
SFMANet: A Spatial-Frequency 
multi-scale attention network for 
stroke lesion segmentation
Hualing Li, Jianqi Wu, Yonglai Zhang & Lei Wang

In neuroimaging analysis, accurately delineating stroke lesion areas is crucial for assessing 
rehabilitation outcomes. However, the lesion areas typically exhibit irregular shapes and unclear 
boundaries, and the signal intensity of the lesion may closely resemble that of the surrounding healthy 
brain tissue. This makes it difficult to distinguish lesions from normal tissues, thereby increasing 
the complexity of the lesion segmentation task. To address these challenges, we propose a novel 
method called the Spatial-Frequency Multi-Scale Attention Network (SFMANet). Based on the UNet 
architecture, SFMANet incorporates Spatial-Frequency Gating Units (SFGU) and Dual-axis Multi-
scale Attention Units (DMAU) to tackle the segmentation difficulties posed by irregular lesion shapes 
and blurred boundaries. SFGU enhances feature representation through gating mechanisms and 
effectively uses redundant information, while DMAU improves the positioning accuracy of image 
edges by integrating multi-scale context information and better allocates the weights of global and 
local information to strengthen the interaction between features. Additionally, we introduce an 
Information Enhancement Module (IEM) to reduce information loss during deep network propagation 
and establish long-range dependencies. We performed extensive experiments on the ISLES 2022 
and ATLAS datasets and compared our model’s performance with that of existing methods. The 
experimental results demonstrate that SFMANet effectively captures the edge details of stroke lesions 
and outperforms other methods in lesion segmentation tasks.

Medical image segmentation constitutes a particularly challenging research area in computer vision. The objective 
of this task is to identify and extract relevant regions of medical images, providing a reliable foundation for 
clinical diagnosis, pathological research, and assisting clinicians in making accurate decisions. It has numerous 
applications in areas such as disease diagnosis, clinical decision support, and pathological analysis.

In recent decades, significant progress has been made in studying brain injuries and exploring brain anatomy 
using magnetic resonance imaging (MRI). These advances have generated large volumes of high-quality medical 
image data. However, for clinicians, analyzing these extensive and intricate MRI datasets and manually extracting 
critical information has become a burdensome task. Manual analysis is time-consuming and prone to errors, 
often influenced by variations in experience between different clinicians or among individual practitioners.

With the advancement of deep learning technologies, neural network-based methods have become the 
dominant approach for medical image segmentation. These methods are primarily based on convolutional 
neural networks (CNNs). Long et al.1 introduced the fully convolutional network (FCN), replacing fully 
connected layers with convolutional layers, which significantly enhanced the computational efficiency of 
image segmentation. Building upon the FCN, Ronneberger et al.2 developed U-Net, which consists of an 
encoder-decoder architecture. The encoder’s shallow and deep networks extract simple and abstract features 
from the image, respectively, while skip connections between the encoder and decoder facilitate the capture of 
contextual information. Since then, U-Net and its various extensions have substantially advanced medical image 
segmentation.

Recent advancements in medical image segmentation have shown significant progress, particularly in 
leveraging the strong generalization ability of convolutional kernels to extract high-dimensional features, 
which is crucial for visual tasks. However, there are still some disadvantages of stacked convolutional layers 
and downsampled layers: (1) as the number of convolutional layers increases, the model parameters increase 
significantly; (2) The small perceptual domain of the convolution operation cannot establish the long-distance 
dependence between pixels. This limitation may lead to incomplete or incorrect segmentation of the margins of 
the stroke lesion area3; (3) Continuous downsampling and convolution operations in the encoding phase will 
lead to a large loss of high-level semantic information4.
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In order to solve the problem of insufficient long-distance dependence of convolutional neural networks, In 
order to solve the problem of insufficient long-distance dependence of convolutional neural networks, researchers 
have introduced Transformer5 technology. Transformers can theoretically capture the dependencies between 
any two locations and have powerful global information extraction capabilities. However, Transformer cannot 
learn local information effectively and cannot naturally process multi-scale information through a hierarchical 
structure like CNNs. Therefore, transformers need additional mechanisms to introduce locality and multiscale 
when processing images, such as introducing local window attention (such as Swin Transformer6) or combining 
with CNNs. For example, TransUNet7 absorbs the advantages of ViT8 and UNet, and mixes the Transformer 
structure that emphasizes global information with CNN for hybrid encoding, which improves the segmentation 
effect of UNet. In later work, researchers proposed the use of different types of transformers for medical image 
segmentation. For example, EG-TransUNet9 uses a self-attention-based Transformer in the encoder and decoder 
stages to improve the discrimination ability at the spatial detail and semantic position levels. DS-TransUNet10 
uses a dual-scale coding mechanism to extract coarse-grained and fine-grained feature representations at 
different semantic scales. UNETR11 the Transformer is used as an encoder to learn the sequence representation 
of the input and effectively capture the global multi-scale information. SSCFormer12 takes the hybrid structure 
of ConvNet-Transformer as the framework and co-captures the features of the encoder within and between 
scales through the intra-scale ResInception and the inter-scale Transformer bridge. Although these studies use 
Transformer and CNN to learn multi-scale information, in multi-scale tasks, if the shape of the lesion area is 
irregular or the boundary is blurred, the mixed model may have the problem of small target failure to detect or 
edge localization due to improper allocation of local and global information weights. In addition, as the number 
of network layers increases, the model is also more susceptible to a large number of redundant features.

In this study, we propose a novel multi-scale network based on UNet and attention mechanism, named it 
as a spatial-frequency multi-scale attention network, to solve the problems mentioned above. Initially, UNet’s 
encoder used pooling operations to reduce the size of the feature map. Although computational efficiency is 
improved, it leads to the loss of feature information and the difficulty of recovering the edges and details of the 
image. To alleviate this problem, we have designed an information enhancement module. The module performs 
feature enhancement by combining multi-scale depth separable convolutions and establishes long-distance 
dependencies using axial attention13. Subsequently, to make effective use of the redundancy characteristics 
caused by the increase of network layers, a spatial-frequency gating unit is introduced in this paper. To solve the 
problem of boundary blurring caused by the fact that the stroke area and the surrounding brain tissue may have 
similar signal representations, this unit refines the redundant features of the spatial and frequency domains and 
enhances the feature representation of the lesion region through the gating mechanism. In addition, in order 
to solve the problem of uneven distribution and different sizes of lesions, we combine the attention mechanism 
with biaxial multi-scale feature extraction to better allocate the weight of global and local information, enhance 
feature expression, and better locate the stroke lesion area. We evaluated the network on an open-source stroke 
lesion segmentation dataset and achieved competitive segmentation performance.

The contributions of this work are summarized as follows:
∙We propose a Spatial-Frequency Gating Unit, which can effectively refine the feature redundancy in the 

spatial and frequency domains and enhance the refinement features.
∙We introduce the Dual-axis Multi-scale Attention Unit (DMAU), which can better allocate the weights of 

global and local information, enhance feature expression, and be used to locate stroke lesions.
∙We design an Information Enhancement Module (IEM) that mitigates information attenuation during deep 

propagation, facilitating the establishment of long-range dependencies.
∙We present SFMANet, built upon the proposed SFGU and DMAU, which demonstrates excellent 

segmentation performance. This network design is highly significant for advancing the application of medical 
imaging from the laboratory to clinical settings.

Related work
In this section, the network structure and multi-scale feature fusion for medical image segmentation are briefly 
introduced, and we also review some attention mechanisms related to our work.

Architecture of medical image segmentation
Deep learning technologies have demonstrated outstanding performance in semantic segmentation and are 
widely employed in medical image analysis and diagnostic support. Applications include the segmentation of 
coronary artery trunks14lung lesions associated with COVID-1915, prostate tissues16and brain tumors17. U-Net, 
a widely used architecture in medical image segmentation, combines low-dimensional and high-dimensional 
feature information through its unique skip connection mechanism between the encoder and decoder, enabling 
high-quality segmentation even with relatively small datasets. In recent years, researchers have made various 
enhancements to the original U-Net architecture to further improve segmentation accuracy18–26. Notable 
advancements include UNET + + 27, which introduces dense skip connections to strengthen feature transfer; 
R2U-Net28which integrates the advantages of ResNet and U-Net; and KiU-Net29which proposes a novel structure 
that utilizes both incomplete and super-complete features to better segment small anatomical structures.

Additionally, Transformer-based frameworks have gained prominence in medical image segmentation. 
Labbihi, Ismay, et al.30 proposed a 3D medical image segmentation model that combines CNNs with Transformers, 
incorporating a CNN encoder and a frequency transformer branch to reduce model parameters, computation 
time, and reliance on large datasets. Cao et al.31 introduced SwinUNet, based on the Swin Transformer, which 
reduces computational resource demands by calculating self-attention within a limited window. Jiang et al.32 
proposed a gated axial attention ResNeSt33 network for polyp segmentation, utilizing a global-local training 
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strategy, with ResNeSt as the backbone, a parallel decoder to aggregate features, and gated axial attention to 
adapt to small datasets for effective polyp segmentation.

Multi-scale feature fusion
The detailed texture and contextual information captured in multi-scale features are essential for enhancing 
model performance and robustness. Reza Azad et al.34 proposed a multi-scale encoder-decoder architecture 
based on an efficient variant of the Transformer block. By incorporating patch blocks of various scales into 
the Transformer block, a feature map with multi-scale representations is generated. Wang et al.35 introduced 
MIFNet, which leverages multi-scale input and feature fusion to automatically extract and combine features 
from different input scales, significantly improving cardiac magnetic resonance image segmentation. Xu et al.36 
presented EC-CaM-UNet, a U-Net-based model with collaborative attention-guided multi-scale feature fusion, 
enhanced by convolution. The model employs a multi-dimensional collaborative attention module to estimate 
local and global self-attention, which is then deeply fused with the multi-scale feature map produced by the 
multi-scale module, enhancing the prominence of relevant multi-scale features while suppressing irrelevant 
ones. Yan et al.37. proposed MSLF-Net, a supervised segmentation method utilizing multi-scale and multi-level 
feature fusion. This method employs a cross-layer structure to improve feature fusion and merges low-level and 
high-level features of the same category based on category supervision to prevent feature contamination. Yu 
et al.38 introduced a novel Transformer-CNN hybrid network, which achieves more accurate segmentation by 
fully fusing semantic features of various scales generated by a pyramid decoder for each segmentation category. 
Fu et al.39 proposed HmsU-Net, a hybrid multi-scale segmentation network that addresses inconsistent feature 
learning between CNNs and Transformers at the same stage by employing cross-axis attention. Abdelrahman 
et al.40 proposed the UNETR + + network. By introducing the EPA block, spatial and channel attention is 
applied in two branches to effectively capture rich spatial and channel features. Huang et al.41 proposed an 
enhanced Transformer context bridging module, which models the long-range dependencies and local context 
of the multi-scale features generated by the hierarchical Transformer encoder through the use of the enhanced 
Transformer module.

Attention mechanism
Building on the success of attention mechanisms in natural language processing (NLP), researchers have 
increasingly applied this concept to computer vision tasks. In semantic segmentation, numerous influential 
works have incorporated attention modules. For instance, Hu et al.42 introduced the squeeze-excitation (SE) 
block, which adaptively recalibrates feature responses across channels by explicitly modeling interdependencies 
between them. Woo et al.43 proposed a simple yet effective attention module for feed-forward convolutional 
neural networks, based on the SE block, which sequentially generates attention maps along two independent 
dimensions—channel and spatial. These attention maps are then multiplied by the input feature maps for adaptive 
feature refinement. Ouyang et al.44 developed a new, efficient multi-scale attention module that reshapes part 
of the channels into the batch dimension and groups the channel dimension into multiple sub-features, thereby 
ensuring that spatial semantic features are well-distributed within each feature group.

Method
Overall architecture
The overall architecture of the Spatial-Frequency Multi-scale Attention Network for stroke lesion area 
segmentation is shown in Fig. 1. This network architecture is built on the classic U-Net framework and combines 
the Spatial-Frequency Gating Unit (SFGU), the Dual-axis Multi-scale Attention Unit (DMAU), and the 
Information Enhancement Module (IEM). The IEM enhances the features before downsampling through multi-
scale depthwise separable convolutions to mitigate the loss of semantic information caused by the downsampling 
operation and uses axial attention to model the long-range dependencies. The SFGU employs the spatial gating 
unit (SGU) to enhance the spatially representative features and suppress the redundant features in the spatial 
dimension and uses the frequency gating unit (FGU) to enhance the representative features in the frequency 
domain and suppress the redundant features in the frequency domain dimension. DMAU enhances the features 
processed by the SFGU through the cascaded extraction of multi-scale features in the horizontal and vertical 
directions and adopts the attention mechanism to better allocate the weights of global and local information. In 
the subsequent sections, we will describe in detail the implementation process of SFMANet and its constituent 
modules.

Spatial-Frequency Multi-scale attention network
The backbone network of SFMANet is UNet. The given input image X has a size of H × W × C , where H  
is the width of the input image, W  is the height of the input image, and C  is the number of channels of the 
input image. SFMANet feeds the features x64, x128, x256, x512 obtained from each layer of the encoder into 
the information enhancement module. First, multi-scale depthwise separable convolutions are used for feature 
enhancement. Then, axial attention is applied to modeling the long-range dependencies. After that, the features 
are downsampled through max pooling operations.In the skip connections, the features x64, x128, x256, x512 
obtained from the encoder are input into the spatial-frequency gating unit (SFGU) to refine the redundant 
features. Firstly, depthwise separable convolutions are used to initialize the attention mechanism, providing 
the basic features for the subsequent removal of spatial redundant features. Then, the obtained basic feature 
maps are respectively input into the SGU unit and the FGU unit for processing.The SGU unit uses a separation 
and reconstruction operation. Group normalization is utilized to normalize the input features. Subsequently, 
by calculating the normalized weights and applying the Sigmoid function, a reweighted tensor is obtained. 
Through the gating mechanism, the SGU can divide the input features into informative and non-informative 
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parts according to the reweighted tensor, and reconstruct the features by cross-adding, finally obtaining the 
refined feature map.The FGU unit divides the input feature map into high-frequency and low-frequency parts 
and respectively transforms and fuses these two parts to enhance the model’s ability to capture features.After 
that, the feature maps calculated by the SGU unit and the FGU unit are respectively input into the DMAU unit. 
Convolution kernels with sizes of 7 × 7、 11 × 11 and 21 × 21 are used to extract multi-scale features from 
the features. Then, these multi-scale features processed by the DMAU unit are added to the initial attention 
features, and then channel mixing is carried out through a pointwise convolution layer to generate the weights 
of global and local information. The fused attention features are multiplied by the original input features to 
obtain the feature map after weight adjustment.Finally, the feature map generated by the skip connection is 
concatenated with the feature map generated by the previous layer of the decoder, and upsampling is carried 
out again until the final prediction output is obtained. The algorithm process of SFMANet is summarized as 
Algorithm 1.

Spatial-Frequency gating unit
Spatial gating unit
To leverage spatially redundant information in features, we introduced a spatial gating unit, inspired by Li et 
al.45which employs a separation and fusion operation. The structure is illustrated in Fig. 2. The purpose of the 
separation operation is to differentiate feature maps with rich spatial information from those with less spatial 
information. We utilize the scaling factors and biases in the Spatial Group Normalization (SGN) layer to assess 
the information content of different feature maps. Specifically, given a feature map X ∈ RN× C× H× W  where 
the batch axis is denoted as N , the channel axis as C , and the spatial height and width axes as H  and W , we 
first standardize the input feature X  by subtracting the mean µ  and dividing by the standard deviation σ .

	
Xout = SGN (X, Gc, Gs, γ , β ϵ) =

[
γ ·

(
xicghw−µ igs√

σ 2
igs

+ϵ

)
+ β

]N

i=1

,Cc=1,Gg=1,Gs=1,Hh=1,Ww=1 � (1)

Among them, X  is the input feature map, Gc and Gs are the number of channel groups and the number of 
space groups respectively, γ  and β  are learnable scaling and offset parameters, ϵ is a small positive number 
used to prevent division by zero, xicghw  is the element in the i-th sample, the g-th channel group, and the s-th 
space group, µ igs is the mean of the i-th sample, the g-th channel group, and the s-th space group, σ 2

igs is the 
variance of the i-th sample, the g-th channel group, and the s-th space group, µ igs and σ 2

igs the calculation 
formulas of are as follows:

Fig. 1.  Overview of our proposed medical image segmentation method.
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µ igs = 1

C
Gc

· H· W
Gs

C
Gc∑

c′ =1

H
Gs∑

h′ =1

W
Gs∑

w′ =1
xic′ gh′ w′ � (2)

	
σ 2

igs = 1
C

Gc
· H· W

Gs

C
Gc∑

c′ =1

H
Gs∑

h′ =1

W
Gs∑

w′ =1

(xic′ gh′ w′ − µ igs)2 + ϵ� (3)

c′  represents the channel index inside the channel group, which is used to traverse the internal channels of the 
channel group w′  and h′  represents the position index within the space group, which is used to traverse the 
positions within each space group.

We further adjust each feature using the trainable parameters γ ∈ RC  and β ∈ RC  in the SGN layer. 
The parameter γ  controls the normalized features, allowing the network to amplify or attenuate the values of 
the feature maps, thereby adjusting the importance of each feature. Meanwhile, β  provides flexibility for the 
network to adjust the features after normalization, enabling it to recover some characteristics of the original data 
distribution. The normalized correlation weights are represented by Wγ β ∈ RC , which indicate the relative 
importance of different feature maps.

	
Wγ β = {wi} = γ i∑

C
j=1 γ j

+ β i∑
C
j=1 β j

, i, j = 1,2, · · · , C � (4)

The feature weights reweighted by Wγ β  are mapped to the range (0,1) through a sigmoid function 
and controlled by a threshold. If the weight after Sigmoid mapping exceeds the threshold (set to 0.5 in this 
experiment), it is classified as an informative feature with a weight W1. If the weight is below the threshold, it 
is considered a weak information bit with a weight W2. The entire process of obtaining W  can be expressed as 
follows:

	 W = Gate (Sigmoid (Wγ β (SGN (X, Gc, Gs, γ , β , ϵ)))) � (5)

Finally, we multiply feature X  by W1 and W2 to obtain weighted features X1 and X2, where X1 is the 
spatial content that is informative and expressive, and X2 is the one that has little information and is considered 
redundant.

To reduce spatial redundancy and better utilize the features in X2, we propose the Attention Reconstruct 
operation. This operation adds X1 and X2 elementwise, then reduces the feature dimension by half using a 
convolution layer. The resulting feature map is subsequently convolved again to produce a single-channel map 
that represents attention distribution. The Sigmoid function is applied to map this distribution to the range 
(0,1), which indicates the weight of the features at each position.

	 A = σ (Conv2 (Conv1 (X1 + X2))) � (6)

Finally, we perform channel segmentation Split(· ) on X1 and X2 respectively and then cross-multiply the 
attention weights to emphasize the information-rich areas. Finally, we restore the original feature dimension 
through the splicing operation to achieve effective integration of information.

Fig. 2.  The structure of SGU.
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	 OutS
final = Cat (Split (X1) ⊙ A, Split (X2) ⊙ A) � (7)

After SGU processes the input feature X , we not only separate the features with large information content from 
the features with small information content but also reconstruct them to enhance the representative features and 
suppress the redundant features in the spatial dimension, thereby further optimizing the feature representation 
while maintaining the integrity of the information.

Frequency gating unit
To effectively leverage the information from different frequency components of the features, we introduce the 
Frequency Gating Unit (FGU), which employs a split-rearrangement-transformation fusion-rearrangement 
strategy. The structure of the FGU is illustrated in Fig. 3. FGU enhances the model’s performance by splitting the 
input feature map into high-frequency and low-frequency components, which are then separately transformed, 
rearranged, and fused. For a given feature map X ∈ RN× C× H× W , we first divide the map into two parts: 
a high-frequency component U  and a low-frequency component L. The high-frequency component contains 
α C  channels, and the low-frequency component contains C − α C  channels, where α ∈ (0,1) determines 
the proportion of channels allocated to the high-frequency part.

	 U = X1:α C , L = Xα C+1:C � (8)

Next, two independent 1 × 1 convolutional layers are applied to compress U  and L with a compression ratio 
of 1/s, where s is the compression factor (set to 2 in the experiment). This step aims to reduce the number of 
channels and, consequently, decrease the computational complexity in subsequent processing stages.

	 U ′ = Conv1× 1
(
U, α C

s

)
, L′ = Conv1× 1

(
L, (1−α )C

s

)
� (9)

Then, to break the local correlation between feature maps and promote the fusion of features, we use channel 
rearrangement technology to obtain U ′ ′  and L′ ′  by rearranging the compressed high-frequency features U ′  
and low-frequency features L′ .

	 U ′ ′ = P erm (U ′ ) , L′ ′ = P erm (L′ ) � (10)

P erm represents the rearrangement operation, which is completed by randomly sorting the indexes of the 
channel dimensions of U ′  and L′ .

The high-frequency features U ′ ′ , obtained after segmentation, compression, and rearrangement, are input 
into the upper-layer transformation component. Since the high-frequency part typically contains detailed 
information from the image, we use group convolution46 in the upper layer to capture local features more 
effectively, and pointwise convolution47 to preserve the overall structural information. This operation can be 
expressed as follows:

	 Y1 = GC (U ′ ′ , G) + PC1 (U ′ ′ ) � (11)

Among these, GC(· ) denotes the group convolution operation, where G represents the number of groups (set 
to 4 in the experiment), and PC(· ) represents the pointwise convolution operation. The low-frequency part 
typically contains large-scale structural and color information of the image. Therefore, in the lower layer, we 
only use pointwise convolution to preserve the overall structural information and subsequently concatenate it 
with the original low-frequency feature map. This approach maintains the original structural information while 
introducing new transformation features. This operation can be expressed as follows:

Fig. 3.  Structure of FGU.
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	 Y2 = Cat (PC2 (L′ ′ ) , L′ ′ ) � (12)

Among these, Cat(· ) represents the concatenation operation. The high-frequency feature Y1 and the low-
frequency feature Y2 are concatenated along the channel dimension to obtain the complete feature map Y3. 
Adaptive average pooling is then applied to compress the spatial size of Y3 to 1 × 1. The softmax function is 
used to calculate the importance weight W  of each channel, and this weight is element-wise multiplied with the 
feature map Y3 to obtain the weighted fused feature map Y ′

3 . The specific process is as follows:

	

{
Y3 = Cat (Y1, Y2)

W = softmax (AdaptiveAvgPool2 (Y3))
Y ′

3 = W ⊙ Y3
� (13)

Among these, ⊙  represents element-wise multiplication. Finally, for the weighted fused feature map 
Y ′

3 , we first perform a channel splitting operation Split, then rearrange the channels of the split Outs
1 and 

Outs
2. Subsequently, Outp

1  and Outp
2  are added channel by channel for final fusion, which further enhances 

the interaction between features. The output is the final feature map OutC
final. The specific process is as follows:

	

{
Outs

1, Outs
2 = Split (Y ′

3 )
Outp

1 = P erm (Outs
1) , Outp

2 = P erm (Outs
2)

OutC
final = Outp

1 + Outp
2

� (14)

After FGU processes the input feature X , we effectively utilize high-frequency and low-frequency features, 
adjust the weights of different channels through the channel attention mechanism, and further enhance the 
interaction between features through the final fusion step to reduce the redundancy of channel information.

Dual-axis multi-scale attention unit
In image processing, convolution kernels of varying sizes capture features at different scales. Smaller kernels, such 
as 7 × 7, are effective for capturing local details, while larger kernels, such as 11 × 11 and 21 × 21, capture 
more global information. By leveraging the attention mechanism to combine features from multiple scales, the 
model can learn a more comprehensive feature representation. The proposed Dual-axis Multi-scale Attention 
Unit (DMAU) extracts features through two parallel branches, each calculating multi-scale features along the 
horizontal and vertical directions, respectively. The DMAU structure is illustrated in Fig. 4. Each branch consists 
of three 2D convolution kernels of varying sizes, which encode multi-scale contextual information along the 
horizontal and vertical spatial dimensions.

The DMAU module first uses 7 × 7, 11 × 11, and 21 × 21 convolution kernels to perform multi-
scale feature extraction on the features OutS

final and OutC
final obtained by the SGU and FGU modules in 

the horizontal direction, respectively. The 7 × 7 convolution kernel is used to extract local features, and the 
11 × 11 and 21 × 21 convolution kernels are used to extract global information, which can be expressed as:

	




Fs1 = ConvRow
1× 7

(
OutS

final

)
Fs2 = ConvRow

1× 11
(
OutS

final

)
Fs3 = ConvRow

1× 21
(
OutS

final

) � (15)

Fig. 4.  DMAU structure diagram.
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


Fc1 = ConvRow
1× 7

(
OutC

final

)
Fc2 = ConvRow

1× 11
(
OutS

final

)
Fc3 = ConvRow

1× 21
(
OutS

final

) � (16)

ConvRow
• (• ) represents convolution along the horizontal direction. After extracting the features in the 

horizontal direction, multi-scale convolution is performed along the vertical direction to extract the feature 
information in the vertical direction:

	

{
F ′

s1 = ConvCol
7× 1 (Fs1 )

F ′
s2 = ConvCol

11× 1 (Fs2 )
F ′

s3 = ConvCol
21× 1 (Fs3 )

� (17)

	

{
F ′

s1 = ConvCol
7× 1 (Fc1 )

F ′
c2 = ConvCol

11× 1 (Fc2 )
F ′

c3 = ConvCol
21× 1 (Fc3 )

� (18)

ConvCol
• (• ) represents convolution along the vertical direction. The feature maps of different scales are fused 

to obtain a more comprehensive feature representation:

	 F = X + F ′
s1 + F ′

s2 + F ′
s3 + F ′

c1 + F ′
c2 + F ′

c3 � (19)

Among them, X  is the result of the initial feature map XInput after the depth-wise separable convolution. Use 
1 × 1 convolution to mix channels on the feature map F , adjust the channel relationship, and then perform 

convolution attention calculation with the input feature map XInput to obtain the result:

	 O = Conv1× 1 (F ) ⊙ XInput � (20)

Through multi-scale feature extraction and fusion, the DMAU module is capable of capturing feature information 
at different scales, further enhancing the feature representation ability. The application of channel mixing and 
the convolutional attention mechanism further adjusts the relationship between local and global features of the 
feature map, enhancing the interaction among features.

Information enhancement module
In encoder-decoder architectures such as U-Net, maximum pooling is commonly employed during the 
downsampling stage to reduce the spatial resolution of feature maps, thereby increasing the receptive field. 
However, this operation can result in the partial loss of positional information, leading to information attenuation 
as it propagates through deeper layers, making it challenging to capture long-distance dependencies. To mitigate 
information loss during deep propagation, establish long-distance dependencies, and minimize the increase in 
the number of parameters, we designed the Information Enhancement Module (IEM). The IEM integrates deep 
convolution, multi-scale feature extraction, axial attention, and channel shuffling operations. The structure of 
the IEM is shown in Fig. 5.

To enhance feature information, we input the given feature map X ∈ RN× C× H× W  into a specialized 
parallel convolution module. This module consists of three branches, each utilizing depthwise convolution, with 
kernel sizes of 3 × 3, 5 × 5 and 7 × 7. These branches operate in parallel, extracting features at multiple 
spatial scales, and the resulting features are subsequently merged to provide a richer feature representation.

In each branch, a depthwise convolution is first performed, in which each input channel is convolved 
separately without considering the information of other channels. The advantage of this is that while reducing 
the number of parameters, the spatial relationship of the input data is retained:

	

{
F3 = X ∗ Wd3
F5 = X ∗ Wd5
F7 = X ∗ Wd7

� (21)

Wd3, Wd5, Wd7 are the depth convolution weights of 3 × 3, 5 × 5, and 7 × 7 convolution kernels 
respectively and ∗ represents multiplication operation.

After each branch performs the convolution operation, three feature maps of different scales, F3, F5, and 
F7, are obtained. To integrate this multi-scale information, we residually connect these feature maps with the 

original feature map. This ensures that features from different scales complement each other, resulting in a richer 
and more comprehensive feature representation. The final enhanced feature map, F, is then obtained. The steps 
are as follows:

	 F = Cat (X, F3, F5, F7) � (22)

To fully leverage the information from different channels in the feature map F , we rearrange the channels and 
mix their information, ensuring that the data is more evenly distributed across the feature map. The rearranged 
features are then input into the column-axis attention module, where attention weights between Query, Key, 
and Value are computed. These weights are applied to the aggregate value vector to generate the feature map 
Fcol. Subsequently, Fcol is passed through the row-axis attention to obtain the feature map FAxial, which 
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undergoes the same processing steps. The axial attention mechanism helps establish long-distance dependencies 
by integrating information from each pixel position through multiple attention calculations, allowing the model 
to capture long-range dependencies across the entire feature map. The overall process is as follows:

	 FAxial = RAA (CAA (P erm (F, G))) � (23)

P erm(· ) represents channel rearrangement, CAA(· ) represents Column Axial Attention, RAA(· ) 
represents Row Axial Attention, and G represents the number of groups (set to 4 in the experiment). Finally, 
FAxial is added to F  to obtain the final information-enhanced feature map Ffinal

Experiments
Datasets
We conducted extensive experiments on two ischemic stroke datasets using single-modality MRI images to 
evaluate the effectiveness and reliability of our approach.The ATLAS dataset48 comprises 239 T1-weighted 
brain images with corresponding lesion annotations provided by neurologists. The Ischemic Stroke Lesion 
Segmentation (ISLES 2022) challenge49 includes 400 brain MRI images, with 250 annotated images released 
as training data and 150 unannotated images provided as test data. The ISLES 2022 challenge focuses on acute 
and subacute lesion segmentation, while the ATLAS dataset is derived from post-stroke MRI data and addresses 
the subacute and chronic stages of stroke. Clinically, these two datasets cover all stages of stroke, enabling a 
comprehensive evaluation of the generalization ability of the proposed method.

Implementation details
We implement SFMANet using PyTorch 2.0.1, training the model on a deep learning server equipped with an 
Nvidia GeForce RTX 4090. The Adam optimizer is employed to adjust network parameters, with k1 set to 0.9 and 
k2 set to 0.999. The ReduceLROnPlateau learning rate scheduler is applied during training, with the maximum 
Dice coefficient used as the performance metric. If the Dice coefficient on the training set does not improve for 
four consecutive epochs, the learning rate is reduced. The initial learning rate is set to 1e-4, and the network is 
trained for 50 epochs with a batch size of 16. The original size of the ATLAS dataset is 233 × 197 × 189, 
while the ISLES 2022 dataset includes images of varying sizes, such as 115 × 115 × 25, 112 × 112 × 73, 
and 281 × 352 × 352. For the 2D processing, the two datasets are sliced along the X-axis, and all resulting 
slices are resized to 256 × 256 resolution. Except for the SAN-Net and MDA-Net experimental data, which 
are the experimental data of the original paper, all other experimental data are the original data of this study. 

Fig. 5.  IEM structure diagram.
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During the training process, we randomly partitioned the two stroke lesion segmentation datasets at a ratio of 
8:1:1. The training set accounted for 80% of the entire dataset, the validation set made up 10%, and the test set 
also constituted 10%.

Evaluation metrics
Medical image segmentation usually employs a variety of metrics to measure the performance of segmentation 
models, including the Dice Similarity Coefficient (DSC), Precision, Recall, F1 Score, and the Mean Intersection 
over Union (MIoU).

The DSC represents the degree of overlap between the prediction result Rpred and the ground truth Rgt:

	
DSC = 2|Rpred∩ Rgt|

|Rpred|+|Rgt| � (24)

Precision represents the proportion of samples that are truly positive among the samples predicted as positive 
by the model:

	 P recision = Rgt∩ Rpred
Rpred

= TP
TP+FP � (25)

Recall represents the proportion of samples that are actually positive and are correctly predicted as positive by 
the model among all the samples that are actually positive:

	 Recall = Rgt∩ Rpred
Rgt

= TP
TP+FN � (26)

The F1 Score represents the balance and comprehensive performance of the model between Precision and Recall:

	 F1 = 2 × Precision×Recall
Precision+Recall � (27)

The MIoU (Mean Intersection over Union) is used to measure the degree of overlap between the predicted 
segmentation results and the ground truth labels:

	
MIoU = 1

k+1

k∑
i=0

TP
FN+FP+TP � (28)

Among them, the TP prediction value represents the prediction of true positives, the FP prediction value 
represents the prediction of false positives, and the FN prediction value represents the prediction of false 
negatives for a single pixel. The variable k represents the total number of predicted categories. Meanwhile, in 
order to measure the time complexity and space complexity of the model, in this study, “Parameters” is used to 
measure the space complexity of the model, and “FLOPs” (floating-point operations) and the number of images 
that the model can process per second, denoted as MSpeed, are used to measure the time complexity of the 
model.

Evaluate metric comparisons
Comparative experiments were conducted on SFMANet and several other well-known and effective 
segmentation methods, including the classic convolution-based U-Net, Attention U-Ne50 U-Net++, SAN-Net51 
MDA-Net52 U2Net53 Acc_UNet54 HmsU-Net39 MSCA-Net55 NLIE-UNet56 as well as advanced transformer-
based methods such as TransUNet, SwinUNet, TransFuse57 and Polyp-pvt58. All experiments were performed 
on the ATLAS and ISLES 2022 datasets, using five-fold cross-validation. The experiments were carried out on 
the same computational setup to ensure consistent and comparable results (Table 1).

For the ATLAS dataset, we compared several state-of-the-art stroke segmentation methods, including SAN-
Net, MDA-Net, HmsU-Net, MSCA-Net and NLIE-UNet, etc.

The experimental results of SFMANet are presented at the bottom of the table, with the best results highlighted 
in bold. According to Table 2, the Dice score of SFMANet on ATLAS is 0.8365, which is 0.0251 higher than 
the suboptimal result obtained by Acc_unet under the same experimental environment. The Precision score is 
0.1262 higher, and the MIoU score is 0.0433 higher, both of which are higher than the suboptimal results of all 
the comparison methods. However, the F1 score of SFMANet is lower than that of Acc_unet, and the number 
of parameters is higher.

As can be seen from Table 2, in terms of Dice, Recall, and MIoU, SFMANet obtained the highest scores on the 
ISLES 2022 dataset, which were 0.7767, 0.9071, and 0.6911 respectively. It was 0.0128, 0.0634, and 0.1138 higher 
than the second-ranked method respectively. On the ISLES 2022 dataset, although SFMANet did not achieve 
the best F1 score and Precision. MDA-Net achieved an F1 score of 0.7368, but its DSC was 0.7160; NLIE-UNet 
achieved a Precision of 0.8923, but its DSC and MIoU were significantly lower than those of SFMANet. The DSC 
of Acc_unet was 0.7639, but its F1 score was 0.6675. These results indicate that due to the calculation methods, 
there is a trade-off between these two metrics. In contrast, the F1 score and DSC of SFMANet were 0.7160 and 
0.7767 respectively, which is a relatively balanced and high-level result.

Qualitative analysis
Figures  6 and 7 present examples of segmentation results for different methods on the ATLAS and ISLES 
2022 datasets. The first column shows the input image, the second column displays the corresponding ground 
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truth mask, and the final column depicts the segmentation result of SFMANet. To improve the visualization of 
segmentation results, yellow is used to highlight true positive areas, red represents true negative areas, and green 
indicates false negative areas. In most cases, leveraging the feature representation capabilities of deep learning, 
various methods can effectively segment lesions. However, upon closer inspection, it is evident that the proposed 
SFMANet outperforms others. Notably, SFMANet demonstrates superior performance by significantly reducing 

Fig. 6.  Test results of the ATLAS dataset obtained using different models (yellow areas indicate true positive 
areas, red areas indicate true negative areas, and green areas indicate false negative areas.).

 

Method DSC Precision Recall F1score MIoU

UNet 0.5910 0.6182 0.6653 0.5515 0.4892

MDA-Net 0.7044 0.7530 0.7222 0.7368 -

Acc_unet 0.7639 0.8150 0.7379 0.6675 0.6675

UNet++ 0.6980 0.7940 0.7028 0.6784 0.5954

U2Net 0.7325 0.7838 0.7062 0.7186 0.6401

AttentionUNet 0.7352 0.8001 0.7110 0.7240 0.6394

SwinUNet 0.5199 0.5949 0.5980 0.5031 0.4150

TransUNet 0.6272 0.7666 0.5842 0.6272 0.5330

TransFuse 0.6872 0.6739 0.7933 0.6868 0.6739

Polyp_PVT 0.7000 0.7054 0.7318 0.6888 0.5802

HmsU-Net 0.6597 0.8037 0.8844 0.6307 0.5679

MSCA-Net 0.7385 0.8633 0.8608 0.7302 0.6343

NLIE-UNet 0.7457 0.8923 0.8923 0.7170 0.6487

Ours 0.7767 0.8784 0.9071 0.7160 0.6911

Table 2.  Evaluation results of different models in ISLES 2022 segmentation results.

 

Method DSC Precision Recall F1score MIoU

Unet 0.6609 0.6242 0.7382 0.6518 0.5632

SAN-Net 0.4301 - 0.4316 0.4301 -

MDA-Net 0.5662 0.6436 0.5945 - -

Acc_unet 0.8114 0.8031 0.8173 0.8011 0.7296

UNet++ 0.6567 0.7026 0.6396 0.6437 0.5674

AttentionUNet 0.8100 0.8003 0.8189 0.7994 0.7273

SwinUNet 0.4615 0.5090 0.4749 0.3703 0.4609

TransUNet 0.5927 0.7021 0.5626 0.4945 0.5924

TransFuse 0.6080 0.6111 0.7111 0.6073 0.4978

HmsU-Net 0.7105 0.9016 0.9148 0.7005 0.6373

MSCA-Net 0.6970 0.8879 0.9251 0.6843 0.6209

NLIE-UNet 0.7644 0.9216 0.8947 0.7523 0.6720

Ours 0.8365 0.9293 0.9372 0.7408 0.7729

Table 1.  Evaluation results of different models in ATLAS segmentation results.
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true negative (red) and false negative (green) areas. This improvement is also reflected in higher DSC, Precision, 
and Recall values. Such advancements are of considerable clinical importance, as missing lesion areas in a 
diagnosis could result in missed treatment opportunities, potentially causing greater harm to patient health.

Ablation experiment
To further validate the effectiveness of the key components in SFMANet, ablation studies were conducted on 
the ISLES 2022 and ATLAS datasets. U-Net served as the baseline for this experiment. By sequentially adding 
or replacing components in the original network, we primarily tested the following components: SFGU, IEM, 
and DMAU. Since the pre-input features of DMAU are the output features of SFGU, the DMAU unit could 
not be tested in isolation. As shown in Table 3, the DSC score for U-Net is 0.5910, and the addition of each 
component resulted in a substantial improvement (0.1426–0.1857). When SFGU and IEM components were 
added separately to the U-Net model, the improvement in DSC was similar, though each had distinct advantages 
in other metrics. Specifically, the Recall and MIoU scores of U-Net + SFGU were 0.0513 and 0.0182 higher than 
those of U-Net + IEM, respectively, while Precision and F1 scores were lower. U-Net + IEM, however, achieved 
the highest F1 score of 0.7309 in the experiment. Combining both SFGU and IEM with U-Net led to significant 
improvements in DSC, Recall, and MIoU, with the highest F1 score of 0.9077, suggesting that the two modules 
complement each other. When both SFGU and DMAU were added to U-Net, compared to U-Net + SFGU, all 
metrics improved (DSC: +0.0257, Precision: +0.0139, Recall: +0.0010, MIoU: +0.0273) except for the F1 score, 
indicating that DMAU also positively contributes to model performance. Adding all components to the baseline 
model resulted in substantial improvements across all metrics. While Recall and F1 score did not achieve the 
best results, other metrics were optimal, indicating that the SFMANet model, with minimal cost on the ISLES 
2022 dataset, achieves superior performance.

Similarly, as shown in Table 4, the F1 score of the SFMANet model on the ATLAS dataset is much lower than 
that of UNet + IEM, but its other indicators are all superior to UNet + IEM. Therefore, SFMANet also has a very 
good performance improvement on the ATLAS dataset.

Complexity analysis
In this section, we analyzed the computational complexity of SFMANet and summarized the number of 
parameters (Parameters), FLOPs, and the number of images that the model can process per second MSpeed 
f the methods mentioned in Sect. 4.4. We selected ATLAS as the experimental dataset, and the experimental 
results are shown in Table 5. As can be seen from Table 5 MDA-Net achieved the fastest image calculation speed, 
but its DSC was only 0.5662, which means the accuracy is too low. Although HmsU-Net obtained the lowest 
number of parameters, its MSpeed and FLOPs were inferior to those of MSCA-Net, which were 12.71 and 
395.91 respectively. MSCA-Net achieved good results in terms of both MSpeed and FLOPs, but its DSC was only 
0.6970, which is not suitable in the medical field where precise lesion processing is required.Therefore, under 

UNet SFGU IEM DMAU DSC Precision Recall F1 score MIoU

√ 0.5910 0.6182 0.6653 0.5515 0.4892

√ √ 0.7359 0.8481 0.8903 0.6970 0.6479

√ √ 0.7336 0.8637 0.8390 0.7309 0.6297

√ √ √ 0.7660 0.8511 0.9077 0.7008 0.6797

√ √ √ 0.7616 0.8620 0.8913 0.6885 0.6752

√ √ √ √ 0.7767 0.8784 0.9071 0.7160 0.6911

Table 3.  Ablation experiments of SFMANet on the ISLES 2022 dataset.

 

Fig. 7.  Test results of the ISLES 2022 dataset obtained using different models (yellow areas indicate true 
positive areas, red areas indicate true negative areas, and green areas indicate false negative areas.).
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the condition of compromising the FLOPs and MSpeed indicators, SFMANet sacrificed a small amount of the 
number of parameters and computational speed and achieved good segmentation performance.

Discussion on the setting of hyperparameters
In this section of the research, we analyzed the impact of the threshold SRUTH of the SGU and the hyperparameter 
α  of the FGU on the performance of the model. The number of groups in the grouped convolution and the 
compression ratio of the FGU are classic designs and will not be discussed here. The experiments in this section 
were conducted on the ISLES 2022 dataset, and the hyperparameter settings other than SRUTH and α  were 
the same as those in the previous experiments. The experimental results are shown in Table 6. The experimental 
results demonstrate that when both SRUTH and α  are set to 0.5, all the indicators except Recall achieve the 
optimal values, and the difference from the optimal value of Recall is less than 0.01.

Discussion
In recent years, deep learning algorithms, particularly U-Net and its variations, have made significant 
advancements in the field of medical image segmentation. This study introduces a spatial-frequency multi-
scale attention network (SFMANet) designed for stroke lesion segmentation, addressing the challenges of low 

SRUTH CRUα

Evaluation indicators

DSC Precision Recall F1score MIoU

0.8
α = 0.25 0.7443 0.8486 0.9104 0.6745 0.6589

α = 0.50 0.7560 0.8535 0.9143 0.6862 0.6701

α = 0.75 0.7549 0.8379 0.8912 0.6900 0.6672

0.5
α = 0.25 0.7469 0.8560 0.9072 0.6798 0.6611

α = 0.50 0.7767 0.8784 0.9071 0.7160 0.6911

α = 0.75 0.7446 0.8418 0.8917 0.6798 0.6583

0.2
α = 0.25 0.7285 0.8431 0.9089 0.6669 0.6402

α = 0.50 0.7640 0.8606 0.9162 0.6970 0.6787

α = 0.75 0.7514 0.8453 0.8890 0.6922 0.6607

Table 6.  Experimental results of selecting different hyperparameters on the ISLES 2022 dataset.

 

Method DSC Parameters(M) FLOPs(G) MSpeed(imgs/s)

Unet 0.6609 31.04 546.46 229.28

SAN-Net 0.4301 132.11 33.61 -

MDA-Net 0.5662 29.00 - 470.04

Acc_unet 0.8114 16.77 511.64 192.14

UNet++ 0.6567 36.62 1389.24 31.86

AttentionUNet 0.8100 34.88 664.85 153.66

SwinUNet 0.4615 27.17 60.34 170.05

TransUNet 0.5927 105.32 327.14 139.48

TransFuse 0.6080 26.25 317.34 81.64

HmsU-Net 0.6970 9.00 48.91 291.24

MSCA-Net 0.6970 27.70 12.71 395.91

NLIE-UNet 0.7644 9.95 20.20 50.09

Ours 0.8365 36.92 94.77 124.14

Table 5.  The computational complexity of different models on the ATLAS dataset.

 

UNet SFGU IEM DMAU DSC Precision Recall F1 score MIoU

√ 0.6609 0.6242 0.7382 0.6518 0.5632

√ √ 0.8147 0.8990 0.9142 0.7323 0.7673

√ √ 0.8226 0.9293 0.9352 0.8126 0.7409

√ √ √ 0.8274 0.9251 0.9401 0.7303 0.7628

√ √ √ 0.8313 0.9245 0.9416 0.7351 0.7452

√ √ √ √ 0.8365 0.9293 0.9372 0.7408 0.7729

Table 4.  Ablation experiments of SFMANet on the ATLAS dataset.
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segmentation accuracy caused by irregular lesion areas and the similarity in signal strength between the lesion 
and healthy regions in existing models. In this network, we propose the spatial-frequency gating unit (SFGU), 
which effectively utilizes the redundant features generated due to the increase in the number of network layers. 
Through the gating mechanism, it refines the redundant features in the spatial and frequency domains and 
enhances the feature representation of the lesion area, aiming to solve the problem of blurred boundaries caused 
by the possible similar signal representations between the stroke area and the surrounding brain tissues. We 
propose the dual-axis multi-scale attention unit (DMAU), which combines the attention mechanism with dual-
axis multi-scale feature extraction to better allocate the weights of global and local information and enhance 
the feature expression, so as to better locate the stroke lesion area. We design the information enhancement 
module (IEM). By enhancing the features through multi-scale depthwise separable convolutions, it mitigates 
the feature loss caused by the pooling operation and uses axial attention to establish long-range dependencies. 
The performance of our proposed segmentation algorithm is validated using the ATLAS and ISLES 2022 
medical image datasets. We compare the segmentation results of other models with those of our method on 
both datasets. SFMANet demonstrates superior segmentation performance, particularly in handling weak edges 
in medical images (Figs. 6 and 7). The quantitative results of the experiments, presented in Tables 1 and 2, show 
that SFMANet remains highly competitive compared to classic and newer methods. Specifically, the DSC for the 
two datasets reached 0.8365 and 0.7767, respectively; MIoU reached 0.7729 and 0.6911, respectively; Precision 
reached 0.9293 and 0.8784, respectively; and Recall reached 0.9372 and 0.9071, respectively. Of course, this 
algorithm still has certain limitations. Although the segmentation results of this model are quite competitive, 
the model involves a large number of parameters and FLOPs, and the image processing is relatively slow, still 
requiring a great deal of computational work (Table 5). In addition, the model proposed here is still based on 2D 
images, and the segmentation of 2D medical images may lead to the loss of some 3D spatial information. In the 
future, we will explore model compression while retaining competitive prediction results, and expand the model 
to the 3D space, making full use of the 3D spatial information to segment 3D medical image data.

Conclusion
Edge loss and low segmentation accuracy are major challenges in medical image segmentation. To address these 
issues, this paper introduces a spatial-frequency multi-scale attention network (SFMANet) for stroke lesion 
segmentation. First, a traditional convolutional structure is employed as the encoder. Next, the Information 
Enhancement Module (IEM) is utilized to improve the overall image features during the encoding process. Then, 
the Spatial-Frequency Gating Unit (SFGU) and Dual-Axis Multi-Scale Attention Unit (DMAU) are applied 
to refine features and enhance edge detection during the skip connections. Finally, a conventional decoder is 
used to complete the decoding process. Through multiple experiments on the ATLAS and ISLES 2022 datasets, 
SFMANet demonstrates superior performance in medical image segmentation tasks.

Data availability
All of the datasets utilized in this paper are publicly available datasets, namely the ATLAS dataset and the ISLES 
2022 dataset.The ATLAS dataset is available at: https://doi.org/10.1038/s41597-022-01401-7The ISLES 2022 ​d​a​t​
a​s​e​t is available at: https://doi.org/10.1038/s41597-022-01875-5.
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