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Accurate prediction of oil production rates through wellhead chokes is critical for optimizing crude oil 
production and operational efficiency in the petroleum industry. The central thrust of this investigation 
involves the systematic creation of machine learning (ML) paradigms for the robust prediction of 
choke flow performance. This endeavor is rigorously informed by comprehensive data acquired from 
an operational petroleum production facility in the Middle East. Within the dataset, produced gas-oil 
ratio (GOR), choke size, basic sediment and water (BS&W), wellhead pressure (THP), and crude oil API 
stand out as key parameters. Each plays a vital role in forecasting the oil production rate. To ensure 
reliability, robust data preprocessing was conducted using the Monte Carlo outlier detection (MCOD) 
method to recognize and manage data outliers. The models were trained using 198 data points, 
employing K-fold cross-validation (five folds) to ensure generalization. Gradient boosting machine 
(GBM) models were optimized using advanced algorithms like self-adaptive differential evolution 
(SADE), evolution strategy (ES), Bayesian probability improvement (BPI), and Batch Bayesian 
optimization (BBO). Among these, SADE demonstrated superior performance based on metrics such 
as average absolute relative error (AARE%), R2, and mean squared error (MSE). Furthermore, SHAP 
(SHapley Additive exPlanations) analysis was used to interpret the models and highlight the dominant 
influence of choke size and THP on the predictions. Overall, this research work presents a data-driven 
framework for highly accurate and interpretable predictions, significantly contributing to production 
optimization initiatives in the oil and gas sector.
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Remaining a critical component of the global economy, oil serves as a primary energy source and raw material. 
It fuels diverse industries and underpins the production of chemicals, plastics, medicines, and many other 
goods1–3. Oil-rich nations, particularly those with vast production capabilities, harness their petroleum 
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wealth as a primary engine for prosperity. The substantial financial returns from exporting oil provide these 
countries with the means to bolster their foundational infrastructure, stimulate industrial expansion, and foster 
innovation through technological uptake, thereby fast-tracking their overall economic and social evolution4–6. 
For companies, the industry represents a major revenue stream through activities such as extraction, refining, 
and distribution7,8. As a result, the accurate prediction and optimal management of oil production are essential 
for both oil-producing countries and the companies operating within the sector9–11.

Accurately predicting the future output of oil wells—that is, the quantity of crude extracted over a specific 
period—is an absolutely vital strategic endeavor for both oil and gas corporations and national economic 
strategist12,13. Reliable forecasts allow for efficient resource management, cost optimization in extraction, and the 
fulfillment of domestic and global energy demands14–16. Furthermore, these accurate predictions are instrumental 
in shaping key operational decisions, from determining where to drill new wells and when to schedule essential 
maintenance, to implementing effective long-term resource management strategies. Production forecasting 
holds immense importance for both corporate strategies and macroeconomic planning17. However, due to the 
complexities of oil reservoirs and the various factors influencing production including geological conditions, 
reservoir pressure, and oil characteristics, accurate forecasting remains a significant challenge in the oil 
industry18,19.

Since the early twentieth century, petroleum engineers have continuously worked on forecasting oil well 
production rates. This has involved developing and employing various models to simulate reservoir oil flow and 
refine production predictions for over a hundred years20. Such efforts have led to the development of empirical 
equations which are derived from experimental data and rely on parameters pertaining to reservoir and well 
characteristics21. Among these, the Gilbert equation is a well-known approach often cited for its simplicity 
and cost-efficiency. These equations can provide reasonable predictions for well production under specific 
conditions resembling their development data. However, their reliability diminishes when applied to new or 
diverse scenarios22,23.

One of the primary limitations of empirical equations is their lack of comprehensiveness. These equations 
are typically derived from experimental data specific to a particular reservoir or set of conditions that may not 
generalize well to different wells or environments24–26. Geological differences, as well as variations in reservoir 
pressure, temperature, and oil properties, can lead to inaccurate predictions when these equations are applied 
outside their original context27. Consequently, in intricate scenarios, their effectiveness plummets, frequently 
leading to erroneous forecasts and suboptimal strategic choices28,29.

Moving beyond the deficiencies of empirical equations, the advent of physical modeling and simulation 
methods has established a more resilient framework for forecasting oil production rates30–32. Leveraging 
specialized software, these simulation-driven approaches develop models of oil well and reservoir conditions. 
This is accomplished by weaving in diverse data, including geological structures, reservoir characteristics, and 
crucial physical parameters like pressure and temperature28,33. While these models offer potential for higher 
accuracy, their effectiveness is often hindered by uncertainties in the input data and the complexity of the models 
themselves24,28,34. Additionally, the challenges in collecting precise and extensive datasets, together with the 
sophistication of simulations, can result in low-accuracy or unreliable predictions, especially in cases involving 
highly complex reservoirs35,36.

This study addresses the vital need for accurate predictions of choke flow performance to enhance crude oil 
production efficiency. Using a robust dataset from a Middle Eastern oil production site, the workflow begins 
with detailed data preprocessing to ensure reliability, including outlier detection via the MCOD algorithm. 
Key parameters, such as choke size, THP, GOR, BS&W, and oil API, were analyzed for statistical metrics and 
correlations. GBM models were developed and optimized using advanced algorithms like SADE and ES, with 
K-fold cross-validation employed to ensure model generalization. Performance evaluation, using metrics such 
as R2, MSE, and AARE%, shows SADE’s superior predictive accuracy. SHAP analysis further interprets the 
model, revealing choke size and THP as the most influential factors. Finally, visualizations including raincloud 
plots, cross-plots, and SHAP diagrams illustrate the robustness and interpretability of the developed framework. 
Figure 1 is the schematic workflow implemented in this research.

Our research offers several key contributions to choke flow rate prediction in sub-critical oil wells. First, we 
present a cost-effective methodology that accurately predicts flow rates using only readily available wellhead 
data, removing the need for expensive downhole sensors or complex fluid characterization. Second, we provide a 
comprehensive comparative analysis of advanced metaheuristic-optimized machine learning algorithms (SADE, 
ES, PI, BBO), identifying the most robust and accurate model for this specific application. Third, we emphasize 
enhanced generalization and reliability, rigorously evaluating models on unseen data to ensure high predictive 
accuracy for real-world deployment. Finally, our developed tool offers practical industry applicability as a low-
computational-cost solution that integrates seamlessly into existing field monitoring systems, advancing cost-
effective production optimization and well management.

Methodology
Collected data analysis
This study developed and rigorously assessed its models using meticulously gathered field data from a Middle 
Eastern production unit. Table 1 offers a comprehensive statistical overview of this dataset, detailing key input 
data like wellhead pressure, choke size, gas-to-oil ratio, basic sediment and water content, and oil API, as well 
as the crucial production flowrate (our output variable). For each, Table 1 presents metrics like the maximum, 
minimum, mean, mode, kurtosis, skewness, and standard deviation. Our data-driven machine learning models 
were built upon a dataset of 198 distinct data points. A substantial 90% of these points were dedicated to the 
training and validation phases, employing a robust fivefold cross-validation strategy, while the remaining 10% 
was carefully set aside for an unbiased evaluation of the models’ performance.
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This study aims to accurately estimate choke flow performance, defined as the oil production rate through 
wellhead chokes, and considers it the primary output variable in the model. The estimation is derived from a 
series of input factors. To enhance the understanding of the distribution, variability, and relationships between 
these input factors and choke flow performance, scatter matrix diagrams have been constructed and presented in 
Fig. 2. These diagrams offer a comprehensive visualization of the dataset, highlighting trends, correlations, and 
potential outliers, which are crucial for analyzing the data’s underlying structure and facilitating the development 
of a reliable predictive model. Furthermore, Fig. 3 displays raincloud plots for each variable, offering additional 
insights into their distribution and characteristics.

Gradient boosting machine algorithm
Introduced by Jerome Friedman in 1999, GBM are a powerful supervised ensemble learning approach. They 
construct a highly accurate predictive model by incrementally combining numerous decision trees. This 
iterative methodology specifically aims to correct the shortcomings of previous trees and minimize a predefined 
loss function, thereby significantly boosting predictive accuracy across both classification and regression 
problems37,38. GBM excels at managing complex, non-linear relationships and offers valuable insights into 
feature importance, aiding feature selection. However, its computational demands and the necessity for precise 
hyperparameter tuning (e.g., learning rate, tree depth) to mitigate overfitting and underfitting present notable 
challenges.

GBM employs an iterative, stage-by-stage methodology. It begins by fitting a simple model, such as a decision 
tree, to the dataset. The fundamental aim is to optimize the loss function, L(y,f(x)), where y represents the 
true value, f(x) the model’s output, and L the chosen loss metric. With each iteration, the model undergoes 
incremental updates designed to progressively reduce existing errors and sharpen its predictions39,40.

The first stage, which makes the first iteration is as below

	
F0(x) = arg min

c

n∑
i=1

L(yi, C)

where F0(x) is the initial constant prediction; L(yi,C) is the Loss function; y is the true target value; C is the 
weight or contribution of the weak learner.

The second step, for each iteration m, is as follows: For each data point i, determine the "pseudo-residuals" by 
taking the negative gradient of the loss function with respect to the model’s current predictions. This effectively 
quantifies the error direction for that specific observation.

Parameters Minimum Maximum Median Average Kurtosis Skewness Standard deviation

Choke Size (1/64") 12.00 74.00 38.00 38.95 0.19 0.22 10.80

THP (psi) 0.00 1141.30 419.74 432.26 4.75 1.24 141.31

GOR (scf/stb) 156.35 1888.09 348.74 494.13 4.56 2.08 314.40

BS&W (%) 0.02 65 0.9 4.60 12.96 3.35 9.52

Oil API 9.5 35.68 18.86 19.11 11.34 2.53 3.69

Oil Rate (bbl/day) 528.30 4000 1513.20 1664.35 0.45 0.96 714.22

Table 1.  Statistic-based information relevant to studied data.

 

Fig. 1.  Schematic of the implemented methodology.
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rim = −

[
∂L(yi, F (xi))

∂F (xi)

]

F (x)=Fm−1(x)
� (1)

where Fm-1(x) is the current model prediction; rim is the pseudo-residuals of data poin i at the iteration step of m.
Next, a base learner is fitted to these residuals:

	
hm(x) = arg min

h

n∑
i=1

(rim − h(xi))2� (2)

In the fourth stage, the model is refined:

	 Fm(x) = Fm−1(x) + υ.hm(x)� (3)

The learning rate (υ) in the GBM algorithm dictates how much each successively added decision tree contributes 
to the overall model’s correction. Iteratively, the algorithm introduces a new decision tree with the explicit 
purpose of mitigating the inaccuracies inherited from the combined output of all previous trees. GBM’s inherent 

Fig. 2.  Scatter matrix diagram: Relationships between variables.
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flexibility is underscored by its capacity to customize the loss function (L), enabling it to align perfectly with 
specific problem goals and thus proving to be a highly versatile method. To improve the model’s generalization 
capabilities and prevent it from simply memorizing the training data, regularization techniques—specifically 
adjusting the learning rate (υ) and limiting tree depth—are applied. The culmination of this process is a final 
classifier that represents a weighted sum of predictions from its constituent trees, allowing it to gradually uncover 
deeper, more complex relationships within the data41–43. A schematic representation of the GBM manner is 
provided in Fig. 4.

Optimizations algorithms
Self-adaptive differential evolution (SADE)
SADE represents a significant enhancement over the conventional Differential Evolution (DE) algorithm. 
Unlike standard DE, SADE employs an adaptive mechanism that dynamically adjusts its control parameters 
throughout the optimization process. This adaptive approach has proven particularly effective for solving 
continuous optimization problems, demonstrating notable success in addressing complex, multimodal, and 
high-dimensional scenarios44,45. Key parameters, including the scaling factor (F) and crossover rate (CR), 
are automatically modified by SADE, eliminating the need for manual parameter tuning and enhancing the 
algorithm’s robustness and efficacy46.

The central concept of SADE lies in its ability to evolve a population of candidate solutions over successive 
generations while simultaneously self-adjusting control parameters based on their historical performance. This 
self-adaptive mechanism enables the algorithm to effectively balance exploration and exploitation within the 
search space, thereby improving convergence properties and yielding higher-quality solutions47,48.

Population initialization: The optimization begins with the creation of a population containing NP candidate 
solutions, denoted as X = [x1, x2, …, xNP], where each  xi  represents an individual solution within the search 
space. Each solution is structured as a D-dimensional vector, where D corresponds to the number of variables 

Fig. 3.  Raincloud plots of all the input variables for choke flow performance modeling.
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in the optimization problem. The initial population is typically generated randomly, ensuring that each solution 
adheres to the predefined boundaries of the search space.

Mutation: generating mutant vectors: For each individual solution xi in the population, a mutant vector vi is 
generated using a designated mutation strategy. A commonly used strategy is the “DE/rand/1” method, defined 
as:

	 vi = xr1 + Fi · (xr2 − xr3)� (4)

Here, xr1, xr2 and xr3 are three distinct, randomly selected individuals from the current population, while Fi  is 
the scaling factor associated with xi. The scaling factor Fi determines the magnitude of the differential variation 
and is crucial for balancing exploration and exploitation of the search space.

Crossover: After creating the mutant vector vi, a trial vector ui is then formed. This is done by combining 
elements from both the mutant vector vi and the target vector xi​ using a crossover operation. The crossover is 
defined as:

	
uij =

{
vij if rand(0, 1) ≤ CRi or j = jrand

xij otherwise � (5)

Here, j represents the dimension index (j = 1, 2, …, D), rand(0,1) is a random number from a uniform distribution 
between 0 and 1, and CRi is the crossover rate associated with the target vector xi. The index jrand is a randomly 
selected dimension index, ensuring that at least one element in the trial vector ui is directly inherited from the 
mutant vector vi.

Selection: The next step involves determining whether the trial vector ui or the target vector xi​ will advance 
to the next generation. This decision is based on the values of the objective function F(0) and follows this rule49:

	
xnew

i =
{

ui if f(ui) ≤ f(xi)
xi otherwise � (6)

By comparing the fitness of ui  and xi, the vector with the better performance is selected for the subsequent 
generation.

Parameter adaptation: During the optimization process, the scaling factor Fi and crossover rate CRi  are 
dynamically updated to enhance algorithm performance. After each generation, these parameters are adjusted 
based on the success of trial vectors. Specifically, when a trial vector ui is selected f(ui) ≤ f(xi), the corresponding 
Fi and CRi values are deemed successful and recorded in sets SF and SCR, respectively. At the end of a generation, 
new parameter values are calculated as:

	
F new

i =
{

randc(µF, 0.1) if SF ̸= 0
Fi otherwise � (7)

	
CRnew

i =
{

randn (µCR, 0.1) if SCR ̸= 0
CRi otherwise � (8)

Fig. 4.  Gradient Boosting Machine algorithm flowchart.
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Here, μF and μCR represent the mean values of the successful parameters stored within SF and SCR sets, 
respectively. The functions randc and randn generate random numbers from Cauchy and normal distributions, 
respectively, introducing variability into the parameter values. If SF or SCR are empty, parameters will not be 
update50–52.

Evolutionary strategies (ES)
ES is an optimization algorithm that mimics biological evolution to solve continuous problems. It iteratively 
develops a group of candidate solutions using mutation, recombination, and selection over successive 
generations. Each solution is represented by (x,σ), where x is the solution itself and σ dictates the magnitude of 
mutation for each component of x.53.

Initialization: The ES process begins by initializing a population of μ individuals. The solution vectors (x) are 
typically sampled randomly within the defined search bounds of the optimization problem, while the strategy 
parameters (σ) are initialized with small, positive values. For instance, the solution and strategy parameters can 
be initialized as follows:

	 xi ∼ Uniform(xmin
i , xmax

i ), σi ∼ Uniform(σmin,σmax)� (9)

Here, xi
min and xi

max define the valid range for the solution vector, while σmin and σmax establish the range for the 
strategy parameters.

Mutation and offspring generation: In each generation, λ offspring are created through the mutation process. 
Mutation operates by modifying both the solution vector x and its associated strategy parameters σ. Updated 
strategy parameters (denoted as σ′) are computed using a predefined mutation rule, which introduces variability 
into the mutation scale. This adaptive mechanism allows the algorithm to navigate complex search landscapes 
effectively. The mutation process ensures robust exploration while maintaining the ability to refine promising 
solutions over successive generations.

	
′
σ
i

= σi × exp
(

τ × N (0.1) +
′
τ ×Ni (0.1)

)
� (9)

In this context,  N(0,1)  represents a random variable drawn from a standard normal distribution, 
while  Ni(0,1)  denotes an independent random variable sampled separately for each dimension. The 
parameters τ and τ′ are learning rates, often chosen based on the dimensionality of the problem54:

	
′
x
i

= xi +
′
σ
i

Ni (0.1)� (10)

Recombination, when utilized, integrates information from multiple parent solutions to produce offspring. In 
the case of intermediate recombination, the offspring (x′,σ′) is generated as a weighted average of the μ parent 
solutions. The process can be mathematically expressed as:

	

′
x
i

= 1
µ

µ∑
j=1

xi.j � (11)

	

′
σ
i

= 1
µ

µ∑
j=1

σi.j � (12)

Selection phase: Following the generation of offspring, the selection phase determines the individuals that will 
proceed to the next iteration. In the (μ + λ)-ES strategy, the top μ individuals are selected from the combined 
pool of μ parents and λ offspring. Alternatively, in the (μ,λ)-ES strategy, the selection occurs exclusively among 
the  λ  offspring, with  λ ≥ μ. This approach ensures that the population evolves progressively toward better 
solutions with each generation.

One of the key strengths of Evolution Strategies (ES) lies in its self-adaptive mechanism, which enables 
the dynamic adjustment of strategy parameters (σ) throughout the optimization process. This self-adaptation 
effectively balances exploration (broad search of the solution space) with exploitation (refining optimal regions), 
making the method particularly effective for solving complex and high-dimensional optimization problems. 
Additionally, ES can be further enhanced with advanced techniques, such as Covariance Matrix Adaptation 
(CMA-ES), which improves the optimization process by adapting the covariance matrix of the search 
distribution55–57.

In summary, Evolution Strategies evolve a population of candidate solutions by iteratively applying mutation, 
recombination, and selection. The dynamic adjustment of strategy parameters enhances the robustness and 
versatility of the algorithm for continuous optimization problems58,59. The general procedure involves the 
following steps: initialization of the population, offspring generation through mutation and recombination, 
fitness evaluation, selection of the best individuals, and iteration until a termination criterion is met. The best 
solution obtained during this iterative process is presented as the final result60.

Bayesian probability improvement (BPI)
Bayesian Probability Improvement (BPI) represents a specialized optimization technique commonly employed 
within the Bayesian optimization framework. Bayesian optimization is a global optimization strategy designed 
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for expensive black-box functions, offering particular advantages when evaluating the objective function 
is computationally costly, as it aims to identify the optimum with minimal function evaluations. Within this 
framework, BPI serves as an acquisition function that guides the optimization process by effectively balancing 
exploration of uncertain regions with exploitation of known promising areas61–63.

The fundamental objective of BPI is to maximize the probability that a newly selected candidate point 
will yield an improved objective function value compared to the current best observation. Unlike alternative 
acquisition functions like Expected Improvement (EI) or Upper Confidence Bound (UCB), BPI adopts a 
distinctly probabilistic perspective by directly quantifying the probability of improvement. This approach proves 
especially valuable in scenarios where increasing the likelihood of discovering a better solution takes precedence 
over maximizing the expected magnitude of improvement64.

At its core, BPI calculates the probability that the objective function amount at a new point x will surpass 
the current best-observed value, denoted as f(x +). This calculation utilizes the posterior distribution provided 
by a Gaussian Process (GP) model, which is widely employed in Bayesian optimization frameworks. The GP 
model provides a predicted mean μ(x) and variance σ2(x) for any location x in the search space. The probability 
of improvement is then derived from the cumulative distribution function (CDF) of the normal distribution65.

The BPI is mathematically formulated as:

	
BP I (x) = ∅

(
µ (x) − f(x+)

σ(x)

)
� (13)

where, Φ represents the cumulative distribution function of the standard normal distribution, μ(x) denotes the 
predicted mean of the GP at point x, σ(x)  represents the predicted standard deviation of the GP at point x, 
f(x+) refers to the best objective function value observed thus far.

The BPI acquisition function is optimized to determine the next point for evaluation. Higher BPI values 
indicate a greater probability that the new point will improve upon the current best solution. This approach is 
particularly efficient when the primary goal is to ensure consistent progress with each evaluation, as it focuses on 
the likelihood of improvement rather than the potential magnitude of improvement66,67.

In conclusion, BPI represents a probabilistic acquisition function that leverages the predictive uncertainty 
quantified by a Gaussian Process to guide the search for optimal solutions. By prioritizing the probability of 
improvement, BPI provides a valuable tool within the Bayesian optimization framework, particularly when 
function evaluations are computationally expensive and the objective is to maximize the chances of finding 
superior solutions68.

Batch bayesian optimization (BBO)
BBO extends the traditional Bayesian optimization framework to enable the simultaneous evaluation of multiple 
points, referred to as a “batch,” rather than evaluating points sequentially. This adaptation is particularly 
advantageous in environments where parallel computing resources, such as high-performance computing 
clusters or distributed systems, are available. By leveraging parallelism, BBO seeks to significantly reduce the 
total optimization time while preserving the ability of Bayesian optimization to efficiently identify the global 
optimum69,70.

The primary innovation in BBO is the selection of a group of points for simultaneous evaluation instead 
of iteratively selecting individual points. This requires modifying the acquisition function to account for the 
interdependencies and correlations among points within the batch, as the evaluation of one point may provide 
information that affects the value of others in the group.

BBO commonly uses acquisition functions that balance exploring uncertain regions with exploiting 
promising areas within a batch. A popular method is Parallel Expected Improvement (q-EI), which extends the 
standard Expected Improvement (EI) function to evaluate multiple points at once. The q-EI function calculates 
the expected improvement beyond the current best value for a batch of q points, factoring in their correlations 
as predicted by the Gaussian Process (GP). The formula for q-EI is71:

	 q − EI (x) = E[maxf (x) − f
(
x+)

.0]� (14)

where, X = [x1,x2,…,xq] represents the batch of  q  points selected for evaluation, f(X) denotes the objective 
function values at the batch points, f(x +) is the current best-observed value of the objective function, E denotes 
the expectation taken over the joint posterior distribution of the GP at the batch points.

By explicitly considering the joint distribution over the batch, q-EI ensures that the selected points maximize 
the expected improvement collectively rather than in isolation72.

BBO) enhances the efficiency of traditional Bayesian optimization by enabling simultaneous evaluation of 
multiple points, thus reducing the total optimization time. The use of specially adapted acquisition functions, 
such as q-EI and Thompson Sampling, ensures that the optimization process continues to balance exploration 
and exploitation effectively. BBO is especially beneficial in scenarios where parallel computational resources 
are available, as it accelerates the optimization process while maintaining the high performance of Bayesian 
optimization in locating the global optimum73.

Models evaluation
A prevalent and powerful strategy for assessing the generalization capability of machine learning models is 
K-fold cross-validation. This method meticulously divides the complete dataset into K discrete and uniformly 
sized partitions, known as folds. In each iteration of the process, the model is trained on K-1 folds while 
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the remaining fold is used to evaluate its performance. This approach is renowned for its straightforward 
implementation and ability to produce consistent, reliable results, making it a preferred choice among various 
cross-validation techniques. Its simplicity and balanced approach ensure its applicability across a broad range of 
machine learning tasks55–57.

To grasp the mechanics of K-fold cross-validation, let’s consider a scenario where K = 5 (as visually depicted 
in Fig. 5). The entire dataset is systematically segmented into five equally sized partitions, with each segment 
designated as a "fold." The validation process then unfolds iteratively: In the initial round, four of these folds 
collectively serve as the training data for the model, while the first fold is reserved exclusively for testing its 
performance. This pattern continues: in the subsequent iteration, the second fold becomes the dedicated test set, 
with the remaining four constituting the training material. This meticulous rotational scheme ensures that every 
one of the five folds functions precisely once as the test set, leading to a more robust and unbiased assessment of 
the model’s generalization capabilities74,75.

To assess the accuracy and effectiveness of each model, several key performance indicators were calculated, 
including RE%, AARE%, MSE, and R2. Detailed explanations of each metric are presented in the following 
sections15,76–78:

	
RE% =

(
V pred − V exp

V exp

)
× 100� (10)

	
AARE% = 100

N

N∑
i=1

(∣∣∣∣
V pred

i − V exp
i

V exp
i

∣∣∣∣
)

� (11)

Fig. 5.  K-fold cross-validation Algorithm schematic.
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MSE =

N∑
i=1

(
V pred

i − V exp
i

)2

N

� (12)

	

R2 = 1 −

N∑
i=1

(
V pred

i − V exp
i

)2

N∑
i=1

(
V exp

i − V
)2

� (13)

Within these equations, the subscript i serves to identify a unique data point from our entire dataset. For 
any given i, ‘pred’ signifies the value projected by our model, while ‘exp’ refers to the corresponding actual or 
experimentally observed value. Furthermore, N consistently represents the grand total data points.

Results and discussion
Comprehensive data characterization
Prior to developing machine learning models for predicting choke flow performance, ensuring data reliability 
through outlier management is paramount. This research implemented the Monte Carlo Outlier Detection 
(MCOD) algorithm, a robust technique for identifying outliers in large datasets using random sampling and 
density-based approaches. MCOD assesses local data density to pinpoint data points that deviate significantly 
from their neighbors. By employing Monte Carlo sampling to estimate data subsets, the algorithm reduces 
computational burden. Its effectiveness and scalability render it suitable for high-dimensional datasets and real-
time applications. There’s a natural give-and-take between how accurate the MCOD method is and how fast it 
can compute results. This balance is influenced by the sample size and the number of nearest neighbors (k) you 
choose. Even with this trade-off, MCOD is incredibly useful for initial data exploration and finding anomalies, 
especially when you don’t need perfect precision or when you’re working with limited computing power. Its 
ability to balance accuracy and efficiency makes it a great tool for spotting outliers in complicated datasets.

A boxplot in Fig. 6 illustrates our dataset’s distribution and acceptable range, with most data points falling 
within this range, indicating high data quality. To maximize the models’ ability to generalize, the complete 
collected dataset was used for training. This comprehensive approach allows the models to discern underlying 
patterns effectively, resulting in more reliable and accurate predictions on unseen data.

Models’ optimization
This section focuses on how we applied various optimization algorithms to improve the Gradient Boosting 
Machine (GBM). Our goal was to fine-tune GBM’s performance by optimizing its hyperparameters, which 
we did both by directly applying optimization techniques and by using them with k-fold cross-validation. The 
specific hyperparameters we worked on were maximum depth, the number of estimators, minimum samples 
and maximum features needed for splitting, the learning rate, subsample size, and minimum samples required 
for leaves. Table 2 provides a complete overview of the parameter ranges we have explored and the best values 
identified by each optimization algorithm.

Figure 7 visualizes the Mean Squared Error (MSE) progression for each optimization algorithm over 200 
iterations, identifying the best hyperparameter configurations (also in Table 2). Figure 8 then compares their 
computational times, which were measured on a machine with Intel Core i7-6700 CPU (3.40 GHz) and 16 GB 
RAM. The SADE method was the slowest at roughly 4200 s, whereas the ES algorithm was the fastest.

Fig. 6.  (A) Detection of outliers using the MCOD algorithm and (B) Boxplot depicting the distribution of the 
dataset.
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Figure 8 clearly shows a stark difference in optimization progression: the SADE algorithm reached its peak 
performance—the lowest MSE—quite rapidly in the initial generations. Conversely, BPI, ES, and BBO algorithms 
demonstrated a more deliberate and gradual enhancement in their performance as the iterations continued.

Table 3 provides a comprehensive comparison of hybrid optimization approaches using the GBM estimator 
and Fig. 9 displays these metrics for testing stage per all models. The evaluation utilizes key metrics, including 
R2, MSE, and AARE%, across training, testing, and total data sets. The optimization algorithms considered 
are SADE, ES, PI, and BBO, with a specific focus on test-phase metrics as the primary indicators of model 
performance.

From Table 3, it is evident that SADE exhibits the highest testing-phase accuracy among all algorithms. SADE 
achieves a testing R2 value of 0.5935, indicating moderate explanatory power in predicting choke performance 
compared to other methods. Furthermore, SADE demonstrates superior error minimization, evident in its lowest 
testing MSE. This substantial reduction in error reflects the algorithm’s enhanced ability to fit the data during 
testing. Additionally, the testing-phase AARE% for SADE is 22.59%, which, while not the lowest observed, still 
aligns closely with the algorithm’s robust prediction performance. The consistency between training and test 
performance for SADE highlights its reliability for modeling.

Despite its high accuracy, SADE comes with a trade-off in computational runtime, as its complex optimization 
structure results in additional computational overhead. Comparatively, while ES achieves a higher training R2 
(0.8385) and a total R2 of 0.7985, its testing R2 is lower at 0.5794. This drop suggests a less stable generalization 
capability when applied to unseen data. ES also yields a testing MSE higher than SADE, which points to reduced 
prediction precision. Furthermore, its testing-phase AARE% of 28.62% is notably higher, indicating greater 

Fig. 7.  Iteration-wise MSE for different optimization methods.

 

Tuning parameter Considered range SADE ES BPI BBO

n_estimators [50–300] 223 159 247 230

max_depth [5–20] 5 15 14 12

max_features [0.1–1] 0.7146 0.2846 0.2221 0.2595

min_samples_split [0.01–0.5] 0.2850 0.3593 0.2522 0.3079

learning_rate [0.01–0.3] 0.0191 0.0335 0.0339 0.0359

subsample [0.5–1] 0.6535 0.9836 0.6462 0.7706

min_samples_leaf [0.01–0.5] 3.0000 0.0173 0.0206 0.0191

Table 2.  Evaluating optimal gradient boosting hyperparameters using four optimization techniques within a 
specified parameter range.
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absolute errors in prediction during testing. Overall, ES demonstrates acceptable but weaker performance 
compared to SADE, particularly in testing metrics.

PI and BBO offer comparable results, both achieving higher testing-phase R2 values compared to SADE, 
with PI slightly outperforming BBO (0.5628 vs. 0.5717). However, an examination of testing MSE reveals clear 
deficiencies in these algorithms compared to SADE, with PI and BBO recording testing MSE values. These 
errors are significantly larger than SADE’s testing MSE, underscoring SADE’s superior capacity to minimize 
prediction errors. Additionally, both PI and BBO yield high AARE% values during testing (30.60% and 30.78%, 
respectively), which further highlight their reduced accuracy compared to SADE. While these algorithms 
perform well in training (PI with the highest training R2 of 0.8714), their weaker generalization capabilities 
during testing limit their overall utility.

While the SADE algorithm demands the highest computational cost (∼ 4200 s), it delivers superior predictive 
performance, achieving the lowest testing MSE and the highest R2 (0.5935) among all methods. In contrast, 
faster algorithms like ES sacrifice accuracy for efficiency, exhibiting gradual error reduction but failing to match 
SADE’s explanatory power or error minimization. This trade-off underscores SADE’s value in applications where 
precision is critical, despite its resource intensity, whereas ES or BBO may suffice for scenarios prioritizing rapid, 
approximate solutions. The 22.59% AARE% further confirms SADE’s reliability, justifying its computational 
overhead when model robustness is paramount.

Figure 10 compellingly illustrates the enhanced precision of our proposed models, with the SADE algorithm 
distinctly outperforming others. Its cross-plots reveal a significantly tighter clustering of data points around the 
unit slope line, a clear indicator of superior accuracy. This heightened performance is further underscored by the 
fitted line equations in the SADE plots, which lie remarkably close to the bisector line.

Figure 11 effectively visualizes the distribution of relative deviations for each of our hybrid models. A tighter 
clustering of data points around the y = 0 line indicates greater accuracy from the estimator. Based on this, the 
GBM estimator tuned by SADE stands out as the most efficient predictive tool among all evaluated methods. 

Optimization algorithm

R2 MSE AARE%

Training Test Total Training Test Total Training Test Total

SADE 0.8003 0.5935 0.7783 109,000 241,076.64 122,000 16.489 22.5882 17.1051

ES 0.8385 0.5794 0.7985 82,700 361,297.16 111,000 13.6684 28.6172 15.1784

PI 0.8714 0.5628 0.8234 65,800 375,541.3 97,100 12.1332 30.6041 13.999

BBO 0.8683 0.5717 0.8222 67,400 367,965.07 97,800 12.4008 30.7813 14.2574

Table 3.  Efficacy benchmarking of optimization algorithms on train, test, and all datasets.

 

Fig. 8.  Runtime comparison of optimization algorithms integrated with GBM.
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Complementing this, Fig. 12 offers a direct comparison between the estimated and real data points across all 
four algorithms.

Figure  13 provides a powerful look into our predictive model’s decision-making process through SHAP 
(SHapley Additive exPlanations) analysis. This visualization clearly highlights which individual features are most 

Fig. 9.  Testing performance of optimization algorithms: R2, AARE%, and MSE.
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Fig. 11.  RE% distribution against actual data for all optimizers (training & testing).

 

Fig. 10.  Visualizing discrepancies between modeled and real data for all optimizers during train and test.
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crucial in shaping the model’s output. By ranking input variables—including choke size, tubing head pressure 
(THP), gas-oil ratio (GOR), basic sediment and water (BS&W), and API—based on their average absolute SHAP 
values, we can quantify each feature’s contribution to the magnitude of the model’s predictions. The analysis 
strikingly reveals that choke size and THP have the highest mean SHAP values, solidifying their role as the 
primary drivers of the model’s predictions and overall performance.

Figure 14 further investigates the SHAP analysis results for a choke flow performance model by demonstrating 
the impact of various input parameters on the model outputs. The plot visually represents how individual features 
affect choke flow predictions, where positive SHAP values correlate with an increase in choke flow and negative 
SHAP values indicate a decrease. The red points correspond to higher values for each feature. For instance, larger 

Fig. 13.  SHAP feature importance.

 

Fig. 12.  Comparative plots of predicted vs. real data for all algorithms.
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choke sizes are associated with elevated choke flow rates, while higher THP promotes greater oil production 
through the choke. Conversely, higher values of GOR and BS&W are linked to reductions in oil production or 
choke performance. These findings align with theoretical and practical observations from the literature.

Specifically, the SHAP results align with established principles associated with reservoir and well performance. 
Larger choke sizes reduce flow resistance79,80, enabling higher production rates. Similarly, increased THP reflects 
stronger reservoir pressure81,82, which facilitates greater oil production and higher flow rates. On the other hand, 
higher BS&W values signify poor reservoir quality, leading to increased pressure drops across the well and 
reduced production rates83,84. Excessively high GOR values not only result in increased oil flashing at the surface 
but also negatively impact total production rate (TPR) due to the adverse effects on oil well performance, such as 
reduced tubing pressure and efficiency85. These insights confirm the predictive relevance and practical validity 
of the SHAP analysis results in capturing the dynamics of choke flow performance.

The developed tools can be easily used to predict choke oil flow rate based on wellhead data. In addition, the 
same workflow can be applied in other fields so as to develop cost-effective, fast, reliable and accurate models.

Limitations and future work
The performance of any data-driven optimization approach is inherently tied to the quality and representativeness 
of the dataset. We acknowledge potential limitations stemming from data collection biases, the completeness 
and noise within the dataset, and whether the dataset size and diversity fully capture the problem’s complexity, 
which could affect the generalizability of our findings. We also recognize the risk of overfitting our optimization 
methods to the training data. While we employed strategies like cross-validation and regularization to mitigate 
this, some residual risk may remain, impacting performance on unseen data. Further validation on independent 
or larger datasets will be crucial.

Our current optimization framework operates under specific assumptions. We critically examine model 
simplifications (e.g., assumed linearity), the representativeness of parameter space boundaries, and any potential 
limitations or biases in the objective function design that might not fully align with real-world outcomes. These 
identified limitations serve as a foundation for clear and impactful future research directions. These include, 
but are not limited to, exploring advanced validation techniques, investigating hybrid optimization approaches, 
addressing data sparsity or imbalance, incorporating real-time or dynamic optimization, integrating multi-
objective optimization, and conducting deployment and real-world impact studies to assess the practical 
implementation and evaluation of our optimized solutions.

Conclusions
This study demonstrates the successful application of machine learning to predict choke flow performance, 
utilizing a high-quality dataset from a crude oil production site. Preprocessing techniques, including the MCOD 
algorithm, were instrumental in ensuring reliable data for model development. The SADE algorithm was the 
top performer among the optimization methods used, achieving both the lowest MSE and the highest R2 value 
during the testing phase. The models developed in this study exhibited strong predictive accuracy, with SHAP 
analysis providing valuable insights into the relative importance of the input parameters. Specifically, choke 
size and THP emerged as the dominant factors influencing choke flow performance. These findings align with 
known physical principles, validating the models’ practical relevance. This research provides a robust framework 
for applying data-driven approaches to production optimization, with the potential for broader applications in 
the oil and gas industry. Our comparative analysis demonstrates that the SADE algorithm consistently delivers 
the highest accuracy in predicting choke flow rate during the crucial testing phase. SADE achieved a testing R2 
of 0.5935, indicating superior explanatory power compared to other methods. Crucially, SADE exhibited the 

Fig. 14.  SHAP feature conditions.
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lowest testing MSE, reflecting its enhanced ability to minimize prediction errors and fit unseen data accurately. 
While its testing-phase AARE% of 22.59% was not the absolute lowest, it aligns well with its robust predictive 
performance and the overall consistency observed between its training and test results, highlighting its reliability 
for modeling. In comparison, other algorithms demonstrated weaker generalization capabilities. For instance, 
ES, despite a higher training R2 of 0.8385, showed a noticeable drop in testing R2 to 0.5794, along with a higher 
testing MSE and an AARE% of 28.62%, indicating reduced prediction precision for unseen data. Similarly, PI 
and BBO, while achieving training R2 values as high as 0.8714 (PI), recorded testing R2 values of 0.5628 and 
0.5717 respectively, which are comparable to SADE’s R2 but come with significantly higher testing MSE values 
and high AARE% values of 30.60% (PI) and 30.78% (BBO). These metrics underscore their reduced accuracy 
and generalization when confronted with new data, limiting their overall utility compared to SADE.

Data availability
Data supporting this study’s findings will be available from the corresponding author upon reasonable request.
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