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Accurate prediction of oil production rates through wellhead chokes is critical for optimizing crude oil
production and operational efficiency in the petroleum industry. The central thrust of this investigation
involves the systematic creation of machine learning (ML) paradigms for the robust prediction of
choke flow performance. This endeavor is rigorously informed by comprehensive data acquired from
an operational petroleum production facility in the Middle East. Within the dataset, produced gas-oil
ratio (GOR), choke size, basic sediment and water (BS&W), wellhead pressure (THP), and crude oil API
stand out as key parameters. Each plays a vital role in forecasting the oil production rate. To ensure
reliability, robust data preprocessing was conducted using the Monte Carlo outlier detection (MCOD)
method to recognize and manage data outliers. The models were trained using 198 data points,
employing K-fold cross-validation (five folds) to ensure generalization. Gradient boosting machine
(GBM) models were optimized using advanced algorithms like self-adaptive differential evolution
(SADE), evolution strategy (ES), Bayesian probability improvement (BPI), and Batch Bayesian
optimization (BBO). Among these, SADE demonstrated superior performance based on metrics such
as average absolute relative error (AARE%), R?, and mean squared error (MSE). Furthermore, SHAP
(SHapley Additive exPlanations) analysis was used to interpret the models and highlight the dominant
influence of choke size and THP on the predictions. Overall, this research work presents a data-driven
framework for highly accurate and interpretable predictions, significantly contributing to production
optimization initiatives in the oil and gas sector.
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Remaining a critical component of the global economy, oil serves as a primary energy source and raw material.
It fuels diverse industries and underpins the production of chemicals, plastics, medicines, and many other
goods!—. Oil-rich nations, particularly those with vast production capabilities, harness their petroleum
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wealth as a primary engine for prosperity. The substantial financial returns from exporting oil provide these
countries with the means to bolster their foundational infrastructure, stimulate industrial expansion, and foster
innovation through technological uptake, thereby fast-tracking their overall economic and social evolution®*~.
For companies, the industry represents a major revenue stream through activities such as extraction, refining,
and distribution”®. As a result, the accurate prediction and optimal management of oil production are essential
for both oil-producing countries and the companies operating within the sector®-!1.

Accurately predicting the future output of oil wells—that is, the quantity of crude extracted over a specific
period—is an absolutely vital strategic endeavor for both oil and gas corporations and national economic
strategistlZ’B. Reliable forecasts allow for efficient resource management, cost optimization in extraction, and the
fulfillment of domestic and global energy demands'*~16. Furthermore, these accurate predictions are instrumental
in shaping key operational decisions, from determining where to drill new wells and when to schedule essential
maintenance, to implementing effective long-term resource management strategies. Production forecasting
holds immense importance for both corporate strategies and macroeconomic planning!’. However, due to the
complexities of oil reservoirs and the various factors influencing production including geological conditions,
reservoir pressure, and oil characteristics, accurate forecasting remains a significant challenge in the oil
industry!'®1°.

Since the early twentieth century, petroleum engineers have continuously worked on forecasting oil well
production rates. This has involved developing and employing various models to simulate reservoir oil flow and
refine production predictions for over a hundred years®. Such efforts have led to the development of empirical
equations which are derived from experimental data and rely on parameters pertaining to reservoir and well
characteristics?. Among these, the Gilbert equation is a well-known approach often cited for its simplicity
and cost-efficiency. These equations can provide reasonable predictions for well production under specific
conditions resembling their development data. However, their reliability diminishes when applied to new or
diverse scenarios?%.

One of the primary limitations of empirical equations is their lack of comprehensiveness. These equations
are typically derived from experimental data specific to a particular reservoir or set of conditions that may not
generalize well to different wells or environments?*-?¢. Geological differences, as well as variations in reservoir
pressure, temperature, and oil properties, can lead to inaccurate predictions when these equations are applied
outside their original context?’. Consequently, in intricate scenarios, their effectiveness plummets, frequently
leading to erroneous forecasts and suboptimal strategic choices?®%°.

Moving beyond the deficiencies of empirical equations, the advent of physical modeling and simulation
methods has established a more resilient framework for forecasting oil production rates®*-32. Leveraging
specialized software, these simulation-driven approaches develop models of oil well and reservoir conditions.
This is accomplished by weaving in diverse data, including geological structures, reservoir characteristics, and
crucial physical parameters like pressure and temperature®**. While these models offer potential for higher
accuracy, their effectiveness is often hindered by uncertainties in the input data and the complexity of the models
themselves?*2834. Additionally, the challenges in collecting precise and extensive datasets, together with the
sophistication of simulations, can result in low-accuracy or unreliable predictions, especially in cases involving
highly complex reservoirs®*-¢.

This study addresses the vital need for accurate predictions of choke flow performance to enhance crude oil
production efficiency. Using a robust dataset from a Middle Eastern oil production site, the workflow begins
with detailed data preprocessing to ensure reliability, including outlier detection via the MCOD algorithm.
Key parameters, such as choke size, THP, GOR, BS&W, and oil API, were analyzed for statistical metrics and
correlations. GBM models were developed and optimized using advanced algorithms like SADE and ES, with
K-fold cross-validation employed to ensure model generalization. Performance evaluation, using metrics such
as R?, MSE, and AARE%, shows SADE’s superior predictive accuracy. SHAP analysis further interprets the
model, revealing choke size and THP as the most influential factors. Finally, visualizations including raincloud
plots, cross-plots, and SHAP diagrams illustrate the robustness and interpretability of the developed framework.
Figure 1 is the schematic workflow implemented in this research.

Our research offers several key contributions to choke flow rate prediction in sub-critical oil wells. First, we
present a cost-effective methodology that accurately predicts flow rates using only readily available wellhead
data, removing the need for expensive downhole sensors or complex fluid characterization. Second, we provide a
comprehensive comparative analysis of advanced metaheuristic-optimized machine learning algorithms (SADE,
ES, PI, BBO), identifying the most robust and accurate model for this specific application. Third, we emphasize
enhanced generalization and reliability, rigorously evaluating models on unseen data to ensure high predictive
accuracy for real-world deployment. Finally, our developed tool offers practical industry applicability as a low-
computational-cost solution that integrates seamlessly into existing field monitoring systems, advancing cost-
effective production optimization and well management.

Methodology

Collected data analysis

This study developed and rigorously assessed its models using meticulously gathered field data from a Middle
Eastern production unit. Table 1 offers a comprehensive statistical overview of this dataset, detailing key input
data like wellhead pressure, choke size, gas-to-oil ratio, basic sediment and water content, and oil API, as well
as the crucial production flowrate (our output variable). For each, Table 1 presents metrics like the maximum,
minimum, mean, mode, kurtosis, skewness, and standard deviation. Our data-driven machine learning models
were built upon a dataset of 198 distinct data points. A substantial 90% of these points were dedicated to the
training and validation phases, employing a robust fivefold cross-validation strategy, while the remaining 10%
was carefully set aside for an unbiased evaluation of the models’ performance.
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Fig. 1. Schematic of the implemented methodology.

Parameters Minimum | Maximum | Median | Average | Kurtosis | Skewness | Standard deviation
Choke Size (1/64") 12.00 74.00 38.00 38.95 0.19 0.22 10.80
THP (psi) 0.00 1141.30 419.74 432.26 4.75 1.24 141.31
GOR (scf/stb) 156.35 1888.09 348.74 | 494.13 4.56 2.08 314.40
BS&W (%) 0.02 65 0.9 4.60 | 12.96 3.35 9.52
Oil API 9.5 35.68 18.86 19.11 | 11.34 2.53 3.69
Oil Rate (bbl/day) | 528.30 4000 1513.20 | 1664.35 0.45 0.96 714.22

Table 1. Statistic-based information relevant to studied data.

This study aims to accurately estimate choke flow performance, defined as the oil production rate through
wellhead chokes, and considers it the primary output variable in the model. The estimation is derived from a
series of input factors. To enhance the understanding of the distribution, variability, and relationships between
these input factors and choke flow performance, scatter matrix diagrams have been constructed and presented in
Fig. 2. These diagrams offer a comprehensive visualization of the dataset, highlighting trends, correlations, and
potential outliers, which are crucial for analyzing the data’s underlying structure and facilitating the development
of a reliable predictive model. Furthermore, Fig. 3 displays raincloud plots for each variable, offering additional
insights into their distribution and characteristics.

Gradient boosting machine algorithm

Introduced by Jerome Friedman in 1999, GBM are a powerful supervised ensemble learning approach. They
construct a highly accurate predictive model by incrementally combining numerous decision trees. This
iterative methodology specifically aims to correct the shortcomings of previous trees and minimize a predefined
loss function, thereby significantly boosting predictive accuracy across both classification and regression
problems®”*8, GBM excels at managing complex, non-linear relationships and offers valuable insights into
feature importance, aiding feature selection. However, its computational demands and the necessity for precise
hyperparameter tuning (e.g., learning rate, tree depth) to mitigate overfitting and underfitting present notable
challenges.

GBM employs an iterative, stage-by-stage methodology. It begins by fitting a simple model, such as a decision
tree, to the dataset. The fundamental aim is to optimize the loss function, L(y,f(x)), where y represents the
true value, f(x) the model’s output, and L the chosen loss metric. With each iteration, the model undergoes
incremental updates designed to progressively reduce existing errors and sharpen its predictions®*.

The first stage, which makes the first iteration is as below

Fy(xz) = argmin Z L(y;, C)
¢ =1

where FO(X) is the initial constant prediction; L(yi,C) is the Loss function; y is the true target value; C is the
weight or contribution of the weak learner.

The second step, for each iteration m, is as follows: For each data point i, determine the "pseudo-residuals" by
taking the negative gradient of the loss function with respect to the model’s current predictions. This effectively
quantifies the error direction for that specific observation.
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Fig. 2. Scatter matrix diagram: Relationships between variables.
OL(yi, F(x;
Fim = — [ (yi, F(x1)) (1)
F(z)=Fp_1(x)

OF (z7)

where F_(x) is the current model prediction; r; _ is the pseudo-residuals of data poin i at the iteration step of m.
Next, a base learner is fitted to these residuals:

hm(x) = arg}fninz (Fim — h(x:))?

In the fourth stage, the model is refined:

Fo(z) =

Fr—1(z) + v.hm(x)

2

3)

The learning rate (v) in the GBM algorithm dictates how much each successively added decision tree contributes
to the overall model’s correction. Iteratively, the algorithm introduces a new decision tree with the explicit
purpose of mitigating the inaccuracies inherited from the combined output of all previous trees. GBM’s inherent
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Fig. 3. Raincloud plots of all the input variables for choke flow performance modeling.

flexibility is underscored by its capacity to customize the loss function (L), enabling it to align perfectly with
specific problem goals and thus proving to be a highly versatile method. To improve the model’s generalization
capabilities and prevent it from simply memorizing the training data, regularization techniques—specifically
adjusting the learning rate (v) and limiting tree depth—are applied. The culmination of this process is a final
classifier that represents a weighted sum of predictions from its constituent trees, allowing it to gradually uncover
deeper, more complex relationships within the data*'~**. A schematic representation of the GBM manner is
provided in Fig. 4.

Optimizations algorithms

Self-adaptive differential evolution (SADE)

SADE represents a significant enhancement over the conventional Differential Evolution (DE) algorithm.
Unlike standard DE, SADE employs an adaptive mechanism that dynamically adjusts its control parameters
throughout the optimization process. This adaptive approach has proven particularly effective for solving
continuous optimization problems, demonstrating notable success in addressing complex, multimodal, and
high-dimensional scenarios***>. Key parameters, including the scaling factor (F) and crossover rate (CR),
are automatically modified by SADE, eliminating the need for manual parameter tuning and enhancing the
algorithm’s robustness and efficacy®.

The central concept of SADE lies in its ability to evolve a population of candidate solutions over successive
generations while simultaneously self-adjusting control parameters based on their historical performance. This
self-adaptive mechanism enables the algorithm to effectively balance exploration and exploitation within the
search space, thereby improving convergence properties and yielding higher-quality solutions*”4%,

Population initialization: The optimization begins with the creation of a population containing NP candidate
solutions, denoted as X= [xl, b XNP], where each X, represents an individual solution within the search
space. Each solution is structured as a D-dimensional vector, where D corresponds to the number of variables
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Fig. 4. Gradient Boosting Machine algorithm flowchart.

in the optimization problem. The initial population is typically generated randomly, ensuring that each solution
adheres to the predefined boundaries of the search space.

Mutation: generating mutant vectors: For each individual solution x; in the population, a mutant vector v, is
generated using a designated mutation strategy. A commonly used strategy is the “DE/rand/1” method, defined
as:

vi =xr1 + Fi - (X2 — Xe3) (4)

Here, X, X, and X, are three distinct, randomly selected individuals from the current population, while Fi is
the scaling factor associated with xi. The scaling factor Fi determines the magnitude of the differential variation
and is crucial for balancing exploration and exploitation of the search space.

Crossover: After creating the mutant vector vi, a trial vector ui is then formed. This is done by combining
elements from both the mutant vector vi and the target vector xi using a crossover operation. The crossover is
defined as:

_ f vy if rand(0,1) < CR; or j = jrand (5)
Uiy = xij otherwise

Here, j represents the dimension index (j=1,2, ..., D), rand(0,1) is a random number from a uniform distribution
between 0 and 1, and CR, is the crossover rate associated with the target vector xi. The index j, . is a randomly
selected dimension index, ensuring that at least one element in the trial vector ui is directly inherited from the
mutant vector vi.

Selection: The next step involves determining whether the trial vector ui or the target vector xi will advance
to the next generation. This decision is based on the values of the objective function F(0) and follows this rule®:

x; otherwise

By comparing the fitness of u; and x,, the vector with the better performance is selected for the subsequent
generation.

Parameter adaptation: During the optimization process, the scaling factor Fi and crossover rate CR, are
dynamically updated to enhance algorithm performance. After each generation, these parameters are adjusted
based on the success of trial vectors. Specifically, when a trial vector ui is selected f(u,) <f(x,), the corresponding
Fiand CR, values are deemed successful and recorded in sets S and S, respectively. At the end of a generation,
new parameter values are calculated as:

new _ | randc(pF,0.1) if Sp#£0
B _{ F; otherwise ()

new _ | randn (ucr,0.1) if Scr #0
CR™ = { CR; otherwise ®)

Scientific Reports |

(2025) 15:25825 | https://doi.org/10.1038/s41598-025-10060-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Here, W, and p, represent the mean values of the successful parameters stored within SF and SCR sets,
respectively. The functions randc and randn generate random numbers from Cauchy and normal distributions,
respectively, introducing variability into the parameter values. If SF or SCR are empty, parameters will not be
update®0->2,

Evolutionary strategies (ES)

ES is an optimization algorithm that mimics biological evolution to solve continuous problems. It iteratively
develops a group of candidate solutions using mutation, recombination, and selection over successive
generations. Each solution is represented by (x,0), where x is the solution itself and o dictates the magnitude of
mutation for each component of x.%3.

Initialization: The ES process begins by initializing a population of y individuals. The solution vectors (x) are
typically sampled randomly within the defined search bounds of the optimization problem, while the strategy
parameters (o) are initialized with small, positive values. For instance, the solution and strategy parameters can
be initialized as follows:

z; ~ Uniform(z™™, i), o; ~ Uniform(c™",6™*) 9)

Here, ximi“ and xm define the valid range for the solution vector, while o™ and ™2 establish the range for the
strategy parameters.

Mutation and offspring generation: In each generation, A offspring are created through the mutation process.
Mutation operates by modifying both the solution vector x and its associated strategy parameters ¢. Updated
strategy parameters (denoted as 0) are computed using a predefined mutation rule, which introduces variability
into the mutation scale. This adaptive mechanism allows the algorithm to navigate complex search landscapes
effectively. The mutation process ensures robust exploration while maintaining the ability to refine promising
solutions over successive generations.

(;I:ai X exp (TXN(O.I)—&—T,XNZ- (0.1)) )

In this context, N(0,1) represents a random variable drawn from a standard normal distribution,
while N,(0,1) denotes an independent random variable sampled separately for each dimension. The
parameters 7 and 7’ are learning rates, often chosen based on the dimensionality of the problem>*:

/ /
T=x;+0N; (0.1) (10)

Recombination, when utilized, integrates information from multiple parent solutions to produce offspring. In
the case of intermediate recombination, the offspring (x',0") is generated as a weighted average of the y parent
solutions. The process can be mathematically expressed as:

1#
= — XTi i 11
: M; ; (11)

1 122
g = — T;.5 12
) #; ; (12)

~

N

-~

Selection phase: Following the generation of offspring, the selection phase determines the individuals that will
proceed to the next iteration. In the (t+))-ES strategy, the top p individuals are selected from the combined
pool of u parents and X offspring. Alternatively, in the (u,A)-ES strategy, the selection occurs exclusively among
the A\ offspring, with A>p. This approach ensures that the population evolves progressively toward better
solutions with each generation.

One of the key strengths of Evolution Strategies (ES) lies in its self-adaptive mechanism, which enables
the dynamic adjustment of strategy parameters () throughout the optimization process. This self-adaptation
effectively balances exploration (broad search of the solution space) with exploitation (refining optimal regions),
making the method particularly effective for solving complex and high-dimensional optimization problems.
Additionally, ES can be further enhanced with advanced techniques, such as Covariance Matrix Adaptation
(CMA-ES), which improves the optimization process by adapting the covariance matrix of the search
distribution®-%7,

In summary, Evolution Strategies evolve a population of candidate solutions by iteratively applying mutation,
recombination, and selection. The dynamic adjustment of strategy parameters enhances the robustness and
versatility of the algorithm for continuous optimization problems®®>°. The general procedure involves the
following steps: initialization of the population, offspring generation through mutation and recombination,
fitness evaluation, selection of the best individuals, and iteration until a termination criterion is met. The best
solution obtained during this iterative process is presented as the final result®.

Bayesian probability improvement (BPI)
Bayesian Probability Improvement (BPI) represents a specialized optimization technique commonly employed
within the Bayesian optimization framework. Bayesian optimization is a global optimization strategy designed
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for expensive black-box functions, offering particular advantages when evaluating the objective function
is computationally costly, as it aims to identify the optimum with minimal function evaluations. Within this
framework, BPI serves as an acquisition function that guides the optimization process by effectively balancing
exploration of uncertain regions with exploitation of known promising areas®!-%.

The fundamental objective of BPI is to maximize the probability that a newly selected candidate point
will yield an improved objective function value compared to the current best observation. Unlike alternative
acquisition functions like Expected Improvement (EI) or Upper Confidence Bound (UCB), BPI adopts a
distinctly probabilistic perspective by directly quantifying the probability of improvement. This approach proves
especially valuable in scenarios where increasing the likelihood of discovering a better solution takes precedence
over maximizing the expected magnitude of improvement®.

At its core, BPI calculates the probability that the objective function amount at a new point x will surpass
the current best-observed value, denoted as f{x+). This calculation utilizes the posterior distribution provided
by a Gaussian Process (GP) model, which is widely employed in Bayesian optimization frameworks. The GP
model provides a predicted mean p(x) and variance ¢*(x) for any location x in the search space. The probability
of improvement is then derived from the cumulative distribution function (CDF) of the normal distribution®”.

The BPI is mathematically formulated as:

BPI(z) = @ (‘W) (13)

where, @ represents the cumulative distribution function of the standard normal distribution, p(x) denotes the
predicted mean of the GP at point x, d(x) represents the predicted standard deviation of the GP at point x,
f(x*) refers to the best objective function value observed thus far.

The BPI acquisition function is optimized to determine the next point for evaluation. Higher BPI values
indicate a greater probability that the new point will improve upon the current best solution. This approach is
particularly efficient when the primary goal is to ensure consistent progress with each evaluation, as it focuses on
the likelihood of improvement rather than the potential magnitude of improvement®®¢”.

In conclusion, BPI represents a probabilistic acquisition function that leverages the predictive uncertainty
quantified by a Gaussian Process to guide the search for optimal solutions. By prioritizing the probability of
improvement, BPI provides a valuable tool within the Bayesian optimization framework, particularly when
function evaluations are computationally expensive and the objective is to maximize the chances of finding
superior solutions®.

Batch bayesian optimization (BBO)

BBO extends the traditional Bayesian optimization framework to enable the simultaneous evaluation of multiple
points, referred to as a “batch,” rather than evaluating points sequentially. This adaptation is particularly
advantageous in environments where parallel computing resources, such as high-performance computing
clusters or distributed systems, are available. By leveraging parallelism, BBO seeks to significantly reduce the
total optimization time while preserving the ability of Bayesian optimization to efficiently identify the global
optimum®7°,

The primary innovation in BBO is the selection of a group of points for simultaneous evaluation instead
of iteratively selecting individual points. This requires modifying the acquisition function to account for the
interdependencies and correlations among points within the batch, as the evaluation of one point may provide
information that affects the value of others in the group.

BBO commonly uses acquisition functions that balance exploring uncertain regions with exploiting
promising areas within a batch. A popular method is Parallel Expected Improvement (q-EI), which extends the
standard Expected Improvement (EI) function to evaluate multiple points at once. The q-EI function calculates
the expected improvement beyond the current best value for a batch of q points, factoring in their correlations
as predicted by the Gaussian Process (GP). The formula for q-EI is”!

q— EI (z) = Elmazf (z) - f (5L‘+) .0] (14)

where, X=[x XXy .X_] represents the batch of q points selected for evaluation, f(X) denotes the objective
function values at the%atch points, f(x+) is the current best-observed value of the objective function, E denotes
the expectation taken over the joint posterior distribution of the GP at the batch points.

By explicitly considering the joint distribution over the batch, q-EI ensures that the selected points maximize
the expected improvement collectively rather than in isolation’?

BBO) enhances the efficiency of traditional Bayesian optimization by enabling simultaneous evaluation of
multiple points, thus reducing the total optimization time. The use of specially adapted acquisition functions,
such as q-EI and Thompson Sampling, ensures that the optimization process continues to balance exploration
and exploitation effectively. BBO is especially beneficial in scenarios where parallel computational resources
are available, as it accelerates the optimization process while maintaining the high performance of Bayesian
optimization in locating the global optimum?>.

Models evaluation

A prevalent and powerful strategy for assessing the generalization capability of machine learning models is
K-fold cross-validation. This method meticulously divides the complete dataset into K discrete and uniformly
sized partitions, known as folds. In each iteration of the process, the model is trained on K-1 folds while
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the remaining fold is used to evaluate its performance. This approach is renowned for its straightforward
implementation and ability to produce consistent, reliable results, making it a preferred choice among various
cross-validation techniques. Its simplicity and balanced approach ensure its applicability across a broad range of
machine learning tasks>>~’.

To grasp the mechanics of K-fold cross-validation, let’s consider a scenario where K=5 (as visually depicted
in Fig. 5). The entire dataset is systematically segmented into five equally sized partitions, with each segment
designated as a "fold." The validation process then unfolds iteratively: In the initial round, four of these folds
collectively serve as the training data for the model, while the first fold is reserved exclusively for testing its
performance. This pattern continues: in the subsequent iteration, the second fold becomes the dedicated test set,
with the remaining four constituting the training material. This meticulous rotational scheme ensures that every
one of the five folds functions precisely once as the test set, leading to a more robust and unbiased assessment of
the model’s generalization capabilities””>.

To assess the accuracy and effectiveness of each model, several key performance indicators were calculated,
including RE%, AARE%, MSE, and R% Detailed explanations of each metric are presented in the following
sections!>76-78;

pred __ y/exp
RE% = (VV) x 100 (10)

chp
) (11)

N
100 ‘/ip'red _ V;EXP

i=1

All Data

Test Data

Split | Fold 2 o 0 0 Fold N
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Finding the tuned
—
hyperparameters

Split N Fold 2 (R

Final evaluation Test Data

Fig. 5. K-fold cross-validation Algorithm schematic.

Scientific Reports|  (2025) 15:25825 | https://doi.org/10.1038/s41598-025-10060-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Frequency

N 2
Z (‘/ipred _ ‘/iexp)

MSE == (12
N N
N 2
Z (‘/ipred o V;_exp)
R =1- =1 (13)
> (v -V’
i=1

Within these equations, the subscript i serves to identify a unique data point from our entire dataset. For
any given i, ‘pred’ signifies the value projected by our model, while ‘exp’ refers to the corresponding actual or
experimentally observed value. Furthermore, N consistently represents the grand total data points.

Results and discussion

Comprehensive data characterization

Prior to developing machine learning models for predicting choke flow performance, ensuring data reliability
through outlier management is paramount. This research implemented the Monte Carlo Outlier Detection
(MCOD) algorithm, a robust technique for identifying outliers in large datasets using random sampling and
density-based approaches. MCOD assesses local data density to pinpoint data points that deviate significantly
from their neighbors. By employing Monte Carlo sampling to estimate data subsets, the algorithm reduces
computational burden. Its effectiveness and scalability render it suitable for high-dimensional datasets and real-
time applications. There’s a natural give-and-take between how accurate the MCOD method is and how fast it
can compute results. This balance is influenced by the sample size and the number of nearest neighbors (k) you
choose. Even with this trade-off, MCOD is incredibly useful for initial data exploration and finding anomalies,
especially when you don’t need perfect precision or when youre working with limited computing power. Its
ability to balance accuracy and efficiency makes it a great tool for spotting outliers in complicated datasets.

A boxplot in Fig. 6 illustrates our dataset’s distribution and acceptable range, with most data points falling
within this range, indicating high data quality. To maximize the models’ ability to generalize, the complete
collected dataset was used for training. This comprehensive approach allows the models to discern underlying
patterns effectively, resulting in more reliable and accurate predictions on unseen data.

Models’ optimization

This section focuses on how we applied various optimization algorithms to improve the Gradient Boosting
Machine (GBM). Our goal was to fine-tune GBM’s performance by optimizing its hyperparameters, which
we did both by directly applying optimization techniques and by using them with k-fold cross-validation. The
specific hyperparameters we worked on were maximum depth, the number of estimators, minimum samples
and maximum features needed for splitting, the learning rate, subsample size, and minimum samples required
for leaves. Table 2 provides a complete overview of the parameter ranges we have explored and the best values
identified by each optimization algorithm.

Figure 7 visualizes the Mean Squared Error (MSE) progression for each optimization algorithm over 200
iterations, identifying the best hyperparameter configurations (also in Table 2). Figure 8 then compares their
computational times, which were measured on a machine with Intel Core i7-6700 CPU (3.40 GHz) and 16 GB
RAM. The SADE method was the slowest at roughly 4200 s, whereas the ES algorithm was the fastest.

Outlier Detection on Target Variable

Boxplot of Target Variable Distribution
W Frequency

B 8
-=-- 25td Dev Lower

2 Std Dev Upper [e]
3500

3000

2500

Values

2000

1500

1000

1500 2000 2500 3000
Target Variable Values

3500

Fig. 6. (A) Detection of outliers using the MCOD algorithm and (B) Boxplot depicting the distribution of the
dataset.
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Tuning parameter | Considered range | SADE | ES BPI BBO
n_estimators [50-300] 223 159 247 230
max_depth [5-20] 5 15 14 12
max_features [0.1-1] 0.7146 | 0.2846 | 0.2221 | 0.2595
min_samples_split | [0.01-0.5] 0.2850 | 0.3593 | 0.2522 | 0.3079
learning_rate [0.01-0.3] 0.0191 | 0.0335 | 0.0339 | 0.0359
subsample [0.5-1] 0.6535 | 0.9836 | 0.6462 | 0.7706
min_samples_leaf | [0.01-0.5] 3.0000 | 0.0173 | 0.0206 | 0.0191

Table 2. Evaluating optimal gradient boosting hyperparameters using four optimization techniques within a
specified parameter range.
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Fig. 7. Iteration-wise MSE for different optimization methods.

Figure 8 clearly shows a stark difference in optimization progression: the SADE algorithm reached its peak
performance—the lowest MSE—quite rapidly in the initial generations. Conversely, BPL, ES, and BBO algorithms
demonstrated a more deliberate and gradual enhancement in their performance as the iterations continued.

Table 3 provides a comprehensive comparison of hybrid optimization approaches using the GBM estimator
and Fig. 9 displays these metrics for testing stage per all models. The evaluation utilizes key metrics, including
R%, MSE, and AARE%, across training, testing, and total data sets. The optimization algorithms considered
are SADE, ES, PI, and BBO, with a specific focus on test-phase metrics as the primary indicators of model
performance.

From Table 3, it is evident that SADE exhibits the highest testing-phase accuracy among all algorithms. SADE
achieves a testing R? value of 0.5935, indicating moderate explanatory power in predicting choke performance
compared to other methods. Furthermore, SADE demonstrates superior error minimization, evident in its lowest
testing MSE. This substantial reduction in error reflects the algorithm’s enhanced ability to fit the data during
testing. Additionally, the testing-phase AARE% for SADE is 22.59%, which, while not the lowest observed, still
aligns closely with the algorithm’s robust prediction performance. The consistency between training and test
performance for SADE highlights its reliability for modeling.

Despite its high accuracy, SADE comes with a trade-off in computational runtime, as its complex optimization
structure results in additional computational overhead. Comparatively, while ES achieves a higher training R
(0.8385) and a total R? of 0.7985, its testing R? is lower at 0.5794. This drop suggests a less stable generalization
capability when applied to unseen data. ES also yields a testing MSE higher than SADE, which points to reduced
prediction precision. Furthermore, its testing-phase AARE% of 28.62% is notably higher, indicating greater
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Fig. 8. Runtime comparison of optimization algorithms integrated with GBM.
R2 MSE AARE%
Optimization algorithm | Training | Test Total | Training | Test Total Training | Test Total
SADE 0.8003 | 0.5935 | 0.7783 | 109,000 | 241,076.64 | 122,000 | 16.489 | 22.5882 | 17.1051
ES 0.8385 | 0.5794 | 0.7985 | 82,700 | 361,297.16 | 111,000 | 13.6684 |28.6172 |15.1784
PI 0.8714 | 0.5628 | 0.8234 | 65,800 | 375,541.3 |97,100 |12.1332 |30.6041 |13.999
BBO 0.8683 | 0.5717 | 0.8222 | 67,400 | 367,965.07 | 97,800 | 12.4008 |30.7813 | 14.2574

Table 3. Efficacy benchmarking of optimization algorithms on train, test, and all datasets.

absolute errors in prediction during testing. Overall, ES demonstrates acceptable but weaker performance
compared to SADE, particularly in testing metrics.

PI and BBO offer comparable results, both achieving higher testing-phase R? values compared to SADE,
with PI slightly outperforming BBO (0.5628 vs. 0.5717). However, an examination of testing MSE reveals clear
deficiencies in these algorithms compared to SADE, with PI and BBO recording testing MSE values. These
errors are significantly larger than SADE’s testing MSE, underscoring SADE’s superior capacity to minimize
prediction errors. Additionally, both PI and BBO yield high AARE% values during testing (30.60% and 30.78%,
respectively), which further highlight their reduced accuracy compared to SADE. While these algorithms
perform well in training (PI with the highest training R? of 0.8714), their weaker generalization capabilities
during testing limit their overall utility.

While the SADE algorithm demands the highest computational cost (~ 4200 s), it delivers superior predictive
performance, achieving the lowest testing MSE and the highest R? (0.5935) among all methods. In contrast,
faster algorithms like ES sacrifice accuracy for efficiency, exhibiting gradual error reduction but failing to match
SADE’s explanatory power or error minimization. This trade-off underscores SADE’s value in applications where
precision is critical, despite its resource intensity, whereas ES or BBO may suffice for scenarios prioritizing rapid,
approximate solutions. The 22.59% AARE% further confirms SADE’s reliability, justifying its computational
overhead when model robustness is paramount.

Figure 10 compellingly illustrates the enhanced precision of our proposed models, with the SADE algorithm
distinctly outperforming others. Its cross-plots reveal a significantly tighter clustering of data points around the
unit slope line, a clear indicator of superior accuracy. This heightened performance is further underscored by the
fitted line equations in the SADE plots, which lie remarkably close to the bisector line.

Figure 11 effectively visualizes the distribution of relative deviations for each of our hybrid models. A tighter
clustering of data points around the y=0 line indicates greater accuracy from the estimator. Based on this, the
GBM estimator tuned by SADE stands out as the most efficient predictive tool among all evaluated methods.
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Fig. 9. Testing performance of optimization algorithms: R%, AARE%, and MSE.

Complementing this, Fig. 12 offers a direct comparison between the estimated and real data points across all

four algorithms.

Figure 13 provides a powerful look into our predictive model’s decision-making process through SHAP
(SHapley Additive exPlanations) analysis. This visualization clearly highlights which individual features are most
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crucial in shaping the model’s output. By ranking input variables—including choke size, tubing head pressure
(THP), gas-oil ratio (GOR), basic sediment and water (BS&W), and API—based on their average absolute SHAP
values, we can quantify each feature’s contribution to the magnitude of the model’s predictions. The analysis
strikingly reveals that choke size and THP have the highest mean SHAP values, solidifying their role as the
primary drivers of the model’s predictions and overall performance.

Figure 14 further investigates the SHAP analysis results for a choke flow performance model by demonstrating
the impact of various input parameters on the model outputs. The plot visually represents how individual features
affect choke flow predictions, where positive SHAP values correlate with an increase in choke flow and negative
SHAP values indicate a decrease. The red points correspond to higher values for each feature. For instance, larger
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choke sizes are associated with elevated choke flow rates, while higher THP promotes greater oil production
through the choke. Conversely, higher values of GOR and BS&W are linked to reductions in oil production or
choke performance. These findings align with theoretical and practical observations from the literature.

Specifically, the SHAP results align with established principles associated with reservoir and well performance.
Larger choke sizes reduce flow resistance’®, enabling higher production rates. Similarly, increased THP reflects
stronger reservoir pressure®!82, which facilitates greater oil production and higher flow rates. On the other hand,
higher BS&W values signify poor reservoir quality, leading to increased pressure drops across the well and
reduced production rates®>34. Excessively high GOR values not only result in increased oil flashing at the surface
but also negatively impact total production rate (TPR) due to the adverse effects on oil well performance, such as
reduced tubing pressure and efficiency®. These insights confirm the predictive relevance and practical validity
of the SHAP analysis results in capturing the dynamics of choke flow performance.

The developed tools can be easily used to predict choke oil flow rate based on wellhead data. In addition, the
same workflow can be applied in other fields so as to develop cost-effective, fast, reliable and accurate models.

Limitations and future work

The performance of any data-driven optimization approach is inherently tied to the quality and representativeness
of the dataset. We acknowledge potential limitations stemming from data collection biases, the completeness
and noise within the dataset, and whether the dataset size and diversity fully capture the problem’s complexity,
which could affect the generalizability of our findings. We also recognize the risk of overfitting our optimization
methods to the training data. While we employed strategies like cross-validation and regularization to mitigate
this, some residual risk may remain, impacting performance on unseen data. Further validation on independent
or larger datasets will be crucial.

Our current optimization framework operates under specific assumptions. We critically examine model
simplifications (e.g., assumed linearity), the representativeness of parameter space boundaries, and any potential
limitations or biases in the objective function design that might not fully align with real-world outcomes. These
identified limitations serve as a foundation for clear and impactful future research directions. These include,
but are not limited to, exploring advanced validation techniques, investigating hybrid optimization approaches,
addressing data sparsity or imbalance, incorporating real-time or dynamic optimization, integrating multi-
objective optimization, and conducting deployment and real-world impact studies to assess the practical
implementation and evaluation of our optimized solutions.

Conclusions

This study demonstrates the successful application of machine learning to predict choke flow performance,
utilizing a high-quality dataset from a crude oil production site. Preprocessing techniques, including the MCOD
algorithm, were instrumental in ensuring reliable data for model development. The SADE algorithm was the
top performer among the optimization methods used, achieving both the lowest MSE and the highest R? value
during the testing phase. The models developed in this study exhibited strong predictive accuracy, with SHAP
analysis providing valuable insights into the relative importance of the input parameters. Specifically, choke
size and THP emerged as the dominant factors influencing choke flow performance. These findings align with
known physical principles, validating the models’ practical relevance. This research provides a robust framework
for applying data-driven approaches to production optimization, with the potential for broader applications in
the oil and gas industry. Our comparative analysis demonstrates that the SADE algorithm consistently delivers
the highest accuracy in predicting choke flow rate during the crucial testing phase. SADE achieved a testing R2
of 0.5935, indicating superior explanatory power compared to other methods. Crucially, SADE exhibited the
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lowest testing MSE, reflecting its enhanced ability to minimize prediction errors and fit unseen data accurately.
While its testing-phase AARE% of 22.59% was not the absolute lowest, it aligns well with its robust predictive
performance and the overall consistency observed between its training and test results, highlighting its reliability
for modeling. In comparison, other algorithms demonstrated weaker generalization capabilities. For instance,
ES, despite a higher training R2 of 0.8385, showed a noticeable drop in testing R2 to 0.5794, along with a higher
testing MSE and an AARE% of 28.62%, indicating reduced prediction precision for unseen data. Similarly, PI
and BBO, while achieving training R2 values as high as 0.8714 (PI), recorded testing R2 values of 0.5628 and
0.5717 respectively, which are comparable to SADE’s R2 but come with significantly higher testing MSE values
and high AARE% values of 30.60% (PI) and 30.78% (BBO). These metrics underscore their reduced accuracy
and generalization when confronted with new data, limiting their overall utility compared to SADE.
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Data supporting this study’s findings will be available from the corresponding author upon reasonable request.
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