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Greenhouse gases, particularly CO, and CH,, are key contributors to climate change and global
warming. Consequently, effective management and reduction of these emissions, especially in
subsurface storage applications, are crucial. Adsorption presents a promising strategy for mitigating
CO, and CH, emissions in the energy sector, particularly in the storage and utilization of fossil fuel
resources, thereby minimizing the environmental impact of their extraction and consumption. In

this study, the adsorption behavior of CO, and CH, in tight reservoirs is examined using experimental
data and advanced machine learning (ML) techniques. The dataset incorporates key variables such as
temperature, pressure, rock type, total organic carbon (TOC), moisture content, and the CO, fraction in
the injected gas. Various ML models were employed to predict gas adsorption capacity, with CatBoost
and Extra Trees demonstrating high predictive performance. The CatBoost model achieved superior
results, with R2 values of 0.9989 for CO, and 0.9965 for CH,, along with low RMSE and MAE values,
indicating strong stability and accuracy across all metrics. Sensitivity analysis identified pressure as the
most influential factor, followed by TOC and CO, percentage, while temperature had a restrictive effect
on adsorption. Secondary variables, such as rock type and moisture content, also contributed, though
to a lesser extent. Graphical analyses further validated the high accuracy of the ML models, particularly
CatBoost and Extra Trees. The findings underscore the effectiveness of ML approaches and optimized
hyperparameter tuning in enhancing the prediction of gas adsorption capacity, thereby improving the
design of gas injection and storage processes. This research provides valuable insights for optimizing
gas composition and operational parameters in storage applications, serving as a foundation for future
studies in gas sequestration and reservoir engineering.

Keywords Underground gas storage, CO,, CH,, Gas adsorption, Life cycle assessment, Thermodynamic
parameter analysis, Greenhouse gases

Abbreviations

ANN Artificial neural networks

CART Classification and regression trees
CBM Coalbed methane

CO, Carbon dioxide

DT Decision tree

DTR Decision tree regression

EI Expected improvement

ESGR Enhanced shale gas recovery
ETR Extra trees regressor

GBDT Gradient-boosted decision tree
GEP Genetic expression programming
GMDH Group method of data handling
GP Genetic programming

GPR Gaussian process regression
GRNN General regression neural network
GWO Grey wolf optimization
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H Hat

LSSVM Least squares support vector machines
MAE Mean absolute error

MAPE Mean absolute percentage error

ML Machine learning

MSE Mean squared error

PCA Principal component analysis
RBEFNN Radial basis function neural network
RF Random forest

RMSE Root mean square error

SR Standardized residuals

SVR Support vector regression

TOC Total organic carbon

UCB Upper confidence bound

XGBoost  Extreme gradient boosting

The adsorption process is a critical component in material purification and separation, offering a cost-effective
and efficient solution for addressing environmental challenges'. Gas adsorption, in particular, plays a significant
role in applications such as methane (CH,) and carbon dioxide (CO,) storage in geological formations?. During
this process, gas molecules adhere to the pore walls of porous materials in reservoirs through physical forces (e.g.,
van der Waals forces) or chemical interactions (e.g., covalent bonds). Key factors influencing adsorption include
pressure, temperature, pore size and structure, gas composition, and the chemical and physical properties of
the reservoir rock. At low pressures, monolayer adsorption occurs, while high pressures may lead to multilayer
adsorption. Organic-rich rocks like coal and shale exhibit high adsorption capacities for CH, and CO,, making
them crucial for gas storage, unconventional gas production, and greenhouse gas mitigation>~”.

Coalbed methane (CBM) reservoirs and shale formations are recognized as promising candidates for
greenhouse gas storage®~10. In CBM reservoirs, storage predominantly occurs through adsorption, whereas in
shale formations, both adsorbed and free gas phases contribute to their storage capacity. Advanced recovery
techniques, such as enhanced CBM recovery (ECBM) and enhanced shale gas recovery (ESGR), utilize CO,
injection to replace CH,, enhancing methane production while simultaneously storing CO,. CBM reservoirs,
characterized by their porous structure and high organic content, efficiently adsorb methane (CH,) through
physical adsorption onto coal pore surfaces. This process is directly influenced by reservoir pressure, with higher
pressures resulting in increased adsorption capacity. Unlike conventional reservoirs, where gas is stored as
compressed free gas in void spaces, gas in CBM reservoirs binds to coal surfaces via van der Waals forces, making
them ideal for natural gas production and CO, storage. CO, injection not only enhances methane production
but also contributes to greenhouse gas mitigation!!-17.

In shale formations, gas storage involves a combination of adsorption onto pore surfaces and free gas
storage within pore spaces. Shale’s small pore sizes and unique mineral and organic compositions enable strong
interactions with COZ, resulting in remarkable adsorption capacities. Factors such as TOC, moisture content,
mineral composition, reservoir temperature, and pressure significantly influence adsorption capacity. These
properties position shales as a viable option for greenhouse gas storage and unconventional gas production!8-23.

The adsorption and desorption processes in CBM and shale reservoirs are governed by their porous structures
and organic content, which facilitate significant CO, uptake through strong chemical and physical interactions
with the rock matrix. In shale formations, adsorption mechanisms include monolayer and multilayer adsorption,
influenced by reservoir pressure. Compared to nonpolar CH, molecules, CO, forms stronger bonds with organic
functional groups, enabling preferential adsorption?!-%”. Parameters such as TOC, mineral composition, and
moisture content play critical roles; higher TOC correlates with greater adsorption capacity, while moisture acts
as a competing agent, reducing efficiency?®?°. Gas storage occurs either as compressed free gas in pore spaces or
adsorbed onto pore walls, and these mechanisms are vital for applications like greenhouse gas mitigation, energy
storage, and unconventional gas production*-32.

Recent advancements in machine learning (ML) have provided robust tools for predicting gas adsorption
capacity. Studies have employed algorithms such as artificial neural networks (ANN)), least squares support vector
machines (LSSVM), and other ML methods to model the adsorption behavior of CO, and CH,. These models
leverage experimental datasets to identify key parameters such as TOC, moisture content, and thermodynamic
conditions, achieving superior accuracy compared to traditional isotherm models. The integration of ML
techniques offers precise and efficient predictions of gas adsorption behavior under varying reservoir conditions.

In 2024, Tavakolian et al.! evaluated ML methods for modeling CH, and CO, adsorption capacities in tight
reservoirs like shale and coal seams, using 3,804 gas adsorption data points with shallow and deep learning
models. Their analysis revealed that the Random Forest (RF) algorithm outperformed others, achieving
high accuracy in predicting CH, (MAE=0.0864, RMSE=0.1520) and CO, (MAE=0.0529, RMSE=0.2308)
adsorption capacities. Sensitivity analysis highlighted the alignment of ML models with geological and reservoir
engineering principles, underscoring their potential for laboratory and simulation applications. In 2024, Zhou
et al.* developed a Gaussian Process Regression (GPR) model to predict methane adsorption capacity in shale
formations. Using experimental data from the Longmaxi formation in the Sichuan Basin, five key variables—
TOC, clay minerals, temperature, pressure, and moisture—were identified as significant. The GPR model
outperformed the Extreme Gradient Boosting (XGBoost) model, achieving a relative prediction error below 3%.
Sensitivity analysis indicated that TOC was the most influential factor, while clay minerals influenced adsorption
through interactions with other variables.
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In another study, in 2024, Wang et al.34 introduced an innovative approach combining molecular simulation,

the lattice Boltzmann method, and ML to predict CO,-CH, competitive adsorption in large-scale porous
shale environments. By training an ANN on molecular simulation data, this method overcame computational
limitations and incorporated variables such as shale mineral type and CO, mole fractions. This approach
provides a new foundation for modeling adsorption behavior in porous media, facilitating CO,, sequestration
and enhanced CH, recovery. In 2024, according to the study conducted by Alqahtani et al® the objective
of this research was to develop a data-driven framework for predicting the adsorption capacity of methane
(CH,) and CO, in unconventional reservoirs such as shale and coal. The study utilized three intelligent models,
including General Regression Neural Network (GRNN), Radial Basis Function Neural Network (RBFNN), and
CatBoost, which were trained and tested with over 3,800 real data points related to CH 4 and Co, adsorption. To
improve model performance, the structure and control parameters of RBFNN and CatBoost were automatically
optimized using the Grey Wolf Optimization (GWO) method. The results indicated that the CatBoost-GWO
combined model provided the most accurate results with RMSE values of 0.1229 and 0.0681 and R? values of
0.9993 and 0.9970 for CO, and CH, adsorption, respectively. Additionally, the model effectively maintained
the physical adsorption trends compared to operational parameters and demonstrated superior performance
compared to recent ML methods.

In 2023, Alanazi et al.* proposed an ML framework for predicting CO, adsorption capacity in coal seams
using a dataset of 1,064 experimental data points. Among various ML techniques, RF demonstrated the highest
accuracy, particularly for CO, adsorption at higher pressures. This framework reduces reliance on extensive
experiments and complex mathematical models. In 2023, Kalam et al.’” employed Gradient Boosting Regression
to predict hydrogen adsorption on kerogen shale for underground storage. This model achieved high accuracy,
with a determination coefficient of 99.6% on training data and 94.6% on test data, demonstrating the significance
of kerogen type on hydrogen adsorption. This approach significantly reduces the time required for laboratory
experiments and molecular simulations.

In 2022, Amar et al.*® utilized Genetic Expression Programming (GEP) to model CH, adsorption in shale gas
formations. Their results revealed that CH, adsorption is strongly influenced by humidity, pressure, TOC, and
temperature. The GEP model exhibited a high correlation coefficient (0.9837), providing user-friendly equations
for estimating adsorption capacity. In 2020, Meng et al.* and Wang et al.* explored ML models for predicting
methane adsorption in shale and gas content in shale reservoirs. Meng et al. evaluated classical isothermal
and pressure-temperature integrated models alongside ML methods like ANN, RE, SVM, and XGBoost, with
XGBoost showing superior performance by addressing limitations of isothermal conditions and accurately
predicting beyond experimental ranges. Similarly, Wang et al. used over 700 data points to compare models such
as MLR, SVM, REF, and ANN, identifying RF as the most reliable for predicting Langmuir parameters with high
accuracy (R?=0.84-0.87). Both studies emphasized the potential of ML for improving accuracy, reducing costs,
and optimizing shale gas production and reservoir simulations.

Table 1 summarizes the research background, emphasizing the challenges of predicting gas adsorption
in unconventional reservoirs for natural gas and CO, production and storage. ML methods have emerged as
faster, more accurate alternatives to traditional models and costly experiments. Studies show that optimized
ML models, such as XGBoost and CatBoost-GWO, achieve high accuracy (R®>0.99) and low error rates
(RMSE <0.1), enhancing predictions and enabling large-scale simulations. These models address the limitations
of classical methods, reduce computational costs, and support reservoir design, reserve assessment, and gas
recovery optimization. ML-based workflows also predict anomalous CO, adsorption under high-pressure
conditions and enable accurate estimation of adsorption capacity based on CO, injection percentage, rock type,
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and thermodynamic conditions. The research demonstrates the reliability and practicality of ML techniques in
advancing gas adsorption predictions and reservoir management.

Recent advancements in data-driven modeling have significantly enhanced the understanding of complex
subsurface phenomena, particularly in tight reservoirs where conventional modeling techniques may fall short.
This study presents a novel, data-centric approach to predicting CO, and CH, adsorption capacities using a
comprehensive experimental dataset under various thermodynamic conditions. By integrating advanced
machine learning algorithms. This research not only benchmarks model performance but also reveals critical
insights into the governing parameters of gas adsorption. The application of these ensemble learning methods
provides a robust framework for capturing nonlinear interactions, thereby offering a more accurate and
generalizable prediction of gas behavior in tight formations.

This study investigates the adsorption capacity of methane (CH,) and CO, in tight reservoirs, specifically
shale and coal, utilizing ML techniques. The research focuses on the application of ML algorithms to predict,
evaluate, and optimize adsorption data for CH, and CO,. The dataset was compiled from previous studies
conducted by researchers in the field of underground hydrocarbon storage. Given the complexities involved
in predicting gas behavior in unconventional reservoirs, this study holds significant importance. Traditional
prediction methods, such as mathematical models, numerical simulations, and laboratory measurements, are
often constrained by oversimplifications, high costs, and time-intensive processes. Consequently, ML techniques
emerge as a promising alternative, offering higher accuracy and reducing computational complexity.

Data collection and specific description

In this study, a dataset comprising 3,804 data points was utilized, originating from the comprehensive
experimental compilation presented by Tavakolian et al.!. Specifically, the dataset includes 3,259 data points
related to methane adsorption, 390 data points concerning CO, adsorption, and 155 data points for the co-
adsorption of both gases. These data cover a broad range of thermodynamic conditions and incorporate essential
variables such as temperature, pressure, rock type (shale and coal), total organic carbon (TOC), moisture
content, and the percentage of CO, in the injected gas. This dataset enables a detailed evaluation of the influence
of various parameters on gas adsorption capacity and facilitates a thorough understanding of gas behavior in
different tight reservoir settings. Further details regarding the dataset and its development can be found in the
literature review subsection of the Introduction.

A key aspect of this study was the selection of appropriate input variables for the ML models. These variables
were chosen based on scientific analysis and reservoir engineering requirements to effectively reflect the
influence of geological and operational factors on gas adsorption capacity. For instance, the percentage of CO, in
the injected gas was identified as one of the most critical variables, given its significant impact on the adsorption
process. Additionally, other variables such as TOC and moisture content were incorporated into the modeling
process, as each plays a crucial role in determining adsorption capacity.

To prepare the dataset for this study, raw data were collected from various sources, organized, and analyzed
using Microsoft Excel. These data included variables such as pressure, temperature, rock type, and the composition
of injected gases. The processed data were subsequently utilized as inputs for ML modeling techniques. To
optimize the models, methods such as linear regression were employed, and the validity of the data was assessed
and confirmed using the coefficient of determination (R2). The results of these analyses demonstrated a strong
correlation between the input and output variables of the models. ML models for predicting gas adsorption
capacity in reservoirs were developed based on the following relationships:

Capacity ggsorption(coz) = f (Pressure,Temperature,TOC, Moisture, Percentage of CO?, Rock type ) (1)

Capacity ggsorption(cray = (Pressure, Temperature, TOC, Moisture, Percentage of CO?, Rock type ) (2)

Equations (1) and (2) enabled researchers to accurately predict the effects of various parameters on gas adsorption
capacity. Additionally, the models demonstrated the capability to forecast anomalous gas behaviors under high-
pressure conditions. The findings of this study revealed that the proposed ML models, utilizing optimized input
variables, are capable of accurately predicting gas adsorption capacities. Sensitivity analysis of the models further
confirmed that parameters such as TOC and the CO, fraction in the injected gas have the most significant
impact on adsorption capacity. This research, by introducing innovative approaches for data analysis, provides
a solid foundation for applying ML models in gas storage processes within unconventional reservoirs. Further
details and statistical information related to this study are presented in Table 2.

The provided table contains various statistical details of data related to the excess adsorption of CO, and
CH, gases, rock properties (such as TOC and moisture content), pressure, and temperature. Statistically, most
of the data for parameters such as CO, percentage, rock type, moisture content, and excess CO, adsorption
are concentrated at lower values, with their mode and median being zero, and their distribution showing a
significant skew toward lower values (positive skewness). In contrast, parameters like TOC and excess CH,
adsorption exhibit distributions with moderate to high positive skewness, indicating a concentration of data at
lower values. However, their maximum values are significantly higher than the mean and median, suggesting the
presence of outliers or extreme values in the dataset.

On the other hand, parameters such as temperature and pressure have more balanced distributions, with
their skewness generally being positive but low. Specifically, temperature, with a median of 50.4 °C and a mean
of 57 °C, indicates a relatively uniform distribution across the temperature range. Overall, most of the data for
rock properties and gases are concentrated at lower ranges, while higher values appear more scattered with
distributions exhibiting high kurtosis (sharpness and peakedness), likely due to the presence of unusual data
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Percentage of CO, | TOC (%) | Moisture (%) | Temperature (C) | Pressure (MPa) | CH, Excess Sorption (cm®/gr) CO, Excess Sorption (cm®/gr)
Max 1 88.500 10.9700 150.00 29.2473 7.0362 24.4681
Min 0 0.0900 0 25.00 0.1640 0 0
Range 1 88.4100 10.9700 125.00 29.0833 7.0362 24.4681
median 0 5.1500 0 50.400 9.9401 0.8651 0
Mod 0 5.4100 0 45.00 6.00 0 0
Mean 0.1228 16.2977 0.9741 57.04033 11.3166 1.2406 0.5303
Skewness | 2.2939 1.8647 1.9610 1.5747 0.4080 1.6303 6.2580
Variance | 0.0995 712.020 3.2584 556.4257 57.2000 1.5931 5.1165
Kurtosis | 3.4193 1.7489 2.9405 2.7252 -0.9911 2.9989 44.1605
Table 2. Statistical data.
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Fig. 1. The violin plot for the examined data.

points or outliers. These results emphasize the importance of paying attention to outliers and extreme values in
future analyses, particularly in the development of predictive and ML models.

After data collection, the data were examined and, from a statistical perspective, the CO, and CH 4 adsorption
capacity was plotted as a function of temperature, pressure, rock type (shale and coal), TOC, moisture content,
and the percentage of CO, in the injected gas. In these analyses, violin plots, pair plots, and heat maps were
presented.

In this study, a dataset comprising various features was collected and analyzed to investigate the characteristics
of CO, storage and gas behavior in different environments. Initially, violin plots (Fig. 1) were used to fully display
the data distribution across various dimensions. These plots are particularly effective in showing the composition
and scatter of the data, which is especially useful for analyzing complex and nonlinear data. Moreover, these
plots specifically illustrate how the data are distributed across different levels for each feature. For instance, in
the CO, percentage plot, the data distribution is predominantly in the lower ranges, indicating the absence of
high CO, values in most samples; however, the spread of data towards higher values indicates variation among
the samples. Similarly, the TOC distribution is mainly concentrated below 5%, which could be attributed to
natural variations in rock composition and storage environments. Additionally, the moisture distribution has
a broader range and greater scatter, reflecting significant differences in the moisture content of the samples.
High variability is also observed in the temperature and pressure plots. Specifically, temperature spans from
approximately 20 °C to 160 °C, allowing for the prediction of its effect on gas behavior and hydrogen storage
characteristics. Pressure is primarily concentrated above 10 megapascals, indicating typical high-pressure
gas storage conditions. Furthermore, CH, and CO, adsorption values are generally low, which may indicate
storage environments with low adsorption of these gases. Overall, these plots provide a comprehensive picture
of gas storage conditions and rock properties, serving as valuable tools for modeling analyses and engineering
predictions in gas storage applications.

The paired plots in Fig. 2 illustrate the complex relationships between various parameters and the CO, and
CH, adsorption capacities. Each individual plot analyzes the interaction between two specific variables and
provides insights into their correlations and general trends in the data. One notable observation is seen in the
plots showing the relationship between CO, adsorption and pressure. As pressure increases, CO, adsorption
steadily increases, highlighting the significant impact of pressure on gas adsorption capacity in shale samples.
This positive correlation suggests that higher pressures enhance the shale’s ability to adsorb CO, through its pore
network or adsorption mechanisms.
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Pairplot of Dataset

NN
N
1w . . N
I
[EE il
© ||
Zus |
x | |
% 0.4 |
[ | |I
0.2 [ |
! )
D0 _®» » » v * # Y b ,\
T T T T T T
. . .
a0 i i ||1'
. H . |
JTS I . . |||I
2 a0 [
Eau i
[
FIE | |
[
o 5 P e v e ; FRN =
T T T T T T T T
. . .
0. - I

= : H F ||
& o754 g 4
& .
- . I S |
£ 50 . . : . '
z H . . |'
- { &
] . [
0.0 ; EERE H . 533 o o )Mo
T T ; T T T T T . T . T
sG] . . 4 . 4 e
1. . - . il
3 v25 1 1 i
g i
ERIE I . 1 e 1+ & Al ||
E |
g | s 8 # [ |
g 75 1 e 1 [ |
£ : : s E . | |
& 50 E B 5”"!:.'.. | "
- s e s huases o ! LA
- T T T T T —= 17 T T e
20 . . o s
= . . - g g
il -
a -
g 204 i P 1 :
i | | .
3 .
- i ! E i i ! | _ 5 :
o -
H
o i i 13 :
E
g
5™ 7
= ' H
| i é g g — i
; i
Sl H i :
-

i

! i’

_!j
4 tmun!o&nhn . A ’-n%-m- L)

UEU 0.‘5 .
Percentage of COZ

D.m.m......m.
Pt
H
-
ettt [T

T T

[+

05 IIZ' GIU ﬂ&U 0 I I .::) 1C0 IG‘O o 20 20 25 a0 ?55 UI |IEI 2‘0
Rock type TOG (%) Molelurc (% ») Temperature {C) Pressure (MPa) CH4 Sorption {cmigr) COZ Sorption {cm™ary

-

Fig. 2. Pairwise plots related to methane and CO, adsorption.

In contrast, the plots depicting the relationship between CH, adsorption and pressure exhibit an inverse
pattern. As pressure increases, CH, adsorption decreases significantly, indicating an inverse relationship between
pressure and methane adsorption. This observation suggests that higher pressures may disrupt the shal€’s ability
to retain CH, molecules, likely due to competitive adsorption or changes in gas behavior under pressure.

Furthermore, the plots examining the relationship between CO, adsorption and other variables, such as
TOC, maturity, and temperature, show no significant trends or patterns. This lack of clear correlations suggests
that these factors may not have a direct impact on the CO, adsorption capacity of shale samples within the
studied range. Similarly, the plots analyzing the relationship between CH, adsorption and TOC, maturity,
and temperature also show no discernible trends, indicating that these factors do not play a dominant role in
determining methane adsorption capacity in shale samples.

Numerical correlation matrices are essential tools in ML and data analysis. These matrices represent the
linear relationships between different variables and can be valuable in various processes such as feature selection,
dimensionality reduction, and exploratory data analysis (EDA). In this study, the Pearson correlation coefficient
is used to compute the thermal numerical correlation matrix shown in Fig. 3. The Pearson correlation coefficient
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Pearson Correlation Heatmap
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Fig. 3. Heat map (Pearson correlation matrix).

is a statistical measure that quantifies the strength and direction of the linear relationship between two variables.
It is represented by a value between —1 and 1.

Pearson correlation coefficient values can be positive, negative, or zero (indicating no correlation). A perfect
positive correlation means that as the value of one variable increases, the other variable increases in proportion.
A perfect negative correlation means that as the value of one variable increases, the other variable decreases in
proportion. No correlation indicates that there is no linear relationship between the two variables.

According to Eq. 3, the Pearson correlation coeflicient is expressed as follows:

X,— X)(Y,~
b 2 Xim N Y) -

Vix— ) —viev)

In this equation, X; and Y; represent the observed values, and )} and }; are the mean values of variables X and

Y, respectively. Therefore, if 7 > 0, a positive (direct) correlation exists, and it should be noted that the closer
the value of r is to 1, the stronger the positive relationship. Similarly, if » < 0, a negative (inverse) correlation
exists, and it should be noted that the closer the value of r is to —1, the stronger the negative relationship. It is
important to note that if » = 0, no linear relationship exists, and the relationship may be nonlinear (in which
case, no correlation is present).

In this study, the Pearson correlation coefficient and heatmap were employed to assess the relationships
between various variables, such as temperature, pressure, rock type (shale and coal), TOC, moisture content, and
the percentage of CO, in the injected gas. This information can aid in process optimization and more effective
decision-making.

The heatmap provides a comprehensive representation of the Pearson correlation coefficients between
different parameters and the CO, and CH, adsorption capacities in shale samples. The intensity and color
direction (red for positive correlation, blue for negative correlation) indicate the strength and direction of the
linear relationship between each pair of variables.

One prominent trend observed in the heatmap is the strong positive correlation between CO, percentage
and CO, adsorption capacity (0.58), suggesting that as the CO, content in the shale gas mixture increases, the
shalé’s capacity to adsorb CO, also rises. This relationship indicates that CO, adsorption in shale is influenced
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by the partial pressure of CO, in the gas phase, with higher CO, concentrations leading to increased adsorption.
Conversely, a notable negative correlation between CH, adsorption and CO, adsorption (-0.16) suggests that
the presence of CO, may interfere with CH, adsorption. This negative correlation could be due to competitive
adsorption between CO, and CH, molecules for the same adsorption sites in the shale matrix.

Interestingly, the heatmap also reveals a strong positive correlation between CO, percentage and TOC
content (0.61), as well as between TOC and CO, adsorption capacity (0.34). These correlations suggest that
TOC plays a significant role in influencing CO, adsorption in shale, possibly by providing additional adsorption
sites or enhancing the overall adsorption capacity of the shale through its intrinsic physicochemical properties.
In contrast, CH, adsorption shows a weak correlation with TOC (-0.10), indicating that TOC content may not
be a major factor in influencing CH, adsorption.

Additionally, the heatmap indicates a positive correlation between pressure and CO, adsorption (0.18),
suggesting that higher pressures facilitate CO, adsorption. However, the correlation between pressure and CH,
adsorption is negative (~0.17), implying that higher pressure may hinder CH, adsorption. These opposing trends
highlight the different behaviors of CO, and CH, under varying pressure conditions in the shale environment.

Furthermore, the heatmap shows a negative correlation between temperature and CO, adsorption (-0.11)
and a positive correlation between temperature and CH, adsorption (0.26). This suggests that temperature may
affect the adsorption behavior of both gases, possibly through its effects on gas kinetics and the shale matrix’s
characteristics.

Machine learning model

In similar problems, ML models, particularly regression models, are utilized. These models help us better
understand how changes in independent variables influence the dependent variable and how a relationship is
established between them. Various learning methods are employed to define this relationship. In this study, five
common methods that yield satisfactory results in such problems have been used. These methods include RE,
CatBoost, AdaBoost, and ExtraTrees. Each of these methods is explained in detail below.

Random forest

Due to its non-parametric nature and ability to efficiently handle large datasets, the RF algorithm can achieve
high performance in studies of this type. RF is an ensemble model of decision trees (DTs), with each DT
constructed using the Classification and Regression Trees (CART) method*!. By utilizing a random subset of
the training data and random features at each split, RF reduces variance and provides better generalization®2.
This algorithm combines the interpretability of DT with the robustness of ensemble learning, resulting in higher
predictive power and a reduced risk of overfitting. Random Forest Regression (RFR) is an advanced version
of the Decision Tree Regression (DTR) algorithm, leveraging these advantages to enhance performance®’. A
flowchart of this model is shown in Fig. 4.

In this study, RF was implemented using the Scikit-learn library in Python and relied on the Bootstrap
Aggregation (Bagging) method to independently construct DTs, which reduces the variance errors associated
with individual models**. The final regression prediction is obtained by averaging all the predicted values from
each tree, thereby enhancing the accuracy and robustness of the model®. The RFR algorithm performed several
key steps?®:

1) Bootstrap Sampling: The training set was sampled k times using the bootstrap method, creating k subsets
of the training data with equal sizes.

2) Feature Selection and Tree Construction: For data with M features, a random subset of m (M >m) features
was selected from all M features to be used as candidate feature subsets for a node. The feature impurity
index was then used to identify the best node and branch, and k DTR models were constructed.

3) Final Prediction: The average of the k predictions was calculated to provide the final regression result.

Categorical boosting

Advanced ML algorithms, such as CatBoost, have been developed to address the limitations of individual models.
CatBoost is a member of the Gradient-Boosted Decision Trees (GBDT) family and is primarily recognized for
its exceptional capabilities in processing categorical features. One of the key features of CatBoost is that it does
not require extensive preprocessing of categorical data, which is often a time-consuming task in other gradient
boosting frameworks. CatBoost operates differently; it utilizes advanced methods such as Ordered Boosting and
Target Encoding to handle overfitting (Fig. 5)*~%°.

Compared to other gradient boosting techniques that typically require categorical variables to be converted
into numerical data, CatBoost can directly handle categorical features, significantly reducing the amount of
preprocessing needed. By processing categorical data directly, CatBoost can leverage key information more
effectively, making the model more efficient. As part of the GBDT framework, CatBoost constructs a series of
DTs sequentially, with each tree aiming to capture the residual errors of the previous trees. Weights are adjusted
based on the prediction errors of the training samples, adapting the model to more challenging samples.

CatBoost also employs unique strategies for performance optimization. For example, Ordered Boosting,
where trees are ordered based on combinations of a feature rather than random or sequential orders, improves
the model’s accuracy by focusing on more informative features. Additionally, CatBoost uses Oblivious Trees®**!,
which allow for parallel computation during the training process, resulting in time savings and improved
performance. Finally, CatBoost organizes the training samples in a fixed order and gradually increases the
number of training samples for each model. This systematic and gradual learning process offers advantages over
building a model at each iteration, as it helps progressively improve performance®?.
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Adaptive boosting

As shown in Fig. 6, Boosting is a ML technique used to combine multiple weak models, such that the resulting
model has better predictive accuracy than any individual model. AdaBoost, one of the most well-known types of
boosting, is a sequential ensemble learning method that gradually improves model performance by correcting
the weights of misclassified data points in previous models®*->°,

In this algorithm, a weak learner, often a DT, is first trained on the original dataset. In each iteration, the
algorithm adjusts the weights of the training data and places more emphasis on the data points that were
misclassified in previous iterations. This process is cyclical, with predictions being continuously improved, and
each subsequent model leading to a more accurate result.

At each stage, AdaBoost increases the weight of misclassified samples to ensure that the next weak learner
focuses more on them. Ultimately, all the weak learners are combined, and the final model is created, with each
learner being weighted according to its performance.

One important aspect of AdaBoost is its ability to combine weak learners, which can be applied with
techniques such as Support Vector Regression (SVR) or DTR. AdaBoost has proven to perform well in both
classification and regression tasks and typically outperforms other ensemble methods in terms of accuracy.

However, this algorithm is not without limitations. Some weaknesses of AdaBoost include its sensitivity to
outliers and noisy data, as incorrect samples receive higher weights. Additionally, due to the number of iterations
required for training, the algorithm is computationally expensive and may lead to overfitting if the weak learners
are too complex or the dataset is too small*®-%,

Extra trees regressor
Extra Trees Regressor (ETR) is an ensemble learning method that operates by creating a large number of DTs
independently. In this method, at each node, a feature and the branching value are selected randomly>*C.
Similar to the RF algorithm, which is also based on an ensemble of DTs, ETR differs in its training and branching
approach. Specifically, RF uses bootstrap sampling (randomly creating subsets of data with replacement) and
finds the best branches using criteria such as Gini impurity or mean squared error (MSE). In contrast, the ETR
algorithm is trained on the entire dataset and selects features and branching values randomly at each node. This
additional randomness in the branching phase often results in better performance for ETR, especially when
overfitting is a concern®.

To separate the nodes, ETR randomly selects binary branching values, while RF determines a set of candidates
branching values for each feature and selects the best one based on optimization criteria. Additionally, ETR uses
the entire original dataset as training data (to construct leaf nodes), whereas RF uses bootstrap sampling to
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create subsets of data. The simpler node branching method in ETR makes it computationally more efficient than
other ensemble methods. The higher randomness in ETR reduces the overfitting problem, while the use of the
entire dataset minimizes bias and improves the model’s performance for new data.

To enhance performance, several hyperparameters are tuned for both RF and ETR. These hyperparameters
include the number of trees, the maximum depth of each tree, the number of features considered at each
branching, the minimum number of samples required for branching, and the minimum number of samples
required to split leaf nodes®’. Adjusting these hyperparameters allows for balancing bias and variance, thereby
improving the model’s prediction performance (Fig. 7).

Machine learning methods modeling process
The modeling process using ML algorithms involves a series of structured steps, progressing from data preparation
to model evaluation and optimization. The first step is data collection and preprocessing. In this stage, the data
must be examined for quality and suitability for the problem at hand. Subsequently, actions such as removing
outliers, filling in missing values, and standardizing the data to create a uniform scale are performed. The use
of algorithms like CatBoost, which can directly process categorical data, reduces the complexity of this stage.
Next, key feature selection and engineering are carried out, as these features directly influence the model’s
performance. In this step, tools such as correlation analysis and dimensionality reduction methods, like Principal
Component Analysis (PCA), are used to identify and select the most impactful features. This process helps
reduce data complexity and increases processing speed. Once the data is prepared, the appropriate algorithm
for modeling is chosen. The selection of the algorithm depends on the type of data and the model’s objective.
Algorithms like RE, ETR, and CatBoost, due to their various capabilities, are suitable options for diverse problems.
Fine-tuning hyperparameters, such as the number of trees and their depth, through methods like grid search
or random search, ensures improved model accuracy and establishes a balance between bias and variance. After
model tuning, training begins using the training data, and performance is evaluated using validation data.
Techniques like cross-validation help mitigate overfitting and ensure the model’s performance on new data.

Begin

Training Dataset

OO0 6{ 5%%%%% C%-‘m

Predicted output #1 Predicted output #2 Predicted output #N

Averaging Predicted outputs

Fig. 7. ExtraTrees flowchart.
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Models like AdaBoost, which focus on difficult samples and correct errors at each stage, yield better prediction
results.

In the final stage, models are evaluated and compared using metrics such as MSE, MAE, and the Coeflicient
of Determination (R?). Algorithms like ETR, which utilize randomization in the branching process and employ
the entire dataset, and CatBoost, with its ability to directly handle categorical data, have shown successful
performance in many complex problems. These steps aid in selecting the optimal model and significantly
increase prediction accuracy.

Results and discussion

As stated in the data collection section, this study was conducted to investigate the CO, and CH, adsorption
capacities in tight reservoirs using available experimental data and ML techniques. The dataset comprises
3,804 samples of measured parameters, including temperature, pressure, rock type (shale and coal), TOC,
moisture content, and the percentage of CO, in the injected gas. These data were statistically evaluated, and the
results were analyzed using graphical charts such as violin plots, pair plots, and heat maps, which illustrate the
dispersion, continuity, and correlation among variables. Furthermore, the statistical findings related to the data
are presented in Table 3.

The dataset used in this study is divided into two sections: CO, and CH, adsorption data. Each section was
analyzed separately and then compared. Both sections were further divided into two subsets: a training set
containing 70% of the data and a testing set comprising the remaining 30%. The training dataset was utilized to
develop the most optimal model and select relevant features. During this stage, the model learned to establish
relationships between the input parameters and approximate the target values to the actual or measured values.

During training, the model adjusted its parameters (such as weights in neural networks) to minimize
prediction errors, enabling it to make accurate predictions based on the training data. The testing dataset, which
accounted for 30% of the total data, was used to evaluate the predictive capability and performance of the trained
model. After training, the model’s performance was assessed using the test data without further adjustments to
its parameters. This approach demonstrated that the model effectively avoided overfitting on the training data
while achieving acceptable performance.

The model performed consistently well on both the training and testing datasets, producing satisfactory
results and validating its performance. This indicates that the model is robust and likely to perform well in real-

world scenarios.

Plot Type Feature/Relationship Details and Results
Data is mostly concentrated at lower percentages, with some spread in higher ranges. This indicates that most samples have
CO, Percentage . - O L .
2 low CO, concentrations, but a few outliers suggest variability in the gas composition among different samples.
TOC values are predominantly below 5%, reflecting the natural heterogeneity of organic matter in shale samples. Higher TOC
TOC Percentage - o1 ; < L . ; o
levels could potentially influence adsorption capacity due to their impact on microporosity and adsorption sites.
Moisture The distribution of moisture shows a wide range with significant variability. Samples with higher moisture content might have
reduced gas adsorption due to competitive water adsorption at adsorption sites.
Violin Plots
Temperatures range from 20 to 160 °C, covering a wide spectrum of conditions. This broad range reflects the varying
Temperature . . o e . . . ;
geothermal gradients and reservoir conditions, which significantly influence gas adsorption and desorption behaviors.
p Pressure data is mainly concentrated above 10 MPa, highlighting the high-pressure conditions typical of gas storage in shale
ressure . o . . - g "
reservoirs. Such pressures are critical for assessing the adsorption and phase behavior of gases under reservoir-like conditions.
CH, and CO, Adsorption Adsorption values for both gases are generally low, indicating limited adsorption capacity in some shale samples, possibly due

to low TOC or less-developed pore structures.

Pair Plots

CO, Adsorption and Pressure

A clear positive trend; as pressure increases, CO, adsorption rises. This indicates that pressure is a key driver in enhancing
CO, storage capacity in shale by increasing gas tiensity and facilitating gas adsorption within nanopores.

CH, Adsorption and Pressure

Negative trend; higher pressure reduces CH, adsorption. This may result from competitive adsorption with CO, or changes in
gas phase behavior at elevated pressures, leading to preferential adsorption of CO, over CH,,.

Heatmap (Pearson
Correlation)

CO, Percentage and CO, Strong positive correlation (0.58) suggests that higher CO, concentrations in the injected gas significantly enhance CO,
Adsorption adsorption. This relationship emphasizes the role of partial pressure in determining adsorption efficiency.
CH, Adsorption and CO, Noticeable negative correlation (-0.16) indicates competitive adsorption between CO, and CH,. As CO, adsorption
Adsorption increases, CH, adsorption decreases, likely due to competition for limited adsorption sites.
CO, Percentage and TOC Strong positive cor'rel'atlon (061) hlghllghts the ro.le of TOC in mﬂuen'cmg gas composition and its interaction with shale,

2 potentially by providing additional microporous sites for CO, adsorption.

. Moderate positive correlation (0.34) indicates that TOC enhances CO, adsorption. This is likely due to the presence of

TOCand CO, Adsorption organic matter with higher affinity for CO,, increasing the overall adsérption capacity.
TOC and CH, Adsorption Weak negative correlation (-0.10) suggests TOC has a negligible or slightly adverse effect on CH, adsorption. This might

result from differences in the molecular interaction of CH, and CO, with organic matter.

Pressure and CO, Adsorption

Weak positive correlation (0.18) shows that higher pressure moderately facilitates CO, adsorption. This aligns with the
observed density-dependent adsorption behavior of CO, in shale reservoirs.

Pressure and CH, Adsorption

Weak negative correlation (~0.17) indicates that increasing pressure may slightly hinder CH, adsorption, possibly due to the
dominance of CO, at higher pressures.

Temperature and CO,
Adsorption

Weak negative correlation (-0.11) suggests that higher temperatures might reduce CO, adsorption, likely due to increased gas
desorption rates and reduced adsorption affinity at elevated temperatures.

Temperature and CH,
Adsorption

Moderate positive correlation (0.26) indicates that CH, adsorption may slightly increase with temperature, possibly due to
changes in gas mobility and shale properties, though the effect is not strong.

Table 3. Statistical summary of the available data using violin plots, pair plots, and heat Maps.
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Hyperparameter optimization

This study addresses the challenge of parameter tuning in ML algorithms and proposes Bayesian optimization
as an effective solution to this problem. ML algorithms often require the adjustment of parameters to control
the learning rate and model capacity, which can be considered a nuisance. While one approach is to minimize
the need for these parameters, another approach is to automate their optimization. Bayesian optimization is
recommended as an efficient method for this purpose, as it has demonstrated superior performance compared
to other global optimization techniques.

This method operates under the assumption that the unknown function (in this case, the performance of
a learning algorithm with various parameter settings) is sampled from a Gaussian process, which maintains a
posterior distribution. The optimization process involves selecting parameters for subsequent evaluations based
on criteria such as the expected improvement (EI) or the upper confidence bound (UCB) derived from the
Gaussian process. Studies have shown that EI and UCB are highly effective in identifying global optima for many
black-box functions®3-66.

The distinctive characteristics of ML algorithms in optimization are further elaborated in this study. To
evaluate each function, the time variations caused by differences in model complexity are analyzed, along
with the economic implications of performing experiments on cloud computing platforms. According to the
study by Snoek and Larochelle®’, Bayesian optimization algorithms have demonstrated favorable results in ML
applications.

This research also advocates for a fully Bayesian treatment of the Gaussian process kernel, rather than merely
optimizing its hyperparameters. Furthermore, the aforementioned study introduces new algorithms designed to
account for variable experimental costs or the simultaneous execution of experiments. Gaussian processes are
highlighted as effective alternative models in such scenarios.

In this study, the selection of hyperparameters played a critical role in enhancing the performance and
accuracy of models used for analyzing laboratory data. Table 4 presents the optimal hyperparameter settings for
four different models— RE CatBoost, Extra Trees, and AdaBoost—applied to the adsorption of CO, and CH,
gases. These settings were determined using the Bayesian optimization method.

For the CO,-related data, the optimal hyperparameters were determined as follows:

« Random Forest: The maximum tree depth is set to 101, and the minimum number of samples per leaf is 1,
enabling the model to capture more complex patterns. The minimum number of samples for splitting nodes
is 2, and the total number of trees is 618, enhancing both accuracy and robustness.

max depth 101

min samples leaf |1
Random forest

min samples split | 2

n estimators 618

depth 8
CatBoost 12 leaf reg 2.8601

learning rate 0.155

Co,

max depth 14

min samples leaf | 1
Extra trees

min samples split | 2

n estimators 62

learning rate 0.9855
AdaBoost max depth 9

n estimators 140

max depth 179

min samples leaf |1
Random forest

min samples split | 2

n estimators 149

depth 8
CatBoost 12 leaf reg 24742

learning rate 0.1857

CH,

max depth 20

min samples leaf |1
Extra trees

min samples split | 2

n estimators 258

learning rate 1
AdaBoost max depth 10

n estimators 57

Table 4. Optimal hyperparameter Settings.
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« CatBoost: The tree depth is 8, with an L2 regularizer value of 2.8601 for the leaves. A learning rate of 0.155
ensures a balance between convergence speed and model accuracy.

o Extra Trees: The model is configured with a maximum tree depth of 14 and 62 trees, optimizing computa-
tional efficiency while maintaining performance.

« AdaBoost: With a high learning rate of 0.9855, a tree depth of 9, and 140 learners, the model achieves faster
convergence and reliable results.

For the methane-related data, the hyperparameter settings were adjusted to manage complexity and improve
predictive performance:

« Random Forest: A maximum tree depth of 179 captures finer details in the data, while 149 trees contribute
to enhanced accuracy.

« CatBoost: The tree depth is 8, with an L2 regularizer value of 2.4742. A learning rate of 0.1857 ensures an
optimal trade-off between accuracy and convergence speed.

« Extra Trees: To uncover more intricate patterns, the model is designed with a maximum tree depth of 20 and
258 trees.

« AdaBoost: A learning rate of 1, combined with a tree depth of 10 and 57 learners, results in fast convergence
and effective performance in analyzing methane data.

The careful selection of hyperparameters for these models— RF, CatBoost, Extra Trees, and AdaBoost—has
significantly enhanced their accuracy and robustness in analyzing laboratory data for CO, and methane. The
tailored combination of settings, such as tree depth, learning rate, and the number of trees, has allowed each
model to operate optimally based on the specific characteristics of the dataset. These configurations strike a
precise balance between capturing complex patterns, achieving convergence speed, and minimizing overfitting,
ultimately leading to improved data evaluation and more accurate analysis in related studies.

Evaluation and model performance

Error metrics

Evaluation metrics play a vital role in assessing the performance of ML models. They provide a means to measure,
analyze, and improve the models’ accuracy and operational capabilities. Selecting the appropriate evaluation
metrics is crucial, as decisions based on these metrics can significantly influence the quality and performance
of ML models. Hence, careful consideration of the evaluation metrics for each specific ML task or project is
essential.

One of the most widely used evaluation metrics is the coefficient of determination (R?), which quantifies how
much of the variance in the dependent variable is explained by the model. A higher R? value indicates a stronger
fit between the model and the data, with a value of 1 representing a perfect fit and 0 indicating no explanatory
power (Eq. 4). This metric is particularly effective in illustrating the degree of difference between the actual and
predicted values of the model.

Another key metric used in this study is the RMSE, which measures the square root of the mean squared
difference between the actual and predicted values (Eq. 5). RMSE is highly sensitive to outliers and provides
insights into the model’s overall prediction accuracy, with lower values indicating greater precision.

The MAE is also utilized to evaluate model performance. MAE calculates the average absolute difference
between actual and predicted values, providing a straightforward interpretation of prediction errors in the same
unit as the target variable (Eq. 6). Like RMSE, a lower MAE value reflects better model performance.

Additionally, the Mean Absolute Percentage Error (MAPE) is used as a performance metric to measure
prediction accuracy in percentage terms. It is computed by dividing the absolute difference between predicted
and actual values by the actual values and multiplying the result by 100. MAPE is particularly valued for its
simplicity and interpretability, with lower values signifying higher accuracy. However, MAPE has limitations
when applied to datasets containing values close to zero, as the percentage error can become exaggerated.

In conclusion, selecting and employing the right evaluation metrics, such as R%, RMSE, MAE, and MAPE,
is integral to understanding and improving ML models’ performance. Each metric provides unique insights
into the model’s accuracy and operational effectiveness, making them essential tools in developing reliable ML
solutions.

SR ((COQ7 CHA4 sorption);"™” — (CO2,CH4 sor;z)tion)fmd)2

R*=1- (4)
SN ((C’OQ7 CHA4 sorption);™” — (CO2,CH4 sorption)ezp)2
. ex . redy2
RMSE — S N ((CO2,CHA4 sorption)S™ — (CO2, CH4 sorption)?™*%) (5)
N
MAE = %Z N |(( CO2,CH4 sorption);"™* — (CO2,CH4 sorption)fred)| (6)
_ 100 N | ((CO2,CHA4 sorption):™ — (CO2,CHA4 sorption)?")

MAPE = N =1 (CO2,CH4 sorption);™? 9
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Predicted Values by the Model | (CO2,CH4 sorption)fred
Experimental Values (CO2,CHA4 sorption);™”
Mean Values (CO2, CH4 sorption)®*?
Number of Data Points N

Iteration i

Table 5. Introduction of parameters for error evaluation equations.

Error metric | Dataset | CO, CH,
Random forst | CatBoost | Extra trees | AdaBoost | Random forest | CatBoost | Extera trees | AdaBoost
Train 0.9968 0.9999 1.0000 0.9985 0.9971 0.9985 0.9998 0.9970
R? Test 0.9903 0.9968 0.9946 0.9877 0.9796 0.9911 0.9873 0.9742
Total 0.9947 0.9989 0.9982 0.9950 0.9923 0.9965 0.9963 0.9907
Train 0.2709 0.0519 0.0243 0.1843 0.0688 0.0487 0.0183 0.0702
RMSE Test 0.5052 0.2921 0.3756 0.5681 0.1722 0.1140 0.1359 0.1936
Total 0.3579 0.1660 0.2070 0.3476 0.1185 0.0746 0.0760 0.1213
Train 0.1611 0.0364 0.0095 0.1224 0.0378 0.0346 0.0074 0.0487
MAE Test 0.3381 0.2148 0.2716 0.3934 0.0980 0.0726 0.0781 0.1145
Total 0.2144 0.0901 0.0883 0.2039 0.0558 0.0460 0.0286 0.0685
Train 8.8524 3.4402 0.8646 28.0617 6.3432 5.8858 0.9053 12.2420
MAPE Test 22.5793 17.8237 19.6057 32.9776 20.6930 25.2515 222115 31.1199
Total 12.9831 7.7684 6.5042 29.5410 10.6515 11.7000 7.3021 17.9097

Table 6. Calculations and error Report.

These equations (4 to 7) contain values presented in Table 5. The values obtained from the calculations and the
associated errors in the data are provided in Table 6. Subsequently, the predictive capability of the model, along
with a discussion of the results presented graphically, is evaluated.

For model evaluation, various error metrics, including the coeflicient of determination, RMSE, MAE, and
MAPE, were calculated for both the test data and the entire dataset. The results are shown in Table 6.

By evaluating the error metrics, it can be observed that the performance of all four developed models for
both CO, and CH, adsorption is very good and similar to each other. Since the performance on the test data did
not show a significant decline compared to the training data in all the constructed models, it can be concluded
that overfitting did not occur. The CatBoost and Extra Trees models performed better than the other models
across all error metrics. The correlation coefficient and RMSE for the CatBoost model, for both gases and across
all data, are better than those of Extra Trees. However, the MAE and MAPE values for the total data are more
favorable in the Extra Trees model compared to CatBoost. It should be noted that although Extra Trees exhibited
better performance than CatBoost in the training dataset for both gases, it also showed a more significant decline
in the test dataset. Therefore, although Extra Trees performed better in terms of MAE and MAPE error metrics,
it has lower generalizability compared to the CatBoost model overall.

Graphical methods

To gain a better understanding of the models’ performance, cross plots can be utilized. In this method, the
model outputs are plotted against the actual values. The closer the points are to the line with a slope of one
and an intercept of zero, the better the model’s performance. The performance of the models related to CH,
adsorption is shown in Fig. 8, where the superior performance of the CatBoost and Extra Trees models is
evident. As expected from the error metrics, AdaBoost exhibited the worst performance, with many points
showing significant deviations from the actual values. The RF model demonstrated relatively good accuracy, but
there was still noticeable data dispersion compared to the ideal line. Although the Extra Trees model performed
better than CatBoost in the MAE and MAPE error metrics, it is evident from the cross plot that the CatBoost
model demonstrated much better performance, with the data points well aligned along the ideal line.

The cross plot for the CO, models is also shown in Fig. 9. Here, the performance of the two models, AdaBoost
and RE, is weaker compared to the other models. As with the CH, models, despite Extra Trees performing better
than CatBoost in the MAE and MAPE error metrics, the cross plots show the superior performance of CatBoost
compared to Extra Trees.

To closely examine the model performance, the cumulative frequency chart for the absolute error of each
model is shown in Fig. 10. In this approach, the higher the chart for a model, the better its performance.
Figure 10 A corresponds to the models built for CH,. Based on this, the Extra Trees model outperforms the
others noticeably up to an absolute error of 0.14, but after that, the CatBoost model performs better. These two
models estimated 94.2% of the data with an error of less than 0.14, indicating their exceptional performance. The

Scientific Reports |

(2025) 15:24575 | https://doi.org/10.1038/s41598-025-10010-4 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

8 ® Train , 8 @ Train
® Test /' ¢ Test
—X=Y P /) —X=Y
cl)6 T () i/ ’ wn 6 0
@ ===-10 % Error 4 Or 4 ===-10 % Error ,
= / = ’
= v =
B4 - 24
2 k>
E ¢ 2
0 1 1 1 0 T
0 2 4 6 0 2 4 6
A) Random forest B) CatBoost
8 8 ;
@ Train J @ Train ’/'
@ Test Ry @ Test J
p — X=Y S c - — X =Y S
§ ===-10 % Error ,/ Ad § ===-10 % Error ,/ id
E ,I T'; s, (4
=4 - ’, ’ =4 A (4
2 1’ s &
2 2
E 2 ¢
=™ 2 =% 2 -
4
¢
0 1 1 1 0 1 T T
0 2 4 6 0 2 4 6

Actual values

C) Extra trees

Actual values

D) AdaBoost

Fig. 8. Shear plot - performance of implemented models in CH, adsorption.

RF and AdaBoost models show similar performance, with RF outperforming up to an error of 0.17. However,

after that, AdaBoost improves and shows better performance.

To enhance the transparency and reproducibility of this study, the training/testing datasets and output results
associated with the CatBoost model—used for evaluating CO, and CH, adsorption—have been provided as

supplementary materials accompanying this manuscript.

The cumulative frequency chart for CO, also shows similar results to CH, (Fig. 10B). However, in this case,
the superior performance of the CatBoost and Extra Trees models compared to RF and AdaBoost is clearly
noticeable, with a significant gap between the charts. Both Extra Trees and CatBoost models estimated 80% of
the data with an absolute error of less than 0.13. Additionally, the CatBoost model estimated over 90% of the data
with an absolute error of less than 0.22, while this value for the Extra Trees model reaches 0.27. The results of
this section indicate that, despite the better performance of Extra Trees compared to CatBoost in terms of MAE
and MAPE, both models are highly competitive, with CatBoost showing superior performance in some cases.
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Fig. 9. Cross plot - performance of implemented models in CO, adsorption.

Outlier detection
To identify outliers and the applicable range of the model within a dataset, a well-known graphical method

called the Williams plot was used. Utilizing the Williams plot and identifying outliers in this chart can assist
in evaluating the reliability of the resulting model. In fact, a high percentage of outliers can disrupt the model’s
performance and ultimately render it unreliable. In other words, the significant presence of outliers can lead the
model to focus unduly on data points that are statistically invalid, thus compromising its overall performance.
Therefore, the examination and identification of outliers is a critical step in modeling.

This technique relies on the Hat matrix (H) and the calculation of standardized residuals (SR). The Hat
matrix is used to calculate the predicted values of the response variable, while the standardized residual is the
residual divided by its estimated standard error. The matrix MX has dimensions of n x p, where n and p represent
the number of data points and input variables, respectively, and SD is the standard deviation.
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Fig. 10. Model performance evaluation based on the Cumulative Frequency chart for assessing absolute error
values.

Leverage points, which are data points that have a significant effect on the regression coefficients of the
model, can be identified using the Hat matrix. The diagonal elements of the Hat matrix are examined to identify
these leverage points. Data points with a value greater than the leverage warning value (Hat*)=3(p+1)/n are
considered high-leverage points.

The safe ranges for statistical validation of both the developed models and the dataset are 0<H<H* and
—3<SR<3.If data points do not match the defined ranges, they can be categorized into three possible groups:

1) Suspicious vertical data: This includes data points that fall outside the ranges Hat* > H and SR>3 or SR < -3,
and are outside the applicable range.

2) Good leverage data: This includes data points that fall within the ranges Hat* < H and —3<SR<3.

3) Bad leverage data: This includes data points that fall within the ranges H>Hat* and SR>3 or SR < -3.

As shown in Fig. 11, the first chart (A) examines the data related to CH, adsorption using the Hat matrix. The
horizontal axis represents the Hat values, while the vertical axis indicates the SR. Blue points are identified as
valid data and fall within the red line (leverage threshold). Yellow points, which are near the suspicious range, are
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Fig. 11. Identification of outliers and model applicability range using the Williams plot.

identified as suspicious data. In this chart, a significant number of data points lie within the suspicious range or
outside of leverage (red points), indicating the potential presence of outliers or points with a significant impact
on the model.

Leverage thresholds of 0.005, 0.01, and 0.015 are set to help identify high-risk data points. This analysis
highlights the importance of monitoring the data to ensure modeling accuracy. In the second chart (B), valid
data are marked with blue points, while suspicious data are marked with yellow points. The proportion of
suspicious data is lower compared to the CH, chart, indicating more stable data for CO, in modeling.

The Hat values are divided into ranges of 0.01, 0.02, 0.03, 0.04, and 0.05, which are used for a more detailed
analysis of the impact of different data points on the modeling. Overall, this chart shows that CO, data has less
impact outside the leverage threshold, and the model potentially performs better in this region. These analyses
emphasize the impact of outliers in the modeling of CH, and CO, adsorption in reservoirs and highlight the
need for careful data examination to improve model accuracy.

Using a leverage threshold of 0.0062 and |SR| > 3, the CH, dataset contained outliers that exhibited significant
deviations in multiple input features. A statistical comparison revealed that:
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Feature Mean (All Data) | Mean (Outliers)
TOC (%) 10.22 40.00

Moisture (%) 0.92 222
Temperature (°C) | 57.45 51.17

Pressure (MPa) 11.45 8.31

Table 7. Average value of each parameter in whole dataset and outliers for CH,.

Feature Mean (All Data) | Mean (Outliers)
TOC (%) 50.14 70.74

Moisture (%) 1.02 0.24
Temperature (°C) | 48.18 45.24

Pressure (MPa) 8.70 11.19

Table 8. Average value of each parameter in whole dataset and outliers for CO,.

Results in Table 7 indicate that the outliers are characterized by extremely high TOC and elevated moisture
content, suggesting that they may reflect valid but rare geological formations (e.g., highly organic-rich, water-
retentive shales). These points could also stress the limitations of the model in high-TOC, high-moisture regions.

For the CO, dataset, with a leverage threshold of 0.0385 and |SR| > 3, the outliers were found to differ
primarily in terms of TOC only. The statistical summary is shown below:

Based on Table 8, Unlike CH,, CO, outliers are not high in moisture; in fact, they have significantly lower
moisture content than the average. This suggests that the model underperforms in low-moisture and high-TOC
conditions, which are geologically plausible scenarios such as dry, highly mature shales. These outliers do not
show high leverage and are unlikely to distort the model structurally, indicating they are likely true but difficult-
to-predict samples rather than data errors.

Sensitivity analysis

Sensitivity analysis is one of the key steps in improving model performance and interpreting the results in the
prediction of CO, and CH, gas adsorption. This method helps identify the impact of input variables on the
model’s outcomes and indicates which parameters have the greatest influence on model performance. In this
study, sensitivity analysis was performed using ML algorithms such as CatBoost and Extra Trees, based on the
SHAP (Shapley Additive Explanations) technique (Fig. 12).

The use of the SHAP technique allows for the examination of the contribution of each input variable to the
model’s output. This technique not only reveals the impact of variables at different levels but also uncovers the
nonlinear relationships and interactions between parameters. The SHAP analysis demonstrated that the pressure
variable had the greatest contribution to the prediction of gas adsorption capacity at all stages of modeling, while
the temperature variable only had a significant impact at high values.

According to the SHAP chart for CH, gas, the pressure variable and the percentage of TOC are the most
influential factors on CH, adsorption. An increase in pressure significantly enhances CH, adsorption capacity,
as indicated by a high positive SHAP value. The percentage of TOC also shows a similar positive influence,
reflecting the importance of the organic content of the reservoir rock in improving CH, storage. In contrast,
temperature has a negative impact on CH, adsorption. Higher temperatures result in a reduced storage capacity,
which is observed in the lower SHAP values at higher temperatures. This can be attributed to the decreased
tendency of CH, molecules to adsorb on the rock surface at higher temperatures. Other variables, such as
rock type and moisture, also have limited but significant impacts on CH, adsorption. Rock type, due to its
porosity and structural characteristics, may enhance adsorption, while increased moisture negatively affects CH,
adsorption, resulting in a reduced SHAP value.

For CO, gas, pressure remains the most influential variable. Increased pressure leads to a significant rise in the
SHAP value, indicating an increased CO, adsorption capacity at higher pressures. Additionally, the percentage
of CO, in the gas mixture has a positive and significant impact, with higher values of this variable improving
CO, adsorption. Temperature, like for CH,, has a negative effect on CO, adsorption. The negative impact of
temperature on CO, is more pronounced than for CH,, and the decrease in adsorption capacity with rising
temperature is clearly visible in the SHAP chart. This result may be due to the higher volatility of CO, at elevated
temperatures. Variables such as rock type and moisture play secondary roles in CO, adsorption. Although their
impact is limited, rock type, due to its surface characteristics and porosity, and moisture, due to occupying pore
space, can influence the final results. This sensitivity analysis for CO, provides valuable insights for the design
and optimization of storage systems.

In general, sensitivity analysis is an effective tool for gaining a deeper understanding of the impact of various
variables on gas adsorption. This method not only aids in improving modeling accuracy but also provides useful
information for designing future experiments and optimizing operational conditions in gas adsorption systems.
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Conclusions

This study demonstrates the significant potential of ML models in enhancing the understanding of CO, and
CH, adsorption capacities in tight reservoirs, utilizing data from prior research. By integrating ML techniques
with laboratory data, the research provides valuable insights into optimizing gas injection and storage processes.
The evaluation of 3,804 data points, covering variables such as temperature, pressure, rock type, TOC, and gas
composition, revealed that different parameters exert varying effects on adsorption capacity.

This study underscores the value of data-driven modeling for adsorption analysis in tight reservoirs by
utilizing a diverse and extensive dataset in conjunction with state-of-the-art machine learning techniques.
Among the evaluated algorithms, ensemble-based models such as Random Forest, CatBoost, AdaBoost,
and Extra Trees demonstrated superior predictive capability and interpretability. These results highlight the
importance of employing advanced ML tools to uncover complex patterns in experimental data, ultimately
improving our understanding of gas-rock interactions under varying thermodynamic conditions. The findings
contribute to the development of more accurate predictive tools for gas storage and enhanced recovery strategies
in unconventional reservoirs.

The study found that CO, percentage in injected gas and TOC are pivotal factors influencing CO, adsorption,
with TOC positively impacting CO, adsorption by providing microporous sites. Pressure also plays a critical
role, enhancing CO, adsorption while inversely affecting CH, adsorption due to competitive interactions.
Temperature had a negative impact on CO, adsorption but slightly increased CH, adsorption, suggesting gas-
specific interactions with rock properties. Correlation analysis further confirmed the competition between CO,
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and CH, for adsorption sites, with TOC and CO, concentration demonstrating the strongest positive effects on
CO, adsorption.

ML models, particularly CatBoost and Extra Trees, proved highly effective in predicting gas adsorption,
achieving high R? values (0.9989 for CO, and 0.9965 for CH,) and low prediction errors (RMSE and MAE).
The CatBoost model demonstrated superior overall performance, with strong stability and accuracy across all
metrics. The sensitivity analysis revealed that pressure is the most influential factor, followed by TOC and CO,
percentage, while temperature acted as a restrictive variable. Secondary variables such as rock type and moisture
content, though less impactful, were also highlighted.

The results underline the importance of careful hyperparameter tuning and the application of advanced
ML techniques to improve model performance and optimize gas storage systems. This research provides a
robust framework for future studies on gas adsorption in diverse reservoir conditions, emphasizing the utility of
combining laboratory data with ML methods. The findings offer practical guidance for managing gas injection
processes and improving storage capacity in tight reservoirs.

Challenges ahead
« Generalizability of Results

Although the CatBoost model has demonstrated significant performance, the generalization of these models to
other reservoir conditions and unseen data still requires further investigation. Particularly, the behavior of gases
may differ across various reservoirs or under different operational conditions.

« Use of Advanced and Interpretable Models

The use of more advanced methods and models can significantly contribute to modern research fields. While
ML techniques were utilized in this study, other methods such as deep learning or interpretable models like
Genetic Programming (GP), GEP, and Group Method of Data Handling (GMDH) could be considered for
future research.

e Recommendations

Future studies could explore several capabilities and potentials to expand the scope of this research, making it
more comprehensive and detailed, and thus more accessible to both the scientific and industrial communities.
Among these considerations are the use of more extensive datasets, the application of novel ML techniques, and
the integration of deep learning models. Additionally, the use of other gas mixtures, such as cushion gas, could
be explored, particularly in reservoirs with different rock types and thermodynamic conditions.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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