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Cervical vertebrae fractures pose a significant risk to a patient’s health. The accurate diagnosis and 
prompt treatment need to be provided for effective treatment. Moreover, the automated analysis of 
the cervical vertebrae fracture is of utmost important, as deep learning models have been widely used 
and play significant role in identification and classification. In this paper, we propose a novel hybrid 
transfer learning approach for the identification and classification of fractures in axial CT scan slices 
of the cervical spine. We utilize the publicly available RSNA (Radiological Society of North America) 
dataset of annotated cervical vertebrae fractures for our experiments. The CT scan slices undergo 
preprocessing and analysis to extract features, employing four distinct pre-trained transfer learning 
models to detect abnormalities in the cervical vertebrae. The top-performing model, Inception-
ResNet-v2, is combined with the upsampling component of U-Net to form a hybrid architecture. The 
hybrid model demonstrates superior performance over traditional deep learning models, achieving 
an overall accuracy of 98.44% on 2,984 test CT scan slices, which represents a 3.62% improvement 
over the 95% accuracy of predictions made by radiologists. This study advances clinical decision 
support systems, equipping medical professionals with a powerful tool for timely intervention and 
accurate diagnosis of cervical vertebrae fractures, thereby enhancing patient outcomes and healthcare 
efficiency.
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The cervical spine is a versatile structure responsible for safeguarding nerve pathways to the entire body while 
enabling movement of the head and neck. The cervical vertebral fracture identification is very crucial in case 
of spine injuries1–3. The major causes of cervical vertebral fracture include motor vehicle accidents, falls, 
penetrating or blunt trauma, sports-related or driving injuries. These injuries can vary in severity, ranging 
from mild soft tissue injuries to more serious conditions like fractures, dislocations, or damage to the spinal 
cord4–7. The symptoms and consequences of these injuries can also vary, from neck pain and stiffness to more 
severe neurological issues, depending on the extent of the damage. Over the past two decades, there has been a 
significant rise in traumatic injuries to the cervical vertebrae globally. This rise is attributed to rapid urbanization 
and significant challenges including poor road infrastructure, high speeds, and inadequate workplace safety 
measures8. Furthermore, there has been a noticeable increase in cervical vertebrae fractures among the elderly 
due to osteoporosis and degenerative disorders, making it harder to diagnose these fractures9–11. Several 
conventional clinical support imaging techniques are used to diagnose cervical vertebrae fractures in spinal 
injuries such as computed tomography scan (CT-Scan), magnetic resonance imaging (MRI), and fan-beam 
dual-energy X-ray absorptiometry (DEXA). All these clinical imaging techniques have some limitations. They 
are not been able to detect very small or subtle fractures, especially if they are non-displaced or stress fractures12. 
That’s why, doctors face challenges in making optimal treatment decisions. Therefore, it is necessary to improve 
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patient outcomes and healthcare interventions, leveraging emerging advanced techniques based on deep neural 
network models can assist in accurately identifying cervical vertebrae fractures.

In cervical vertebrae fractures detection, traditional methods include adaptive thresholding, region growing, 
contour segmentation, and graph-based methods. Recently, the CNN based models were reported to learn the 
desired features and provide an outcome to diagnose fractures in cervical spine. Salehinejad et al.13 evaluates the 
DCNN known as ResNet-50 along with BLSTM layer in detecting the spine fractures on CT axial images. The 
method determined the validation accuracy of 70.92% and 79.18% on balanced and unbalanced test datasets, 
respectively. J.E. Small et al.14 employed an CT scan dataset on the CNN model to determine the cervical spine 
fracture. The study compared the accuracy for the CNN trained model and radiologist computed value, which 
found to be 92% and 93% respectively. Arunnit Boonrod et al.15, uses the different versions of YOLO models 
to determine the injury in cervical spine (C-spine). The dataset includes the CT scan of lateral neck, where the 
YOLO v4 variant has outperformed v2 and v3 versions. It determined that the YOLO v4 model has obtained 
sensitivity, specificity, and accuracy of 80%, 72% and 75% respectively. Merali et al.16 performed the experiment 
on the MRI images for detection of cervical spinal cord compression. It trained the MRI image dataset using the 
deep convolutional neural network and determined the sensitivity and specificity of 89% and 88% respectively. 
Others reported work includes segmentation of vertebrae using multilayer perceptron and adaptive pulse 
coupled neural network, with median filtering to refine the outcomes, the implementation of U-Net variants, 
and various sequential learning models for diagnosing fractures from axial CT images of the cervical spine. 
Some representative work related to variants of U-Net is highlighted in Table 1.

In this paper, the automated classification of cervical spine fractures on CT scan slices is performed, which 
is composed of seven vertebrae, labeled C1 to C7, starting from the top of the spine. Each vertebra is separated 
by intervertebral discs and connected by ligaments, and the cervical spine plays a crucial role in supporting the 
head’s movement and protecting the spinal cord. The proposed methods involve the preprocessing of the images, 
followed by extracting the features using four pre-trained CNN based models, and integrating best performing 
model with U-net for final identification and multilabel classification of fractures across the seven vertebrae C1-
C7. Unlike previous studies that primarily focus on binary classification or fracture detection at a single vertebral 
level, our method enables simultaneous multi-label classification across all cervical levels, enhancing diagnostic 
coverage and clinical relevance. Moreover, we introduce a hybrid architecture by combining Inception-ResNet-v2 
as the encoder with a partial U-Net decoder, which allows the model to capture both high-level semantic features 
and fine-grained spatial details—a design not present in earlier works. To further improve clinical trust and 
model transparency, Grad-CAM visualizations are incorporated, providing interpretability that is often lacking 
in related studies. The performance is evaluated based on the parameters such as accuracy, precision, sensitivity, 
specificity, and F1 score. The primary contribution of the research work includes:

	 I.	 An enhanced novel hybrid transfer learning model is proposed for the multilabel classification of cervical 
vertebrae C1-C7 fractures in the CT scans slices.

	 II.	 For an effective multilabel classification, developed a learning model by integrating pre-trained Incep-
tion-ResNet-v2 with the U-Net architecture to enhance low-level feature extraction capabilities and reduce 
redundancy in detecting cervical spine fracture.

	III.	 Experiment was conducted on publicly available dataset of Radiological Society of North America (RSNA). 
Through Grad-CAM analysis visualized the fracture by extracting features through proposed model and 
validate the findings for confirming the model’s efficiency and effectiveness.

Author Methodology Advantages Limitations Key Results

Sha et al. 
(2021)17

Introduced a modified U-Net with dilated 
convolution and attention module to enhance 
lesion segmentation in spinal CT images.

Improved accuracy in lesion 
segmentation, increased receptive field, 
reduced clinical diagnosis time.

Limited focus on specific regions 
and potential overfitting due to 
attention mechanisms.

Achieved better segmentation 
compared to baseline U-Net, 
reducing manual diagnosis errors.

Shim et al. 
(2022)18

Tested four U-Net variations (U-Net, Attention 
U-Net, Residual U-Net and Attention Recurrent 
Residual U-Net) on X-ray images for cervical 
spine segmentation, particularly for traumatic 
atlanto-occipital dislocation (TAOD) diagnosis.

Achieved accuracy of 99% with 
minimal manual intervention and rapid 
segmentation.

Struggled with false-positive 
results in more complex bone 
regions.

Attention U-Net showed highest 
sensitivity and dice coefficient 
among models tested.

Sha et al. 
(2020)19

Applied U-Net to spinal fracture lesion 
segmentation with preprocessing (Gauss, Laplace) 
and data augmentation techniques for enhancing 
training.

Simplifies segmentation for real-time 
clinical use with reasonable accuracy 
(88%).

False positive and negative rates 
were notable, needing further 
refinement.

The model achieved 87.9% 
accuracy, with potential for clinical 
diagnostic support.

Bae et al. 
(2020)20

Fully automated 2D U-Net for 3D segmentation 
of cervical vertebrae in CT images.

Achieved high segmentation accuracy 
comparable to manual expert work, 
reduced diagnosis time.

Validation needed across more 
diverse datasets to enhance 
generalization.

Dice coefficient of 96.23%, 
demonstrating high efficiency in 3D 
cervical vertebrae segmentation.

Paul et al. 
(2023)21

Modified transfer learning with MobileNetV2, 
Inception v3, and ResNet50V2 for cervical spine 
fracture detection.

High classification accuracy (99.75%) 
in detecting fractures using data 
augmentation techniques.

Limited to CT images, lacking 
evaluation on other modalities 
such as MRI, X-ray, and no web-
based deployment.

MobileNetV2 achieved highest 
accuracy, demonstrating robustness 
for clinical diagnosis of spine 
fractures.

Xu et al. 
(2023)22

Combined Residual U-Net and Transformer 
(RUnT) for spinal CT image segmentation.

Improved segmentation boundaries 
and global/local feature fusion with 
Transformer, reduced error rates.

High computational complexity 
and longer inference times due 
to Transformer structure; limited 
performance on smaller datasets 
like VerSe 20.

Achieved state-of-the-art 
performance with DSC of
88.4% on CTSpine1K, improving 
boundary precision and robustness 
compared to prior models.

Table 1.  Summary of reported work related to variants of U-Net.
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Methodology
This section presents the detailed description of the proposed framework for the identification of cervical 
vertebrae fractures. The methodology involves preprocessing of the cervical images, training of the images 
using proposed hybrid transfer learning based on Inception-ResNet-v2 U-Net architecture and performance is 
evaluated by comparing with different existing pre-trained CNN models, followed by Grad-CAM analysis for 
validating the detected cervical vertebrae fracture. The detailed discussion of each step is explained as:

Preprocessing of the dataset
The preprocessing of CT scan slices involves several essential steps. The proposed approach for the preprocessing 
of DICOM (Digital Imaging and Communications in Medicine) images, adopts a comprehensive approach to 
ensure optimal data fidelity and compatibility for subsequent analysis. Initially, we resize the input image to a 
standardized 128 × 128 resolution using nearest-neighbor interpolation to preserve pixel integrity. Due to the 
limited number of samples, we chose to resize images to 128 × 128 to reduce model complexity and mitigate 
overfitting.

Since the unit of measurement in CT scans is the Hounsfield Unit (HU), which represents radiodensity, it 
is crucial to note that these scanners are precisely calibrated to ensure accurate measurements. However, the 
values provided by default may not initially be in Hounsfield Units, requiring further processing to convert 
them into this standard measurement for analysis. To mitigate inconsistencies in image intensity caused by non-
tissue regions, we identify and zero out pixels corresponding to values below a threshold indicative of non-scan 
areas, typically − 1000 Hounsfield Units (HU). Following this, we apply calibration to convert pixel values to 
Hounsfield Units (HU) as given in Eq. 1, accounting for inherent variations in image acquisition. This involves 
scaling the pixel intensities by the slope factor and adding the intercept term obtained from DICOM metadata. 
In our implementation, the HU values are stored as signed 32-bit integers (int32) to preserve the full range of 
intensity values including negative numbers.

	 HU value = pixel value ∗ Slope + Intercept � (1) 

Furthermore, to standardize intensity ranges across images, we normalize pixel values. Finally, we ensure 
color consistency by converting the grayscale image to a 3-channel RGB representation using the YBR_FULL 
photometric interpretation. In this step, grayscale pixel values are stored as unsigned 8-bit integers (uint8), 
which is standard for YBR_FULL format and compatible with most visualization and processing libraries. This 
conversion from 32-bit Hounsfield values to 8-bit may result in minor precision loss due to dynamic range 
compression; however, it is a common practice to ensure compatibility with deep learning frameworks and 
visualization tools. Figure 1 represents the preprocessed images along with their pixel density distribution. It 
can be observed that after conversion to Hounsfield scale the pixel density distribution is normalized around 0 
and − 1000.

Architecture of the proposed approach
The study adopted two distinct modeling methodologies. In the initial approach, image training is conducted 
on pre-trained models through the application of transfer learning principles. The second approach introduces 
a novel hybrid model structured upon the encoder-decoder block architecture. The encoder component in this 
methodology is instantiated with the optimal performing transfer learning model identified in the first approach. 
For the decoder, we leverage the up-sampling module of the U-Net architecture to perform low-level feature 
extraction, subsequently integrating fully connected layers to enable image classification. Later, we fine-tuned 

Fig. 1.  Original and processed CT scan slice for patient id ‘1.2.826.0.1.3680043.1868’23.

 

Scientific Reports |        (2025) 15:25651 3| https://doi.org/10.1038/s41598-025-10448-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the final model to further enhance its performance. The three adopted pre-trained deep CNN architectures, 
namely DenseNet121, Inception v3, and Inception-ResNet-v2, were selected based on their suitability for 
transfer learning in limited-data settings, making them appropriate and reliable baselines for comparison. These 
pre-trained CNN architectures as feature extractors for the multilabel image classification task are as follows:

DenseNet-121
DenseNet12124 offers an improvement over the traditional CNN models by alleviating the vanishing-gradient 
problem. Layers in a DenseNet121 architecture are linked by dense blocks, which means that each layer builds a 
feature map that feeds data to all subsequent layers by utilizing inputs from all preceding layers. Our study uses 
it as a baseline model to evaluate classification performance on cervical spine fracture images.

Inception v3
Inception v325, an extension of the renowned GoogLeNet26, has demonstrated strong classification performance 
across various biomedical applications. Using transfer learning, we employ it as a baseline for comparison in our 
multilabel cervical spine fracture classification task.

Inception-ResNet-v2
The Inception structure and the Residual connection are combined to form the basis of Inception-ResNet-v227, 
enabling efficient training of deep networks while mitigating degradation in performance. The study uses it 
both as a standalone baseline model and as the encoder backbone in our proposed hybrid architecture. Figure 2 
illustrates the fundamental network architecture of Inception-ResNet-v2.

Proposed encoder-decoder architecture
In this section, we present our model based on an encoder-decoder architecture. At its core, the encoder-decoder 
architecture operates on principles of feature extraction and data transformation. This hybrid model combines 
Inception modules26, which are well-suited for capturing multi-scale contextual information, with residual 
connections29 that enhance gradient flow and training stability in deep networks. While originally adapted 
from a segmentation framework used in prior work by Aghayari et al.31, the architecture here is repurposed for 
classification by modifying the output layers. The design retains a symmetric encoder-decoder structure, similar 
in spirit to U-Net27, but is adapted for classification rather than pixel-wise prediction. In the following sections, 
the U-Net and Inception-ResNet-v2 U-Net architectures are explained.

a) U-Net
U-Net28 is a fully connected convolution network proposed by Ronneberger et al. in 2015 which mainly finds 
application in image segmentation tasks. U-Net integrates an encoding path, or contracting path, with a 
decoding path referred to as the expanding path. The U-shaped appearance of the architecture as represented in 
Fig. 3 is the source of its name. This design enables the network to capture both local features and global context, 
facilitating precise segmentation outcomes. The contracting, or encoder, path of the U-Net architecture employs 
successive convolutions with a 3 × 3 kernel size, same padding, and stride one, followed by Rectified Linear Unit 
(ReLU) activation, batch normalization, and max pooling operations. This process enhances the depth of feature 
layers while simultaneously reducing the spatial dimensions of the input image. Notably, the absence of fully 
connected layers distinguishes this model, allowing for interchangeability with pre-trained architectures. Each 

Fig. 2.  Inception-ResNet-v227 architecture presented in terms of functional blocks.
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down-sampling step doubles the number of feature maps. Conversely, the expansive, or decoder, path utilizes 
up-convolution operations to restore the original spatial dimensions of the image while reducing the number 
of feature maps. Each up-convolutional step results in a halving of the feature count. To mitigate information 
loss, feature concatenation from the contracting path is integrated during up-sampling. In this phase, standard 
convolutional layers are applied to the concatenated features to ensure an effective synthesis of both local and 
global features during the up-sampling process. Figure 3 illustrates the U-Net architecture as presented in the 
proposed paper. The encoder is depicted on the left, and the decoder on the right. The input dimensions of the 
image in our model are set at 128 × 128 pixels, with a corresponding output image size of 128 × 128 pixels within 
the model’s framework. In our work, the U-Net architecture is adapted not for segmentation, but to support 
slice-level multi-label classification. The decoder path is retained to enable reconstruction of semantically rich, 
spatially aware features before applying global average pooling for classification, leveraging the encoder-decoder 
together to enhance the model’s representational capacity.

b) Inception-ResNet-v2 U-Net architecture
Encoder  The encoder is based on the pre-trained Inception-ResNet-v2 network and comprises 37 functional 
blocks, totaling 164 layers, with its architectural design derived from Aghayari et al.31. It extracts progressively 
abstract representations of input CT slices while reducing spatial dimensions. As shown in Fig. 4, Block 3 is 
repeated 10 times, yielding a feature map of size 13 × 13 × 320, and Block 5 is repeated 20 times to produce a 
6 × 6 × 1088 feature map. These blocks (see in Fig. 5) incorporate parallel convolutional paths and residual con-
nections, improving representational capacity and convergence. The residual connections in Block 3 and Block 5 
are implemented using a Lambda layer, which performs residual addition between the block input and the con-
volution output. To leverage transfer learning, we fine-tuned the model by freezing Blocks 1 through 3, which 
contain lower-level feature extractors, and allowed the remaining layers to be trainable. This strategy preserves 
the general feature extraction capabilities of the encoder. The final model contains 36.79 million parameters, of 
which 32.42 million are trainable, and 4.37 million are non-trainable.

Decoder  Although segmentation is not the goal, we retain a decoder path inspired by U-Net27 to upsample 
and recover spatial detail necessary for detecting localized fractures. This is because the classification task is 
performed at the slice level, and fracture cues often appear as small, localized anomalies within the anatomical 
context of the cervical spine. Simply using the encoder output followed by Global Average Pooling (GAP) could 
result in a loss of spatial detail crucial for accurate vertebra-specific prediction. The decoder consists of six up-
sampling blocks and integrates skip connections from the encoder, enabling the network to combine high-level 
semantic features with lower-level structural cues. This design mirrors the U-Net structure and facilitates better 
localization of discriminative features (see in Fig. 4). At the final stage, the output is upsampled to 128 × 128 × 64, 
matching the input resolution. A Global Average Pooling layer is then applied, followed by Dropout and a Dense 
output layer with seven sigmoid-activated nodes, each indicating the presence or absence of a fracture in ver-
tebrae C1 to C7. Applying GAP at full spatial resolution helps aggregate fine-grained and spatially distributed 
features, which is critical in this medical imaging task where co-occurring and vertebra-specific fractures are 
common. Thus, the decoder is not used for generating pixel-wise segmentations but to enhance the spatial rich-
ness of the feature maps prior to classification. This approach is consistent with prior findings that spatial context 
plays a crucial role in classification tasks involving localized pathologies30.

Results and discussion
Experimental dataset
In this study, we have utilized the dataset from the RSNA 2022 Cervical Spine Fracture Detection competition 
(​h​t​t​p​s​:​​/​/​w​w​w​.​​r​s​n​a​.​o​​r​g​/​r​s​n​​a​i​/​a​i​​-​i​m​a​g​e​​-​c​h​a​l​l​​e​n​g​e​/​c​​e​r​v​i​c​​a​l​-​s​p​i​​n​e​-​f​r​a​​c​t​u​r​e​s​​-​a​i​-​d​e​t​e​c​t​i​o​n​-​c​h​a​l​l​e​n​g​e​-​2​0​2​2). It 
consists of CT-scans from a total of 2019 distinct patients23. However, the segmentation data which contains 
the annotated labels for the CT scan slices is just available for 87 patients. Consequently, our analysis and model 
development will be confined to the subset of axial view of CT-scans for which this annotated data is accessible, 

Fig. 3.  U-Net architecture28.
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Fig. 5.  Details of the blocks used in Inception-ResNet-v2 U-Net architecture in Fig. 4.

 

Fig. 4.  Proposed Inception-ResNet-v2 U-Net architecture for classification of cervical spine fracture.
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focusing on the 29,832 CT-scan slices from 87 patients. The CT-scan are available in the DICOM file format. 
The DICOM image files have a bone kernel, a slice thickness and axial orientation of less than 1 mm. Figure 6 
(a) represents the number of fractures in each vertebra of the cervical spine. It can be observed that the number 
of fractures in C6 and C7 are more evident as compared from C1 to C5. Several patients have more than one 
fracture. If multiple fractures occur on a single patient, they tend to occur in vertebrae close together, e.g. C5 and 
C6 as opposed to C1 and C7 which is evident from the correlation matrix in Fig. 6 (b). Further, the dataset is 
split into 26,848 training and 2,984 test scan slices, with 10% of the training data further reserved for validation.

Potential dataset biases
Although the RSNA 2022 dataset is widely used and appropriate for cervical spine fracture classification, it has 
inherent limitations that may introduce bias. The subset of 87 patients utilized in this study does not fully capture 
the demographic and anatomical diversity of the larger cohort. Additionally, the dataset lacks comprehensive 
demographic metadata (e.g., age, sex, trauma type), limiting the ability to assess population-level biases. Finally, 
there is an uneven distribution of fractures across cervical vertebrae, with certain levels being overrepresented, 
which could affect model training.

Experimental settings
Experimental tests are conducted using TensorFlow32, with the dataset randomly divided into 90% for 
training and 10% for testing. From the training portion, 10% is further set aside as a validation set to monitor. 
Given the nature of the problem as multilabel classification, binary cross-entropy loss function is employed. 
Stochastic Gradient Descent (SGD)33 optimizer with Nesterov momentum34 is utilized, initialized with an initial 
learning rate of 0.01, momentum of 0.9, and a weight decay of 1e-6. SGD with Nesterov momentum enhances 
convergence speed by anticipating future gradients, allowing for more stable and faster learning compared to 
traditional SGD. Compared to optimizers like Adam, SGD with momentum excels in minimizing overfitting, 
as Adam can over-adapt to noise, potentially harming performance on unseen medical images. Additionally, 
the ReduceLROnPlateau callback is implemented, adjusting the learning rate dynamically based on validation 
accuracy, with reduction factor and minimum learning rate set to 0.5 and 1e-5 respectively. To mitigate 
overfitting, early stopping callback with a patience of 9 epochs is incorporated, alongside model checkpoint 
callback to preserve the best-performing model. Training occurs with a batch size of 32, optimizing resource 
utilization across the 100-epoch training phase. Both baseline and proposed models initialize every weight 
randomly. Evaluation metrics encompass sensitivity, specificity, and F1-score.

Performance evaluation and discussion
To gauge the overall effectiveness of our proposed model, we conducted a comparative analysis against four 
benchmark models. Using sensitivity and specificity and F1-score as assessment metrics, Table 2 shows the 
performance evaluation of the proposed model (both with and without fine-tuning) and other baseline models 
on the dataset. DenseNet121 exhibits a decline in performance metrics, particularly in later layers, despite initially 
high Sensitivity and Specificity. Inception v3 presents competitive performance across all metrics, maintaining a 
balanced Sensitivity and Specificity throughout its layers. Inception-ResNet-v2 displays consistent performance 
with high Sensitivity and Specificity, especially in early layers, and sustains a strong F-1 Score across most layers.

The Inception-ResNet-v2 U-Net (Proposed) model introduces notable enhancements, surpassing previous 
architectures by demonstrating improvements in Sensitivity (up to 2.0% increase), Specificity (up to 3.0% 
increase), and F-1 Score (up to 2.0% increase) across various layers. However, the Inception-ResNet-v2 U-Net 
(fine-tuned) model exhibits further enhancements, boasting increased Sensitivity (up to 1.0% increase), 
Specificity (up to 1.5% increase), and F-1 Score (up to 1.0% increase) across diverse layers, notably in deeper 
layers. There is a balance trade-off between correctly identifying positive and negative instances as the sensitivity 

Fig. 6.  (a) distribution of fracture by vertebrae, (b) correlation matrix for C1-C7.
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values ranging from 0.919 to 0.973 and specificity values ranging from 0.906 to 0.988. Furthermore, its F1-
score, which combines precision and recall, ranges from 0.935 to 0.966, indicating its robustness in capturing 
both true positives and true negatives while reducing the occurrence of false positives and false negatives. 
These findings underscore the efficacy of fine-tuning techniques in optimizing model performance for medical 
image classification tasks. Despite the promising results, this study has several limitations that may affect model 
performance and generalizability. The relatively small subset of 87 patients used in our analysis limited the 
diversity of training data, potentially constraining the model’s ability to generalize to the broader population. 
Additionally, due to lack of accessible clinical datasets with appropriate annotations, external validation could 
not be performed; an important future step to assess robustness.

The dataset also presented challenges such as class imbalance, with certain vertebral levels (e.g., C6, C7) being 
overrepresented and others (e.g., C1) underrepresented, which may bias the model toward more frequent classes. 
Variability and noise in the CT scans, including anatomical differences and artifacts, posed further challenges 
for consistent feature extraction. To address these issues in future work, we plan to incorporate advanced data 
augmentation techniques, explore loss functions that account for class imbalance, and validate the model on 
external datasets to enhance generalizability. Figure 7 displays the curves provide a visual representation of the 
model’s performance over time, highlighting both accuracy and loss metrics throughout the process. The curves 

Fig. 7.  (a) displays the training and validation curves of binary loss and, (b) accuracy for the fine-tuned 
Inception-ResNet-v2 U-Net model.

 

CNN Model Parameters C1 C2 C3 C4 C5 C6 C7

DenseNet121

Sensitivity 0.917 0.895 0.968 0.983 0.915 0.852 0.963

Specificity 0.968 0.986 0.896 0.780 0.953 0.989 0.946

F-1 Score 0.942 0.938 0.931 0.807 0.934 0.916 0.954

Precision 0.968 0.985 0.896 0.684 0.953 0.990 0.945

Inception v3

Sensitivity 0.900 0.903 0.968 0.969 0.912 0.872 0.935

Specificity 0.930 0.970 0.854 0.776 0.957 0.978 0.903

F-1 Score 0.914 0.936 0.908 0.861 0.934 0.922 0.920

Precision 0.928 0.971 0.855 0.774 0.957 0.978 0.905

Inception-ResNet-v2

Sensitivity 0.932 0.935 0.976 0.940 0.905 0.950 0.947

Specificity 0.944 0.965 0.862 0.855 0.933 0.935 0.913

F-1 Score 0.938 0.950 0.914 0.896 0.918 0.942 0.930

Precision 0.944 0.965 0.859 0.855 0.931 0.934 0.913

Inception-ResNet-v2 U-Net (Proposed)

Sensitivity 0.922 0.953 0.950 0.976 0.957 0.878 0.973

Specificity 0.955 0.973 0.942 0.907 0.9305 0.990 0.954

F-1 Score 0.940 0.963 0.945 0.940 0.943 0.931 0.963

Precision 0.958 0.973 0.940 0.906 0.929 0.990 0.953

Inception-ResNet-v2 U-Net (fine-tuned) (Proposed)

Sensitivity 0.940 0.955 0.964 0.966 0.919 0.934 0.973

Specificity 0.951 0.976 0.930 0.906 0.962 0.988 0.940

F-1 Score 0.945 0.966 0.947 0.935 0.940 0.960 0.956

Precision 0.950 0.977 0.930 0.905 0.962 0.987 0.939

Table 2.  Comparison of the various CNN based model in classifying the spine fracture vertebrae 
C1-C7.
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shows that the model performs better as the losses are minimized and accuracy is maximized for training and 
validation. Table 2 indicates the accuracies of the different CNN architectures utilized in the study. Among the 
different CNN models, the Encoder-Decoder (Inception-ResNet-v2 U-Net fine-tuned) model determined the 
highest accuracy of 98.44%. Further, the Table 3 highlights related studies comparison with the proposed model. 
The proposed architecture also performs better in comparison to various other existing studies.

Ablation studies
The study aims to demonstrate the effectiveness of the proposed hybrid model. The analysis was performed to 
evaluate the contribution of various components to the overall performance of the deep learning models. The 
study systematically removes or modify specific parts of a model to determine their impact on key metrics such 
as accuracy, sensitivity, and specificity. In the Sha et al.17 model, the attention mechanism and dilated convolution 
layers were individually ablated to assess their importance in lesion segmentation. This experiment demonstrated 
that removing the attention module led to a decrease in the model’s ability to focus on crucial lesion regions, 
while eliminating the dilated convolution reduced the receptive field, affecting boundary detection performance. 
These results confirm the critical role of both components in achieving high segmentation accuracy. Shim et 
al.18 model, which incorporated attention mechanisms within a U-Net architecture, revealed that excluding 
the attention layer reduced sensitivity and precision, particularly in complex bone regions, underscoring the 
importance of attention in cervical spine segmentation. For the Paul et al.21 transfer learning-based model, 
removing specific components (MobileNetV2, Inception v3, ResNet50V2) demonstrated that MobileNetV2 
contributed most to achieving high accuracy and speed in detecting cervical spine fractures. Furthermore, 
omitting data augmentation techniques during the study resulted in decreased robustness and increased 
overfitting, emphasizing the role of augmentation in improving model generalization. In the case of Xu et al.22, 
which combined a residual U-Net with Transformer networks, ablation of the Transformer module reduced 
the model’s ability to capture global contextual information, while removing the residual connections led to 
gradient instability, negatively impacting segmentation consistency. Finally, in the Inception-ResNet-v2 U-Net 
model used in this study, we observed that removing the Inception-ResNet architecture decreased sensitivity 
and specificity, demonstrating the importance of deeper architectures in accurate fracture detection. Table 4 
highlighting test accuracies observed for different CNN model, where Inception-ResNet-v2 U-Net (fine-tuned) 
determined the accuracy of 98.44.

Grad-CAM analysis for classification of cervical vertebrae
The visualization of cervical vertebrae fractures is achieved using the Gradient-weighted Class Activation 
Mapping (Grad-CAM) technique, which highlights the regions within a CT scan slice that most influence the 
model’s classification decisions. This approach enables a qualitative assessment of whether the model focuses 
on anatomically relevant areas associated with fractures across vertebrae C1 to C7. Figure  8 presents Grad-
CAM outputs from the final batch_normalization_209 layer of the fine-tuned Inception-ResNet-v2 U-Net 
model, applied to test images. In the Fig. 8, ‘A’ denotes the actual class label and ‘P’ represents the predicted 
probability. The highlighted regions provide insight into the areas the model attends to when detecting 

Author No of Sample Accuracy Sensitivity Specificity Comments

Sha et al17. 7836 98.6% 83.8% 97.9% U-Net with dilated convolution and attention for spinal 
lesion segmentation in CT, improving diagnostic speed.

Shim et al18. 707 99.13% 90.44% 99.51% Compared U-Net variations, Attention U-Net performed 
best for cervical spine segmentation in X-rays.

Sha et al19. N/A 87.9% N/A N/A U-Net with preprocessing and data augmentation for spinal 
fracture segmentation in clinical use.

Bae et al20.​ 1684 disease slices, 3490 
healthy slices 96.23% N/A N/A Fully automated 2D U-Net for 3D cervical vertebra 

segmentation, achieved high DSC scores in validation.

Paul et al21. ​ 4200 99.75% N/A N/A MobileNetV2 model achieved highest accuracy for cervical 
spine fracture classification in CT images.

Xu et al22.​ CTSpine1K, VerSe 20 88.4% (CTSpine1K) N/A N/A Residual U-Net combined with Transformer for vertebral 
edge feature fusion, state-of-the-art segmentation.

A. Dastgir et al35. 10,000 X-ray images
(VinDr-SpineXR) 96.81% 97.95% N/A MAFMv3: MobileNetV3 + CBAM + ASPP + histogram-

equalized views for spine lesion classification

M.U. Saeed et al36. 80 CT test samples
(VerSe19/20) N/A 96.52% (VerSe20)

94.64% (VerSe19) N/A 3D MFA (Multi-Feature Attention): MobileNetV3 + Reverse 
CBAM + FPP + ASPP; lightweight and pruned architecture.

Salehinejad et al13. 3666 79.18% 57 — 64% 77 — 84% Uses a bidirectional long-short term memory (BLSTM) 
layer on CT imaging for the cervical spine fracture detection

J.E. Small et al14. 665
92% (CNN)
95%
(radiologists)

76% (CNN)
93% (radiologists)

97% (CNN)
96% (radiologists)

CNN was designed to detect cervical spine fractures on CT 
and compared it to that of radiologists.

Arunnit Boonrod 
et al15. 625 75% 80% 72%

Trained different variants of YOLO network (v2, v3, and 
v4). Among these, YOLO v4 used to detect cervical spine 
injury.

Presented Work 29,832 CT-scan slices 98.44% 92 — 97% 90 — 98% Inception-ResNet-v2 U-Net (fine-tuned) used to detect the 
spine fracture.

Table 3.  Comparison of the proposed work with the studies. N/A — Not Available
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Fig. 8.  Grad-CAM analysis for final `batch_normalization_209` layer in Inception-ResNet-v2 U-Net 
fine-tuned model on test images. `A` represents the actual label for the class and `P` represents predicted 
probability for the class.

 

CNN Model Test accuracy (%)

DenseNet-121 97.73

Inception v3 97.25

Inception-ResNet-v2 97.83

Inception-ResNet-v2 U-Net 98.31

Inception-ResNet-v2 U-Net
(fine-tuned) 98.44

Table 4.  Test accuracies for different CNN architectures used on the RSNA dataset.
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fractures, supporting interpretability and clinical relevance. Although the dataset does not explicitly annotate 
the smallest or most subtle fractures, the high overall accuracy and consistent attention to relevant anatomical 
areas suggest the model’s potential effectiveness in detecting subtle abnormalities. While the visualizations are 
informative, it is noted that some activation maps exhibit broad and diffuse patterns. This may be attributed to 
the U-Net-like architecture, where the final feature map used for classification retains the full input resolution. 
Such spatially extended attention allows the model to incorporate contextual anatomical cues but can reduce 
localization sharpness. Clinically, these broader activation regions may still be useful, as radiologists often 
examine surrounding tissue when assessing fractures. However, we acknowledge this as a limitation in precise 
interpretability and suggest that future work explore attention mechanisms or architectural modifications to 
improve focus localization without compromising classification performance.

Potential clinical applications
The proposed model demonstrates strong performance in classifying cervical vertebrae fractures from CT 
scan slices, indicating its potential utility in clinical practice. By providing rapid and automated assessments, 
the model could serve as a valuable clinical decision support tool, assisting radiologists in detecting fractures 
more efficiently and accurately. In emergency departments or trauma centers, where timely diagnosis is critical, 
the integration of this model could reduce diagnostic delays and workload burden. Moreover, embedding the 
model within existing hospital imaging platforms or radiology information systems could streamline workflow, 
allowing for seamless evaluation alongside routine radiological assessments. The proposed method may also 
be particularly beneficial in resource-limited or remote settings where access to expert radiologists is scarce. 
Through telemedicine applications, the model could offer preliminary evaluations, enabling earlier intervention 
and triage.

Furthermore, the interpretability provided by methods like Grad-CAM enhances clinician trust by 
highlighting relevant anatomical regions influencing model predictions. This transparency is crucial for clinical 
adoption, ensuring that artificial intelligence outputs complement rather than replace expert judgment. Overall, 
the integration of automated fracture classification models has the potential to improve diagnostic accuracy, 
optimize patient management, and contribute to better clinical outcomes. Future work will focus on validating 
this model across diverse clinical populations and integrating it into real-world healthcare workflows.

Conclusion
The proposed work presents an efficient method for automated classification of cervical vertebrae fracture 
C1-C7 in CT scan slices. The proposed work performs a preprocessing of the data and, using the Inception-
ResNet-v2 U-Net architecture, detects the abnormality in cervical vertebrae fracture. Our experimental results 
have demonstrated the superior performance of our proposed model compared to baseline models. Achieving 
an accuracy of 98.44%, our model has exhibited high precision in identifying cervical vertebrae fractures. This 
exceptional accuracy underscores the efficacy and reliability of our approach, suggesting its potential to improve 
the diagnostic process for cervical spine injuries significantly. Integrating our automated classification method 
into a decision support system will hold immense promise for clinical practice. By providing timely and accurate 
information regarding the presence of cervical vertebrae fractures, our system can assist healthcare professionals 
in making informed decisions regarding patient care. It includes facilitating early diagnosis, guiding treatment 
planning, and improving patient outcomes.

Data availability
The data used in this study are publicly available from the RSNA 2022 Cervical Spine Fracture Detection com-
petition, accessible at ​h​t​t​p​s​:​​/​/​w​w​w​.​​r​s​n​a​.​o​​r​g​/​r​s​​n​a​i​/​a​i​-​i​m​a​g​e​-​c​h​a​l​l​e​n​g​e​/​c​e​r​v​i​c​a​l​-​s​p​i​n​e​-​f​r​a​c​t​u​r​e​s​-​a​i​-​d​e​t​e​c​t​i​o​n​-​c​h​a​l​
l​e​n​g​e​-​2​0​2​2​.​​
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