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In modern power engineering, the optimal operation aims to achieve the basic requirements of the 
electrical power grid, meet various technical and economic aspects, and preserve the environmental 
limits within their accepted bounds. In this line, the current paper finds the optimal operational 
scheduling of the power generation units that cover the load requirements, considering different 
frameworks of the optimal power flow (OPF) problem involving single- and multi-objective functions. 
Technical, economic, and emissions objective functions are considered. Artificial rabbits’ optimization 
(ARO) is developed to find the optimal OPF framework solution. The effectiveness of the proposed 
algorithm is evaluated through a comprehensive comparison study with the existing works in the 
literature. With six IEEE standard power systems, 22 different cases are implemented to test the ARO 
performance as an alternative to solve the OPF problem. Two of these systems are considered small-
size systems, 30-, and 57-test systems, while the other four are large-scale power systems (IEEE 300, 
1354, 3012, and 9241 test systems) to expand the validation scope of this paper. This comparison 
validates the scalability and efficiency of the ARO algorithm. The impact of varied population size and 
maximum iteration number is tested for two test systems, the most benchmarking test systems. It 
was proven that the routine of ARO has robust and superior competitive performance compared with 
others at fine convergence rates. Significant improvements are acquired in the range of 47% in the 
technical and economic issues by accepting the environmental concerns.

Keywords  Optimal power flow (OPF), Multi-objective ARO, Technical and economic aspects, 
Environmental concerns

The economic operating conditions of electrical power systems pose one of the most significant challenges. 
The key lies in selecting optimal control variables and system quantities. The resolution of optimal power flow 
(OPF) remains a persistent challenge within the realm of electric power systems. The problem of the OPF in 
electrical networks is a nonlinear optimization problem that was introduced by Cf. Carpenter in 19621. The OPF 
has gained significant research attention as an important topic. It involves determining the optimal adjustment 
of control variables to optimize specific objective functions. OPF addresses the optimization of discrete and 
continuous control variables, encompassing minimizing of generation fuel costs and active power losses while 
improving voltage deviation, enhancing voltage stability, and ensuring system security with satisfying both 
equality and inequality constraints. Consequently, numerous researchers have focused on finding solutions to 
the OPF problem using both classical and metaheuristic optimization algorithms2.

Due to the complexity of the non-convex and non-differentiable objective functions (OFs) encountered 
in the OPF problem, classical methods such as linear programming, Newton methods, dynamic and interior-
point methods have proven inadequate. As a result, metaheuristic optimization algorithms have been developed 
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to efficiently tackle these complexities and attain the global optimum solution3. Over the past few decades, 
metaheuristic algorithms have exhibited successful and extensive application in solving various electric power 
system problems, including the multi-objective OPF problem4. Examples of such metaheuristic optimization 
algorithms include genetic algorithm (GA)5, particle swarm optimization (PSO)6, whale optimization algorithm 
(WOA)7, ant colony optimization (ACO)8, artificial bee colony (ABC)9, gray wolf optimizer (GWO)10, Physics-
informed neural networks11, adaptive differential evolutionary algorithm12, firefly algorithm (FA)13, moth-flame 
optimization (MFO)14, cuckoo search algorithm15, adaptive seeker optimization algorithm16, JAYA optimizer17, 
marine predators algorithm (MPA)18, hybrid PSO and FA19, modified coyote optimization algorithm (MCOA)20, 
salp swarm optimization (SSO) algorithm21 and circle search algorithm (CSA)22.

Over the past few years, numerous researchers have dedicated their efforts to exploring advanced solutions 
for the power system’s OPF problem. Some notable studies in this area are outlined below: in23, multi-objective 
firefly algorithm with CPA was suggested for solving the MO-OPF problem. In24, DE algorithm was integrated 
with effective constraint handling techniques are introduced for OPF problem solution. Using AMTPG-JAYA 
technique, a single-objective OPF was optimized in25. Additionally, Table 1 presents improved methods, different 
objectives functions applied on different systems. This table presents several studies that attempt to reach the 
best solution to the OPF problem.

The research gap in the previously reported methods are the classical deterministic optimization techniques 
that offer solutions with well-understood convergence properties and analytical foundations. However, these 
approaches assume differentiability and convexity yield suboptimal or infeasible solutions. The search-based 
methods have the following challenges: The missing of guaranteed convergence to a global optimum; The 
effectiveness of the previous methods is dependent on the selection and tuning mechanism of population size, 
inertia weights, and mutation rates for each algorithm; The random behavior of such algorithms produces 
limiting reproducibility and consistency; The associated computational burden is affected by the large-scale 
systems; these metaheuristics generally do not incorporate uncertainty handling mechanisms,

This paper addresses the OPF problem by simultaneously optimizing multiple objectives. These are 
minimizing the active power loss, fuel cost, emission, voltage deviation at the load buses, and ameliorating 
voltage stability index (VSI) while accounting for both equality and inequality constraints. In this line, the 
current paper finds the optimal operational output of power generation units that covers the load requirements 
considering the artificial rabbits’ optimization (ARO) is employed to find the solution of the considered OPF 
problem. The effectiveness of the proposed algorithm is evaluated through a comprehensive comparison study 
with the existing works in literature. Six standard IEEE power systems were also used with 22 different cases 
studied for testing the ARO performance in solving the OPF problem. Also, this paper extends its validation on 
different size large-scale test systems standard systems. It was proven that the routine of ARO has robust, and 
superior competitive performance compared with others at fine convergence rates. Significant technical and 
economic improvements are acquired.

The significant contribution of this paper can be summarized as follows:
This paper proposes multi-dimension optimal operation solution of the optimal power flow problem using 

ARO method.
The validation and effectiveness of the proposed algorithm is evaluated on small scale and large-scale IEEE 

power systems.

Ref. year Objective functions Studied systems Methods

Fuel cost (FC), power loss (PL), voltage deviation (VD) and voltage stability index (VSI)

26 2020 optimization of bi- and tri- objectives of  (FC, PL, VD, L-index, 
voltage profile improvement) IEEE 30-bus and IEEE 57-bus test systems Hybrid firefly and PSO algorithm

27 2024 optimization of single objectives (FC, PL, produced emission) IEEE (30-, 57- and 118-) bus systems and 
practical West Delta Region

Enhanced Social Network Search 
Technique

28 2020 Minimization of multi objectives (FC, emission, PL) IEEE 30-bus and IEEE 57-bus systems bat algorithm

29 2020 optimization of single objective and multi objective of (FC, PL, 
VD, L-index, emission) IEEE (30-, 57- and 118-) bus systems Hybrid particle swarm and salp 

optimization algorithm

30 2022 single and multi-objective of (FC, PL, VD) IEEE (14, 30, 39, 57 and 118) -bus test systems. Whale and Moth-Flame Optimization 
Algorithms

31 2023 Single objective of (FC, emission, L-index, PL) IEEE 30-bus and IEEE 57-bus systems Cross-Entropy Method
32 2021 Minimization of (FC, emission, PL) IEEE 30-, 57-, and 118-bus test systems hybrid self-adaptive heuristic algorithm
33 2022 Single and multi-objectives of (FC, emission, PL, VSI) IEEE 30- and 118-bus test systems Marine Predators Algorithm
34 2023 three single objective functions (FC, VD, PL) IEEE 30-bus test system Mountain Gazelle Algorithm

35 2023 three single objective functions (FC, VD, PL) IEEE 57-bus and 118-bus test systems and 
practical West Delta Region system enhanced quasi-reflection jellyfish

36 2023 single and multi-objective of (FC, PL, VD, emission, L-index) IEEE 30-, 57-, and 118-bus test systems Beetle swarm optimization algorithm

37 2024 Minimization of single objectives (FC, emission, L-index, PL) IEEE 30-bus and 118-bus test systems Arithmetic optimization algorithm and 
Aquila optimize

38 2025 single and multi-objective of (FC, emission) IEEE 30-bus test system pelican optimization algorithm
39 2022 single objectives (FC, emission, PL) IEEE 30-bus and 57-bus test systems Teaching learning-based optimizer
40 2022 single objective of (FC, PL, VD, emission, L-index) IEEE 30-, 57-, and 118-bus test systems Moth flame optimization algorithm

Table 1.  Some metaheuristic algorithms presented recently for solving OPF problem in some literature review.
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Statistical analyses are procced to prove the has robust, and superior competitive performance compared 
with others at fine convergence rates.

Sensitivity analyses in terms of varied population size and iteration number are also provided for sample 
systems.

Significant technical, economic and environmental improvements are achieved compared with several 
previous optimization techniques.

The remaining sections of this paper are structured as follows: Section “Problem formulation” introduces 
the formulation of the OPF problem. Section “Proposed solution methodology” illustrates the proposed ARO 
algorithm. In Section “Experimental simulations”, briefly introduces the simulation results, analysis of the 
experiment and the best compromise using the IEEE test systems. Section “Numerical simulation applications” 
provides a discussion of these results, while Section “Conclusion” serves as the conclusion, summarizing the 
main research findings and suggesting future trends.

Problem formulation
The main objective of the OPF problem is to optimize system objectives while adhering to predefined constraints. 
Solving the OPF leads to the determination of optimal control variable settings. In this context, we introduce 
a compact formula that facilitates the control of specific research challenges. Mathematically, OPF can be 
expressed as41,42:

Objectives
The general expression for multiobjective optimization problem can be expressed in the following set of 
equations, Eqs. (1)-(4), which are :

	 minfi (x, u) = {f1 (x, u) , f2 (x, u) , f3 (x, u) , . . . . . . .fn (x, u)} , i = 1,2, . . . . . . ., Nobj � (1)

where, fi (x, u) in Eq. (1) is the objective function to be optimized, with Nobj representing the total number of 
objectives.

The objective functions in Eq. (1) are subjected to operational constraints that are represented in Eqs. (2) 
and (3). Both constraints are defined in terms of equality and inequality, are expressed as g (x, u) and h (x, u) 
respectively. Equation (4) represents the lower and upper limits for each of dependent and control variables z (‘x’ 
and ‘u’), represent vectors of dependent and control variables, respectively19

	 gi (x, u) = 0� (2)

	 hi (x, u) ≤ 0� (3)

	 zmin < z < zmax� (4)

The vectors (x) and (u) can be expressed as follows:

	 xT =
[
PG1, VL1 . . . VLNpq , QG1 . . . QGNG , SL1 . . . SLNl

]
� (5)

	 uT =
[
PG2 . . . .PGNG , VG1 . . . VGNG , T1 . . . TLNt , QC1 . . . QCNC

]
� (6)

where PG1 signifies the real power of the chosen slack bus, while VLNpq  denotes the voltage at load buses. 
QGNG  refers to the generation reactive power. SLNl  denotes the apparent power passes in transmission lines3. 
VG1, T1, QC1 and PG2 represent the voltage, transformer tapping ratio, reactive/active power generation at PV 
buses, respectively. NG, NC and Nt stand for the count of generator units, reactive power compensators, and 
regulating transformers, respectively.

This paper aims to attain three distinct advantages for the power system, categorized as economic, technical, 
and environmental categories.

Economic category
The 1st economic OF in this context seeks to minimize the cumulative fuel cost of the power-generating units, 
denominated in $/h, as outlined in Eq. (7). The pursuit of economic advantages involves the minimization of fuel 
costs related to generating units, which is mathematically stated as a function of the active generating power ‘ Pgi

’ and the cost coefficients ‘ai, bi and ci’ of ith generator units43.

	
Min F1 =

∑ Ng

i=1
aiPgi

2 + biPgi + ci$/hr� (7)

Technical category
The technical advantages within power systems encompass the reduction of active power losses, the improvement 
of voltage stability indices, and the enhancement of the voltage profile through the reduction of the deviation of 
the voltage at load buses from the target voltages at these buses3.

Minimization of active power losses.
The 2nd technical OF is designed to achieve the minimization of power losses PL in all transmission lines ‘Nl’, 

as described in Eq. (8).
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Min F 2 (x, u) = PL =

∑
Nl
k=1

(
Gk

(
V 2

i +V 2
j − 2ViVjcosδ ij

))
(MW)� (8)

where, Vi and Vj are the voltages at buses i and j, δ ij  is the voltage angle variation between bus i and j that 
connect the line l and Gk is the conductance of branch k between bus i and j.

Minimization of total voltage deviation.
The 3rd technical OF focuses on reducing voltage deviations ∆ V  at the load buses Npq to improve the 

voltage profile at these locations, as in Eq. (9).

	
Min F 3 (x, u) = ∆ V =

∑
Npq
i=1 |Vi − 1|� (9)

•	 Improving voltage stability index.

The 4th technical OF aims to improve the Voltage Stability Index (VSI) by minimizing the L-index, which is 
described in Eqs. (10) to (12) as follows:

	 Min F 4 (x, u) = Min (V SI) = Min (max (Lj)) , j = 1, 2, . . . Nb� (10)

	
Lj =

∣∣∣∣1 −
∑ Ng

i=1
Fji

Vi

Vj
∠ (θ ij + δ i − δ j)

∣∣∣∣� (11)

	 Fji = −[YLL]−1 [YLG]� (12)

Where, Fji is considered an element of complex matrix F that is given from the sub-matrices of admittance YLL 
and YLG, Ng is number of generators, δi and δj are voltage phase angles of buses i and j. The matrices Y1 and Y2 
are the system sub-matrices44.

Environmental category
The 5th OF is concerned with reducing emissions. The objective of minimizing the total emission level is pivotal 
for realizing environmental benefits within the power system. The total emission from generating units is 
calculated in ton/hour as in Eq. (13)1

	
Min F 5 =

∑ Ng

i=1
10−2 (

α i + β iPgi + γ i Pgi
2)

+ |ζ iexp[λ iP gi]| Ton/hr� (13)

where, α i, β i, γ i, ζ i, λ i are the emission coefficients of generator i, Pgi represents the active power generated 
by the power unit situated at bus i, with Ng representing the total number of generators.

Constraints
To achieve the optimal objectives most efficiently, it is essential to consider the operational constraints outlined 
in the active and reactive power flow as in Eqs. (14) and (15).

	
Qgi − QLi + QCi − Vi

∑
Nb
j=1Vj (Gijsinθij − Bijcosθij) = 0, i = 1, 2, · · · NPQ� (14)

	
Pgi − PLi − Vi

∑
Nb
j=1Vj (Gijcos θij + Bijsin θij) = 0, i = 1, 2, · · · Nb - slack� (15)

The inequality operational constraints outlined are maintained within the designated minimum and maximum 
bounds for each constraint, as indicated in Eqs. (16)– (18), ensuring the preservation of generator limitations. 
Equations  (19)-(20) ensure the constrained operation of tapping points for transformers and shunt reactive 
power compensators. The voltage profile is kept within permissible operating limits, as specified in Eq.  (21). 
Furthermore, Eq. (22) maintains the secure operation of transmission lines by constraining power flow within 
an acceptable range46.

	 Pgi
min ≤ Pgi ≤ Pgi

max � (16)

	 Qgi

min ≤ Qgi
≤ Qgi

max� (17)

	 Vgi
min ≤ Vgi ≤ Vgi

max� (18)

	 Ti
min ≤ Ti ≤ Ti

max� (19)

	 Qci
min ≤ Qci ≤ Qci

max� (20)

	 VLi
min ≤ VLi ≤ VLi

max� (21)

	 SLi
min ≤ SLi ≤ Smax

Li � (22)

The collective function F in Eq. (23) consists of 5 individual OFs; F1, F2, F3, F4 and F5, which can be formulated 
as follows:
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	 F = w1. F1 + w2. F2 + w3. F3 + w4. F4 + w5. F5� (23)

Where w1, w2, w3, w4, w5 are the weight factors where w1+w2+w3+w4+w5 equal 1.

Proposed solution methodology
A recent algorithm ARO47, which was created from the survival strategies of rabbits in nature, as rabbits are 
herbivores that feed mainly on grass, forbs, and leafy weeds. There are two simulated strategies that have been 
devised detour eating and haphazard hiding. The initial approach, detour eating, seeks to deter predators from 
discovering rabbit nests by steering clear of grass consumption near their burrows. This tactic aligns with the 
well-known Chinese idiom: “rabbits do not eat the grass near their own nest.” This strategy is commonly referred 
to as exploration. Additionally, rabbits possess a broad field of vision, with a significant portion dedicated to 
scanning, enabling them to effortlessly locate food across expansive areas.

The alternative strategy is termed exploitation or random hiding. Rabbits consistently endeavor to reduce 
the risk of capture by potential threats. Their expertise in creating burrows allows them to elude hunters and 
predators. Rabbits construct multiple burrows in proximity to their nest, selecting one at random as a refuge 
from potential threats. However, there are instances where rabbits may experience energy depletion. Situated at 
the lower end of the food chain and facing numerous predators, rabbits must conserve energy for survival. This 
is achieved through switching between foraging and random hiding48. The mathematical model of the ARO 
described as follow47.

	(a)	 Detour foraging (exploration).

In this approach, rabbits are avoiding eating grass in close proximity to their burrows. Instead, they explore each 
other’s areas haphazardly in search of food. This behavior involves continual adjustments of their positions in 
relation to other rabbits within the group, introducing an element of disturbance. A model has been suggested 
to describe this strategic behavior.

	
−→
V i (t + 1) = −→x j (t) + R. (−→x i (t) − −→x j (t)) + round (0.5 . (0.05 + r1)) .n1, i, j = 1, . . . .., n and j ̸= i� (24)

	 R = L.c� (25)

	 L = (e − e( t−1
T )2

. sin(2π r2)� (26)

	
c (k) =

{ 1 ifk = g (l)
0 else k = 1, . . . . . . , d and l = 1, . . . . . . ., [r3 . d]� (27)

	 g = rand perm (d)� (28)

	 n1 ∼ N (0,1)� (29)

where, the intrant position of the ith rabbit at time t + 1 is denoted as 
−→
V i (t + 1), −→x j (t)represents the position 

of the ith rabbit at time t. In this context, n refers to the size of the rabbit population, while d indicates the 
dimension of the problem. T represents the maximum number of iterations. The function [ . ] corresponds to 
the ceiling integer function. The function rand perm generates a random permutation of integers ranging from 
1 to d. Additionally, r1, r2, and r3 are three random numbers belong to (0,1). The running length, denoted as 
l, signifies the movement pace during the detour foraging process. Lastly, n1 subject to the standard normal 
distribution. Equation (24) demonstrates that search individuals engage in a random exploration based on the 
positions of other individuals. This behavior allows a rabbit to move far from its own territory and venture into 
the territories of other rabbits. Notably, when a rabbit visits the nests of others instead of its own nest, it makes 
a significant contribution to the exploration process and enhances the ability of the ARO algorithm to detect 
global search.

During each iteration in the ARO algorithm, the rabbit generates multiple burrows (d burrows) in a 
randomized manner around its current position across each dimension of the search space. The purpose of 
creating these burrows is to provide hiding options for the rabbit, reducing the likelihood of being targeted or 
attacked. The specific jth burrow for the ith rabbit is generated by:

	
−→
b i,j (t) = −→x j (t) + H . g. −→x i (t) , i = 1, . . . .., n and j = 1, ...., d� (30)

	
H = T − t + 1

T
. r4� (31)

	 n2 ∼ N (0,1)� (32)

	
g (k) =

{ 1 ifk = j
0 else k = 1, . . . . . . , d � (33)

Based on Eq. (30), the d burrows are generated within the vicinity of a rabbit along each dimension. The hiding 
parameter H plays a crucial role, gradually decreasing linearly from 1 to 1/T throughout the iterations, with 
the addition of random perturbations. This parameter determines the size of the neighborhood in which the 
burrows are initially created. Initially, a larger neighborhood is considered, but as the iterations progress, this 
neighborhood gradually decreases in size.
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When seeking shelter, rabbits employ a random selection strategy from their available burrows. To 
mathematically represent this random hiding behavior, Eqs. (34)-(36) are employed:

	
−→
V i (t + 1) = −→x i (t) + R.

(
r4

−→
. bi,r (t) − −→x i (t)

)
, i = 1, . . . .., n� (34)

	
g (k) =

{ 1 ifk = [r5 . d]
0 else k = 1, . . . . . . , d � (35)

	
−→
b i,r (t) = −→x j (t) + H . gr. −→x i (t)� (36)

In the given equation, 
−→
b i,r (t)represents a randomly chosen burrow for hiding from the set of d burrows 

available to the rabbit. The variables r4 and r5 represent two random numbers within the range of (0, 1).
Referring to Eq. (34), the ith search individual aims to update its position towards the selected burrow from 

the d burrows. Once either the detour foraging or random hiding is successfully executed, the position of the ith 
rabbit is updated according to the following expression:

	
−→x i (t + 1) =

{ −→x i (t) f ( −→x i (t)) ≤ f ( −→v i (t + 1))−→v i (t + 1) f ( −→x i (t)) > f ( −→v i (t + 1)) � (37)

	(b)	 Exploration to exploitation.

The switching from exploration to exploitation is carried by the energy factor of the proposed ARO as:

	
A (t) = 4(1 − t

T
) ln

1
r

� (38)

where “r” represents a randomly generated number that falls in the range between 0 and 1.
The ARO behavior of rabbits varies depending on the energy factor A(t). When A(t) is greater than 1, rabbits 

are inclined to explore different foraging areas randomly during the exploration phase. This is referred to as 
“detour foraging.” Conversely, when A(t) is less than or equal to 1, rabbits are motivated to exploit their burrows 
randomly during the exploitation phase, resulting in “random hiding.” As the number of iterations increases, A 
gradually decreases, which enables individuals within the rabbit population to alternate between detour foraging 
and random hiding behaviors. These updates efficiently continue until the termination criterion is met, at which 
point the best solution is identified and returned48. Further details of the flow chart of ARO algorithm are shown 
in Fig. 1.

Experimental simulations
Test systems
Experiments were conducted using six IEEE standard power systems: the IEEE 30-bus system and the IEEE 
57-bus system are considered two small size systems and IEEE 300, 1354, 3012, and 9241 as large test systems. 
In the IEEE 30-bus system, there were 6 generation buses, 21 loads, 41 branches, 4 tap changers, and 3 shunt 
capacitors. On the other hand, the IEEE 57-bus system consisted of 7 generation buses, 80 branches, 17 tap 
changers, and 3 shunt capacitors. The other four systems are considered large-scale systems, are chosen to test 
the proposed algorithm and assess the performance of it. For the proposed ARO algorithm, the population size 
was set to 100, and the maximum number of iterations was set to 200 with the IEEE-30 bus system and 300 with 
IEEE-57 bus system. The dimensions of the problem were determined based on the specific tested power system 
being considered.

Defination of studied cases
Table 2 reports the classification of the studied cases. These cases were classified into different categories based 
on the following criteria: technical, economic, and environmental. By organizing the cases into these categories, 
a comprehensive analysis was carried out to assess the performance of the different objective functions and 
evaluate the benefits achieved in terms of technical, economic, and environmental aspects. The ARO algorithm 
was tested on both single and multi OFs for the OPF problem. Additionally, these objective functions were 
combined in double, triple, and multi-objective formulations. The algorithm’s effectiveness was evaluated based 
on its ability to optimize the aforementioned objectives in these complex systems.

Numerical simulation applications
This section reports the numerical simulation results for the defined cases studied in Table 2. There are 22 cases 
that were analyzed, as outlined in Table 2, encompassing two small-sized test systems and four large-scale test 
systems spanning a range of 300 to 9241 buses. The performance of ARO was assessed against recent published 
algorithms. The simulation was carried out on a Core I7 laptop with 8 GB of RAM. The proposed ARO was 
implemented and evaluated using MATLAB R2020a.

The first test system
The analysis focuses on the first test system, IEEE 30-bus, investigating 14 different cases that encompass up to 
5 OFs. For cases 1–5, Tables 3 and 4 outline respectively the values of single OF cases and the associated settings 
of the system control variables. In Case 1, the primary OF1 is minimizing the fuel cost. The simulation analysis 
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shows that the fuel cost achieved is reported as $798.943 per hour. For Case 2, the focus shifts towards decreasing 
the load-buses voltage deviation. The simulation results reveal that by employing the ARO algorithm, a voltage 
deviation (VD) of 0.093 per unit is obtained. In Case 3, the voltage stability index is reported as 0.109 p.u. This 
index provides an indication of the system’s voltage stability. Case 4 achieves the lowest power loss of 2.881 MW. 
This means that the system operates with minimal power dissipation. Furthermore, Case 5 demonstrates the 
lowest emission rate observed, which amounts to 0.2047 tons/kg. This indicates a more environmentally friendly 
operation.

Figures 2 exhibit favorable convergence characteristics when utilizing the ARO algorithm in all investigated 
cases for Cases 1–5. These figures illustrate the convergence behavior of the ARO algorithm. The convergence 
curves clearly indicate that the ARO algorithm rapidly converges to the optimal solution and maintains stability 
thereafter. Table 5 compares the ARO algorithm and recent optimizers that were customized from the literature. 
Also, the proposed ARO algorithm consistently delivers the most competitive solutions for various objectives. 
This comparison highlights the superiority of the ARO algorithm in optimizing the system’s performance.

To consider multiobjective functions including bi-, tri- and four objective functions, Table 6 reports the results 
for Cases 6–14. The table provides an overview of the outcomes achieved through the optimization process for 
each case, considering multiple objectives. The results reported in Table 6 constitute objectives followed by the 
control variables of the tested cases. The simulation results using the proposed ARO algorithm are compared to 
other related works in the literature23,49,52–55. Table 7 shows that the proposed ARO leads to the most efficient 
solutions for the considered Cases 6–9. Figure 3 shows Pareto sets for Cases 7 and 9. Cases 10–12 address three 
objectives functions by the proposed ARO algorithm. The results are tabulated in Table 8. In Case 10, three 
objectives, fuel costs, voltage deviation, and power losses are carried out. Case 11 focuses on minimizing fuel 
costs, power losses, and emission levels, while Case 12 optimizes fuel costs, voltage deviation, and emission 

Fig. 1.  Flowchart of ARO.
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levels simultaneously. The effectiveness of the proposed ARO algorithm is validated compared with the reported 
results in23,52,53,55,56. Table 9 clearly demonstrates that the proposed ARO algorithm leads to improved fuel costs 
and power losses compared to PSO-SSO52 in Case 10.

Furthermore, in Cases 11–12, the economic, technical, and environmental benefits surpass those achieved 
by PSO, SSO, PSO-SSO52, and MOAD53. The Pareto solutions for Cases 10–12 are illustrated in Fig.  4. The 
simulation results obtained by the ARO and are compared with other methods, Objectives ECHIT24, PSO29, 
PSO-SSO29, SSO29, I-NSGA-III42, MODA57 and Jaya56, is presented in Table 9. In Case 13, the optimization is 
performed simultaneously for fuel costs, voltage deviation, power losses, and emission levels. Case 14 involves 
considering five objective functions. In both cases, Acceptable economic, technical, and environmental benefits 
are achieved compared to the competitive algorithms PSO-SSO and MODA. These comparative studies validate 
the effectiveness and capability of the proposed ARO algorithm.

Simulation results of IEEE 57-bus system
The 2nd test system, IEEE 57-bus system, has seven generation buses and 80 branches. The data is reported 
in59. To evaluate the capability of the ARO algorithm in handling single and multi-objective functions (OFs). 
In Cases 15 and 16, a single objective function was applied to minimize fuel costs (OF1) and power losses 
(OF2), respectively. Case 17 involved bi-objectives, aiming to optimize both OF1 and OF2 simultaneously. 
Lastly, in Case 18, three objectives, OF1, OF2, and OF3 are optimized simultaneously. Cases 15–18 present three 
algorithms called PSO, MFO and the proposed ARO. It was proven that the ARO has high ability, efficiency, and 
effectiveness compared with other competitive algorithms.

Objective functions Case 1 Case 2 Case 3 Case 4 Case 5

Fuel cost ($/h) (OF1) 798.943 831.27 835.61 963.79 943.92

VD (p.u.) (OF3) 1.885 0.093 3.343 2.090 1.447

VS (OF5) 0.1269 0.148 0.109 0.125 0.1328

PL (MW) (OF2) 8.612 8.514 5.77 2.881 3.069

Emission (ton/h) (OF4) 0.366 0.275 0.250 0.2068 0.2047

Table 3.  Single OFs of the first test system using ARO (Cases 1–5).

 

Test system/s control variables Case # Number of considered Objectives 

Objectives Aspects

Economical Technical Environmental

Cost minimization VD VS PL Emission

OF1 OF3 OF5 OF2 OF4

IEEE 30/ 25

1 1 √

2 1 √

3 1 √

4 1 √

5 1 √

6 2 √ √

7 2 √ √

8 2 √ √

9 2 √ √

10 3 √ √ √

11 3 √ √ √

12 3 √ √ √

13 4 √ √ √ √

14 5 √ √ √ √ √

IEEE 57/ 34

15 1 √

16 1 √

17 2 √ √

18 3 √ √ √

IEEE-300-bus/ 259 19 1 √

IEEE-1354-bus/ 1836 20 1 √

IEEE 3012 bus/ 1214 21 1 √

IEEE 9241 bus/ 11536 22 1 √

Table 2.  Definition of the OPF cases studied of single and multi-OF frameworks.
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Table 10 presents the simulation results of the OPF problem for Cases 15–18, comparing the proposed ARO 
algorithm with two other competitive algorithms. In Case 15, the ARO algorithm achieved the lowest fuel costs 
of $41,672.88 per hour, while the PSO and MFO algorithms resulted in fuel costs of $41,727.01 and 41,695.26 $ 
per hour, respectively. Thus, it is evident that the ARO algorithm yields the minimum fuel costs. For Case 16, the 
proposed ARO algorithm reported an active power loss of 9.076 MW. In Case 17, the ARO algorithm produced 
the best results with fuel costs of $41,689.29 per hour and an active power loss of 13.89 MW. Finally, in Case 18, 
the optimal results were obtained using the ARO algorithm, resulting in fuel costs of $41,703.31 per hour, an 
active power loss of 14.356 MW, and a voltage deviation of 0.967 p.u. The settings of control variables for ARO 
against recent optimization algorithms applied on IEEE-57 bus test system for Cases 15–18 is shown in Table 11.

Table 12 displays a comprehensive comparison between the proposed ARO algorithm and recent well-known 
algorithms in the literature. Additionally, Fig. 5 illustrates the convergence curves of ARO compared with three 
competitive methods in literature. Convergence curves clearly indicate that ARO exhibits a faster convergence 
rate than the others. Furthermore, Table  13 presents the statistical indices extracted from 50 runs of each 
algorithm specifically for Case 15. It is worth noting that ARO demonstrates the best fuel costs as well as lower 
STD, which serve as reliable indicators of the effectiveness of the proposed ARO algorithm.

Simulation results for large scale test systems
To validate the proposed ARO algorithm, the large-scale test systems are emulated in Cases 19–22 based on four 
systems with number of buses more than/equal 300 bus. These systems encompass power systems with varying 
numbers of buses. The primary data for the tested system was adapted from the MATPOWER 6.2 package59.

Table  13 presents the cost minimization of four cases, Cases 19–22, obtained by the ARO algorithm 
compared to those obtained by the MATPOWER 6.2 package for large scale power systems called IEEE 300-bus, 
the 1354pegase, 3012-bus, and 9241pegase test system. This comparison validates the scalability and efficiency 
of the ARO algorithm.

For the IEEE 300 bus, the fuel costs achieved using ARO amount to 508,324.16 $/h, whereas the MATPOWER 
package yields fuel costs of 719,692.27 $/h. The proposed ARO algorithm achieves a reduction of 29.34% in fuel 
costs compared to MATPOWER. In the case of the 1354pegase, the fuel costs OF using the proposed ARO 
equals 74,477.68 $/h $/h, while the MATPOWER 6.2 simulator yields fuel costs of 74,069.35 $/h. The proposed 
ARO algorithm reports a slight increase of 0.55% compared to MATPOWER.

For the third large-scale system, the ARO algorithm achieves fuel costs of 1,950,577 $/h, whereas the 
MATPOWER 6.2 simulator yields fuel costs of 2,591,706.57 $/h. The proposed ARO algorithm achieves a 
reduction of 24.73% in fuel costs compared to MATPOWER. Similarly, results are acquired for the 4th large-

VARs Min. Max. Case 1 Case 2 Case 3 Case 4 Case 5

PG1 (MW) 50 200 177.31 131.083 117.666 52.829 63.920

PG2 (MW) 20 80 48.700 73.283 62.565 78.786 67.571

PG5 (MW) 15 50 21.059 23.551 33.684 49.981 49.996

PG8 (MW) 10 35 20.972 24.503 31.914 34.919 34.987

PG11 (MW) 10 30 11.943 25.411 22.742 29.858 29.998

PG13 (MW) 12 40 12.025 14.084 20.599 39.908 39.996

V1 (p.u.)

0.95 1.1

1.100 0.995 1.100 1.100 1.100

V2 (p.u.) 1.087 1.000 1.097 1.096 1.092

V5 (p.u.) 1.059 1.018 1.100 1.076 1.076

V8 (p.u.) 1.067 1.007 1.100 1.086 1.076

V11 (p.u.) 1.099 1.012 1.099 1.092 1.079

V13 (p.u.) 1.100 1.046 1.098 1.099 1.089

QC10 (Mvar)

0 5

4.637 4.592 4.966 4.112 2.526

QC12 (Mvar) 4.976 3.170 4.453 4.409 1.036

QC15 (Mvar) 3.929 4.811 4.733 4.632 4.494

QC17 (Mvar) 4.838 1.770 4.778 4.757 4.160

QC20 (Mvar) 4.133 4.726 4.788 2.112 4.580

QC21 (Mvar) 4.814 4.121 4.716 3.917 2.228

QC23 (Mvar) 3.396 4.894 4.867 4.530 3.174

QC24 (Mvar) 4.985 4.817 4.983 3.894 3.626

QC29 (Mvar) 2.506 1.892 4.927 2.941 1.949

T6-9

0.9 1.1

1.020 1.028 0.903 0.984 1.014

T6-10 0.924 0.903 0.905 0.955 0.966

T4-12 0.987 1.049 0.901 0.983 1.029

T28-27 0.963 0.961 0.900 0.969 0.990

Table 4.  Control variables of single objective functions for IEEE 30-bus test system using ARO.
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scale test system, the proposed ARO algorithm results in fuel costs of 166,233.12 $/h, while the MATPOWER 
6.2 simulator reports fuel costs of 315,912.43 $/h with a reduction of 47.38%.

Figures 6.a-6.d show the convergence curves for the four tested large-scale systems. Then, we can conclude 
that the proposed ARO has succeeded in achieving an economical solution, the economical reduction lies in the 
range of 24.73–47.38%, of the OFP even for most of the large-scale systems (Table 14).

Sensitivity analysis
The sensitivity of the proposed ARO algorithm is carried out on the basic on the variation of population size and 
the maximum number of iterations. Two standard test systems, IEEE 30 bus and IEEE 57-bus, are selected as the 
most system used for solving OPF problem as benchmarking test systems. The developed simulation tested aim at 
minimization the fuel cost to explain the convergence characteristics with changing population size (P). Figure 7 

Case ARO SSO29 PSO29 DA-PSO49 DA-APSO49 ECHT24 MVO50 WOA-PS51

1 798.943 799.41 801.23 802.12 802.63 800.41 799.24 799.56

2 0.093 1.54 1.61 - - - - -

3 0.109 0.125 0.125 - - 0.136 0.115 -

4 2.881 2.902 3.278 3.189 3.003 3.084 2.881 2.967

5 0.2047 0.205 0.205 0.205 - 0.205 - 0.206

Table 5.  Comparison between ARO & recent optimization algorithms for single ofs, (Cases 1–5).

 

Fig. 2.  The convergence curves for the single objective cases (Cases 1–5). (a) fuel cost (Case 1), (b) voltage 
deviation (Case 2), (c) Voltage stability (Case 3), (d) Power losses (Case 4), (e) Emission minimization (Case 
5).
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(a) and (b) illustrates the sensitivity of convergence rate to population size. Additionally, statistics indices are 
reported with different number of iterations (Iter) by performing 50 independent runs with each variation. The 
sensitivity of ARO to maximum number of iterations is reported in Table 15 at the two test systems.

Conclusions
This paper has successively solved the multi-dimensional OPF problem through finding the optimal operation 
settings associated with the power generators’ outputs. Single and multi-objectives frameworks have been 
considered. The objectives considered achieve the main power systems requirements involving technical and 
economic issues and respecting the limitation of environmental rules and bounds for emission-clean power 
grids. In this line, the Artificial rabbits’ optimization is devoted to finding the solution of the OPF problem. 
The effectiveness of the proposed algorithm is evaluated through a comprehensive comparison study with the 

Case Objective MSA54 PSO29 EMSA54 MODA57
DA-APSO
49

MOFA-CPA
23 PSO-SSO [29] ECHIT24 ARO

6
OF1 834.1532 834.95 8.33.977 8.38.604 - 852.02 834.80 - 800.8

OF4 0.3286 0.243 0.3293 0.254 - 0.279 0.243 - 0.328

7
OF1 856.2673 - 859.9514 - - - - - 854.1

OF2 9.9012 - 4.9012 - - - - - 4.345

8
OF1 800.0275 834.4 799.3582 - - - 830.35 - 799.43

OF5 0.1209 0.128 0.1209 - - - 0.125 - 0.117

9
OF1 803.8740 804.48 803.4286 807.2807 802.63 - 803.99 803.72 803.43

OF3 0.1180 0.126 803.8740 0.023 0.116 - 0.094 0.095 0.1178

Table 7.  ARO and recent optimizers from the literature for multi-OFs for (Cases 6–9).

 

VARs Case 6 Case 7 Case 8 Case 9 Case 10 Case 11 Case 12 Case 13 Case 14

Fuel cost ($/h) 800.8 854.1 799.43 803.43 826.61 827.5 802.66 826.29 826.84

VD (p.u.) 1.693 1.837 2.462 0.1178 0.448 1.838 0.129 0.461 0.471

VS 0.129 0.127 0.117 0.1487 0.146 0.128 0.148 0.146 0.144

PL (MW) 7.654 4.345 8.699 9.845 5.488 5.218 9.309 5.486 5.461

Emission (ton/h) 0.328 0.231 0.365 0.3684 0.257 0.254 0.354 0.256 0.256

PG1 (MW) 162.43 105.02 178.19 176.98 124.77 122.97 172.85 124.69 124.36

PG2 (MW) 50.886 54.254 47.514 48.186 52.591 51.975 49.973 52.507 52.865

PG5 (MW) 22.676 37.233 21.098 21.142 31.566 30.863 21.601 30.880 31.474

PG8 (MW) 26.567 34.918 20.333 21.475 34.853 34.943 23.054 34.872 34.934

PG11 (MW) 14.309 29.903 13.872 12.228 24.828 26.164 12.656 25.579 25.299

PG13 (MW) 14.180 26.416 12.230 12.086 20.276 21.697 12.571 20.351 19.924

V1 (p.u.) 1.100 1.100 1.042 1.100 1.099 1.100 1.053 1.100 1.100

V2 (p.u.) 1.086 1.093 1.026 1.087 1.084 1.091 1.031 1.088 1.088

V5 (p.u.) 1.060 1.074 1.012 1.059 1.056 1.068 1.003 1.061 1.060

V8 (p.u.) 1.068 1.079 1.004 1.066 1.067 1.080 1.004 1.069 1.071

V11 (p.u.) 1.095 1.097 1.013 1.097 1.032 1.096 1.041 1.045 1.045

V13 (p.u.) 1.099 1.096 1.014 1.099 1.034 1.098 1.012 1.015 1.026

QC10 (Mvar) 4.525 4.019 2.879 4.867 2.336 4.430 3.383 4.524 2.191

QC12 (Mvar) 2.735 2.482 1.757 3.456 1.953 4.311 0.963 2.958 2.852

QC15 (Mvar) 4.385 3.988 3.941 4.043 3.898 4.408 4.296 4.421 2.927

QC17 (Mvar) 4.428 3.247 2.811 4.535 4.159 3.789 1.914 3.603 3.295

QC20 (Mvar) 3.362 3.535 4.941 4.964 4.648 3.902 4.942 3.892 4.810

QC21 (Mvar) 4.135 4.710 2.892 4.058 3.848 4.778 4.725 4.632 3.915

QC23 (Mvar) 3.580 2.109 4.754 4.778 4.975 2.948 4.355 2.581 3.342

QC24 (Mvar) 4.138 4.663 4.622 4.666 2.391 4.861 4.845 4.552 4.709

QC29 (Mvar) 1.897 2.925 2.926 2.839 2.336 2.166 1.748 2.501 1.811

T6-9 1.002 1.001 1.016 1.100 1.094 1.021 1.059 1.097 1.090

T6-10 0.959 0.965 0.904 0.976 0.975 0.943 0.910 1.011 1.002

T4-12 1.003 1.001 0.985 0.909 1.073 1.003 0.985 1.040 1.068

T28-27 0.969 0.975 0.969 0.935 1.029 0.978 0.965 1.032 1.018

Table 6.  OPF solution and control variables for IEEE-30 bus system using the ARO algorithm for cases 6–14.
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existing works in literature. With six IEEE standard power systems, 22 different cases are implemented for testing 
the ARO performance in solving the OPF problem. Also, this paper extends its validation on different size large-
scale test systems standard systems. It was proven that the routine of ARO has robust, and superior competitive 
performance compared with others at fine convergence rates. Significant technical and economic improvements 
are acquired as 24.73 -47.38% four large scale test systems. Numerical simulations have been implemented on 
small, medium, and large test systems and accentuate that ARO algorithm is superior in solving such complex 
OPF problems compared with other methods in the literature. Added to that, the ARO algorithm has a fast rate of 
convergence than other previous algorithms that make it an estimated algorithm in solving complex engineering 
problems. In future research, two aspects to be considered as dealing with various emergency events like N-1 
contingency and preparing sufficient control actions to solve the impacts of these emergencies. In the second 
issue is to solve the OPF using upgraded optimization methods. Added to the previous issues, the future studies 

Case Objectives ECHIT24 PSO29 PSO-SSO29 SSO29 I-NSGA-III42 MODA57 Jaya56 Proposed ARO

13

OF1 803.210 828.290 826.940 829.978 881.940 828.490 - 826.290

OF3 0.296 0.550 0.466 0.516 0.175 0.585 - 0.461

OF2 5.586 5.644 5.515 5.426 4.745 5.912 - 5.486

OF4 0.253 0.261 0.258 0.250 0.221 0.265 - 0.256

14

OF1 828.290 826.800 827.780 843.857 - 812.180 826.840

OF3 0.550 0.463 0.550 0.239 - 0.191 0.471

OF5 0.250 0.145 0.145 0.125 - 0.134 0.144

OF2 5.644 5.464 5.644 5.741 - 9.003 5.461

OF4 0.261 0.256 0.261 0.149 - 0.316 0.256

Table 9.  ARO against recent optimizers for cases 13 and 14 for the IEEE 30-bus system.

 

Case # OF # PSO29 MODA53 SSO29 Jaya56 MOFA-CPA23 PSO-SSO29 ARO

10

OF1 889.58 - 858.88 826.44 - 864.27 826.61

OF3 0.353 - 0.353 0.2662 - 0.316 0.448

OF2 4.712 - 4.712 6.611 - 4.545 5.488

11

OF1 864.584 867.907 867.034 858.9 878.13 865.18 827.5

OF2 4.197 4.5342 4.148 4.622 3.9232 4.093 5.218

OF3 0.225 0.2640 0.223 0.233 0.2165 0.224 0.254

12

OF1 814.833 - 807.94 834.06 - 804.332 802.66

OF3 0.156 - 0.166 0.1989 - 0.164 0.129

OF4 0.343 - 0.313 0.2511 - 0.346 0.354

Table 8.  Results obtained by ARO and other optimizers for tri-OFs.

 

Fig. 3.  Bi-objective Pareto set of OPF: (a) Fuel costs and power losses (Case 7); (b) Fuel costs and voltage 
deviation (Case 9).
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aim at incorporating uncertainties associated with renewable energy sources, load variations, and emerging new 
technologies such as electric vehicles and storage systems.

Case Case 15 Case 16 Case 17 Case 18

Algorithm ARO PSO MFO ARO PSO MFO ARO PSO MFO ARO PSO MFO

OF1 ($/h) 41,672.88 41,727.01 41,695.265 46,020.05 45,964.54 49,360.1 41,689.29 41,905.8 41,792.5 41,703.31 42,031.22 42,010.03

OF4 (p.u.) 1.611 1.594 1.545 4.903 2.57 - 1.57 - - 0.967 1.579 1.392

OF3 (ton/h) 1.372 1.39046 1.364 1.171 1.162 0.94795 1.348 1.3489 1.304 1.325 1.516 1.329

OF2 (MW) 15.22 16.159 15.266 9.076 10.480 11.295 13.89 13.715 13.914 14.356 16.949 15.713

CPU time(sec) 174.9 168.34 167.2 174.38 191.76 180.75 171.6 165.4 166.8 168.2 166.5 165.93

Table 10.  Simulation results obtained by ARO and recent optimization methods for cases 15–18.

 

Fig. 4.  Tri-objective Pareto set of OPF in the first test system: (a) Fuel costs, power losses, and emission (Case 
11); (b) Fuel costs, Voltage deviation, and emission (Case 12).
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Case No. OF PSO MFO SFLA58 GSA59 ABC44 DA_PSO49 EMSA54 MSA54 ARO

15 FC 41,727.01 41,695.26 41,872.9 41,695 41,781 41,674.6 41,666.2 41,673.59 41,672.88

16 PL 10.480 11.295 - - 12.626 10.1212 - - 9.076

17
FC 41,905.8 41,792.5 - - - - - - 41,689.29

PL 13.715 13.914 - - - - - - 13.89

18

FC 42,031.22 42,010.03 - - - - - - 41,703.31

PL 16.949 15.713 - - - - - - 14.356

VD 1.579 1.392 - - - - - - 0.967

Table 12.  Simulation results of ARO and recent optimization methods for cases 15–18.

 

Case Case 15 Case 16 Case 17 Case 18

Algorithm ARO PSO MFO ARO PSO MFO ARO PSO MFO ARO PSO MFO

PG1 (MW) 144.64 139.884 143.224 191.141 199.01 193.411 145.81 134.996 143.32 144.054 145.81 142.5

PG2 (MW) 88.402 97.560 100.000 14.486 2.67 100.000 86.666 100.000 85.776 86.656 100.00 74.13

PG3 (MW) 46.286 45.855 43.563 123.836 140.00 140.000 46.232 43.791 45.996 46.030 46.56 45.15

PG6 (MW) 73.559 69.763 62.055 91.567 100.00 100.000 60.445 55.990 74.821 72.111 100.00 100.00

PG8 (MW) 467.354 456.203 462.889 330.678 309.59 273.605 449.918 433.882 439.969 444.321 466.99 421.93

PG9 (MW) 87.025 100.000 92.918 98.799 100.00 100.000 98.841 85.663 100.000 96.559 0.00 72.80

PG12 (MW) 358.749 358.532 361.417 409.368 410.00 355.555 376.786 410.000 371.100 375.426 410.00 410.000

V1 (p.u) 1.0660 1.0560 1.0600 1.0890 1.100 1.1000 1.0700 1.0720 1.093 1.0470 1.040 1.080

V2 (p.u) 1.0630 1.0540 1.0570 1.0880 1.100 1.1000 1.0660 1.0710 1.090 1.0440 1.040 1.070

V3 (p.u) 1.0560 1.0440 1.0510 1.0840 1.100 1.1000 1.0570 1.0620 1.083 1.0360 1.040 1.060

V6 (p.u) 1.0620 1.0530 1.0660 1.0890 1.100 1.0960 1.0650 1.0700 1.100 1.0510 1.070 1.060

V8 (p.u) 1.0720 1.0550 1.0870 1.0980 1.100 1.100 1.0810 1.0950 1.100 1.0660 1.100 1.070

V9 (p.u) 1.0470 1.0310 1.0600 1.0880 1.100 1.1000 1.0570 1.0760 1.074 1.0350 1.050 1.040

V12 (p.u) 1.0520 1.0290 1.0620 1.0780 1.100 1.0900 1.0610 1.1000 1.069 1.0300 1.030 1.040

Qc18 (Mvar) 9.229 20.000 20.000 7.944 0.000 20.000 12.6660 0.0000 0.000 6.828 20.000 4.990

Qc25 (Mvar) 13.069 10.581 19.677 12.303 18.68 12.823 14.867 13.344 11.280 11.577 0.00 20.00

Qc53 (Mvar) 12.998 19.105 13.761 12.711 20.00 9.263 10.532 0.000 20.000 12.699 0.00 12.47

T4-18 1.061 0.900 0.951 0.917 0.90 0.929 0.982 0.900 1.100 0.964 1.09 0.90

T4-18 0.984 1.100 1.097 1.058 0.90 1.100 1.028 1.100 0.939 1.044 1.04 1.10

T21-20 1.044 1.100 1.034 1.069 0.90 1.100 0.991 1.100 1.033 0.993 1.10 1.00

T24-25 1.040 0.900 1.072 1.002 0.90 1.100 0.993 1.066 1.100 1.010 1.01 1.01

T24-25 0.981 1.100 1.100 1.039 1.10 0.900 1.034 1.003 0.900 0.968 0.94 1.10

T24-26 1.029 1.063 1.040 1.028 1.00 0.989 1.005 1.029 1.064 1.028 1.04 1.02

T7-29 0.999 1.034 1.012 0.945 1.10 0.900 1.002 1.008 1.072 1.010 1.02 1.02

T34-32 0.946 0.900 0.997 0.955 0.90 0.934 0.957 0.900 0.943 0.943 0.90 0.90

T11-41 0.922 0.956 0.901 0.939 0.97 0.900 0.943 0.914 0.900 0.918 0.90 1.10

T15-45 0.979 0.966 0.977 0.942 1.10 0.900 0.979 0.998 1.000 0.969 0.90 0.99

T14-46 0.967 0.954 0.973 0.935 1.10 0.900 0.987 0.991 0.989 0.965 0.96 0.99

T10-51 0.981 0.962 0.993 0.942 1.10 0.910 0.995 1.013 0.995 0.979 0.98 0.90

T13-49 0.941 0.927 0.956 0.906 1.04 0.900 0.955 0.965 0.962 0.934 0.90 1.10

T11-43 0.971 0.957 1.100 0.961 1.10 0.900 0.977 1.100 1.036 0.965 1.03 0.90

T40-56 1.000 0.900 1.100 1.045 1.10 1.006 0.986 1.100 1.100 0.969 1.10 1.10

T39-57 0.964 0.900 0.900 1.025 0.90 0.984 0.973 0.993 0.900 0.977 0.93 0.90

T9-55 0.991 1.100 1.021 0.948 1.10 0.906 1.004 1.015 1.100 1.014 1.10 1.02

Table 11.  The settings of control variables for ARO against recent optimization methods for cases 15–18.
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Algorithm Max. Min. Average Median STD Variance

GWO 42359.511 41726.484 41923.641 41,903.810 130.912 17,137.912

PSO 42396.201 41727.013 42014.195 42,018.992 179.887 32,359.361

MFO 42102.002 41695.265 41811.571 41,795.430 92.431 8543.453

ARO 41717.220 41672.890 41686.040 41,685.69 7.76 60.25

Table 13.  Statistical indices of ARO in case 15 using different algorithms compared with ARO for 50 trials 
based on fuel costs minimization in $/h.

 

Fig. 5.  Rate of fuel cost convergence of Case 15 using ARO versus different methods.
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Case No. IEEE System Size MATPOWER59 ARO Reduction%

19 300-bus 719692.27 $/h 508324.16 $/h 29.34%

20 1354pegase 74069.35 $/h 74477.68 $/h -0.55%

21 3012-bus 2591,706.57 1,950,577 $/h 24.73%

22 9241 pegase 315,912.430 $/h 166,233.12 $/h 47.38%

Table 14.  Costs reduction for large scale test grids by ARO and competitive methods cases 19–22.

 

Fig. 6.  Convergence rates for large scale test systems.
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