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The diarylmethane backbone is a base of molecules relevant for various industrial and especially 
pharmaceutical applications where they serve as a platform for the discovery of new drugs. One of 
the most versatile methods of their synthesis are cross-coupling reactions that have served synthetic 
chemistry for nearly five decades and offer diverse opportunities for the synthesis of complex organic 
compounds. Although palladium catalysts have traditionally dominated this field, the emergence 
of first-row transition-metal (pre)catalysts presents promising alternatives because of their cost-
effectiveness and the possibility of new reactivities. In this context, Negishi cross-coupling of 
benzylzinc bromide and its congeners with aryl, alkyl, alkenyl, alkynyl iodides and bromides, facilitated 
by simple cobalt halides without the addition of an auxiliary ligand, is presented. The optimisation of 
reaction conditions, including solvent selection, is discussed alongside the mechanistic insights gained 
through computational studies. A variety of diarylmethanes were synthesised under mild conditions, 
with yields comparable to those obtained with Pd catalysts, with excellent selectivity (> 99%) provided 
by commercially available anhydrous CoBr2 / DMAc catalytic system.

Diarylmethanes are useful platforms that can be easily modified by benzylic C-H functionalisation to give 
a variety of molecules of unique importance in pharmaceutical, agrochemical, and material sciences1. 
Their synthesis is a key step in the synthesis of various drugs, including antihistamines such as benadryl2, 
anticancer agents such as piritrexim3, vasodilators such as segontin4, and antidiabetics such as dapagliflozin, 
a sodium-glucose co-transporter 2 (SGLT-2) inhibitor5. Due to this breadth of application, various methods of 
constructing diarylmethane backbone have been devised. The most handbook ones are different variations on 
Friedel-Crafts alkylation or Friedel-Crafts acylation / reduction protocols6–12. Methods aimed at diarylmethanes 
also cover classical Pd-catalysed Suzuki-Miyaura and related cross-couplings13–16, organocatalysed7 and radical 
reactions17–21, as well as iron-catalysed Kumada cross-coupling22 and cobalt-catalysed reductive coupling23,24. 
The report on the last of these describes also conditions for Negishi cross-coupling, although it was not the goal 
of that research.

Cross-coupling reactions with organometallic reagents have been established as synthetic tools for nearly 50 
years25–27. Wide scope of reagents and great number of reaction conditions to choose from made these processes 
successful despite the frequent need for expensive palladium catalysts. Negishi reaction is one such example 
which uses organozinc reagents whose great advantage is the relative stability and low nucleophilicity compared 
to organolithium and organomagnesium reagents (used in Murahashi and Kumada reactions, respectively)28,29 
while maintaining the ability for fast transmetallation, contrary to organoboron and organosilicon compounds 
(used in Suzuki-Miyaura and Hiyama reactions). Furthermore, organozinc reagents are considerably less toxic 
than equivalent organotin compounds still used in Stille cross-coupling30.

Even though the field of cross-couplings can be considered mature, it is still a realm of intense research, 
especially considering the trend to abandon using platinum-group-metal catalysts. Cobalt catalysis has emerged 
as a promising alternative, mainly due to its reactivity patterns, some of which are unique to this metal31–33. 
Although studied extensively, new base metal catalytic systems for cross-coupling reactions are still sought 
after, especially those that would combine mild reaction conditions with stability and simple structure of (pre)
catalysts.
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Figure 1 shows representative examples of such base-metal catalytic systems published over the past two 
decades. The first report on the cobalt-catalysed Negishi reaction dates back to 200934. Roy MacArthur et al. 
described Co(II) acetylacetonato derivative complexes capable of catalysing cross-coupling between (E)-1-iodo-
1-octene and butylzinc iodide to form (E)‑5‑dodecene. In 2015, diarylzinc reagents were the subject of a report 
by Knochel et al., in which they described the CoCl2 / 2LiCl (20 mol%) + N,N,N’,N’‑tetramethylethanediamine 
(30  mol%) catalytic system whose use provided cross-coupling products with primary and secondary alkyl 
iodides36. By further development of their catalytic system, the Knochel group has made a significant contribution 
to advance Co-catalysed Negishi cross-couplings35,37,39. Further, Dorval et al. showed Negishi-type cross 
coupling of glutaramides with organozinc reagents enabled by 20 mol% of cobalt(II) bromide in 1,4-dioxane41. 
The authors observed that polar aprotic solvents were incompatible with their conditions. Recently, Cossy et al. 
have proposed and described a mechanism of cobalt-catalysed Negishi cross-coupling of arylzinc reagents with 
(hetero)aryl halides catalysed by CoCl2(bpy)2 system that fundamentally relied on Co(I) generation through 
solvent-dependent disproportionation of Co(II)40. The formation of highly active Co(I) species and their 
stabilization by acetonitrile have been verified based on X-ray absorption fine structure spectroscopy allied with 
DFT calculations. This CoCl2/bipyridine/acetonitrile system has been extended to the Negishi acylation and 
allylation. Most recently, Lu and colleagues performed an enantioselective transformation of α-bromoketones by 
using cobalt iodide (10 mol%) and chiral unsymmetrical N,N,N‑tridentate ligand42. Common to all the reports 
presented above is that the addition of auxiliary ligands or activation was required.

It appears that in the literature there is no example of effective synthesis of diarylmethanes using Negishi 
cross coupling in a catalytic system comprised of a cobalt(II) (pre)catalyst without additives. Here, we report 
Negishi cross-coupling of benzylzinc bromide and its congeners with organic iodides and bromides catalysed by 
CoBr2 / solvent system, which turned out to be useful method of the synthesis of diarylmethanes. DFT studies 
were undertaken to shed light on the workings of the process described.

Results and discussion
Experimental research
The research began with cross-coupling experiments between phenylzinc bromide and 4-iodotoluene in 
tetrahydrofuran (THF) catalysed by cobalt(II) complexes (see SI). These preliminary results indicated that, 
although possible, such a reaction was very nonselective, yielding the desired 4-methylbiphenyl in yields lower 
than 40% with other products resulting from homocoupling of the starting reactants. Curious as to whether the 
low selectivity is due to the influence of an aromatic Negishi reagent or whether it is an inherent property of the 
catalytic systems used, further experiments were conducted with benzylzinc bromide 1 as a coupling partner for 
4-iodotoluene 2 (Fig. 2). Table 1 summarises the screening of various cobalt coordination complexes as potential 
(pre)catalysts of such Negishi cross-coupling.

All cobalt compounds presented above turned out to catalyse the Negishi cross-coupling of benzylzinc 
bromide with 4-iodotoluene. Unexpectedly, the highest conversion of 4-iodotoluene was delivered by the simple, 
commercially available anhydrous cobalt(II) bromide (79%, entry 6), followed by two unrelated complexes 
(entries 1 and 8, 70% and 69%, respectively). It should be noted that reactions with simple Co halides (entries 
5–6) were visibly more selective than those catalysed by other Co species. Having chosen the precatalyst, the next 
logical step was to determine the influence of the solvent, especially as a means of potentially increasing the yield 
of 3. These experiments are summarised in Table 2.

As demonstrated by the results in the table, a variety of solvents, both very well known in the Negishi 
reaction and noncanonical ones, were reaction media appropriate for carrying out the model reaction. The 
least successful turned out to be eucalyptol (61%; entry3), an ether considered a green alternative to other ether 

Fig. 2.  The model Negishi reaction system.

 

Fig. 1.  Representative cobalt-catalysed Negishi reaction systems34–40. 
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solvents, such as tetrahydrofuran (THF) and 1,4-dioxane. The use of both of the latter led to conversions of 90% 
and 86% (entries 1 and 2, respectively), but the highest yield of 3a with excellent selectivity (> 99%) was provided 
by N,N-dimethylacetamide (DMAc, entry 4) and it was the solvent of choice for the last step of optimisation of 
reaction conditions, i.e., screening of catalyst loading, whose results are presented in Fig. 3 and the inset table. 
The collected data suggested that for future complete conversion of more demanding aryl iodides, 5 mol% of 
CoBr2 and a reaction time longer than 8 h should be applied.

Concluding, the screening has shown that 5 mol% of CoBr2 without an additive is enough to achieve full 
conversion of 4-iodotoluene over about 6 h at 80 ºC.

During considerations regarding the role of solvent in this transformation, the evaporation of THF from the 
solution of benzylzinc bromide prior to the addition of DMAc was tried. Decreasing the amount of THF allowed 
for a higher conversion of 2 (see SI), and this information together with the data from Tables 1 and 2 led us to 
the conclusion that only a small amount of solvent (N,N-dimethylacetamide) is required. In fact, it was possible 
to perform a reaction of 1 mmol of 2 in only 0.2 ml of DMAc without THF which enabled full conversion of aryl 
iodides at the room temperature with the same selectivity.

Having optimised the reaction conditions, we proceeded to examine the substrate scope of the proposed 
catalytic system (Fig. 4). Aryl iodides with groups such as methyl, methoxy, acyl, trifluoromethyl, nitrile, nitro, 
and amine were examined. Surprisingly, in reactions with alkyl iodides such as 1-iodohexane (3o), 2-iodopropane 
(3p), complete conversion of substrates was obtained as well as it was in the reaction of (E)‑β‑iodostyrene (3x) 
We observed that, most probably due to coordination properties, nitro and especially the amino groups were not 
suitable reagents for cross-coupling in this particular reaction system. A low conversion of these iodobenzene 
derivatives was recorded, but also many unidentified byproducts were observed. However, it is worth noting that 
a gramme-scale Negishi reaction between benzylzinc bromide and 4-iodoanisole resulted in isolating product 
3e with a 98% yield. It is also significant that the reaction with p-bromoiodobenzene at room temperature led 
to the sole substitution of the iodine atom, leaving the bromine unreacted (3q), which opens the possibility for 
further functionalisation.

# Solvent Conv. of 2 [%]a) Selectivity of 3a [%]a)

1 THF 90 91

2 1,4-dioxane 86 90

3 Eucalyptol 61 90

4 DMAc > 99 > 99

5 DMF 76 88

6 Acetonitrile 81 92

7 NMP 87 92

Table 2.  Screening of solvents for the negishi cross-coupling. Conditions: 1 M, 80 °C, 20 h, [BnZnBr]: 
[4-MeC6H4I]: [CoBr2] = 2 : 1 : 0.05;  a determined by GC-MS. THF – tetrahydrofuran, DMAc – N,N-
dimethylacetamide, DMF - N,N-dimethylformamide, NMP – N-methyl-2-pyrrolidone.

 

# Catalyst Conv. of 2 b)

Selectivity b)

3 4 Other c)

1 [CoBr2(PPh3)2] 70 38 38 24

2 [CoCl2(PPh3)2] 41 30 44 26

3 [CoBr2(2-Me-py)2] 53 27 44 29

4 [CoBr2(dppe)] 56 37 45 18

5 CoCl2 42 65 18 17

6 CoBr2 79 81 7 12

7 [CoCl2(2-Me-py)2] 57 17 48 35

8 [CoCl2(bipicoline)] 69 28 45 27

9 none 0 - - -

Table 1.  Screening of cobalt(II) complexes as potential (pre)catalysts. (a) Conditions: 0.4 M in THF, 40 °C, 20 h 
[BnZnBr]: [4-MeC6H4I]: [Co] = 2 : 1 : 0.05; (b) determined by GC-MS; (c)5 and toluene as product of possible 
demetalation of 1 and/or dehalogenation of 2.
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Knowing the importance and greater accessibility of aryl bromides, we attempted to modify the reaction 
conditions to include this class of reagents. It turned out that a modification of the conditions by increasing the 
temperature and CoBr2 loading allowed us to carry out cross-coupling of these as far unreactive reagents.

The results of the Negishi benzylation of selected aryl bromides are presented in Fig. 5. The cross-coupling 
reaction carried out at a higher temperature was accompanied by the formation of slightly higher amounts of 
1,2-diphenylethane compared to the reactions with aryl iodides.

Regarding the variability of the organozinc coupling partner, 2-naphthylmethylzinc bromide was also 
successfully transformed, as well as 3,5-difluorobenzylzinc bromide and 4-cyanobenzylzinc bromide. A couple 
of common products show a comparison in the reactivity of organic bromides and iodides, where the latter 
turned out to be significantly easier to convert.

Fig. 4.  Products of CoBr2/DMAc-catalysed Negishi cross-coupling of aryl and alkyl iodides. Reaction 
conditions: ArCH2ZnBr (4 mmol), aryl/alkyl iodide (2 mmol), CoBr2 (0.1 mmol, 5 mol%), 0.4 mL DMAc, RT, 
inert atmosphere, 20 h. All values are isolated yields; b) Not isolated – GC yield given.

 

Fig. 3.  Screening of CoBr2 loading. Conditions: 1 M in DMAc, 80 °C, [BnZnBr]: [4-MeC6H4I] = 2 : 1; 
conversion determined by GC-MS.
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Distinct conditions required to carry out reactions with aryl iodides vs. aryl bromides were a premise that 
a sequential chemoselective cross-coupling of these moieties might be possible, which was demonstrated using 
1‑bromo‑4‑iodobenzene (Fig. 6).

Furthermore, to ensure that our system was homogeneous, we decided to use scanning electron microscopy 
(SEM) to analyse the sample of solid residue separated from the reaction mixture. Energy-dispersive spectroscopy 
(SEM-EDS) showed no presence of cobalt, which allowed us to conclude about the absence of catalytic metal 
nanoparticles.

Theoretical modelling
To gain insight into the mechanistic details, the reaction was investigated computationally (Fig. 7). Reaction 
paths in both singlet and triplet states were considered. Generally, the triplet pathway (black and grey) is strongly 
preferred over the singlet pathway (blue), which is consistent with the reported models for cross-couplings 
catalysed by Co complexes (typically with N-ligands)40. Furthermore, complexes with a variety of coordinated 
solvent molecules were investigated.

The initial generation of Co(I) species has already been extensively described40. Triplet Co(I) complexes prefer 
flat trigonal over tetrahedral geometries (cf. I with II and IV with VI), also contrasting with singlet square planar 
arrangements (III and V). In contrast, Co(III) intermediates adopt only slightly distorted tetrahedral geometries 
favoured over trigonal bipyramidal and octahedral complexes bearing more solvent molecules (cf. IX with 
VII and XI and XII with XV).Therefore, the most probable pathway (black) involves facile oxidative addition 
(TS1) followed by rate-limiting transmetalation (TS 4) and reductive elimination (TS8). Transmetalation 
occurs through a four-membered transition state involving bridging of the Co and Zn centres by bromide and 
benzyl ligands. The most favourable pathway for this step involves initial substitution of a solvent molecule 
in BnZnBr(DMAc)2 with bromide coordinated to Co centre of IX leading to µ2 bromide bridging Zn and Co 
centres, (not depicted in Fig.  7) followed by transfer of benzyl via TS4 (ΔG‡= 76.9  kJ/mol). The alternative 
manifolds involving pentavalent Zn-centre (TS5) or hexavalent Co-centre (TS7) are considerably higher in 
energy. Finally, intermediate XII undergoes relatively easy reductive elimination through TS8 (ΔG‡= 54.9 kJ/
mol). The resulting catalytic cycle is presented in Fig. 8.

Fig. 6.  Two-step chemoselective cross-coupling of 1‑bromo‑4‑iodobenzene.

 

Fig. 5.  Products of CoBr2/DMAc-catalysed Negishi cross-coupling of aryl bromides. Reaction conditions: 
ArCH2ZnBr (2 mmol), aryl bromide (1 mmol), CoBr2 (0.1 mmol, 10 mol%), 0.4 mL DMAc, 80 °C, inert 
atmosphere, 20 h. All values are isolated yields.
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Fig. 8.  Catalytic cycle of Negishi cross-coupling in CoBr2 / DMAc catalytic system.

 

Fig. 7.  Gibbs Free Energy profiles calculated for possible reaction pathways starting from either a triplet (black 
and grey lines) or a singlet (blue lines) state.
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Conclusions
In conclusion, a straightforward method for performing the Negishi cross-coupling benzylation of aryl halides 
using the simplest cobalt precatalyst, cobalt bromide, in N,N-dimethylacetamide without addition of auxiliary 
ligands has been devised. With the use of the mild conditions described in the article, 26 products, including a 
variety of diarylmethanes, were synthesised, which was accomplished with yields comparable to those obtained 
with Pd catalysts. Additionally, the method has the potential to be extended to include alkyl alkenyl, and alkynyl 
iodides and bromides as coupling partners for arylmethylzinc bromides. At room temperature, the reaction is 
chemoselective toward aryl iodides, whereas carrying it out at elevated temperature allows for the transformation 
of aryl bromides, thus unlocking the possibility of sequential functionalisation. The role of solvent coordination 
in this transformation seems crucial and has been explained on the basis of DFT calculations.

Methods
General remarks
All reactions were carried out under argon atmosphere using standard Schlenk techniques and thoroughly dried 
glassware. Liquids were transferred using disposable syringes. N,N-dimethylacetamide (Merck/Sigma-Aldrich) 
was transferred to a Schlenk flask and degassed prior to use. Negishi reagents were prepared from the respective 
arylmethyl bromides in a direct reaction with zinc and their concentrations were determined by titration against 
iodine. Anhydrous cobalt(II) bromide and other reagents were purchased from Merck/Sigma-Aldrich and used 
as received.

General procedure of Negishi cross coupling
A calculated volume of solution of arylmethylzinc bromide in THF containing 4 mmol (2 eq. respectively to aryl 
halide) of this reagent was placed in a carefully dried Schlenk bomb flask with a PTFE valve plug. The introduced 
THF was evaporated in vacuo through the Schlenk line. Then, dimethylacetamide (0.4 ml), the corresponding 
organic halide (1 eq., 2 mmol) and cobalt bromide (21.8 mg, 5 mol%, 0.1 mmol) were added. After closing, the 
reaction mixture was stirred for 20 h at room temperature (for ArI), or at 80 °C (for ArBr). The mixture was 
quenched with concentrated aqueous NH4Cl solution (10 ml) and ethyl acetate (10 ml) was added. The mixture 
was extracted with ethyl acetate (3 × 10 ml). The combined organic layers were washed with brine, dried over 
Na2SO4, and concentrated in vacuo. Trace amounts of DMAc were removed by prolonged evacuation on the 
Schlenk line.

Theoretical modelling
Calculations were conducted with Gaussian 16 package43. Structures of minima and transition states were 
optimized employing BP86 functional, def2-SVP basis set44 Frequency analysis was performed at the same level 
of theory to provide correction to thermodynamic functions and confirm the nature of optimized structures 
(minima and transition states featured zero and one imaginary frequency, respectively). Single point energies 
were calculated with BP86 functional employing def2-TZVPP44 basis set and solvation (N,N-dimethylacetamide) 
with the SMD model45. Molecular structures were visualized in CYLview46.

Data availability
All underlying data is available in the article itself and the accompanying Supplementary Material.
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