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based approach for automated
identification of cervical vertebrae
fracture as a clinical support aid
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Cervical vertebrae fractures pose a significant risk to a patient’s health. The accurate diagnosis and
prompt treatment need to be provided for effective treatment. Moreover, the automated analysis of
the cervical vertebrae fracture is of utmost important, as deep learning models have been widely used
and play significant role in identification and classification. In this paper, we propose a novel hybrid
transfer learning approach for the identification and classification of fractures in axial CT scan slices

of the cervical spine. We utilize the publicly available RSNA (Radiological Society of North America)
dataset of annotated cervical vertebrae fractures for our experiments. The CT scan slices undergo
preprocessing and analysis to extract features, employing four distinct pre-trained transfer learning
models to detect abnormalities in the cervical vertebrae. The top-performing model, Inception-
ResNet-v2, is combined with the upsampling component of U-Net to form a hybrid architecture. The
hybrid model demonstrates superior performance over traditional deep learning models, achieving

an overall accuracy of 98.44% on 2,984 test CT scan slices, which represents a 3.62% improvement
over the 95% accuracy of predictions made by radiologists. This study advances clinical decision
support systems, equipping medical professionals with a powerful tool for timely intervention and
accurate diagnosis of cervical vertebrae fractures, thereby enhancing patient outcomes and healthcare
efficiency.
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The cervical spine is a versatile structure responsible for safeguarding nerve pathways to the entire body while
enabling movement of the head and neck. The cervical vertebral fracture identification is very crucial in case
of spine injuries'. The major causes of cervical vertebral fracture include motor vehicle accidents, falls,
penetrating or blunt trauma, sports-related or driving injuries. These injuries can vary in severity, ranging
from mild soft tissue injuries to more serious conditions like fractures, dislocations, or damage to the spinal
cord*”’. The symptoms and consequences of these injuries can also vary, from neck pain and stiffness to more
severe neurological issues, depending on the extent of the damage. Over the past two decades, there has been a
significant rise in traumatic injuries to the cervical vertebrae globally. This rise is attributed to rapid urbanization
and significant challenges including poor road infrastructure, high speeds, and inadequate workplace safety
measures®. Furthermore, there has been a noticeable increase in cervical vertebrae fractures among the elderly
due to osteoporosis and degenerative disorders, making it harder to diagnose these fractures’!!. Several
conventional clinical support imaging techniques are used to diagnose cervical vertebrae fractures in spinal
injuries such as computed tomography scan (CT-Scan), magnetic resonance imaging (MRI), and fan-beam
dual-energy X-ray absorptiometry (DEXA). All these clinical imaging techniques have some limitations. They
are not been able to detect very small or subtle fractures, especially if they are non-displaced or stress fractures'?.
That’s why, doctors face challenges in making optimal treatment decisions. Therefore, it is necessary to improve
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patient outcomes and healthcare interventions, leveraging emerging advanced techniques based on deep neural
network models can assist in accurately identifying cervical vertebrae fractures.

In cervical vertebrae fractures detection, traditional methods include adaptive thresholding, region growing,
contour segmentation, and graph-based methods. Recently, the CNN based models were reported to learn the
desired features and provide an outcome to diagnose fractures in cervical spine. Salehinejad et al.!’ evaluates the
DCNN known as ResNet-50 along with BLSTM layer in detecting the spine fractures on CT axial images. The
method determined the validation accuracy of 70.92% and 79.18% on balanced and unbalanced test datasets,
respectively. J.E. Small et al.'* employed an CT scan dataset on the CNN model to determine the cervical spine
fracture. The study compared the accuracy for the CNN trained model and radiologist computed value, which
found to be 92% and 93% respectively. Arunnit Boonrod et al.!>, uses the different versions of YOLO models
to determine the injury in cervical spine (C-spine). The dataset includes the CT scan of lateral neck, where the
YOLO v4 variant has outperformed v2 and v3 versions. It determined that the YOLO v4 model has obtained
sensitivity, specificity, and accuracy of 80%, 72% and 75% respectively. Merali et al.!® performed the experiment
on the MRI images for detection of cervical spinal cord compression. It trained the MRI image dataset using the
deep convolutional neural network and determined the sensitivity and specificity of 89% and 88% respectively.
Others reported work includes segmentation of vertebrae using multilayer perceptron and adaptive pulse
coupled neural network, with median filtering to refine the outcomes, the implementation of U-Net variants,
and various sequential learning models for diagnosing fractures from axial CT images of the cervical spine.
Some representative work related to variants of U-Net is highlighted in Table 1.

In this paper, the automated classification of cervical spine fractures on CT scan slices is performed, which
is composed of seven vertebrae, labeled C1 to C7, starting from the top of the spine. Each vertebra is separated
by intervertebral discs and connected by ligaments, and the cervical spine plays a crucial role in supporting the
head’s movement and protecting the spinal cord. The proposed methods involve the preprocessing of the images,
followed by extracting the features using four pre-trained CNN based models, and integrating best performing
model with U-net for final identification and multilabel classification of fractures across the seven vertebrae C1-
C7. Unlike previous studies that primarily focus on binary classification or fracture detection at a single vertebral
level, our method enables simultaneous multi-label classification across all cervical levels, enhancing diagnostic
coverage and clinical relevance. Moreover, we introduce a hybrid architecture by combining Inception-ResNet-v2
as the encoder with a partial U-Net decoder, which allows the model to capture both high-level semantic features
and fine-grained spatial details—a design not present in earlier works. To further improve clinical trust and
model transparency, Grad-CAM visualizations are incorporated, providing interpretability that is often lacking
in related studies. The performance is evaluated based on the parameters such as accuracy, precision, sensitivity,
specificity, and F1 score. The primary contribution of the research work includes:

I. An enhanced novel hybrid transfer learning model is proposed for the multilabel classification of cervical
vertebrae C1-C7 fractures in the CT scans slices.

II. For an effective multilabel classification, developed a learning model by integrating pre-trained Incep-
tion-ResNet-v2 with the U-Net architecture to enhance low-level feature extraction capabilities and reduce
redundancy in detecting cervical spine fracture.

III. Experiment was conducted on publicly available dataset of Radiological Society of North America (RSNA).
Through Grad-CAM analysis visualized the fracture by extracting features through proposed model and
validate the findings for confirming the model’s efficiency and effectiveness.

Author Methodology Advantages Limitations Key Results
Sha et al Introduced a modified U-Net with dilated Improved accuracy in lesion Limited focus on specific regions | Achieved better segmentation
17 convolution and attention module to enhance segmentation, increased receptive field, | and potential overfitting due to compared to baseline U-Net,
(2021) g i3 p 8 P
lesion segmentation in spinal CT images. reduced clinical diagnosis time. attention mechanisms. reducing manual diagnosis errors.
Tested four U-Net variations (U-Net, Attention
Shim et al. | Y-Neb Residual U-Net and Attention Recurrent | Achieved accuracy of 99% with Struggled with false-positive Attention U-Net showed highest
1 esidual U-Net) on X-ray images for cervical minimal manual intervention and rapid | results in more complex bone sensitivity and dice coefficient
(2022)8'R'd 1 U-Net) on X-ray images f ical inimal 1 i d rapid Its i plex b itivity and di ffici
spine segmentation, particularly for traumatic segmentation. regions. among models tested.
atlanto-occipital dislocation (TAOD) diagnosis.

Sha et al iplillll::tii_gf;(:; P ;I;alrf)rcaecst;fle 1?8::“ Laplace) Simplifies segmentation for real-time False positive and negative rates | The model achieved 87.9%
(2020)19' angd data au mentago rf) techni l;ges for enha ch in clinical use with reasonable accuracy were notable, needing further accuracy, with potential for clinical
. o). refinement. iagnostic support.

training £ d ¢ (88%) fi diag i PP
Bacetal. | Fully automated 2D U-Net for 3D segmentation Achieved high segmentation accuracy Yahdatlon needed across more Dice coefﬁgent Qf 96.23%,
(20200 of cervical vertebrae in CT images comparable to manual expert work, diverse datasets to enhance demonstrating high efficiency in 3D
5es. reduced diagnosis time. generalization. cervical vertebrae segmentation.
Modified transfer learning with MobileNetV2, High classification accuracy (99.75%) lelteq to CT images, l"‘df“.’g MobileNetV2 achlevgd highest
Paul et al. . - : . . ; evaluation on other modalities accuracy, demonstrating robustness
21 Inception v3, and ResNet50V2 for cervical spine | in detecting fractures using data S . . .
(2023) X e > such as MRI, X-ray, and no web- | for clinical diagnosis of spine
fracture detection. augmentation techniques.
based deployment. fractures.
High computational complexity | Achieved state-of-the-art
Xu etal Combined Residual U-Net and Transformer Improved segmentation boundaries and longer inference times due performance with DSC of
(2023)25 (RUNT) for spinal CT image segmentation and global/local feature fusion with to Transformer structure; limited | 88.4% on CTSpinelK, improving
P 8¢ seg . Transformer, reduced error rates. performance on smaller datasets | boundary precision and robustness
like VerSe 20. compared to prior models.

Table 1. SUMMARY OF REPORTED WORK RELATED TO VARIANTS OF U-NET.
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Methodology

This section presents the detailed description of the proposed framework for the identification of cervical
vertebrae fractures. The methodology involves preprocessing of the cervical images, training of the images
using proposed hybrid transfer learning based on Inception-ResNet-v2 U-Net architecture and performance is
evaluated by comparing with different existing pre-trained CNN models, followed by Grad-CAM analysis for
validating the detected cervical vertebrae fracture. The detailed discussion of each step is explained as:

Preprocessing of the dataset

The preprocessing of CT scan slices involves several essential steps. The proposed approach for the preprocessing
of DICOM (Digital Imaging and Communications in Medicine) images, adopts a comprehensive approach to
ensure optimal data fidelity and compatibility for subsequent analysis. Initially, we resize the input image to a
standardized 128 x 128 resolution using nearest-neighbor interpolation to preserve pixel integrity. Due to the
limited number of samples, we chose to resize images to 128 x 128 to reduce model complexity and mitigate
overfitting.

Since the unit of measurement in CT scans is the Hounsfield Unit (HU), which represents radiodensity, it
is crucial to note that these scanners are precisely calibrated to ensure accurate measurements. However, the
values provided by default may not initially be in Hounsfield Units, requiring further processing to convert
them into this standard measurement for analysis. To mitigate inconsistencies in image intensity caused by non-
tissue regions, we identify and zero out pixels corresponding to values below a threshold indicative of non-scan
areas, typically —1000 Hounsfield Units (HU). Following this, we apply calibration to convert pixel values to
Hounsfield Units (HU) as given in Eq. 1, accounting for inherent variations in image acquisition. This involves
scaling the pixel intensities by the slope factor and adding the intercept term obtained from DICOM metadata.
In our implementation, the HU values are stored as signed 32-bit integers (int32) to preserve the full range of
intensity values including negative numbers.

HU value = pizel value * Slope + Intercept (1)

Furthermore, to standardize intensity ranges across images, we normalize pixel values. Finally, we ensure
color consistency by converting the grayscale image to a 3-channel RGB representation using the YBR_FULL
photometric interpretation. In this step, grayscale pixel values are stored as unsigned 8-bit integers (uint8),
which is standard for YBR_FULL format and compatible with most visualization and processing libraries. This
conversion from 32-bit Hounsfield values to 8-bit may result in minor precision loss due to dynamic range
compression; however, it is a common practice to ensure compatibility with deep learning frameworks and
visualization tools. Figure 1 represents the preprocessed images along with their pixel density distribution. It
can be observed that after conversion to Hounsfield scale the pixel density distribution is normalized around 0
and —1000.

Architecture of the proposed approach

The study adopted two distinct modeling methodologies. In the initial approach, image training is conducted
on pre-trained models through the application of transfer learning principles. The second approach introduces
a novel hybrid model structured upon the encoder-decoder block architecture. The encoder component in this
methodology is instantiated with the optimal performing transfer learning model identified in the first approach.
For the decoder, we leverage the up-sampling module of the U-Net architecture to perform low-level feature
extraction, subsequently integrating fully connected layers to enable image classification. Later, we fine-tuned

Cl C2 C3 C4C5¢C6C7
0000110

Original image

50000

40000

30000

Fequency

20000

10000

-1000 -500 0 500 1000 1500 2000 2500

Pixel Values
Processed image

0 500 1000 1500
HU Values

Fig. 1. Original and processed CT scan slice for patient id ‘1.2.826.0.1.3680043.1868%.
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the final model to further enhance its performance. The three adopted pre-trained deep CNN architectures,
namely DenseNet121, Inception v3, and Inception-ResNet-v2, were selected based on their suitability for
transfer learning in limited-data settings, making them appropriate and reliable baselines for comparison. These
pre-trained CNN architectures as feature extractors for the multilabel image classification task are as follows:

DenseNet-121

DenseNet121?* offers an improvement over the traditional CNN models by alleviating the vanishing-gradient
problem. Layers in a DenseNet121 architecture are linked by dense blocks, which means that each layer builds a
feature map that feeds data to all subsequent layers by utilizing inputs from all preceding layers. Our study uses
it as a baseline model to evaluate classification performance on cervical spine fracture images.

Inception v3

Inception v3%, an extension of the renowned GoogLeNet?%, has demonstrated strong classification performance
across various biomedical applications. Using transfer learning, we employ it as a baseline for comparison in our
multilabel cervical spine fracture classification task.

Inception-ResNet-v2

The Inception structure and the Residual connection are combined to form the basis of Inception-ResNet-v2?7,
enabling efficient training of deep networks while mitigating degradation in performance. The study uses it
both as a standalone baseline model and as the encoder backbone in our proposed hybrid architecture. Figure 2
illustrates the fundamental network architecture of Inception-ResNet-v2.

Proposed encoder-decoder architecture

In this section, we present our model based on an encoder-decoder architecture. At its core, the encoder-decoder
architecture operates on principles of feature extraction and data transformation. This hybrid model combines
Inception modules?®, which are well-suited for capturing multi-scale contextual information, with residual
connections? that enhance gradient flow and training stability in deep networks. While originally adapted
from a segmentation framework used in prior work by Aghayari et al.>!, the architecture here is repurposed for
classification by modifying the output layers. The design retains a symmetric encoder-decoder structure, similar
in spirit to U-Net?, but is adapted for classification rather than pixel-wise prediction. In the following sections,
the U-Net and Inception-ResNet-v2 U-Net architectures are explained.

a) U-Net

U-Net? is a fully connected convolution network proposed by Ronneberger et al. in 2015 which mainly finds
application in image segmentation tasks. U-Net integrates an encoding path, or contracting path, with a
decoding path referred to as the expanding path. The U-shaped appearance of the architecture as represented in
Fig. 3 is the source of its name. This design enables the network to capture both local features and global context,
facilitating precise segmentation outcomes. The contracting, or encoder, path of the U-Net architecture employs
successive convolutions with a 3 x 3 kernel size, same padding, and stride one, followed by Rectified Linear Unit
(ReLU) activation, batch normalization, and max pooling operations. This process enhances the depth of feature
layers while simultaneously reducing the spatial dimensions of the input image. Notably, the absence of fully
connected layers distinguishes this model, allowing for interchangeability with pre-trained architectures. Each
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Fig. 2. Inception-ResNet-v2%” architecture presented in terms of functional blocks.
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Fig. 3. U-Net architecture?.

down-sampling step doubles the number of feature maps. Conversely, the expansive, or decoder, path utilizes
up-convolution operations to restore the original spatial dimensions of the image while reducing the number
of feature maps. Each up-convolutional step results in a halving of the feature count. To mitigate information
loss, feature concatenation from the contracting path is integrated during up-sampling. In this phase, standard
convolutional layers are applied to the concatenated features to ensure an effective synthesis of both local and
global features during the up-sampling process. Figure 3 illustrates the U-Net architecture as presented in the
proposed paper. The encoder is depicted on the left, and the decoder on the right. The input dimensions of the
image in our model are set at 128 x 128 pixels, with a corresponding output image size of 128 x 128 pixels within
the model’s framework. In our work, the U-Net architecture is adapted not for segmentation, but to support
slice-level multi-label classification. The decoder path is retained to enable reconstruction of semantically rich,
spatially aware features before applying global average pooling for classification, leveraging the encoder-decoder
together to enhance the model’s representational capacity.

b) Inception-ResNet-v2 U-Net architecture

Encoder The encoder is based on the pre-trained Inception-ResNet-v2 network and comprises 37 functional
blocks, totaling 164 layers, with its architectural design derived from Aghayari et al.3!. It extracts progressively
abstract representations of input CT slices while reducing spatial dimensions. As shown in Fig. 4, Block 3 is
repeated 10 times, yielding a feature map of size 13 x 13 x 320, and Block 5 is repeated 20 times to produce a
6% 6x 1088 feature map. These blocks (see in Fig. 5) incorporate parallel convolutional paths and residual con-
nections, improving representational capacity and convergence. The residual connections in Block 3 and Block 5
are implemented using a Lambda layer, which performs residual addition between the block input and the con-
volution output. To leverage transfer learning, we fine-tuned the model by freezing Blocks 1 through 3, which
contain lower-level feature extractors, and allowed the remaining layers to be trainable. This strategy preserves
the general feature extraction capabilities of the encoder. The final model contains 36.79 million parameters, of
which 32.42 million are trainable, and 4.37 million are non-trainable.

Decoder Although segmentation is not the goal, we retain a decoder path inspired by U-Net? to upsample
and recover spatial detail necessary for detecting localized fractures. This is because the classification task is
performed at the slice level, and fracture cues often appear as small, localized anomalies within the anatomical
context of the cervical spine. Simply using the encoder output followed by Global Average Pooling (GAP) could
result in a loss of spatial detail crucial for accurate vertebra-specific prediction. The decoder consists of six up-
sampling blocks and integrates skip connections from the encoder, enabling the network to combine high-level
semantic features with lower-level structural cues. This design mirrors the U-Net structure and facilitates better
localization of discriminative features (see in Fig. 4). At the final stage, the output is upsampled to 128 x 128 x 64,
matching the input resolution. A Global Average Pooling layer is then applied, followed by Dropout and a Dense
output layer with seven sigmoid-activated nodes, each indicating the presence or absence of a fracture in ver-
tebrae C1 to C7. Applying GAP at full spatial resolution helps aggregate fine-grained and spatially distributed
features, which is critical in this medical imaging task where co-occurring and vertebra-specific fractures are
common. Thus, the decoder is not used for generating pixel-wise segmentations but to enhance the spatial rich-
ness of the feature maps prior to classification. This approach is consistent with prior findings that spatial context
plays a crucial role in classification tasks involving localized pathologies™®.

Results and discussion

Experimental dataset

In this study, we have utilized the dataset from the RSNA 2022 Cervical Spine Fracture Detection competition
(https://www.rsna.org/rsnai/ai-image-challenge/cervical-spine-fractures-ai-detection-challenge-2022). It
consists of CT-scans from a total of 2019 distinct patients?>. However, the segmentation data which contains
the annotated labels for the CT scan slices is just available for 87 patients. Consequently, our analysis and model
development will be confined to the subset of axial view of CT-scans for which this annotated data is accessible,
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focusing on the 29,832 CT-scan slices from 87 patients. The CT-scan are available in the DICOM file format.
The DICOM image files have a bone kernel, a slice thickness and axial orientation of less than 1 mm. Figure 6
(a) represents the number of fractures in each vertebra of the cervical spine. It can be observed that the number
of fractures in C6 and C7 are more evident as compared from C1 to C5. Several patients have more than one
fracture. If multiple fractures occur on a single patient, they tend to occur in vertebrae close together, e.g. C5 and
C6 as opposed to C1 and C7 which is evident from the correlation matrix in Fig. 6 (b). Further, the dataset is
split into 26,848 training and 2,984 test scan slices, with 10% of the training data further reserved for validation.

Potential dataset biases

Although the RSNA 2022 dataset is widely used and appropriate for cervical spine fracture classification, it has
inherent limitations that may introduce bias. The subset of 87 patients utilized in this study does not fully capture
the demographic and anatomical diversity of the larger cohort. Additionally, the dataset lacks comprehensive
demographic metadata (e.g., age, sex, trauma type), limiting the ability to assess population-level biases. Finally,
there is an uneven distribution of fractures across cervical vertebrae, with certain levels being overrepresented,
which could affect model training.

Experimental settings

Experimental tests are conducted using TensorFlow’?, with the dataset randomly divided into 90% for
training and 10% for testing. From the training portion, 10% is further set aside as a validation set to monitor.
Given the nature of the problem as multilabel classification, binary cross-entropy loss function is employed.
Stochastic Gradient Descent (SGD)* optimizer with Nesterov momentum?* is utilized, initialized with an initial
learning rate of 0.01, momentum of 0.9, and a weight decay of le-6. SGD with Nesterov momentum enhances
convergence speed by anticipating future gradients, allowing for more stable and faster learning compared to
traditional SGD. Compared to optimizers like Adam, SGD with momentum excels in minimizing overfitting,
as Adam can over-adapt to noise, potentially harming performance on unseen medical images. Additionally,
the ReduceLROnPlateau callback is implemented, adjusting the learning rate dynamically based on validation
accuracy, with reduction factor and minimum learning rate set to 0.5 and le-5 respectively. To mitigate
overfitting, early stopping callback with a patience of 9 epochs is incorporated, alongside model checkpoint
callback to preserve the best-performing model. Training occurs with a batch size of 32, optimizing resource
utilization across the 100-epoch training phase. Both baseline and proposed models initialize every weight
randomly. Evaluation metrics encompass sensitivity, specificity, and F1-score.

Performance evaluation and discussion
To gauge the overall effectiveness of our proposed model, we conducted a comparative analysis against four
benchmark models. Using sensitivity and specificity and F1-score as assessment metrics, Table 2 shows the
performance evaluation of the proposed model (both with and without fine-tuning) and other baseline models
on the dataset. DenseNet121 exhibits a decline in performance metrics, particularly in later layers, despite initially
high Sensitivity and Specificity. Inception v3 presents competitive performance across all metrics, maintaining a
balanced Sensitivity and Specificity throughout its layers. Inception-ResNet-v2 displays consistent performance
with high Sensitivity and Specificity, especially in early layers, and sustains a strong F-1 Score across most layers.
The Inception-ResNet-v2 U-Net (Proposed) model introduces notable enhancements, surpassing previous
architectures by demonstrating improvements in Sensitivity (up to 2.0% increase), Specificity (up to 3.0%
increase), and F-1 Score (up to 2.0% increase) across various layers. However, the Inception-ResNet-v2 U-Net
(fine-tuned) model exhibits further enhancements, boasting increased Sensitivity (up to 1.0% increase),
Specificity (up to 1.5% increase), and F-1 Score (up to 1.0% increase) across diverse layers, notably in deeper
layers. There is a balance trade-off between correctly identifying positive and negative instances as the sensitivity
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Fig. 6. (a) distribution of fracture by vertebrae, (b) correlation matrix for C1-C7.

Scientific Reports |

(2025) 15:25651 | https://doi.org/10.1038/541598-025-10448-6 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

CNN Model Parameters | C1 c2 C3 C4 C5 Ceé Cc7

Sensitivity | 0.917 | 0.895 | 0.968 | 0.983 | 0.915 | 0.852 | 0.963
Specificity | 0.968 | 0.986 | 0.896 | 0.780 | 0.953 | 0.989 | 0.946
F-1 Score 0.942 | 0.938 | 0.931 | 0.807 | 0.934 |0.916 | 0.954

DenseNet121

Precision 0.968 | 0.985 | 0.896 | 0.684 | 0.953 | 0.990 | 0.945
Sensitivity | 0.900 | 0.903 | 0.968 | 0.969 | 0.912 | 0.872 | 0.935
Specificity | 0.930 | 0.970 | 0.854 | 0.776 | 0.957 | 0.978 | 0.903

Inception v3
F-1 Score 0.914 | 0.936 | 0.908 | 0.861 | 0.934 | 0.922 | 0.920

Precision 0.928 | 0.971 | 0.855 | 0.774 | 0.957 | 0.978 | 0.905
Sensitivity | 0.932 | 0.935 | 0.976 | 0.940 | 0.905 | 0.950 | 0.947

Specificity | 0.944 | 0.965 | 0.862 | 0.855 | 0.933 |0.935 | 0.913
F-1 Score 0.938 | 0.950 | 0.914 | 0.896 | 0.918 | 0.942 | 0.930
Precision 0.944 | 0.965 | 0.859 | 0.855 | 0.931 |0.934 | 0.913

Inception-ResNet-v2

Sensitivity | 0.922 | 0.953 | 0.950 | 0.976 | 0.957 | 0.878 | 0.973
Specificity | 0.955 | 0.973 | 0.942 | 0.907 | 0.9305 | 0.990 | 0.954
F-1 Score 0.940 | 0.963 | 0.945 | 0.940 | 0.943 | 0.931 | 0.963

Inception-ResNet-v2 U-Net (Proposed)

Precision 0.958 | 0.973 | 0.940 | 0.906 | 0.929 | 0.990 | 0.953

Sensitivity | 0.940 | 0.955 | 0.964 | 0.966 | 0.919 | 0.934 | 0.973
Specificity | 0.951 | 0.976 | 0.930 | 0.906 | 0.962 | 0.988 | 0.940
F-1 Score 0.945 | 0.966 | 0.947 | 0.935 | 0.940 | 0.960 | 0.956
Precision 0.950 | 0.977 | 0.930 | 0.905 | 0.962 | 0.987 | 0.939

Inception-ResNet-v2 U-Net (fine-tuned) (Proposed)

Table 2. COMPARISON OF THE VARIOUS CNN BASED MODEL IN CLASSIFYING THE SPINE FRACTURE VERTEBRAE
C1-C7.

0.6 4
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—\’\/"_\—V\ validation
0.84 1
P4 10 20 30 o 10 20 30

(a) Training and Validation Loss Curve (b) Training and Validation Accuracy Curve

Fig. 7. (a) displays the training and validation curves of binary loss and, (b) accuracy for the fine-tuned
Inception-ResNet-v2 U-Net model.

values ranging from 0.919 to 0.973 and specificity values ranging from 0.906 to 0.988. Furthermore, its F1-
score, which combines precision and recall, ranges from 0.935 to 0.966, indicating its robustness in capturing
both true positives and true negatives while reducing the occurrence of false positives and false negatives.
These findings underscore the efficacy of fine-tuning techniques in optimizing model performance for medical
image classification tasks. Despite the promising results, this study has several limitations that may affect model
performance and generalizability. The relatively small subset of 87 patients used in our analysis limited the
diversity of training data, potentially constraining the model’s ability to generalize to the broader population.
Additionally, due to lack of accessible clinical datasets with appropriate annotations, external validation could
not be performed; an important future step to assess robustness.

The dataset also presented challenges such as class imbalance, with certain vertebral levels (e.g., C6, C7) being
overrepresented and others (e.g., C1) underrepresented, which may bias the model toward more frequent classes.
Variability and noise in the CT scans, including anatomical differences and artifacts, posed further challenges
for consistent feature extraction. To address these issues in future work, we plan to incorporate advanced data
augmentation techniques, explore loss functions that account for class imbalance, and validate the model on
external datasets to enhance generalizability. Figure 7 displays the curves provide a visual representation of the
model’s performance over time, highlighting both accuracy and loss metrics throughout the process. The curves
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shows that the model performs better as the losses are minimized and accuracy is maximized for training and
validation. Table 2 indicates the accuracies of the different CNN architectures utilized in the study. Among the
different CNN models, the Encoder-Decoder (Inception-ResNet-v2 U-Net fine-tuned) model determined the
highest accuracy of 98.44%. Further, the Table 3 highlights related studies comparison with the proposed model.
The proposed architecture also performs better in comparison to various other existing studies.

Ablation studies

The study aims to demonstrate the effectiveness of the proposed hybrid model. The analysis was performed to
evaluate the contribution of various components to the overall performance of the deep learning models. The
study systematically removes or modify specific parts of a model to determine their impact on key metrics such
as accuracy, sensitivity, and specificity. In the Sha et al.!” model, the attention mechanism and dilated convolution
layers were individually ablated to assess their importance in lesion segmentation. This experiment demonstrated
that removing the attention module led to a decrease in the model’s ability to focus on crucial lesion regions,
while eliminating the dilated convolution reduced the receptive field, affecting boundary detection performance.
These results confirm the critical role of both components in achieving high segmentation accuracy. Shim et
al.'® model, which incorporated attention mechanisms within a U-Net architecture, revealed that excluding
the attention layer reduced sensitivity and precision, particularly in complex bone regions, underscoring the
importance of attention in cervical spine segmentation. For the Paul et al.?! transfer learning-based model,
removing specific components (MobileNetV2, Inception v3, ResNet50V2) demonstrated that MobileNetV2
contributed most to achieving high accuracy and speed in detecting cervical spine fractures. Furthermore,
omitting data augmentation techniques during the study resulted in decreased robustness and increased
overfitting, emphasizing the role of augmentation in improving model generalization. In the case of Xu et al.?2,
which combined a residual U-Net with Transformer networks, ablation of the Transformer module reduced
the model’s ability to capture global contextual information, while removing the residual connections led to
gradient instability, negatively impacting segmentation consistency. Finally, in the Inception-ResNet-v2 U-Net
model used in this study, we observed that removing the Inception-ResNet architecture decreased sensitivity
and specificity, demonstrating the importance of deeper architectures in accurate fracture detection. Table 4
highlighting test accuracies observed for different CNN model, where Inception-ResNet-v2 U-Net (fine-tuned)
determined the accuracy of 98.44.

Grad-CAM analysis for classification of cervical vertebrae

The visualization of cervical vertebrae fractures is achieved using the Gradient-weighted Class Activation
Mapping (Grad-CAM) technique, which highlights the regions within a CT scan slice that most influence the
model’s classification decisions. This approach enables a qualitative assessment of whether the model focuses
on anatomically relevant areas associated with fractures across vertebrae C1 to C7. Figure 8 presents Grad-
CAM outputs from the final batch_normalization_209 layer of the fine-tuned Inception-ResNet-v2 U-Net
model, applied to test images. In the Fig. 8, ‘A’ denotes the actual class label and ‘P’ represents the predicted
probability. The highlighted regions provide insight into the areas the model attends to when detecting

Author No of Sample Accuracy Sensitivity Specificity Comments
U-Net with dilated convolution and attention for spinal
17 ( 0, 0, P’
Sha etal'”. 7836 98.6% 83.8% 97.9% lesion segmentation in CT, improving diagnostic speed.
. Compared U-Net variations, Attention U-Net performed
18 0 0, o
Shim etal ™. 707 99.13% 90.44% 99:51% best for cervical spine segmentation in X-rays.
U-Net with preprocessing and data augmentation for spinal
19 o prep: g g P
Sha et al™. N/A 87.9% N/A N/A fracture segmentation in clinical use.
20 1684 disease slices, 3490 o Fully automated 2D U-Net for 3D cervical vertebra
Bae etal®. healthy slices 96.23% N/A N/A segmentation, achieved high DSC scores in validation.
MobileNetV2 model achieved highest accuracy for cervical
21 9 g y
Paul etal™. 4200 99.75% N/A N/A spine fracture classification in CT images.
Xu et al?2, CTSpinelK, VerSe 20 | 88.4% (CTSpinelK) | N/A N/A Sgg‘edf‘;lngel\flz;f)‘;mslg::i‘f”iﬁ‘eze‘t"ssef;;“elziaft‘:;;e“ebral
. 35 10,000 X-ray images o N MAFMv3: MobileNetV3 + CBAM + ASPP + histogram-
A. Dastgir et al”. (VinDr-SpineXR) 96.81% 97.95% N/A equalized views for spine lesion classification
P q P
36 | 80 CT test samples 96.52% (VerSe20) 3D MFA (Multi-Feature Attention): MobileNetV3 + Reverse
M.U. Saeed et al™. (VerSe19/20) N/A 94.64% (VerSel9) N/A CBAM +FPP + ASPP; lightweight and pruned architecture.
S Uses a bidirectional long-short term memory (BLSTM)
13 9 649 849 8 y
Salehinejad etal®™. - | 3666 79.18% 57 — 64% 77— 84% layer on CT imaging for the cervical spine fracture detection
0
J.E. Small et al'# 665 gé‘; (CNN) 76% (CNN) 97% (CNN) CNN was designed to detect cervical spine fractures on CT
o . o . 93% (radiologists) | 96% (radiologists) | and compared it to that of radiologists.
(radiologists)
Arunnit Boonrod Trained different variants of YOLO network (v2, v3, and
et alls 625 75% 80% 72% v4). Among these, YOLO v4 used to detect cervical spine
: injury.
Presented Work | 29,832 CT-scan slices | 98.44% 92 — 97% 90 — 98% igfggtf‘r"ar;gf;Net'vz U-Net (fine-tuned) used to detect the

Table 3. COMPARISON OF THE PROPOSED WORK WITH THE STUDIES. N/A — Not Available
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Original

Original

Original

Original

Original

Original

CNN Model Test accuracy (%)
DenseNet-121 97.73
Inception v3 97.25
Inception-ResNet-v2 97.83

Inception-ResNet-v2 U-Net | 98.31

Inception-ResNet-v2 U-Net

(fine-tuned) 98.44

Table 4. TEST ACCURACIES FOR DIFFERENT CNN ARCHITECTURES USED ON THE RSNA DATASET.

Patient_ID: 1.2.826.0.1.3680043.12292| Slice: 89

Cl: A=1,P=0.988 C2: A=1,P=0.987 C3: A=0,P=0.000 C4: A=0,P=0.001 C5: A=0,P=0.000

Patient_ID: 1.2.826.0.1.3680043.14267| Slice: 320

Cl: A=0,P=0.000 C2: A=0,P=0.000 C3: A=0,P=0.000 C4: A=0,P=0.000 C5: A=0,P=0.010

Patient_ID: 1.2.826.0.1.3680043.32370| Slice: 97

Cl: A=0,P=0.356 C2: A=1,P=0996 C3: A=0,P=0.000 C4: A=0,P=0.000 C5: A=0,P=0.000

Patient_ID: 1.2.826.0.1.3680043.1480| Slice: 265

Cl: A=0,P=0.004 C2: A=0,P=0.000 C3: A=0,P=0.002 C4: A=1,P=0993 (C5: A=1,P=0.998

Patient_ID: 1.2.826.0.1.3680043.32590]| Slice: 159

Cl: A=0,P,=0.001 C2: A=0,P=0.000 C3: A=0,P=0.007 C4: A=1,P=0970 C5: A=1,P=0.991

Patient_ID: 1.2.826.0.1.3680043.12281| Slice: 96

Cl: A=1,P=0.999 C2: A=1,P=0.998 C3: A=0,P=0.000 C4: A=0,P=0.001 C5: A=0,P=0.000

C6: A=0,P=0.000 C7: A=0,P=0.001

C6: A=1,P=0.986 C7: A=1,P=0.997

C6: A=0,P=0.000 C7: A=0,P=0.000

C6: A=0,P=0.065 C7: A=0,P=0.003

C6: A=1,P=0.530 C7: A=0,P=0.037
-

C6: A=0,P=0.000 C7: A=0,P=0.000

Fig. 8. Grad-CAM analysis for final *batch_normalization_209" layer in Inception-ResNet-v2 U-Net
fine-tuned model on test images. A" represents the actual label for the class and "P* represents predicted
probability for the class.
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fractures, supporting interpretability and clinical relevance. Although the dataset does not explicitly annotate
the smallest or most subtle fractures, the high overall accuracy and consistent attention to relevant anatomical
areas suggest the model’s potential effectiveness in detecting subtle abnormalities. While the visualizations are
informative, it is noted that some activation maps exhibit broad and diffuse patterns. This may be attributed to
the U-Net-like architecture, where the final feature map used for classification retains the full input resolution.
Such spatially extended attention allows the model to incorporate contextual anatomical cues but can reduce
localization sharpness. Clinically, these broader activation regions may still be useful, as radiologists often
examine surrounding tissue when assessing fractures. However, we acknowledge this as a limitation in precise
interpretability and suggest that future work explore attention mechanisms or architectural modifications to
improve focus localization without compromising classification performance.

Potential clinical applications

The proposed model demonstrates strong performance in classifying cervical vertebrae fractures from CT
scan slices, indicating its potential utility in clinical practice. By providing rapid and automated assessments,
the model could serve as a valuable clinical decision support tool, assisting radiologists in detecting fractures
more efficiently and accurately. In emergency departments or trauma centers, where timely diagnosis is critical,
the integration of this model could reduce diagnostic delays and workload burden. Moreover, embedding the
model within existing hospital imaging platforms or radiology information systems could streamline workflow,
allowing for seamless evaluation alongside routine radiological assessments. The proposed method may also
be particularly beneficial in resource-limited or remote settings where access to expert radiologists is scarce.
Through telemedicine applications, the model could offer preliminary evaluations, enabling earlier intervention
and triage.

Furthermore, the interpretability provided by methods like Grad-CAM enhances clinician trust by
highlighting relevant anatomical regions influencing model predictions. This transparency is crucial for clinical
adoption, ensuring that artificial intelligence outputs complement rather than replace expert judgment. Overall,
the integration of automated fracture classification models has the potential to improve diagnostic accuracy,
optimize patient management, and contribute to better clinical outcomes. Future work will focus on validating
this model across diverse clinical populations and integrating it into real-world healthcare workflows.

Conclusion

The proposed work presents an efficient method for automated classification of cervical vertebrae fracture
C1-C7 in CT scan slices. The proposed work performs a preprocessing of the data and, using the Inception-
ResNet-v2 U-Net architecture, detects the abnormality in cervical vertebrae fracture. Our experimental results
have demonstrated the superior performance of our proposed model compared to baseline models. Achieving
an accuracy of 98.44%, our model has exhibited high precision in identifying cervical vertebrae fractures. This
exceptional accuracy underscores the efficacy and reliability of our approach, suggesting its potential to improve
the diagnostic process for cervical spine injuries significantly. Integrating our automated classification method
into a decision support system will hold immense promise for clinical practice. By providing timely and accurate
information regarding the presence of cervical vertebrae fractures, our system can assist healthcare professionals
in making informed decisions regarding patient care. It includes facilitating early diagnosis, guiding treatment
planning, and improving patient outcomes.

Data availability

The data used in this study are publicly available from the RSNA 2022 Cervical Spine Fracture Detection com-
petition, accessible at https://www.rsna.org/rsnai/ai-image-challenge/cervical-spine-fractures-ai-detection-chal
lenge-2022.
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