, 
boundedness, existence, and uniqueness, are treated for the proposed model with novel fractional 
operators. Additionally, it investigates the effects of different parameters on the reproductive 
number. It verifies the existence and uniqueness of the solutions to the suggested model using Banach 
fixed point and the Leray-Schauder nonlinear alternative theorem. Employs Lyapunov functions to 
determine the model equilibria analysis global stability. The numerical simulation and results utilized 
the two-step Lagrange interpolation approach at various fractional order values. The results are 
contrasted with those obtained using the widely recognized ABC method and comparisons are also 
made to show the effects of the proposed method for the epidemic system. This model advances 
beyond existing Kawasaki disease models by incorporating fractional-order dynamics, which 
capture memory effects and long-range dependencies in biological systems, offering more accurate 
representations of disease progression. The inclusion of chaos stability control provides novel insights 
into managing complex, nonlinear behaviors, enhancing both theoretical understanding and potential 
clinical applications.
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Infants and young children are susceptible to Kawasaki disease (KD), an inflammatory illness that affects blood 
vessels throughout their bodies1,2. In pediatric populations across North America, Europe, and Japan, Kawasaki 
disease is presently regarded as the predominant etiology of acquired heart disease3,4. The prevailing consensus 
has shifted regarding childhood Kawasaki disease, as it is increasingly acknowledged that the cardiovascular 
sequelae associated with this condition may extend into adulthood5,6. Although the exact etiology of Kawasaki 
illness is still unknown, findings from our laboratory7,8 and other laboratories9,10 support the theory that it is 
most likely caused by a traditional antigen. In11,12, it is reported that pediatric patients administered high-dose 
intravenous immunoglobulin exhibit a reduced likelihood of developing coronary arteritis and, more specifically, 
coronary artery aneurysms; in the absence of treatment, as many as 30% of these patients may develop such 
conditions. In 60–75% of Kawasaki disease patients, intravenous immunoglobulin (IVIG) treatment results 
in coronary artery aneurysms (CAA) regression13,14. Nevertheless, it is unclear how precisely IVIG lowers the 

1Department of Mathematics, College of Science and Humanities in Al Kharj, Prince Sattam bin Abdulaziz University, 
11942 Al Kharj, Saudi Arabia. 2Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, 
Amman, Jordan. 3Department of Mathematics, Faculty of Arts and Sciences, Near East University, 99138 Nicosia, 
Cyprus. 4Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Campus Besut, 22200 Terengganu, 
Malaysia. 5Research Center of Applied Mathematics, Khazar University, Baku, Azerbaijan. 6Institute of Mathematics, 
Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan. 7Department 
of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Tamansari Gobras, 46196 Tasikmalaya, 
Indonesia. 8Artificial Intelligence for Sustainability and Islamic Research Center (AIRIS), Universiti Sultan Zainal 
Abidin, 21300 Gongbadak, Terengganu, Malaysia. email: farmanlink@gmail.com

OPEN

Scientific Reports |        (2025) 15:25953 1| https://doi.org/10.1038/s41598-025-09944-6

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-09944-6&domain=pdf&date_stamp=2025-7-14


incidence of cardiovascular problems15. Around 15–20% of patients diagnosed with (KD) display suboptimal 
reactions to (IVIG) treatment, and individuals within this specific category exhibit a heightened likelihood of 
experiencing coronary artery aneurysms16,17. A diverse array of both congenital and acquired immune cell 
phenotypes has been correlated with the penetration of the vascular endothelial layer in Kawasaki disease. The 
presence of an aggregation of monocytes, macrophages, and neutrophils within the arterial vessel walls18,19, 
in conjunction with activated CD8+ T lymphocytes and IgA+ plasma cells, is observed in the post-mortem 
human tissues subjected to immunohistochemical examination20. Pro-inflammatory cytokines, such as tumor 
necrosis factor (TNF) and interleukin-1 beta, are released by immune cells that permeate the host organism. 
These cytokines promote the growth of CAAs and damage to vascular endothelial cells23,24. In the most badly 
affected instances, Kawasaki disease is thought to be a medium-sized vasculitis that results in coronary artery 
aneurysms. Aortic, axillary, brachial, and iliac artery aneurysms can sporadically develop, and there may be 
systemic vascular involvement. It has not yet been documented if KD has an impact on microcirculation.

The utilization of fractional calculus in addressing practical issues, encompassing healthcare and a multitude 
of other domains, has attracted considerable interest from scholars worldwide. Atangana and Baleanu developed 
derivatives that incorporate non-local and non-singular kernels using the generalized Mittag-Leffler function27. 
The Atangana and Baleanu fractional operator was recently developed inside Caputo’s theoretical framework28. 
A fractional-order model for managing toxin activity and fires caused by humans is presented in the article29. 
It integrates simulations and chaos control approaches. It uses a modified ABC operator to optimize the model 
performance in handling complex environmental dynamics. To better understand the spread and control of 
the virus,30 investigates the stability and complicated dynamics of a COVID-19 epidemic model utilizing a 
non-singular Mittag-Leffler law kernel. The fractional-order epidemic models in life sciences, discussing their 
historical development, current applications, and future potential for more accurately modeling the spread and 
control of infectious diseases31. The dynamics and stability of a COVID-19 pandemic model under a harmonic 
mean type incidence rate are examined in32 by fractional calculus analysis. The HBV epidemic model33 uses a 
convex incidence rate and sensitivity analysis to determine the main factors affecting the virus’s propagation. A 
fractional COVID-19 pandemic model34 using real data from Pakistan and incorporates the ABC operator for 
improved modeling accuracy. It investigates the dynamics and potential interventions for controlling the spread. 
The Caputo-Fabrizio definition is used in study35 to examine a fractional-order boost converter with inductive 
loads. It explores the system’s behavior, stability, and performance under fractional-order dynamics. A fractional-
order Zener model36 for viscoelastic dampers, incorporating temperature-order equivalence to better capture 
the damping behavior. It focuses on improving the accuracy of modeling viscoelastic materials in engineering 
applications. Study37 presents a fractional-order mathematical model for the COVID-19 outbreak, accounting 
for both symptomatic and asymptomatic transmissions. It analyzes the dynamics of the disease spread with 
fractional derivatives for more accurate predictions and control strategies. A fractal-fractional mathematical 
model to regulate the prevalence of tuberculosis38, emphasizing stability conditions, simulations, and sensitivity 
analysis to evaluate the model performance in practical settings. The article39 explores new bifurcation results for 
fractional-order octonion-valued neural networks that incorporate delays, examining how these delays affect the 
network dynamics and stability. In40 author investigates bifurcation phenomena in fractional neural networks 
with multiple delays and proposes a control scheme to manage the complex dynamics and enhance network 
stability. The study41 demonstrates the existence of chaotic behavior and stability regions in a piecewise modified 
ABC fractional-order leukemia model, validated through symmetric numerical simulations. The existence and 
uniqueness of solutions in a modified-ABC fractional-order smoking model42, highlighting its applicability 
to real-world scenarios. The use of artificial intelligence in data analysis with error recognition to improve 
liver transplantation outcomes in HIV-AIDS patients43, utilizing modified ABC fractional-order operators 
for enhanced precision. The research44 proves the existence of solutions and introduces a numerical scheme 
for a generalized hybrid class of n-coupled modified ABC-fractional differential equations, demonstrating its 
effectiveness through a practical application.

The modified Atangana-Baleanu-Caputo derivative is significant for the Kawasaki disease model because it 
introduces a non-local, memory-dependent mechanism that better captures the disease persistence and relapse 
characteristics. This fractional approach allows the model to reflect the influence of past infection and immunity 
states on current disease dynamics, providing a more accurate depiction of Kawasaki disease progression and 
treatment response. The integration of fractional order derivatives into disease modeling represents a significant 
advancement in epidemiological research. By capturing complex dynamics through memory effects and 
non-local interactions, these models offer improved insights into disease behavior and control strategies. As 
demonstrated across various studies, including those on COVID-1945 and hepatitis B46, fractional calculus not 
only enhances model accuracy but also informs public health interventions effectively.

This study introduces a fractional-order Kawasaki disease model using the modified Atangana-Baleanu-
Caputo derivative, which better captures the disease’s persistent and recurrent nature compared to classical 
models. Analysis reveals that lower fractional orders correlate with more aggressive disease progression, while 
higher orders show a dampening effect on inflammation. The MABC model demonstrates superior accuracy 
in simulating Kawasaki disease dynamics compared to the standard ABC model. The findings suggest that 
manipulating fractional orders could offer potential control points for disease interventions. The previous 
study23 utilized a classical integer-order model to investigate key interactions in the pathogenesis of Kawasaki 
disease. In contrast, this study presents a new fractional-order model of Kawasaki disease, employing the 
modified Atangana-Baleanu-Caputo (MABC) derivative. This approach effectively captures memory effects 
and complex immune interactions, thereby improving the accuracy of simulations related to the inflammatory 
processes. Additionally, the study explores chaos control and stability by using Lyapunov functions and fixed-
point theorems to analyze equilibria and the uniqueness of solutions.
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Section 1 of this article serves as an introduction, and Sect. 2 provides a general definition of the strategies that 
are offered. The suggested models that are positively invariant, with equilibrium points, reproductive potential, 
and sensitivity examined, are shown in Sect. 3. Part 4 evaluates the proposed model stability while accounting 
for Lyapunov stability. The discrete Kawasaki disease model chaos is examined in Sect. 5. In Sect. 6, fixed point 
theory is used to verify the existence and uniqueness of a system of solutions. In Sect. 7, the Atangana Baleanu 
in Caputo sense fractional order system is solved using a unique numerical method. Graphs representing the 
numerical results of the proposed model are presented in Sect. 8. The conclusion is given in the last section, 
number 9.

Basic concepts
In this section, we will look over some basic ideas.

Definition 2.1  28Let w ∈ M ([0, Q]) and η ∈ (0, 1),Q > 0. The ABC fractional derivative of a function w(t) 
defines it as

	

ABC
0 Dη

t w(t) = AB(η)
1 − η

t∫

0

d

dυ
w(υ)℘η

(
−η(t − υ)

1 − η

)
dυ,� (1)

Definition 2.2  28The ABC fractional integral connected to the function w(t) is conceptualized as follows:

	

ABC
0 Iη

t w(t) = 1 − η

AB(η)g(t) + η

AB(η)Γ(η)

t∫

0

w(υ)(t − υ)η−1dυ,� (2)

where η ∈ (0, 1) and

	
AB(η) = 1 − η + η

Γ(η) .� (3)

Definition 2.3  28The MABC derivative for w ∈ L(0, Q) and η ∈ (0, 1) can be formulated as follows: Consider 
a function x ∈ L(0, Q). For 0 < η < 1, the MABC derivative is defined as

	

MABCDη
0 w(t) = AB(η)

1 − η


w(t) − ℘η(−qηtη)w(0) − qη

t∫

0

(t − υ)η−1℘η,η (−qη(t − υ)η)w(υ)dυ


 ,� (4)

where qη = η
1−η  and AB(η) = 1 − η + η

Γ(η) .
The Laplace transform

	
L

{
MABCDη

t w(t); u
}

= AB(η)
(1 − η)

uηL {x(t); u} − uη−1w(0)
uη + qη

,
∣∣∣ qη

uη

∣∣∣ < 1.� (5)

Definition 2.4  28w ∈ L(0, Q) and η ∈ (0, 1) MABC integral is

	
MABCIη

0 w(t) = AB(1 − η)
AB(η) [w(t) − w(0)] + qη

[
RLIη

0 (w(t) − w(0))
]

.� (6)

Definition 2.5  28For w′(t) ∈ (0, ∞) and η ∈ (0, 1) we have

	
MABCIη

0
MABCDη

0 w(t) = w(t) − w(0),� (7)

where η ∈ (0, 1) and W (η) satisfies a normalizing function W (1) = W (0) = 1.
Lemma 1: Let Q ∈ R+ be a differentiable function. Then,

	
MABC
0 Dη

t

[
Q (t) − Q∗ − Q∗ ln Q (t)

Q∗

]
≤

(
1 − Q∗

Q (t)

)
MABC
0 Dη

t (Q (t)) , Q∗ ∈ R+.

Mathematical model
The Kawasaki disease model has been notably shaped by previous research23. A four-category classification system 
is explained by means of the modeling equations regarding the ways in which different concentrations impact 
endothelial cell function and the inflammatory response. These equations include elements including cellular 
proliferation, activation by vascular endothelial growth factors, depletion owing to inflammatory stimuli, and 
intrinsic apoptosis to adequately depict the dynamics of normal endothelial cell concentration (E). Furthermore, 
they yield insights into the dynamics of vascular endothelial growth factor (V), chemokines, and activated 
adhesion factors (C). Ultimately, the model evaluates the dynamics of inflammatory factor concentrations (P), 
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which are regulated by adhesion factors and the activation of immune cells represents in Figure 1. Biological 
parameters and their meanings are display in Table 1.

The fractional-order model is chosen for its ability to incorporate memory effects and long-range dependencies 
inherent in biological systems, which integer-order models cannot capture.

	




MABC
0 Dη

t E(t) = r + k6V E
1+V

− k1EP − d1E,
MABC
0 Dη

t V (t) = k2EP − d2V,
MABC
0 Dη

t C(t) = k3EP + k4V − d3C,
MABC
0 Dη

t P (t) = k5C − d4P,

� (8)

under the initial conditions

	 E(0) ≥ 0 , V (0) ≥ 0 , C(0) ≥ 0 , P (0) ≥ 0.� (9)

Positively invariant
Lemma 2: The region γl∈ R4

+

	 γl =
{

(E, V, C, P ) ∈ R4
+ : 0 ≤ N

}
,

the system delineated in (8) in every solution, and the specified system within R4
+ exhibits positive invariance 

under the stipulation of non-negative.

Parameter Biological meaning 23 Value

r Rate of normal endothelial cell proliferation 2

d1 Normal endothelial cell apoptosis rates 0.5

d2 Rate of endothelial growth factor hydrolysis 1

d3 Adhesion factors and chemokines hydrolytic rate 1

d4 Rate at which inflammatory factors hydrolyze 1

k1 Injury rate of endothelial cells due to inflammatory factors 1

k2 Production rate of endothelial growth factors due to inflammatory factors 0.1

k3 Activated adhesion and chemokine production by inflammation 1

k4 Adhesion and chemokine production by growth factors 0.5

k5 Inflammatory factor production by activated immune cells 0.16

k6 Endothelial cell growth promoted by factors 0.45

Table 1.  Biological parameters and their meanings.

 

Fig. 1.  Schematic diagram of the Kawasaki disease model.
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Proof  The following are the results from the (8) that we shall present:

	

MABC
0 Dη

t E(t) |E=0 = r ≥ 0,
MABC
0 Dη

t V (t) |V =0 = k2EP ≥ 0,
MABC
0 Dη

t C(t) |C=0 = k3EP + k4V ≥ 0,
MABC
0 Dη

t P (t) |P =0 = k5C ≥ 0.

� (10)

According to the system (10), the vector field is said to be localized in the region R4
+ on each hyperplane covering 

the non-negative orthant with t≥ 0. � □
As E(t) + V (t) + C(t) + P (t) = N,. Each subpopulation is located in [0, N], where the overall population 

N is assumed to be constant. Because of this, the subpopulation E(t) + V (t) + C(t) + P (t) are also bounded.

Equilibrium points and R0
The Kawasaki disease model disease-free points are E0 = ( r

d1
, 0, 0, 0), and the Kawasaki disease model 

endemic equilibrium point is

	 E∗ =
(
E+, V +, C+, P +)

,

	
E+ = d2d3d4

d2k3k5 + k2k4k5
,

	
V + =

√
µ − d2

2k1k3k5 + k2
2k4k5r − d1d2d3d4k2 + d2d3d4k2k6 − d2k1k2k4k5 + d2k2k3k5r

2d2k1k5(d2k3 + k2k4) ,

	
C+ =

√
µ − d2

2k1k3k5 + k2
2k4k5r − d1d2d3d4k2 + d2d3d4k2k6 − d2k1k2k4k5 + d2k2k3k5r

2d2d3k1k2k5
,

	
P + =

√
µ − d2

2k1k3k5 + k2
2k4k5r − d1d2d3d4k2 + d2d3d4k2k6 − d2k1k2k4k5 + d2k2k3k5r

2d2d3d4k1k2
,

where

	

µ = d2
1d2

2d2
3d2

4k2
2 − 2d1d3

2d3d4k1k2k3k5 − 2d1d2
2d2

3d2
4k2

2k6 − 2d1d2
2d3d4k1k2

2k4k5

− 2d1d2
2d3d4k2

2k3k5r − 2d1d2d3d4k3
2k4k5r + d4

2k2
1k2

3k2
5 − 2d3

2d3d4k1k2k3k5k6

+ 2d3
2k2

1k2k3k4k2
5 + 2d3

2k1k2k2
3k2

5r + d2
2d2

3d2
4k2

2k2
6 − 2d2

2d3d4k1k2
2k4k5k6

+ 2d2
2d3d4k2

2k3k5k6r + d2
2k2

1k2
2k2

4k2
5 + 4d2

2k1k2
2k3k4k2

5r + d2
2k2

2k2
3k2

5r2

+ 2d2d3d4k3
2k4k5k6r + 2d2k1k3

2k2
4k2

5r

+ 2d2k3
2k3k4k2

5r2 + k4
2k2

4k2
5r2.

In the modified fractional-order Kawasaki disease model, the reproduction number is crucial for assessing the 
potential spread of the disease within a population.

Let

	
F =

[0 0 k2
r

d1
0 0 k3

r
d1

0 0 0

]
,

	
V =

[
d2 0 0

−k4 d3 0
0 −k5 d4

]
.

In particular, F V 1 represents the spectral radius of the next generation matrix, which is the reproductive 
number.

	

F V −1 =




k2k4k5r
d1d2d3d4

k2k5r
d1d3d4

k2r
d1d4

0
k3k4k5r

d1d2d3d4
k3k5r

d1d3d4
k3r

d1d4
0

0 0 0 0
0 0 0 0


 ,

	
R0 = rk5 (k2k4 + k3d2)

d1d2d3d4
.� (11)

It is widely recognized that when R0 < 1, the transmission of the infection will ultimately cease. Conversely, the 
disease will propagate throughout the population if R0 > 1. Figure 2 shows the impact of several parameters 
on R0.
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Sensitivity snalysis
Sensitivity analysis demonstrates that fractional-order parameters significantly influence system stability, 
offering deeper insights into disease progression. These advantages highlight the fractional-order model’s 
superior capability in modeling Kawasaki disease dynamics. The sensitivity of R0 is following.

	
∂R0

∂r
= d2k3k5 + k2k4k5

d1d2d3d4
> 0,

	
∂R0

∂d1
= −d2k3k5r + k2k4k5r

d2
1d2d3d4

< 0,

	
∂R0

∂d2
= k3k5r

d1d2d3d4
− d2k3k5r + k2k4k5r

d1d2
2d3d4

< 0,

	
∂R0

∂d3
= −d2k3k5r + k2k4k5r

d1d2d2
3d4

< 0,

	
∂R0

∂d4
= −d2k3k5r + k2k4k5r

d1d2d3d2
4

< 0,

	
∂R0

∂k2
= k4k5r

d1d2d3d4
> 0,

Fig. 2.  Impact of several parameters on R0.
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∂R0

∂k3
= k5r

d1d3d4
> 0,

	
∂R0

∂k4
= k2k5r

d1d2d3d4
> 0,

	
∂R0

∂k5
= d2k3r + k2k4r

d1d2d3d4
> 0.

Positive sensitivity indices are associated with an elevation of R0, whereas negative indices are correlated 
with a reduction in this value. The sensitivity index is linked to the R0 parameter. Figure 3 elucidates critical 
elements that affect transmission potential, thereby facilitating the discernment of essential variables and their 
implications on the propagation of Kawasaki disease. Parameters like r, k2, k3, k4, and k5 in Figure 3 have a 
positive sensitivity index and positively affect R0. Increasing r, k2, k3, k4, and k5 can either increase the value of 
R0 or cause an outbreak. However, parameters with a negative sensitivity index, such as d1, d2, d3, and d4, have 
a negative impact on reducing the disease’s progress.

Stability analysis
To enhance comprehension of the dynamic features of the suggested model system (8) and the ways in which 
control strategies impact the dynamics of infectious disease transmission, a qualitative analysis of the system is 
conducted. The infectious model stability features are examined first.

Local stability
Theorem 4.1  An equilibrium free E0 of the Kawasaki disease exhibits asymptotic local stability when R0 < 1. 
Unstability exists if R0 > 1.

Proof  For the system (8) at E0, the Jacobian can be expressed as

	




k6V
1+V

− k1P − d1
Ek6
1+V

− EV k6
(V +1)2 0 −k1E

k2P −d2 0 k2E
k3P k4 −d3 k3E

0 0 k5 −d4


 .

Verifying that each and every eigenvalue of the matrix J(E0) satisfies the stability condition is both necessary 
and sufficient for the equilibrium point E0 to be locally asymptotically stable:

	
|arg(λi)| >

ηπ

2 .� (12)

Jacobian matrix has the following eigenvalues: λ1 = −0.5, λ2 = −0.1305, λ3 = −1.4347, λ4 = −1.4347. It is 
obvious that the point E0 is locally asympotically stable if R0 < 1and all the eigenvalues of J(E0) are negative. 
� □

Global stability
Lyapunov first derivative
For the endemic Lyapunov function, {E, V, P, C}, MABC

0 Dη
t L < 0, is the endemic equilibrium E∗.

r d1 d2 d3 d4 k2 k3 k4 k5

-2

-1

0

1

2

3

4

5

6
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Fig. 3.  sensitivity indices of variables in R0.
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Theorem 4.2  The endemic equilibrium points E∗, in the Kawasaki disease model are globally asymptotically 
stable when R0 > 1.

Proof  The Lyapunov function is expressed as follows:

	

L(E∗, V ∗, C∗, P ∗) =
(

E − E∗ − E∗ log E

E∗

)
+

(
V − V ∗ − V ∗ log V

V ∗

)

+
(

C − C∗ − C∗ log C

C∗

)
+

(
P − P ∗ − P ∗ log P

P ∗

)
.

� (13)

Using Lemma 1 and taking modified ABC derivative, we get

	

MABC
0 Dη

t L ≤
(

E − E∗

E

)
MABC
0 Dη

t E +
(

V − V ∗

V

)
MABC
0 Dη

t V +
(

C − C∗

C

)
MABC
0 Dη

t C

+
(

P − P ∗

P

)
MABC
0 Dη

t P.

� (14)

Using system (8) we get,

	

MABC
0 Dη

t L ≤
(

E − E∗

E

) (
r + k6V E

1 + V
− k1EP − d1E

)
+

(
V − V ∗

V

)
(k2EP − d2V )

+
(

C − C∗

C

)
(k3EP + k4V − d3C) +

(
P − P ∗

P

)
(k5C − d4P ) .

� (15)

Putting E = E − E∗, V = V − V ∗, C = C − C∗ and P = P − P ∗ leads to.

	

MABC
0 Dη

t L ≤
(

E − E∗

E

) (
r + k6 (V − V ∗) (E − E∗)

1 + (V − V ∗) − k1 (E − E∗) (P − P ∗) − d1 (E − E∗)
)

+
(

V − V ∗

V

)
(k2 (E − E∗) (P − P ∗) − d2 (V − V ∗))

+
(

C − C∗

C

)
(k3 (E − E∗) (P − P ∗) + k4 (V − V ∗) − d3 (C − C∗))

+
(

P − P ∗

P

)
(k5 (C − C∗) − d4 (P − P ∗)) ,

	

MABC
0 Dη

t L ≤
(

E − E∗

E

)
r + k6(E − E∗)2V

E (1 + (V − V ∗)) − k6(E − E∗)2V ∗

E (1 + (V − V ∗)) + (E − E∗)2

E
k1P ∗

− (E − E∗)2

E
k1P +

(
V − V ∗

V

)
k2EP −

(
V − V ∗

V

)
k2EP ∗ −

(
V − V ∗

V

)
k2E∗P

+
(

V − V ∗

V

)
k2E∗P ∗ +

(
C − C∗

C

)
k3EP −

(
C − C∗

C

)
k3EP ∗ −

(
C − C∗

C

)
k3E∗P

+
(

C − C∗

C

)
k3E∗P ∗ − (C − C∗)2

C
d3 +

(
P − P ∗

P

)
k2C −

(
P − P ∗

P

)
k2C∗ − (P − P ∗)2

P
d4.

Now, we write

	
MABC
0 Dη

t L ≤ θ − ϕ,

	

θ =
(

E − E∗

E

)
r + k6(E − E∗)2V

E (1 + (V − V ∗)) + (E − E∗)2

E
k1P ∗ +

(
V − V ∗

V

)
k2EP +

(
V − V ∗

V

)
k2E∗P ∗

+
(

C − C∗

C

)
k3EP +

(
C − C∗

C

)
k3E∗P ∗ +

(
P − P ∗

P

)
k2C,

	

ϕ = k6(E − E∗)2V ∗

E (1 + (V − V ∗)) + (E − E∗)2

E
k1P + (E − E∗)2

E
d1 +

(
V − V ∗

V

)
k2EP ∗ +

(
V − V ∗

V

)
k2E∗P

+ (V − V ∗)2

V
d2 +

(
C − C∗

C

)
k3EP ∗ +

(
C − C∗

C

)
k3E∗P + (C − C∗)2

C
d3

+
(

P − P ∗

P

)
k2C∗ + (P − P ∗)2

P
d4.
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It is achieved that if θ < ϕ, this yields MABC
0 Dη

t L < 0, however when E = E∗, V = V ∗, C = C∗andP = P ∗.

	 0 = θ − ϕ ⇒ MABC
0 Dη

t L = 0.� (16)

It is possible to demonstrate the proposed model largest compact invariant set.

	 {(E∗, V ∗, C∗, P ∗
h )} .� (17)

By employing the Lasalles invariance principle if the system is stable then E∗ is also stable within it. � □

Remark 1  Fractional-order derivatives in Lyapunov functions affect stability criteria by introducing a memo-
ry-dependent behavior, reflecting past states in the stability analysis, unlike standard integer-order systems. This 
added memory component allows for slower convergence rates, which captures the persistent and recurrent 
nature of Kawasaki disease dynamics more accurately.

Existence criteria
Lemma 5.1  The initial equation of the MABC-FDE framework, denoted as equation (8), encompasses solutions 
of a nature that is elucidated in the subsequent discussion.

	

E(t) = E(0) + Q1ג (t, E (t)) + Z

t∫

0

(t − υ)η−11ג (υ, E (υ)) dυ

− Q1ג (0, E (0))
(

1 + Ψη

Γ (η + 1) tη

)
,

� (18)

where

	
Q = 1 − η

B (η) ,

	
Z = η

B (η) Γ (η) .

Simlerly, for others, where

	

1ג (t, E(t)) = r + k6V E
1+V

− k1EP − d1E,
2ג (t, V (t)) = k2EP − d2V,
3ג (t, C(t)) = k3EP + k4V − d3C,
4ג (t, P (t)) = k5C − d4P.

A solution for the modified ABC model is determined based on the following assumptions:
W ⋆ Consider E, Ē, V, V̄ , C, C̄, P, P̄ ∈ L [0, 1] , is a continuous function with the higher limit, show that 

∥E∥ ≤ ℸ1, ∥V ∥ ≤ ℸ2, ∥C∥ ≤ ℸ3, ∥P ∥ ≤ ℸ4, where ℸ1,ℸ2,ℸ3,ℸ4 are made up only of positive constants. 
To elucidate further, let us suppose that: ℶ1 =

(
k6ℸ2
1+ℸ2

− k1ℸ4 − d1
)

, ℸ2 = −d2, ℸ3 = −d3  and  ℸ4 = −d4.

Theorem 5.2  The גj  indexed by j within the domain N4
1  will adhere to the Lipschitz condition contingent upon 

the veracity of the assumption W ⋆, provided that all ℶj  are less than 1 for each j in the specified set.

Proof  We start by proving that the function 1ג(t, E) satisfies the Lipschitz condition. The implication of W ⋆, 
which we have, is used to achieve this.

	

1ג∥∥ (t, E) − 1ג
(
t, Ē

)∥∥ =
∥∥∥
(

k6V

1 + V
− k1P − d1

)
E −

(
k6V

1 + V
− k1P − d1

)
Ē

∥∥∥

≤ k6 ∥V ∥
1 + ∥V ∥

∥∥E − Ē
∥∥ − k1 ∥P ∥

∥∥E − Ē
∥∥ − d1

∥∥E − Ē
∥∥

≤
(

k6ℸ2

1 + ℸ2
+ k1ℸ4 + d1

)
∥E − E∥

= ℶ1
∥∥E − Ē

∥∥ ,

� (19)

1ג =
(

k6ℸ2
1+ℸ2

+ k1ℸ4 + d1
)

.
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2ג∥∥ (t, V ) − 2ג
(
t, V̄

)∥∥ =
∥∥(−d2) V − (−d2) V̄

∥∥
≤ d2

∥∥V − V̄
∥∥

= ℶ2
∥∥V − V̄

∥∥ ,

� (20)

ℶ2 = d2.

	

3ג∥∥ (t, C) − 3ג
(
t, C̄

)∥∥ =
∥∥(−d3) C − (−d3) C̄

∥∥
≤ d3

∥∥C − C̄
∥∥

= ℶ3
∥∥C − C̄

∥∥ ,

� (21)

ℶ3 = d3.

	

4ג∥∥ (t, P ) − 4ג
(
t, P̄

)∥∥ =
∥∥(−d4) P − (−d4) P̄

∥∥
≤ d4

∥∥P − P̄
∥∥

= ζ4
∥∥P − P̄

∥∥ ,

� (22)

ℶ4 = d4. It can be discerned that the Lipschitz condition is fulfilled by the elements 1ג, ,2ג ,3ג -Further .4ג
more, it can be conclusively shown that each of the גj  for j = 1, 2, 3, 4 adheres to the Lipschitz condition, 
thereby corroborating their legitimacy, as derived from equations (19) to (22).

Suppose there is a

	

E(t) = E(0) + Q1ג (t, E (t)) + Z

t∫

0

(t − υ)η−11ג (υ, E (υ)) dυ

− Q10ג (t, E (t))
(

1 + Ψη

Γ (η + 1) tη

)
,

� (23)

The next stage is to define the recursive formulae for the model, which is listed as follows:

	

En+1(t) − E(0) = Q1ג (t, En (t)) + Z

t∫

0

(t − υ)η−11ג (υ, En (υ)) dυ

− Q10ג (t, E (t))
(

1 + Ψη

Γ (η + 1) tη

)
.

� (24)

In a same pattern we solve for V,C,P. � □

Theorem 5.3  Should the veracity of the forthcoming assertion be substantiated, then the MABC Kawasaki dis-
ease (8) presents a solution predicated on the premise that W ⋆ must be affirmed as accurate.

	 Υ1 = max ,1ג] ,2ג ,3ג [4ג < 1.

Proof  We define function as follows:

	

E 1n(t) = En+1(t) − E(t),
E 2n(t) = Vn+1(t) − V (t),
E 3n(t) = Cn+1(t) − C(t),
E 4n(t) = Pn+1(t) − P (t),

Scientific Reports |        (2025) 15:25953 10| https://doi.org/10.1038/s41598-025-09944-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

∥E 1n∥ =

∥∥∥∥∥∥
Q1ג (t, En (t)) + Z

t∫

0

(t − υ)η−11ג (υ, En (υ)) dυ − Q0ג
1 (t, E (t))

(
1 + Ψη

Γ (η + 1) tη

)

−


Q1ג (t, E (t)) + Z

t∫

0

(t − υ)η−11ג (υ, E (υ)) dυ −Q0ג
1 (t, E (t))

(
1 + Ψη

Γ (η + 1) tη

)]∥∥∥∥∥∥

= Z

t∫

0

(t − υ)η−1 1ג∥ (υ, En (υ)) − 1ג (υ, E (υ))∥ dυ + Q 1ג∥ (t, En (t)) − 1ג (t, E (t))∥

≤ Z

t∫

0

(t − υ)η−1ℸ1 ∥En−1 − E∥ dυ + Qℸ1 ∥En−1 − E∥

≤ [S + Q]ℸ1 ∥En−1 − E∥
≤ [S + Q]nℸn

1 ∥En−1 − E∥ ,

� (25)

	
S = η

B (η) Γ (η + 1) ,

where ℸ < 1 and n → ∞, En → E similarly we have

	 ∥E 2n∥ ≤ [S + Q]nℸn
2 ∥Vn−1 − V ∥ ,� (26)

	 ∥E 3n∥ ≤ [S + Q]nℸn
3 ∥Cn−1 − C∥ ,� (27)

	 ∥E 4n∥ ≤ [S + Q]nℸn
4 ∥Pn−1 − P ∥ ,� (28)

Due to the fact that E jn(t) → 0 as n → ∞ for j ∈ N4
1  and ℸ < 1, Hence prove is done.

Theorem 5.4   If the following statement is true, then the unique solution given by the MABC model (8) is:

	 [S + Q]ℸj ≤ 1, j ∈ N4
1 .

Proof  We may look at Ē(t), V̄ (t), C̄(t), and P̄ (t) as potential alternatives. Following that, we have:

	

Ē(t) = Ē(0) + Q1ג
(
t, Ē (t)

)
+ Z

t∫

0

(t − υ)η−11ג
(
υ, Ē (υ)

)
dυ

− Q10ג

(
t, Ē (t)

) (
1 + Ψη

Γ (η + 1) tη

)
,

� (29)

� □

Likewise, for additional compartments
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∥∥E − Ē
∥∥ =

∥∥∥∥∥∥
Q1ג (t, E (t)) + Z

t∫

0

(t − υ)η−11ג (υ, E (υ)) dυ

−Q10ג (t, E (t))
(

1 + Ψη

Γ (η + 1) tη

)

−


Q1ג

(
t, Ē (t)

)
+ Z

t∫

0

(t − υ)η−11ג
(
υ, Ē (υ)

)
dυ

−Q10ג

(
t, Ē (t)

) (
1 + Ψη

Γ (η + 1) tη

)]

= Z

t∫

0

(t − υ)η−1 1ג∥∥ (υ, E (υ)) − 1ג
(
υ, Ē (υ)

)∥∥ dυ

+Q
1ג∥∥ (t, E (t)) − 1ג

(
t, Ē (t)

)∥∥

≤ Z

t∫

0

(t − υ)η−1ℸ1
∥∥E − Ē

∥∥ dυ+Q1ג
∥∥E − Ē

∥∥

≤ [S + Q]ℸ1
∥∥E − Ē

∥∥ ,

� (30)

and so

	 [1 − S + Qℸ1]
∥∥E − Ē

∥∥ ≤ 0,� (31)

when 
∥∥E − Ē

∥∥ = 0, the inequality (46) is true, E must equal Ē. In a comparable direction, we have

	 [1 − S + Qℸ2]
∥∥V − V̄

∥∥ ≤ 0,� (32)

	 [1 − S + Qℸ3]
∥∥C − C̄

∥∥ ≤ 0,� (33)

	 [1 − S + Qℸ4]
∥∥P − P̄

∥∥ ≤ 0,� (34)

Therefore, the solution produced by the Kawasaki disease exhibits the property of uniqueness.

Chaos control
In this section, we use the linear feedback control method to stabilize system (8) to its equilibrium positions. The 
fractional-order system in its controlled form (8) will be examined as follows:

	

MABC
0 Dη

t E(t) = r + k6V E
1+V

− k1EP − d1E − w1(E − E1),
MABC
0 Dη

t V (t) = k2EP − d2V − w2 (V − V1) ,
MABC
0 Dη

t C(t) = k3EP + k4V − d3C − w3 (C − C1) ,
MABC
0 Dη

t P (t) = k5C − d4P − w4 (P − P4) ,

� (35)

where w1, w2, w3, w4 are control variables, and the system equilibrium point is E0( 8). For the system (35), the 
Jacobian matrix at E0 is derived as

	

J(E0) =




−d1 − w1 k6r
d1

0 − k1r
d1

0 −d2 − w2 0 k2r
d1

0 k4 −d3 − w3 k3r
d1

0 0 k5 −d4 − w4


 .

The characteristic equation of the Jacobian matrix J(E0) is given by

	

f(λ) =

∣∣∣∣∣∣∣

λ + d1 + w1 − k6r
d1

0 k1r
d1

0 λ + d2 + w2 0 − k2r
d1

0 −k4 λ + d3 + w3 − k3r
d1

0 0 −k5 λ + d4 + w4

∣∣∣∣∣∣∣
= 0,

characteristic polynomial of for the equilibrium point E0 is given as

	 C (λ) = λ4 + K∗
1 λ3 + K∗

2 λ2 + K∗
3 λ + K∗

4 ,� (36)
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K∗
1 = c+d

d1
+ (d1+w1)(a+b)

d1
,

K∗
2 = a+b

d1
+ (d1+w1)(d1d2+d1d3+d1d4+d1w2+d1w3+d1w4)

d1
,

K∗
3 = d1 + w1 + d1d2+d1d3+d1d4+d1w2+d1w3+d1w4

d1
,

K∗
4 = (d1+w1)(c+d)

d1
,

� (37)

where

	

a = d1d2d3 + d1d2d4 + d1d3d4 + d1d2w3 + d1d3w2 + d1d2w4 + d1d4w2,
b = d1d3w4 + d1d4w3 − k3k5r + d1w2w3 + d1w2w4 + d1w3w4,
c = d1d2d3w4 + d1d2d4w3 + d1d3d4w2 − d2k3k5r − k2k4k5r + d1d2w3w4 + d1d3w2w4,
d = d1d4w2w3 − k3k5rw2 + d1w2w3w4 + d1d2d3d4,

Based on linear stability theory the local dynamics of controlled discrete Kawasaki disease model (35) about 
E0(

r
d1

,0,0,0
), can be stated as following Lemma:

Lemma 6.1  E0(
r

d1
,0,0,0

), of controlled discrete Kawasaki disease model (35) is a sink if

	

|K∗
1 + K∗

3 | < 1 + K∗
4 + K∗

2 , |K∗
1 − K∗

3 | < 2 (1 − K∗
4 ) , K∗

2 − 3K∗
4 < 3,

K∗
4 + K∗

2 + K∗2
4 + K∗2

1 + K∗2
4 K∗

2 + K∗
4 K∗2

3 < 1 + 2K∗
4 K∗

2 + K∗
1 K∗

3 + K∗
4 K∗

1 K∗
3 + K∗3

4 ,
� (38)

where K∗
1 , K∗

2 , K∗
3  and K∗

4  are depicted in Eq (37).

Proof  Since J(E0)( r
d1

,0,0,0
) about interior equilibrium solution E0(

r
d1

,0,0,0
) of controlled discrete Kawasaki 

disease model (35) has characteristics polynomial which is depicted in model (36).E0(
r

d1
,0,0,0

) of controlled 

discrete Kawasaki disease model (35) is a sink if |K∗
1 + K∗

3 | < 1 + K∗
4 + K∗

2 ,

|K∗
1 − K∗

3 | < 2 (1 − K∗
4 ) , and 

K∗
4 + K∗

2 + K∗2
4 + K∗2

1 + K∗2
4 K∗

2 + K∗
4 K∗2

3 < 1 + 2K∗
4 K∗

2 + K∗
1 K∗

3 + K∗
4 K∗

1 K∗
3 + K∗3

4 , 
K∗

2 − 3K∗
4 < 3, where K∗

1 , K∗
2 , K∗

3  and K∗
4  are depicted in Eq (37). � □

Numerical scheme
Following the equation stated in (8), we get:

	

E = E0 + 1 − η

B (η)ρ1 (t, E (t)) + η

B (η) Γ (η)

t∫

0

(t − υ)η−1ρ1 (υ, E (υ)) dυ

− 1 − η

B (η)ρ1 (0, E (0))
(

1 + γη

Γ (η + 1) tη

)
.

� (39)

With the help of44,47, we construct a numerical approach for (39) by applying Lagrange interpolation polynomials. 
Substituting tn+1 for t yields

	

E = E0 + 1 − η

B (η)ρ1 (tn, E (tn)) + η

B (η) Γ (η)

tn+1∫

0

(tn+1 − υ)η−1ρ1 (υ, E (υ)) dυ

− 1 − η

B (η)ρ1 (0, E (0))
(

1 + γη

Γ (η + 1) tn
η

)
.

� (40)

By the Lagrange interpolation, we have

	

ρ1 (t, E (t)) = ρ1 (tm, E (tm)) (t − tm−1)
tm − tm−1

− ρ1 (tm−1, E (tk−1)) (t − tm)
tm − tm−1

= ρ1 (tm, E (tm)) (t − tm−1)
h

− ρ1 (tm−1, E (tm−1)) (t − tm)
h

.

� (41)

By the help of (39) and (41), we have
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E (tm+1) = E0 + 1 − η

B (η)ρ1 (tm, E (tm))

+ η

B (η) Γ (η)

n∑
i=1


ρ1 (ti, u (ti))

h

tm+1∫

tm

(υ − ti−1) (tn+1 − υ)η−1dυ

−ρ1 (ti−1, ϖi (ti−1))
h

tn+1∫

tm

(υ − tm) (tn+1 − υ)η−1dυ




− 1 − η

B (η)ρ1 (0, E (0))
(

1 + γη

Γ (η + 1) tm
η

)
.

� (42)

Solving the integrals, we get

	

Em+1 = E0 + 1 − η

B (η)ρ1 (tm, E (tm))

+ ηhη

Γ (η + 2)

m∑
j=1

[ρ1 (ti, E (ti)) ((m − j + 1)η (m + 2 − j + η)

−(m − i)η (m + 2 − j + 2η)) − ρ1 (ti−1, Ei−1)
(
(m − i + 1)η+1

− (m − j + 1 + η) (m − i)η)] − 1 − η

B (η)ρ1 (0, E (0))
(

1 + γη

Γ (η + 1)(mh)η

)
.

� (43)

Similarly,

	

Vm+1 = V0 + 1 − η

B (η)ρ2 (tm, V (tm))

+ ηhη

Γ (η + 2)

m∑
j=1

[ρ2 (ti, V (ti)) ((m − j + 1)η (m + 2 − j + η)

−(m − i)η (m + 2 − j + 2η)) − ρ2 (ti−1, Vi−1)
(
(m − i + 1)η+1

− (m − j + 1 + η) (m − i)η)] − 1 − η

B (η)ρ1 (0, V (0))
(

1 + γη

Γ (η + 1)(mh)η

)
,

� (44)

	

Cm+1 = C0 + 1 − η

B (η)ρ3 (tm, C (tm))

+ ηhη

Γ (η + 2)

m∑
j=1

[ρ3 (ti, C (ti)) ((m − j + 1)η (m + 2 − j + η)

−(m − i)η (m + 2 − j + 2η)) − ρ3 (ti−1, Ci−1)
(
(m − i + 1)η+1

− (m − j + 1 + η) (m − i)η)] − 1 − η

B (η)ρ3 (0, C (0))
(

1 + γη

Γ (η + 1)(mh)η

)
,

� (45)

and

	

Pm+1 = P0 + 1 − η

B (η)ρ4 (tm, P (tm))

+ ηhη

Γ (η + 2)

m∑
j=1

[ρ4 (ti, P (ti)) ((m − j + 1)η (m + 2 − j + η)

−(m − i)η (m + 2 − j + 2η)) − ρ4 (ti−1, Pi−1)
(
(m − i + 1)η+1

− (m − j + 1 + η) (m − i)η)] − 1 − η

B (η)ρ4 (0, C (0))
(

1 + γη

Γ (η + 1)(mh)η

)
.

� (46)

Results of proposed scheme
The temporal dynamic characteristics pertinent to the fractional-order epidemiological model for Kawasaki 
disease (8) are examined through the numerical simulations delineated in this section. It is crucial to show 
that the presented work is feasible and to use large-scale numerical simulation to verify the analytical 
work’s correctness. For a range of fractional values dependent on the steady-state point, the model 
numerical results are computed using Atangana-Baleanu in the Caputo sense in conjunction with Mittag-
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Leffler law. These simulations show how a change in value affects the model behavior. Furthermore, the 
results for fractional values demonstrate higher efficiency as compared to the usual derivative. It enables 
a more accurate estimation of the best amount for disease control. The actual parameters of the data are 
r = 2, d1 = 0.5, d2 = 1, d3 = 1, d4 = 1, k1 = 1, k2 = 0.1, k3 = 1, k4 = 0.5, k5 = 0.16, k6 = 0.45
23. The nature of time in a days. The Kawasaki disease model dynamics for various values of t ∈ [0, 10] are 
depicted in Figures 4a, 5a, 6a, and 7a, which use the Atangana-Baleanu type non-singular fractional derivative. 
Figures  4b,  5b,  6b, and  7b demonstrate the dynamics of the Kawasaki disease model for different values of 
t ∈ (0, 1) using the non-singular fractional derivative of the Modified Atangana-Baleanu type. Figure  4 
illustrates the E(t) dynamics for different fractional orders, showing that lower fractional orders correspond 
to increased endothelial cell populations over time. This could relate to heightened cellular proliferation from 
vascular endothelial growth factors, potentially leading to vascular issues seen in Kawasaki disease. This indicates 
the possibility of targeting endothelial proliferation to reduce vascular damage. The V(t) dynamics shown in 
Figure  5 indicate that as fractional orders η increase, the population of classes decreases. A decline in V(t) 
levels at higher fractional orders may dampen the growth and repair of vascular tissues, potentially weakening 
endothelial function and increasing vulnerability to inflammation. This suggests that V(t) modulation could 
be a therapeutic avenue, as lower V(t) may correlate with disease remission phases. The dynamics of C(t) are 
shown in Figure 6 for various fractional orders η. Higher fractional orders lead to a continuous decrease in the 
population of classes and chemokine levels, indicating a reduced immune response in severe disease stages. 
This suggests that managing chemokine levels may influence immune cell recruitment, potentially helping to 
control inflammation and disease severity. Figure  7 shows that as the fractional order η decreases, the class 
population P(t) steadily rises. Inflammatory factors increase, particularly at lower fractional orders, indicating 
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ongoing inflammation typical of Kawasaki disease. This persistent inflammation may lead to further vascular 
damage and greater disease severity, highlighting the need for early anti-inflammatory interventions. The 
trends in Figures 4, 5, 6, and 7 indicate that lower fractional orders result in heightened and sustained levels 
of inflammatory factors (P) and endothelial cells (E), suggesting more aggressive disease progression. Higher 
fractional orders reduce these levels, implying a dampening effect on inflammation. This implies that manipulating 
fractional orders could help modulate disease severity, offering potential control points for Kawasaki disease 
interventions. The crossover behavior in Figures  4,  5,  6,  and  7 suggests a shift in the influence of fractional 
orders on the dynamics of each variable, reflecting transitions between different phases of Kawasaki disease. This 
behavior aligns with real-life disease progression, where initial inflammatory responses peak and later decline 
due to regulatory mechanisms. Such transitions validate the model’s ability to capture complex disease stages, 
confirming its realism and robustness for simulating Kawasaki disease dynamics. To demonstrate that fractional 
derivatives better capture Kawasaki disease dynamics, simulate both fractional and integer-order models. 
The fractional model shows a gradual decline in inflammation levels, reflecting the persistent inflammatory 
response in Kawasaki disease, while the integer model indicates a quicker decline. Compare to previous study23 
simulations reveal that the fractional-order model exhibits more nuanced dynamics, such as delayed responses 
and complex transient behaviors, aligning better with real-world biological data. By comparing graphs, it is 
evident that the MABC model aligns more closely with realistic biological processes, making it a better choice 
for simulating complex disease dynamics like Kawasaki disease. For public health policy, these findings provide 
evidence that fractional-order models could improve predictions of Kawasaki disease outcomes and help design 
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targeted therapies, especially during early stages. This model could guide resource allocation in clinical settings 
by highlighting which biological processes to monitor closely in Kawasaki disease patients.

 Conclusion
We examine the interactions between different parameters in the Kawasaki disease model (8) in this article. We 
analyze the dynamic behavior of the system for constant controls by using the fractional operator Kawasaki disease 
model. We took into consideration the recently developed modified ABC operator in our proposed problem. The 
modified Atangana-Baleanu-Caputo operator offers advantages over the standard Atangana-Baleanu-Caputo 
operator in terms of well-posedness and initialization. The MABC operator addresses initialization issues 
present in the ABC operator, leading to more robust and reliable model simulations. This improved initialization 
contributes to a more accurate representation of Kawasaki disease dynamics. Consequently, the MABC operator 
provides a more effective framework for analyzing the model’s stability and control. We assert that this operator 
has afforded researchers a novel pathway for investigation within their scholarly endeavors. The application of 
Leray-Schauder method was employed to ascertain the existence of solutions. The examination of the global 
stability of the fractional order model is conducted through the utilization of the Lyapunov function. This 
new numerical method was developed and used for a Kawasaki disease mathematical model using Lagrange’s 
interpolation polynomial. We pointed out that the results are more realistic and that the approach can be used 
to examine dynamical systems in more detail. The effect of fractional order on the analysis of vaccination and 
community effects is demonstrated using a numerical simulation. According to this study, the ABC model 
yields less insightful results on compartmental population dynamics than the MABC fractional-order model. 
Therefore, it may be said that MABC is particularly useful for simulating real-world issues. Readers might review 
the imagined problem by using additional fixed-point approaches to see if there are multiple or unique solutions. 
Additionally, they might develop new numerical systems using other techniques. Future work could extend this 
model by incorporating additional biological complexities, such as immune system interactions, environmental 
factors, or genetic predispositions, to enhance its applicability to Kawasaki disease. The framework could also 
be adapted to model other diseases with similar dynamics, like rheumatoid arthritis or systemic vasculitis, by 
adjusting parameters and fractional orders. Exploring advanced numerical methods, such as adaptive or hybrid 
techniques, could improve computational efficiency and accuracy for complex systems. Collaborative efforts 
with clinical researchers could further validate and refine the model for real-world applications.

Data availability
The datasets analyzed during the current study are available from the corresponding author upon reasonable 
request.
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