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In modern power engineering, the optimal operation aims to achieve the basic requirements of the
electrical power grid, meet various technical and economic aspects, and preserve the environmental
limits within their accepted bounds. In this line, the current paper finds the optimal operational
scheduling of the power generation units that cover the load requirements, considering different
frameworks of the optimal power flow (OPF) problem involving single- and multi-objective functions.
Technical, economic, and emissions objective functions are considered. Artificial rabbits’ optimization
(ARO) is developed to find the optimal OPF framework solution. The effectiveness of the proposed
algorithm is evaluated through a comprehensive comparison study with the existing works in the
literature. With six IEEE standard power systems, 22 different cases are implemented to test the ARO
performance as an alternative to solve the OPF problem. Two of these systems are considered small-
size systems, 30-, and 57-test systems, while the other four are large-scale power systems (IEEE 300,
1354, 3012, and 9241 test systems) to expand the validation scope of this paper. This comparison
validates the scalability and efficiency of the ARO algorithm. The impact of varied population size and
maximum iteration number is tested for two test systems, the most benchmarking test systems. It
was proven that the routine of ARO has robust and superior competitive performance compared with
others at fine convergence rates. Significant improvements are acquired in the range of 47% in the
technical and economic issues by accepting the environmental concerns.

Keywords Optimal power flow (OPF), Multi-objective ARO, Technical and economic aspects,
Environmental concerns

The economic operating conditions of electrical power systems pose one of the most significant challenges.
The key lies in selecting optimal control variables and system quantities. The resolution of optimal power flow
(OPF) remains a persistent challenge within the realm of electric power systems. The problem of the OPF in
electrical networks is a nonlinear optimization problem that was introduced by Cf. Carpenter in 1962!. The OPF
has gained significant research attention as an important topic. It involves determining the optimal adjustment
of control variables to optimize specific objective functions. OPF addresses the optimization of discrete and
continuous control variables, encompassing minimizing of generation fuel costs and active power losses while
improving voltage deviation, enhancing voltage stability, and ensuring system security with satisfying both
equality and inequality constraints. Consequently, numerous researchers have focused on finding solutions to
the OPF problem using both classical and metaheuristic optimization algorithms?.

Due to the complexity of the non-convex and non-differentiable objective functions (OFs) encountered
in the OPF problem, classical methods such as linear programming, Newton methods, dynamic and interior-
point methods have proven inadequate. As a result, metaheuristic optimization algorithms have been developed
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to efficiently tackle these complexities and attain the global optimum solution’. Over the past few decades,
metaheuristic algorithms have exhibited successful and extensive application in solving various electric power
system problems, including the multi-objective OPF problem*. Examples of such metaheuristic optimization
algorithms include genetic algorithm (GA)?, particle swarm optimization (PSO)®, whale optimization algorithm
(WOA)’, ant colony optimization (ACO)3, artificial bee colony (ABC)’, gray wolf optimizer (GWO)'?, Physics-
informed neural networks!!, adaptive differential evolutionary algorithm'?, firefly algorithm (FA)'3, moth-flame
optimization (MFO)!, cuckoo search algorithm!®, adaptive seeker optimization algorithm!®, JAYA optimizer!?,
marine predators algorithm (MPA)'8, hybrid PSO and FA!, modified coyote optimization algorithm (MCOA)%,
salp swarm optimization (SSO) algorithm?! and circle search algorithm (CSA)*2.

Over the past few years, numerous researchers have dedicated their efforts to exploring advanced solutions
for the power system’s OPF problem. Some notable studies in this area are outlined below: in?}, multi-objective
firefly algorithm with CPA was suggested for solving the MO-OPF problem. In?*, DE algorithm was integrated
with effective constraint handling techniques are introduced for OPF problem solution. Using AMTPG-JAYA
technique, a single-objective OPF was optimized in?*. Additionally, Table 1 presents improved methods, different
objectives functions applied on different systems. This table presents several studies that attempt to reach the
best solution to the OPF problem.

The research gap in the previously reported methods are the classical deterministic optimization techniques
that offer solutions with well-understood convergence properties and analytical foundations. However, these
approaches assume differentiability and convexity yield suboptimal or infeasible solutions. The search-based
methods have the following challenges: The missing of guaranteed convergence to a global optimum; The
effectiveness of the previous methods is dependent on the selection and tuning mechanism of population size,
inertia weights, and mutation rates for each algorithm; The random behavior of such algorithms produces
limiting reproducibility and consistency; The associated computational burden is affected by the large-scale
systems; these metaheuristics generally do not incorporate uncertainty handling mechanisms,

This paper addresses the OPF problem by simultaneously optimizing multiple objectives. These are
minimizing the active power loss, fuel cost, emission, voltage deviation at the load buses, and ameliorating
voltage stability index (VSI) while accounting for both equality and inequality constraints. In this line, the
current paper finds the optimal operational output of power generation units that covers the load requirements
considering the artificial rabbits’ optimization (ARO) is employed to find the solution of the considered OPF
problem. The effectiveness of the proposed algorithm is evaluated through a comprehensive comparison study
with the existing works in literature. Six standard IEEE power systems were also used with 22 different cases
studied for testing the ARO performance in solving the OPF problem. Also, this paper extends its validation on
different size large-scale test systems standard systems. It was proven that the routine of ARO has robust, and
superior competitive performance compared with others at fine convergence rates. Significant technical and
economic improvements are acquired.

The significant contribution of this paper can be summarized as follows:

This paper proposes multi-dimension optimal operation solution of the optimal power flow problem using
ARO method.

The validation and effectiveness of the proposed algorithm is evaluated on small scale and large-scale IEEE
power systems.

Ref. ‘year ‘ Objective functions

‘ Studied systems

‘ Methods

Fuel cost (FC), power loss (PL), voltage deviation (VD) and voltage stability index (VSI)

26

2020

optimization of bi- and tri- objectives of (FC, PL, VD, L-index,
voltage profile improvement)

IEEE 30-bus and IEEE 57-bus test systems

Hybrid firefly and PSO algorithm

IEEE (30-, 57- and 118-) bus systems and

Enhanced Social Network Search

VD, L-index, emission)

2 Lo . - -
2024 | optimization of single objectives (FC, PL, produced emission) practical West Delta Region Technique

2 2020 Minimization of multi objectives (FC, emission, PL) IEEE 30-bus and IEEE 57-bus systems bat algorithm

29 2020 | Optimization of single objective and multi objective of (FC, PL, IEEE (30-, 57- and 118-) bus systems Hybrid particle swarm and salp

optimization algorithm

Whale and Moth-Flame Optimization

30 2022 single and multi-objective of (FC, PL, VD) | IEEE (14, 30, 39, 57 and 118) -bus test systems. Algorithms

31 2023 Single objective of (FC, emission, L-index, PL) IEEE 30-bus and IEEE 57-bus systems Cross-Entropy Method
32 2021 Minimization of (FC, emission, PL) IEEE 30-, 57-, and 118-bus test systems | hybrid self-adaptive heuristic algorithm
3 2022 Single and multi-objectives of (FC, emission, PL, VSI) IEEE 30- and 118-bus test systems Marine Predators Algorithm
34 2023 three single objective functions (FC, VD, PL) IEEE 30-bus test system Mountain Gazelle Algorithm
35 2023 three single objective functions (FC, VD, PL) practIi}cze]\alEV\Zs_tblgselat:(Ii{iéf(;rlzgzrsttejrtnsysmms and enhanced quasi-reflection jellyfish
36 2023 single and multi-objective of (FC, PL, VD, emission, L-index) IEEE 30-, 57-, and 118-bus test systems Beetle swarm optimization algorithm
37 2024 Minimization of single objectives (FC, emission, L-index, PL) IEEE 30-bus and 118-bus test systems :;i:i}f:l:;ién(:geimization algorithm and
8 2025 single and multi-objective of (FC, emission) IEEE 30-bus test system pelican optimization algorithm
3 2022 single objectives (FC, emission, PL) IEEE 30-bus and 57-bus test systems Teaching learning-based optimizer
40 2022 single objective of (FC, PL, VD, emission, L-index) IEEE 30-, 57-, and 118-bus test systems Moth flame optimization algorithm

Table 1. Some metaheuristic algorithms presented recently for solving OPF problem in some literature review.
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Statistical analyses are procced to prove the has robust, and superior competitive performance compared
with others at fine convergence rates.

Sensitivity analyses in terms of varied population size and iteration number are also provided for sample
systems.

Significant technical, economic and environmental improvements are achieved compared with several
previous optimization techniques.

The remaining sections of this paper are structured as follows: Section “Problem formulation” introduces
the formulation of the OPF problem. Section “Proposed solution methodology” illustrates the proposed ARO
algorithm. In Section “Experimental simulations’, briefly introduces the simulation results, analysis of the
experiment and the best compromise using the IEEE test systems. Section “Numerical simulation applications”
provides a discussion of these results, while Section “Conclusion” serves as the conclusion, summarizing the
main research findings and suggesting future trends.

Problem formulation

The main objective of the OPF problem is to optimize system objectives while adhering to predefined constraints.
Solving the OPF leads to the determination of optimal control variable settings. In this context, we introduce
a compact formula that facilitates the control of specific research challenges. Mathematically, OPF can be
expressed as!42;

Obijectives
The general expression for multiobjective optimization problem can be expressed in the following set of
equations, Egs. (1)-(4), which are :

minf; (x,u) = {f1 (z,u), f2 (x,u), f3(x,u),... ... fo(z,u)}, i=12,... ... . Nop; (1)

where, f; (z,u) in Eq. (1) is the objective function to be optimized, with N, representing the total number of
objectives.

The objective functions in Eq. (1) are subjected to operational constraints that are represented in Egs. (2)
and (3). Both constraints are defined in terms of equality and inequality, are expressed as ¢ (x,u) and h (z, u)
respectively. Equation (4) represents the lower and upper limits for each of dependent and control variables z (X’
and ‘0’), represent vectors of dependent and control variables, respectively'®

gi (x,u) =0 2)
hi ($7 u) <0 (3)
zmin < z < zmax (4)

The vectors (x) and (u) can be expressed as follows:
l‘T = [PGl, Vii... VLNpq7 QGl . QGNG7SL1 . SLNZ] (5)

uT — [PG2... -PGNc;7 Var ... VGNc;7 T ... TLNt>Q01"' QCNC} (6)

where Pg; signifies the real power of the chosen slack bus, while V7, Npq denotes the voltage at load buses.
Qc v ; refers to the generation reactive power. S7,,, denotes the apparent power passes in transmission lines®.
Vep 11, Qg and P, represent the voltage, transformer tapping ratio, reactive/active power generation at PV
buses, respectively. NG, NC and Nt stand for the count of generator units, reactive power compensators, and
regulating transformers, respectively.

This paper aims to attain three distinct advantages for the power system, categorized as economic, technical,
and environmental categories.

Economic category

The 1st economic OF in this context seeks to minimize the cumulative fuel cost of the power-generating units,
denominated in $/h, as outlined in Eq. (7). The pursuit of economic advantages involves the minimization of fuel
costs related to generating units, which is mathematically stated as a function of the active generating power ‘ Py;
> and the cost coefficients ‘ai, bi and cl,’ of ith generator units*.

N
Min F; = Z '_glai]?’g%-2 + b;Pg, + ¢;$/hr (7)

Technical category
The technical advantages within power systems encompass the reduction of active power losses, the improvement
of voltage stability indices, and the enhancement of the voltage profile through the reduction of the deviation of
the voltage at load buses from the target voltages at these buses®.

Minimization of active power losses.

The 2nd technical OF is designed to achieve the minimization of power losses P; in all transmission lines ‘N,
as described in Eq. (8).

Scientific Reports |

(2025) 15:26524 | https://doi.org/10.1038/s41598-025-09976-y nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Min Fs (w,u) = P =Y 3L, (G (VP+V] = 2ViVjcosd 5) ) (MW) (8)

where, V; and V. are the voltages at buses i and j, J ;; is the voltage angle variation between bus i and j that
connect the line ] and G, is the conductance of branch k between bus i and j.

Minimization of total voltage deviation.

The 3rd technical OF focuses on reducing voltage deviations A V' at the load buses INpq to improve the
voltage profile at these locations, as in Eq. (9).

Min Fs (z,u) = AV = Nea |y, — | 9)

« Improving voltage stability index.

The 4th technical OF aims to improve the Voltage Stability Index (VSI) by minimizing the L-index, which is
described in Egs. (10) to (12) as follows:

Min Fy (z,u) = Min (VSI) = Min (max (L;)), j=1,2,... Ny (10)
No o Vi

Lj:‘1zi“’1Fjivi_4 Bi5+6i—06,) (11)

Fy = —[Yie] ™' [Yic] (12)

Where, F, is considered an element of complex matrix F that is given from the sub-matrices of admittance Y,
and Y|, N, is number of generators, §; and Sj are voltage phase angles of buses i and j. The matrices Y1 and Y2
are the systéem sub-matrices**.

Environmental category

The 5th OF is concerned with reducing emissions. The objective of minimizing the total emission level is pivotal
for realizing environmental benefits within the power system. The total emission from generating units is
calculated in ton/hour as in Eq. (13)!

N
Min Fs = Z ._gll()f2 (ai + 8Py +7, ng) +|¢ ;exp[A ; Pgi]| Ton/hr (13)

where, a4, 8 ;,7 ;,( ;, A ¢ are the emission coefficients of generator i, Py; represents the active power generated
by the power unit situated at bus i, with Ng representing the total number of generators.

Constraints
To achieve the optimal objectives most efficiently, it is essential to consider the operational constraints outlined
in the active and reactive power flow as in Egs. (14) and (15).

Qgi — Qui + Qci — Vi Z 21 V; (Gijsinby; — Byjeosti) = 0, 1= 1,2,--Neq (14)

Py — Pri =V, Z Mo Vi (Gijcos 05 + Bysin 655) = 0, i = 1,2,--- Ny, - slack (15)

Jj=

The inequality operational constraints outlined are maintained within the designated minimum and maximum
bounds for each constraint, as indicated in Eqgs. (16)- (18), ensuring the preservation of generator limitations.
Equations (19)-(20) ensure the constrained operation of tapping points for transformers and shunt reactive
power compensators. The voltage profile is kept within permissible operating limits, as specified in Eq. (21).
Furthermore, Eq. (22) maintains the secure operation of transmission lines by constraining power flow within
an acceptable range?®.

P, ™" < Py, < Py (16)
Q™" < Qy < QM (17)
P (18)

T < Ty < T (19)
Q™ < Q, < Q"™ (20)
Vo™ < Vi < v 1)

Sp™" < Sps < ST (22)

The collective function F in Eq. (23) consists of 5 individual OFs; F,, F,, F,, F, and F, which can be formulated
as follows: '
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F:W1.F1 —|—W2.F2 +W3.F3+W4.F4 +W5.F5 (23)

Where w,, w,, w,, w,, w, are the weight factors where w +w,+w,+w, +w, equal 1.

Proposed solution methodology

A recent algorithm AROY, which was created from the survival strategies of rabbits in nature, as rabbits are
herbivores that feed mainly on grass, forbs, and leafy weeds. There are two simulated strategies that have been
devised detour eating and haphazard hiding. The initial approach, detour eating, seeks to deter predators from
discovering rabbit nests by steering clear of grass consumption near their burrows. This tactic aligns with the
well-known Chinese idiom: “rabbits do not eat the grass near their own nest.” This strategy is commonly referred
to as exploration. Additionally, rabbits possess a broad field of vision, with a significant portion dedicated to
scanning, enabling them to effortlessly locate food across expansive areas.

The alternative strategy is termed exploitation or random hiding. Rabbits consistently endeavor to reduce
the risk of capture by potential threats. Their expertise in creating burrows allows them to elude hunters and
predators. Rabbits construct multiple burrows in proximity to their nest, selecting one at random as a refuge
from potential threats. However, there are instances where rabbits may experience energy depletion. Situated at
the lower end of the food chain and facing numerous predators, rabbits must conserve energy for survival. This
is achieved through switching between foraging and random hiding. The mathematical model of the ARO
described as follow?.

(a) Detour foraging (exploration,).
In this approach, rabbits are avoiding eating grass in close proximity to their burrows. Instead, they explore each
other’s areas haphazardly in search of food. This behavior involves continual adjustments of their positions in

relation to other rabbits within the group, introducing an element of disturbance. A model has been suggested
to describe this strategic behavior.

Vitt+1)=72; O+ R (Zi (t) = 25 () +round (0.5. (0.05+71)).n1, 3,5 =1,... .,nandj # i (24)
R=L.c (25)

L=(e— T sin(2m ) (26)

c(k):{ ; k=90 w—1.. .. cdandl=1,......., [rs.d] 27)

g = rand perm (d) (28)

ni ~ N (0,1) (29)

-
where, the intrant position of the i rabbit at time t + 1 is denoted as V'; (¢ + 1), &, (¢)represents the position

of the ith rabbit at time t. In this context, n refers to the size of the rabbit population, while d indicates the
dimension of the problem. T represents the maximum number of iterations. The function [ . ] corresponds to
the ceiling integer function. The function rand perm generates a random permutation of integers ranging from
1 to d. Additionally, I Ty and r, are three random numbers belong to (0,1). The running length, denoted as
1, signifies the movement pace during the detour foraging process. Lastly, n1 subject to the standard normal
distribution. Equation (24) demonstrates that search individuals engage in a random exploration based on the
positions of other individuals. This behavior allows a rabbit to move far from its own territory and venture into
the territories of other rabbits. Notably, when a rabbit visits the nests of others instead of its own nest, it makes
a significant contribution to the exploration process and enhances the ability of the ARO algorithm to detect
global search.

During each iteration in the ARO algorithm, the rabbit generates multiple burrows (d burrows) in a
randomized manner around its current position across each dimension of the search space. The purpose of
creating these burrows is to provide hiding options for the rabbit, reducing the likelihood of being targeted or
attacked. The specific j burrow for the i rabbit is generated by:

B, =2, )+ H.g.Zi (), i=1,... ..,nandj=1,....d (30)
T—t+1
H— %_M 31)
n2 ~ N (0,1) (32)
1 ifk = j
g (k) = { 0 HE=J k=1 ,d (33)

Based on Eq. (30), the d burrows are generated within the vicinity of a rabbit along each dimension. The hiding
parameter H plays a crucial role, gradually decreasing linearly from 1 to 1/T throughout the iterations, with
the addition of random perturbations. This parameter determines the size of the neighborhood in which the
burrows are initially created. Initially, a larger neighborhood is considered, but as the iterations progress, this
neighborhood gradually decreases in size.
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When seeking shelter, rabbits employ a random selection strategy from their available burrows. To
mathematically represent this random hiding behavior, Eqgs. (34)-(36) are employed:

Vi(t+1) =i (t) + R (7“4 i (t) — T (t)) Ci=1,....n (34)
g(k):{ L ik=lrsdl oy ,d (35)
B (t)=2; )+ H. g Zi (2) (36)

-
In the given equation, b, (t)represents a randomly chosen burrow for hiding from the set of d burrows

available to the rabbit. The variables r, and r, represent two random numbers within the range of (0, 1).

Referring to Eq. (34), the i search individual aims to update its position towards the selected burrow from
the d burrows. Once either the detour foraging or random hiding is successfully executed, the position of the it?
rabbit is updated according to the following expression:

Zi (¢ i (1) < T (t+1
#ern={ 30, Yw Ly 7

(b) Exploration to exploitation.

The switching from exploration to exploitation is carried by the energy factor of the proposed ARO as:

A(t) = 4(1 — %) ln% (38)

where “r” represents a randomly generated number that falls in the range between 0 and 1.

The ARO behavior of rabbits varies depending on the energy factor A(t). When A(t) is greater than 1, rabbits
are inclined to explore different foraging areas randomly during the exploration phase. This is referred to as
“detour foraging” Conversely, when A(t) is less than or equal to 1, rabbits are motivated to exploit their burrows
randomly during the exploitation phase, resulting in “random hiding” As the number of iterations increases, A
gradually decreases, which enables individuals within the rabbit population to alternate between detour foraging
and random hiding behaviors. These updates efficiently continue until the termination criterion is met, at which
point the best solution is identified and returned*®. Further details of the flow chart of ARO algorithm are shown
in Fig. 1.

Experimental simulations

Test systems

Experiments were conducted using six IEEE standard power systems: the IEEE 30-bus system and the IEEE
57-bus system are considered two small size systems and IEEE 300, 1354, 3012, and 9241 as large test systems.
In the IEEE 30-bus system, there were 6 generation buses, 21 loads, 41 branches, 4 tap changers, and 3 shunt
capacitors. On the other hand, the IEEE 57-bus system consisted of 7 generation buses, 80 branches, 17 tap
changers, and 3 shunt capacitors. The other four systems are considered large-scale systems, are chosen to test
the proposed algorithm and assess the performance of it. For the proposed ARO algorithm, the population size
was set to 100, and the maximum number of iterations was set to 200 with the IEEE-30 bus system and 300 with
IEEE-57 bus system. The dimensions of the problem were determined based on the specific tested power system
being considered.

Defination of studied cases

Table 2 reports the classification of the studied cases. These cases were classified into different categories based
on the following criteria: technical, economic, and environmental. By organizing the cases into these categories,
a comprehensive analysis was carried out to assess the performance of the different objective functions and
evaluate the benefits achieved in terms of technical, economic, and environmental aspects. The ARO algorithm
was tested on both single and multi OFs for the OPF problem. Additionally, these objective functions were
combined in double, triple, and multi-objective formulations. The algorithm’s effectiveness was evaluated based
on its ability to optimize the aforementioned objectives in these complex systems.

Numerical simulation applications

This section reports the numerical simulation results for the defined cases studied in Table 2. There are 22 cases
that were analyzed, as outlined in Table 2, encompassing two small-sized test systems and four large-scale test
systems spanning a range of 300 to 9241 buses. The performance of ARO was assessed against recent published
algorithms. The simulation was carried out on a Core I7 laptop with 8 GB of RAM. The proposed ARO was
implemented and evaluated using MATLAB R2020a.

The first test system

The analysis focuses on the first test system, IEEE 30-bus, investigating 14 different cases that encompass up to
5 OFs. For cases 1-5, Tables 3 and 4 outline respectively the values of single OF cases and the associated settings
of the system control variables. In Case 1, the primary OF1 is minimizing the fuel cost. The simulation analysis
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Fig. 1. Flowchart of ARO.

shows that the fuel cost achieved is reported as $798.943 per hour. For Case 2, the focus shifts towards decreasing
the load-buses voltage deviation. The simulation results reveal that by employing the ARO algorithm, a voltage
deviation (VD) of 0.093 per unit is obtained. In Case 3, the voltage stability index is reported as 0.109 p.u. This
index provides an indication of the system’s voltage stability. Case 4 achieves the lowest power loss of 2.881 MW.
This means that the system operates with minimal power dissipation. Furthermore, Case 5 demonstrates the
lowest emission rate observed, which amounts to 0.2047 tons/kg. This indicates a more environmentally friendly
operation.

Figures 2 exhibit favorable convergence characteristics when utilizing the ARO algorithm in all investigated
cases for Cases 1-5. These figures illustrate the convergence behavior of the ARO algorithm. The convergence
curves clearly indicate that the ARO algorithm rapidly converges to the optimal solution and maintains stability
thereafter. Table 5 compares the ARO algorithm and recent optimizers that were customized from the literature.
Also, the proposed ARO algorithm consistently delivers the most competitive solutions for various objectives.
This comparison highlights the superiority of the ARO algorithm in optimizing the system’s performance.

To consider multiobjective functions including bi-, tri- and four objective functions, Table 6 reports the results
for Cases 6-14. The table provides an overview of the outcomes achieved through the optimization process for
each case, considering multiple objectives. The results reported in Table 6 constitute objectives followed by the
control variables of the tested cases. The simulation results using the proposed ARO algorithm are compared to
other related works in the literature?>4%52-5, Table 7 shows that the proposed ARO leads to the most efficient
solutions for the considered Cases 6-9. Figure 3 shows Pareto sets for Cases 7 and 9. Cases 10-12 address three
objectives functions by the proposed ARO algorithm. The results are tabulated in Table 8. In Case 10, three
objectives, fuel costs, voltage deviation, and power losses are carried out. Case 11 focuses on minimizing fuel
costs, power losses, and emission levels, while Case 12 optimizes fuel costs, voltage deviation, and emission
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Objectives Aspects
Economical Technical Environmental
Cost minimization | VD | VS |PL | Emission
Test system/s control variables | Case # | Number of considered Objectives | OF1 OF3 | OF5 | OF2 | OF4
1 1 0
2 1 y
3 1 w/
4 1 V
5 1 V
6 2 Y V
7 2 Y V
IEEE 30/ 25 s B y J
9 2 y y
10 3 y Y V
11 3 v v V
12 3 y y V
13 4 Y Y V V
14 5 V V R v V
15 1 y
16 1 V
IEEE 57/ 34 " 5 v 7
18 3 y y v
IEEE-300-bus/ 259 19 1 y
IEEE-1354-bus/ 1836 20 1 V
IEEE 3012 bus/ 1214 21 1 v
IEEE 9241 bus/ 11536 22 1 V

Table 2. Definition of the OPF cases studied of single and multi-OF frameworks.

Objective functions Casel | Case2 | Case3 | Case4 | Case5
Fuel cost ($/h) (OF1) 798.943 | 831.27 | 835.61 | 963.79 | 943.92

VD (p.u.) (OF3) 1.885 | 0.093 | 3.343 | 2.090 | 1.447
VS (OF5) 0.1269 | 0.148 | 0.109 | 0.125 | 0.1328
PL (MW) (OF2) 8.612 | 8514 577 | 2.881 | 3.069

Emission (ton/h) (OF4) 0.366 | 0.275 | 0.250 | 0.2068 | 0.2047

Table 3. Single OFs of the first test system using ARO (Cases 1-5).

levels simultaneously. The effectiveness of the proposed ARO algorithm is validated compared with the reported
results in?*5355:56, Table 9 clearly demonstrates that the proposed ARO algorithm leads to improved fuel costs
and power losses compared to PSO-SSO°? in Case 10.

Furthermore, in Cases 11-12, the economic, technical, and environmental benefits surpass those achieved
by PSO, SSO, PSO-SSO*, and MOAD?. The Pareto solutions for Cases 10-12 are illustrated in Fig. 4. The
simulation results obtained by the ARO and are compared with other methods, Objectives ECHIT%, PSO?,
PSO-SSO?, SSO%, I-NSGA-IIT*2, MODA and Jaya®, is presented in Table 9. In Case 13, the optimization is
performed simultaneously for fuel costs, voltage deviation, power losses, and emission levels. Case 14 involves
considering five objective functions. In both cases, Acceptable economic, technical, and environmental benefits
are achieved compared to the competitive algorithms PSO-SSO and MODA. These comparative studies validate
the effectiveness and capability of the proposed ARO algorithm.

Simulation results of IEEE 57-bus system

The 2nd test system, IEEE 57-bus system, has seven generation buses and 80 branches. The data is reported
in®. To evaluate the capability of the ARO algorithm in handling single and multi-objective functions (OFs).
In Cases 15 and 16, a single objective function was applied to minimize fuel costs (OF1) and power losses
(OF2), respectively. Case 17 involved bi-objectives, aiming to optimize both OF1 and OF2 simultaneously.
Lastly, in Case 18, three objectives, OF1, OF2, and OF3 are optimized simultaneously. Cases 15-18 present three
algorithms called PSO, MFO and the proposed ARO. It was proven that the ARO has high ability, efficiency, and
effectiveness compared with other competitive algorithms.
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VARs Min. | Max. | Casel | Case2 | Case3 | Case4 | Case5
PG, (MW) |50 200 | 177.31 | 131.083 | 117.666 | 52.829 | 63.920
PG, (MW) |20 80 48.700 | 73.283 | 62.565 | 78.786 | 67.571
PG, (MW) 15 50 21.059 | 23.551 | 33.684 | 49.981 | 49.996
PG, (MW) 10 35 20.972 | 24.503 | 31.914 | 34.919 | 34.987
PG, (MW) |10 30 11.943 | 25.411 | 22.742 | 29.858 | 29.998
PG, (MW) |12 40 12.025 | 14.084 | 20.599 | 39.908 | 39.996
v, (pw) 1.100 0.995 1.100 | 1.100 | 1.100
v, (pu.) 1.087 1.000 1.097 | 1.096 | 1.092
V (pu.) 095 | L1 1.059 1.018 1.100 | 1.076 | 1.076
Vg (pu) 1.067 1.007 1.100 | 1.086 | 1.076
vV, (pu) 1.099 1.012 1.099 | 1.092 | 1.079
Vi, (pu) 1.100 1.046 1.098 | 1.099 | 1.089
QC,, (Mvar) 4.637 4.592 4.966 | 4.112 2.526
QC,, (Mvar) 4.976 3.170 4.453 | 4.409 | 1.036
QC,, (Mvar) 3.929 4.811 4.733 | 4.632 | 4.494
QC,, (Mvar) 4.838 1.770 4.778 | 4.757 | 4.160
QC,, (Mvar) |0 5 4.133 4.726 4.788 | 2.112 | 4.580
QC,, (Mvar) 4.814 4.121 4.716 | 3917 | 2.228
QC,, (Mvar) 3.396 4.894 4.867 | 4.530 | 3.174
QC,, (Mvar) 4.985 4.817 4983 | 3.894 | 3.626
QC,, (Mvar) 2.506 1.892 4.927 | 2941 | 1.949
T6-9 1.020 1.028 0.903 | 0.984 | 1.014
T6-10 09 . 0.924 0.903 0.905 | 0.955 | 0.966
T4-12 0.987 1.049 0.901 | 0.983 | 1.029
T28-27 0.963 0.961 0.900 | 0.969 | 0.990

Table 4. Control variables of single objective functions for IEEE 30-bus test system using ARO.

Table 10 presents the simulation results of the OPF problem for Cases 15-18, comparing the proposed ARO
algorithm with two other competitive algorithms. In Case 15, the ARO algorithm achieved the lowest fuel costs
of $41,672.88 per hour, while the PSO and MFO algorithms resulted in fuel costs of $41,727.01 and 41,695.26 $
per hour, respectively. Thus, it is evident that the ARO algorithm yields the minimum fuel costs. For Case 16, the
proposed ARO algorithm reported an active power loss of 9.076 MW. In Case 17, the ARO algorithm produced
the best results with fuel costs of $41,689.29 per hour and an active power loss of 13.89 MW. Finally, in Case 18,
the optimal results were obtained using the ARO algorithm, resulting in fuel costs of $41,703.31 per hour, an
active power loss of 14.356 MW, and a voltage deviation of 0.967 p.u. The settings of control variables for ARO
against recent optimization algorithms applied on IEEE-57 bus test system for Cases 15-18 is shown in Table 11.

Table 12 displays a comprehensive comparison between the proposed ARO algorithm and recent well-known
algorithms in the literature. Additionally, Fig. 5 illustrates the convergence curves of ARO compared with three
competitive methods in literature. Convergence curves clearly indicate that ARO exhibits a faster convergence
rate than the others. Furthermore, Table 13 presents the statistical indices extracted from 50 runs of each
algorithm specifically for Case 15. It is worth noting that ARO demonstrates the best fuel costs as well as lower
STD, which serve as reliable indicators of the effectiveness of the proposed ARO algorithm.

Simulation results for large scale test systems

To validate the proposed ARO algorithm, the large-scale test systems are emulated in Cases 19-22 based on four
systems with number of buses more than/equal 300 bus. These systems encompass power systems with varying
numbers of buses. The primary data for the tested system was adapted from the MATPOWER 6.2 package™.

Table 13 presents the cost minimization of four cases, Cases 19-22, obtained by the ARO algorithm
compared to those obtained by the MATPOWER 6.2 package for large scale power systems called IEEE 300-bus,
the 1354pegase, 3012-bus, and 9241pegase test system. This comparison validates the scalability and efficiency
of the ARO algorithm.

For the IEEE 300 bus, the fuel costs achieved using ARO amount to 508,324.16 $/h, whereas the MATPOWER
package yields fuel costs of 719,692.27 $/h. The proposed ARO algorithm achieves a reduction of 29.34% in fuel
costs compared to MATPOWER. In the case of the 1354pegase, the fuel costs OF using the proposed ARO
equals 74,477.68 $/h $/h, while the MATPOWER 6.2 simulator yields fuel costs of 74,069.35 $/h. The proposed
ARO algorithm reports a slight increase of 0.55% compared to MATPOWER.

For the third large-scale system, the ARO algorithm achieves fuel costs of 1,950,577 $/h, whereas the
MATPOWER 6.2 simulator yields fuel costs of 2,591,706.57 $/h. The proposed ARO algorithm achieves a
reduction of 24.73% in fuel costs compared to MATPOWER. Similarly, results are acquired for the 4th large-
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Fig. 2. The convergence curves for the single objective cases (Cases 1-5). (a) fuel cost (Case 1), (b) voltage
deviation (Case 2), (c) Voltage stability (Case 3), (d) Power losses (Case 4), (e) Emission minimization (Case
5).

Case | ARO | SSO* |PSO? | DA-PSO* | DA-APSO* | ECHT* | MVO* | WOA-PS®
1 798.943 | 799.41 |801.23 | 802.12 802.63 800.41  [799.24 |799.56

2 0.093 | 154 | 161 |- - - - -

3 0.109 | 0.125 | 0.125 |- - 0.136 0115 |-

4 2.881 | 2902 | 3.278 | 3.189 3.003 3.084 2.881 2.967

5 0.2047 | 0205 | 0.205 | 0.205 - 0.205 - 0.206

Table 5. Comparison between ARO & recent optimization algorithms for single ofs, (Cases 1-5).

scale test system, the proposed ARO algorithm results in fuel costs of 166,233.12 $/h, while the MATPOWER
6.2 simulator reports fuel costs of 315,912.43 $/h with a reduction of 47.38%.

Figures 6.a-6.d show the convergence curves for the four tested large-scale systems. Then, we can conclude
that the proposed ARO has succeeded in achieving an economical solution, the economical reduction lies in the
range of 24.73-47.38%, of the OFP even for most of the large-scale systems (Table 14).

Sensitivity analysis

The sensitivity of the proposed ARO algorithm is carried out on the basic on the variation of population size and
the maximum number of iterations. Two standard test systems, IEEE 30 bus and IEEE 57-bus, are selected as the
most system used for solving OPF problem as benchmarking test systems. The developed simulation tested aim at
minimization the fuel cost to explain the convergence characteristics with changing population size (P). Figure 7
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VARs Case 6 | Case7 | Case8 | Case9 | Case 10 | Case 11 | Case 12 | Case 13 | Case 14
Fuel cost ($/h) 800.8 | 854.1 |799.43 | 803.43 | 826.61 |827.5 802.66 | 826.29 | 826.84

VD (p.u.) 1.693 | 1.837 | 2.462 |0.1178 0.448 1.838 0.129 0.461 0.471
VS 0.129 | 0.127 | 0.117 | 0.1487 0.146 0.128 0.148 0.146 0.144
PL (MW) 7.654 | 4.345 | 8.699 | 9.845 5.488 5.218 9.309 5.486 5.461
Emission (ton/h) | 0.328 | 0.231 | 0.365 | 0.3684 0.257 0.254 0.354 0.256 0.256
PG, (MW) 162.43 | 105.02 | 178.19 | 176.98 | 124.77 | 122.97 | 172.85 | 124.69 | 124.36

PG, (MW) 50.886 | 54.254 | 47.514 | 48.186 | 52.591 | 51.975 | 49.973 | 52.507 | 52.865
PG, (MW) 22.676 | 37.233 | 21.098 | 21.142 | 31.566 | 30.863 | 21.601 | 30.880 | 31.474
PG, (MW) 26.567 | 34.918 | 20.333 | 21.475 | 34.853 | 34.943 | 23.054 | 34.872 | 34.934
PG, (MW) 14.309 | 29.903 | 13.872 | 12.228 | 24.828 | 26.164 | 12.656 | 25.579 | 25299
PG, (MW) 14.180 | 26.416 | 12.230 | 12.086 | 20.276 | 21.697 | 12571 | 20.351 | 19.924
v, (pu) 1.100 | 1.100 | 1.042 | 1.100 1.099 1.100 1.053 1.100 1.100
v, (p.u.) 1.086 1.093 1.026 | 1.087 1.084 1.091 1.031 1.088 1.088
V, (pu.) 1.060 | 1.074 | 1.012 | 1.059 1.056 1.068 1.003 1.061 1.060
Vg (pu.) 1.068 | 1.079 | 1.004 | 1.066 1.067 1.080 1.004 1.069 1.071
A\ (pu) 1.095 1.097 1.013 | 1.097 1.032 1.096 1.041 1.045 1.045
Vi, (pu) 1.099 | 1.096 | 1.014 | 1.099 1.034 1.098 1.012 1.015 1.026
QC,, (Mvar) 4.525 | 4.019 | 2.879 | 4.867 2.336 4.430 3.383 4.524 2.191
QC,, (Mvar) 2.735 | 2482 | 1.757 |3.456 1.953 4311 0.963 2.958 2.852
QC,; (Mvar) 4.385 | 3.9838 | 3.941 | 4.043 3.898 4.408 4.296 4421 2.927
QC,, (Mvar) 4.428 | 3.247 | 2.811 | 4.535 4.159 3.789 1.914 3.603 3.295
QC,, (Mvar) 3.362 | 3.535 | 4.941 | 4.964 4.648 3.902 4.942 3.892 4.810
QC,; (Mvar) 4.135 | 4.710 | 2.892 | 4.058 3.848 4.778 4.725 4.632 3.915
QC,, (Mvar) 3.580 | 2.109 | 4.754 | 4.778 4.975 2.948 4.355 2.581 3.342
QC,, (Mvar) 4.138 | 4.663 | 4.622 | 4.666 2.391 4.861 4.845 4.552 4.709
QC,, (Mvar) 1.897 | 2.925 | 2.926 |2.839 2.336 2.166 1.748 2.501 1.811
T6-9 1.002 | 1.001 | 1.016 | 1.100 1.094 1.021 1.059 1.097 1.090
T6-10 0.959 | 0.965 | 0.904 | 0.976 0.975 0.943 0.910 1.011 1.002
T4-12 1.003 1.001 0.985 | 0.909 1.073 1.003 0.985 1.040 1.068
T28-27 0.969 | 0.975 | 0.969 | 0.935 1.029 0.978 0.965 1.032 1.018

Table 6. OPF solution and control variables for IEEE-30 bus system using the ARO algorithm for cases 6-14.

DA-APSO | MOFA-CPA
Case | Objective | MSA> PSO* | EMSA®* | MODAY | ¥ 23 PSO-SSO [29] | ECHIT** | ARO
p OF1 834.1532 | 834.95 | 8.33.977 | 8.38.604 - 852.02 834.80 - 800.8
OF4 0.3286 | 0.243 0.3293 | 0.254 - 0.279 0.243 - 0.328
OF1 856.2673 | - 859.9514 | - - - - - 854.1
7 OF2 9.9012 | - 49012 | - - - - - 4.345
OF1 800.0275 | 834.4 799.3582 | - - - 830.35 - 799.43
§ OF5 0.1209 | 0.128 0.1209 | - - - 0.125 - 0.117
9 OF1 803.8740 | 804.48 | 803.4286 | 807.2807 | 802.63 - 803.99 803.72 803.43
OF3 0.1180 | 0.126 803.8740 | 0.023 0.116 - 0.094 0.095 0.1178

Table 7. ARO and recent optimizers from the literature for multi-OFs for (Cases 6-9).

(a) and (b) illustrates the sensitivity of convergence rate to population size. Additionally, statistics indices are
reported with different number of iterations (Iter) by performing 50 independent runs with each variation. The
sensitivity of ARO to maximum number of iterations is reported in Table 15 at the two test systems.

Conclusions

This paper has successively solved the multi-dimensional OPF problem through finding the optimal operation
settings associated with the power generators’ outputs. Single and multi-objectives frameworks have been
considered. The objectives considered achieve the main power systems requirements involving technical and
economic issues and respecting the limitation of environmental rules and bounds for emission-clean power
grids. In this line, the Artificial rabbits’ optimization is devoted to finding the solution of the OPF problem.
The effectiveness of the proposed algorithm is evaluated through a comprehensive comparison study with the
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Fig. 3. Bi-objective Pareto set of OPF: (a) Fuel costs and power losses (Case 7); (b) Fuel costs and voltage
deviation (Case 9).

Case# | OF# | PSO® | MODA> | SSO%* | Jaya®® | MOFA-CPA? |PSO-SSO® | ARO
OF1 |889.58 |- 858.88 | 826.44 | - 864.27 826.61
10 OF3 0.353 0.353 | 0.2662 | - 0.316 0.448
OF2 4.712 4712 | 6.611 | - 4.545 5.488
OF1 |864.584 | 867.907 867.034 | 858.9 | 878.13 865.18 827.5
11 OF2 | 4.197 |45342 4.148 | 4.622 | 3.9232 4.093 5.218
OF3 0.225 | 0.2640 0.223 | 0.233 | 0.2165 0.224 0.254
OF1 |814.833 |- 807.94 | 834.06 | - 804.332 802.66
12 OF3 | 0.156 0.166 | 0.1989 | - 0.164 0.129
OF4 0.343 | - 0.313 | 0.2511 | - 0.346 0.354
Table 8. Results obtained by ARO and other optimizers for tri-OFs.
Case | Objectives | ECHIT?* | PSO? | PSO-SSO? |SSO? |I-NSGA-III** | MODA |Jaya®® |Proposed ARO
OF1 803.210 | 828.290 | 826.940 829.978 | 881.940 828.490 826.290
OF3 0.296 0.550 0.466 0.516 0.175 0.585 0.461
B OF2 5.586 5.644 5.515 5.426 4.745 5.912 5.486
OF4 0.253 0.261 0.258 0.250 0.221 0.265 0.256
OF1 828.290 | 826.800 827.780 | 843.857 - 812.180 | 826.840
OF3 0.550 0.463 0.550 0.239 - 0.191 0.471
14 OF5 0.250 0.145 0.145 0.125 - 0.134 0.144
OF2 5.644 5.464 5.644 5.741 - 9.003 5.461
OF4 0261 | 0256 0261 | 0.149 - 0.316 0.256

Table 9. ARO against recent optimizers for cases 13 and 14 for the IEEE 30-bus system.

existing works in literature. With six IEEE standard power systems, 22 different cases are implemented for testing
the ARO performance in solving the OPF problem. Also, this paper extends its validation on different size large-
scale test systems standard systems. It was proven that the routine of ARO has robust, and superior competitive
performance compared with others at fine convergence rates. Significant technical and economic improvements
are acquired as 24.73 -47.38% four large scale test systems. Numerical simulations have been implemented on
small, medium, and large test systems and accentuate that ARO algorithm is superior in solving such complex
OPF problems compared with other methods in the literature. Added to that, the ARO algorithm has a fast rate of
convergence than other previous algorithms that make it an estimated algorithm in solving complex engineering
problems. In future research, two aspects to be considered as dealing with various emergency events like N-1
contingency and preparing sufficient control actions to solve the impacts of these emergencies. In the second
issue is to solve the OPF using upgraded optimization methods. Added to the previous issues, the future studies
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Fig. 4. Tri-objective Pareto set of OPF in the first test system: (a) Fuel costs, power losses, and emission (Case
11); (b) Fuel costs, Voltage deviation, and emission (Case 12).

Case Case 15 Case 16 Case 17 Case 18
Algorithm ARO PSO MFO ARO PSO MFO ARO PSO MFO ARO PSO MFO
OF1 ($/h) 41,672.88 | 41,727.01 | 41,695.265 | 46,020.05 | 45,964.54 | 49,360.1 | 41,689.29 | 41,905.8 | 41,792.5 | 41,703.31 | 42,031.22 | 42,010.03
OF4 (p.u.) 1.611 1.594 1.545 4.903 2.57 | - 1.57 |- - 0.967 1.579 | 1.392
OFS3 (ton/h) 1372 | 1.39046 1.364 1171 1.162 | 0.94795 1.348 | 1.3489 | 1.304 1.325 1.516 | 1.329
OF2 (MW) 15.22 16.159 15.266 9.076 | 10.480 |11.295 13.89 [13.715 | 13.914 14.356 |  16.949 | 15.713
CPU time(sec) 174.9 168.34 |  167.2 17438 | 19176 | 180.75 171.6 | 165.4 | 166.8 168.2 166.5 | 165.93

Table 10. Simulation results obtained by ARO and recent optimization methods for cases 15-18.

aim at incorporating uncertainties associated with renewable energy sources, load variations, and emerging new
technologies such as electric vehicles and storage systems.
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Case Case 15 Case 16 Case 17 Case 18

Algorithm | ARO PSO MFO ARO PSO | MFO ARO PSO MFO ARO PSO | MFO
PG1 (MW) | 144.64 | 139.884 | 143.224 | 191.141 | 199.01 | 193.411 | 145.81 | 134.996 | 143.32 | 144.054 | 145.81 | 142.5
PG2 (MW) | 88.402 |97.560 |100.000 |14.486 |2.67 100.000 | 86.666 | 100.000 | 85.776 | 86.656 | 100.00 | 74.13
PG3 (MW) | 46.286 |45.855 |43.563 |123.836 | 140.00 | 140.000 | 46.232 | 43.791 |45.996 |46.030 |46.56 |45.15
PG6 (MW) | 73.559 | 69.763 | 62.055 |91.567 |100.00 | 100.000 | 60.445 |55.990 |74.821 |72.111 | 100.00 | 100.00
PG8 (MW) | 467.354 | 456.203 | 462.889 | 330.678 | 309.59 | 273.605 | 449.918 | 433.882 | 439.969 | 444.321 | 466.99 | 421.93
PGY9 (MW) | 87.025 | 100.000 |92.918 |98.799 |100.00 | 100.000 | 98.841 | 85.663 | 100.000 | 96.559 | 0.00 72.80
PG12 (MW) | 358.749 | 358.532 | 361.417 | 409.368 | 410.00 | 355.555 | 376.786 | 410.000 | 371.100 | 375.426 | 410.00 | 410.000
V, (pw) 1.0660 | 1.0560 | 1.0600 |1.0890 |1.100 |1.1000 |1.0700 | 1.0720 |1.093 1.0470 | 1.040 | 1.080
v, (p.u) 1.0630 1.0540 1.0570 1.0880 1.100 | 1.1000 1.0660 1.0710 1.090 1.0440 1.040 | 1.070
V, (p-w) 1.0560 | 1.0440 |1.0510 |1.0840 |1.100 |1.1000 |1.0570 |1.0620 | 1.083 1.0360 | 1.040 | 1.060
Vi (pu) 1.0620 | 1.0530 |1.0660 |1.0890 |1.100 |1.0960 | 1.0650 | 1.0700 |1.100 1.0510 | 1.070 | 1.060
Vg (p.u) 1.0720 1.0550 1.0870 1.0980 1.100 | 1.100 1.0810 1.0950 1.100 1.0660 1.100 | 1.070
V, (p-w) 1.0470 | 1.0310 |1.0600 |1.0880 |1.100 |1.1000 |1.0570 |1.0760 |1.074 1.0350 | 1.050 | 1.040
V,, (pu) 1.0520 | 1.0290 |1.0620 |1.0780 |1.100 |1.0900 |1.0610 | 1.1000 |1.069 1.0300 | 1.030 | 1.040
Qcl8 (Mvar) |9.229 20.000 |20.000 |7.944 0.000 | 20.000 12.6660 | 0.0000 | 0.000 6.828 20.000 | 4.990
Qc25 (Mvar) | 13.069 | 10.581 | 19.677 |12.303 |18.68 |12.823 |14.867 |13.344 |11.280 |11.577 |0.00 20.00
Qc53 (Mvar) | 12,998 | 19.105 |13.761 |12.711 |20.00 |9.263 10.532 | 0.000 20.000 | 12.699 | 0.00 12.47
T4-18 1.061 0.900 0.951 0.917 0.90 0.929 0.982 0.900 1.100 0.964 1.09 0.90
T4-18 0.984 1.100 1.097 1.058 0.90 1.100 1.028 1.100 0.939 1.044 1.04 1.10
T21-20 1.044 1.100 1.034 1.069 0.90 1.100 0.991 1.100 1.033 0.993 1.10 1.00
T24-25 1.040 0.900 1.072 1.002 0.90 1.100 0.993 1.066 1.100 1.010 1.01 1.01
T24-25 0.981 1.100 1.100 1.039 1.10 0.900 1.034 1.003 0.900 0.968 0.94 1.10
T24-26 1.029 1.063 1.040 1.028 1.00 0.989 1.005 1.029 1.064 1.028 1.04 1.02
T7-29 0.999 1.034 1.012 0.945 1.10 0.900 1.002 1.008 1.072 1.010 1.02 1.02
T34-32 0.946 0.900 0.997 0.955 0.90 0.934 0.957 0.900 0.943 0.943 0.90 0.90
T11-41 0.922 0.956 0.901 0.939 0.97 0.900 0.943 0.914 0.900 0.918 0.90 1.10
T15-45 0.979 0.966 0.977 0.942 1.10 0.900 0.979 0.998 1.000 0.969 0.90 0.99
T14-46 0.967 0.954 0.973 0.935 1.10 0.900 0.987 0.991 0.989 0.965 0.96 0.99
T10-51 0.981 0.962 0.993 0.942 1.10 0.910 0.995 1.013 0.995 0.979 0.98 0.90
T13-49 0.941 0.927 0.956 0.906 1.04 0.900 0.955 0.965 0.962 0.934 0.90 1.10
T11-43 0.971 0.957 1.100 0.961 1.10 0.900 0.977 1.100 1.036 0.965 1.03 0.90
T40-56 1.000 0.900 1.100 1.045 1.10 1.006 0.986 1.100 1.100 0.969 1.10 1.10
T39-57 0.964 0.900 0.900 1.025 0.90 0.984 0.973 0.993 0.900 0.977 0.93 0.90
T9-55 0.991 1.100 1.021 0.948 1.10 0.906 1.004 1.015 1.100 1.014 1.10 1.02

Table 11. The settings of control variables for ARO against recent optimization methods for cases 15-18.

Case No. | OF | PSO MFO SFLA®® | GSA® | ABC* | DA_PSO* |EMSA®** | MSA** | ARO

15 FC |41,727.01 |41,695.26 |41,872.9 | 41,695 | 41,781 |41,674.6 | 41,666.2 |41,673.59 | 41,672.88

16 PL |10.480 [11.295 |- - 12.626 | 10.1212 - - 9.076
FC |41,905.8 |41,7925 |- - - - - - 41,689.29

Y PL 13715 [13914 |- - - - - - 13.89
FC |42,031.22 |42,010.03 | - - - - - - 41,703.31

18 PL 16949 [15713 |- - - - - - 14.356
VD | 1.579 1.392 - - - - - - 0.967

Table 12. Simulation results of ARO and recent optimization methods for cases 15-18.
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Fig. 5. Rate of fuel cost convergence of Case 15 using ARO versus different methods.

Algorithm | Max. Min. Average | Median STD Variance
GWO 42359.511 | 41726.484 | 41923.641 | 41,903.810 | 130.912 | 17,137.912
PSO 42396.201 | 41727.013 | 42014.195 | 42,018.992 | 179.887 | 32,359.361
MFO 42102.002 | 41695.265 | 41811.571 | 41,795.430 | 92.431 | 8543.453
ARO 41717.220 | 41672.890 | 41686.040 | 41,685.69 | 7.76 60.25

Table 13. Statistical indices of ARO in case 15 using different algorithms compared with ARO for 50 trials

based on fuel costs minimization in $/h.
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Fig. 6. Convergence rates for large scale test systems.
Case No. | IEEE System Size | MATPOWER* | ARO Reduction%
19 300-bus 719692.27 $/h 508324.16 $/h | 29.34%
20 1354pegase 74069.35 $/h 74477.68 $/h | -0.55%
21 3012-bus 2591,706.57 1,950,577 $/h | 24.73%
22 9241 pegase 315,912,430 $/h | 166,233.12 $/h | 47.38%

Table 14. Costs reduction for large scale test grids by ARO and competitive methods cases 19-22.
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Fig. 7. Convergence rates at different population sizes; (a) IEEE 30-bus system, (b) IEEE 57-bus system.

Metric | Min. of Fuel cost for IEEE 30 bus Min. of Fuel cost for IEEE 57 bus

Iteration | Iter=50 | Iter=100 | Iter=150 |Iter=200 |Iter=100 | Iter=150 | Iter=200 | Iter=300
Best 800.25349 | 799.51297 | 799.51297 | 798.94372 | 41712.389 | 41692.749 | 41683.162 | 41672.886
Worst 802.98991 | 800.37915 | 800.37915 | 799.0327 | 41813.276 | 41773.893 | 41745.309 | 41717.223
Average | 801.64471 | 799.90516 | 799.90516 | 798.98841 | 41754.495 | 41723.041 | 41708.025 | 41686.042
Variance | 0.3435049 | 0.0555893 | 0.0555893 | 0.000377 | 664.4518 | 239.40763 | 175.82235 | 60.246767
Median 801.50106 | 799.92218 | 799.92218 | 798.98305 | 41752.955 | 41721.886 | 41705.937 | 41685.691
STD 0.5860929 | 0.2357738 | 0.2357738 | 0.0194162 | 25.776963 | 15.472803 | 13.259802 | 7.7618791

Table 15. Statistical indices of ARO with various numbers of iterations (50 times).

Data availability
All data generated or analyzed during this study are included in this published article.
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