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This study focuses on optimizing the separation and purification processes in diethyl ether (DEE) 
production to enhance energy efficiency, reduce waste, and improve product quality. Utilizing 
process simulation with Aspen-Hysys-V14, statistical modeling, and optimization techniques, this 
study investigates operational parameters across key units, including two drums and two distillation 
columns. Design of experiment was performed using response surface methodology (RSM) and 
central composite design (CCD). Key results indicate that under optimized conditions, a DEE purity of 
96.43% was achieved with total energy consumption of 2,150,566 kJ/h, corresponding to an energy 
requirement of 1,499,754.87 kJ/kmol of DEE. Scenario-based optimization minimized DEE loss in fuel 
and vent streams while balancing energy demands. Non-linear relationships between parameters, such 
as temperature and pressure, were modeled with high predictive accuracy. These findings contribute 
to the development of sustainable and cost-effective DEE production processes and offer transferable 
insights for similar chemical manufacturing systems.
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Diethyl ether (DEE) is an organic compound widely used in industrial and scientific applications. Its properties, 
such as high volatility, low boiling point, and excellent solvent capabilities, make it a critical component in 
biodiesel production1–3, fuel additives4, and laboratory processes. In fuel formulations, it is utilized to enhance 
combustion efficiency5,6. These diverse applications underscore the importance of optimizing the production 
of DEE to meet growing industrial demands. DEE is primarily produced through the catalytic dehydration 
of ethanol, a process that involves precise control of operational parameters to maximize DEE yield while 
minimizing byproducts such as ethylene. This production route has gained increased attention due to its 
potential for utilizing bioethanol derived from renewable resources7, offering a sustainable alternative to fossil 
fuel-based chemical production. Optimizing DEE production not only meets the efficiency and economic goals 
but also aligns with global efforts toward green and sustainable industrial practices.

In a typical production process, ethanol is converted to DEE in a dehydration reactor under specific 
temperature and pressure conditions. The reactor output contains DEE, unreacted ethanol, water, and byproducts, 
which must be separated and purified to obtain high-purity DEE suitable for industrial use. The separation 
section includes a combination of physical and thermal processes, such as distillation and liquid-gas separation, 
to isolate DEE from other components in the reaction mixture. The design and operation of these processes must 
strike a delicate balance between minimizing fixed capital investment and operational cost, maximizing product 
recovery, and minimizing energy consumption. For instance, increasing the number of distillation stages can 
improve the separation efficiency but may also lead to higher energy requirements and higher fixed capital 
investment. Similarly, operating at elevated pressures can enhance product purity but may impose additional 
demands on equipment and energy resources. The separation and purification section, therefore, plays a pivotal 
role in determining the overall efficiency and sustainability of the production process. It consists of multiple 
interconnected units, including distillation columns, two phase drums, pumps, and heater and coolers. Each of 
which influences both the product quality and the energy consumption of the system.

The separation and purification section not only ensures the desired product purity but also offers significant 
opportunities for reducing energy consumption and operational costs. Factors such as distillation column 
design, operating temperatures, pressures, and the number of separation stages can substantially affect the 
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energy efficiency and overall performance of the process. To address these challenges, selecting a systematic 
approach to optimizing the separation and purification section is essential. This involves not only understanding 
the fundamental principles governing separation processes but also applying advanced tools and methodologies 
to analyze and improve system performance.

Simulation and modeling of chemical processes play an important role in understanding, optimizing, and 
predicting the behavior of complex systems in industries such as petrochemicals and energy. Several methods 
are employed for this purpose, including kinetics models8, statistical approach9,10, and machine learning 
models11–16, as well as process simulation tools like Aspen-Hysys17–21. These approaches make possible the 
advancements in technology and sustainability. Process simulation software, such as Aspen-Hysys, provides 
a powerful platform for modeling complex chemical processes and evaluating the effects of various operating 
conditions. By simulating the behavior of the separation and purification system under different scenarios, it is 
possible to identify key factors and explore strategies for finding optimum conditions. There are several studies 
applied Aspen-Hysys to simulate the separation and purification section in different chemical production 
process22,23.

Statistical techniques such as response surface methodology (RSM) offer a structured framework for 
investigating the effects of multiple operational parameters simultaneously24–29. These methodologies allow for 
the development of predictive models that capture the relationships between input variables and performance 
metrics, such as DEE purity and energy consumption. By analyzing the interactions and quadratic effects of 
parameters, these models provide valuable insights into the relations between operational parameters and the 
performance of separation and purification system.

Optimization of the separation and purification section requires a perspective that considers both technical 
and economic factors. On the technical side, achieving high product purity is essential to meet industrial quality 
standards and minimize material losses. On the economic side, reducing energy consumption and operational 
costs is crucial for enhancing the profitability and sustainability of the production process. These objectives are 
often interdependent, requiring a careful balance to achieve optimal results. For example, operating a distillation 
column at higher temperatures may improve separation performance but also increase energy consumption. So, 
making a comprehensive evaluation of cost-benefit trade-offs is necessary.

The main step in the optimization process involves the application of optimization functions such as 
desirability function (DF), genetic algorithm (GA) etc. to identify the optimal set of operating conditions. DF 
provides a mathematical approach to balancing multiple objectives, such as maximizing product purity while 
minimizing energy consumption. By defining different scenarios and strategies, this approach ensures that the 
optimization results is in agreement with specific production goals and constraints.

The current study aims to address this gap by focusing on the separation and purification section of DEE 
production. The objectives are to investigate the performance of the separation and purification system in terms 
of product purity and waste minimization. Further, to identify areas for improvement, the energy consumption 
across the separation units, including distillation columns and drums were analyzed. The effects of key operational 
parameters, such as temperature and pressure on separation efficiency and energy usage were examined. Several 
statistical models were developed to capture the relationships between operational parameters and performance 
metrics. Using the developed models, sensitivity analysis was performed to understand the influence of 
individual parameters and their interactions on process performance. Finally, the separation and purification 
section were optimized to achieve a balance between energy efficiency and product quality. By improving the 
energy efficiency and sustainability of DEE production, this research contributes to broader efforts to reduce the 
environmental footprint of chemical manufacturing. The insights gained from this study can also be applied to 
other chemical processes involving similar separation challenges. So, this work is a valuable contribution to the 
field of process engineering.

Methods and materials
This study employs a systematic approach that combines process simulation, statistical modeling, and 
optimization of four separation units including two drums and two distillation columns to achieve the stated 
objectives. In this approach, each separation unit is examined and optimized from technical and economical 
perspectives.

Process description
Figure 1 shows the process flow diagram (PFD) of separation and purification section of DEE production. This 
section of process is a multi-step operation aimed at separating and purifying DEE from the output of the reaction 
section. The output of reaction section is a mixture of DEE, unreacted ethanol, water, and byproducts such as 
ethylene. The purification process begins with the mixture entering drum1. In this drum, gas-liquid separation 
occurs. The gaseous phase, which includes minor DEE, is vented, and the liquid phase proceeds to further stages. 
Temperature in drum1 is controlled via a heat exchanger, and pressure is regulated using a pressure-reducing 
valve. After the initial separation, the liquid is sent to distillation column1 for primary distillation. This column 
separates heavier impurities from DEE by using precise adjustments of operational parameters. The top stream 
of this column, partially purified DEE, is transferred to the next stage, while heavier components are entered 
into bottom stream.

The bottom stream of distillation column1 is fed into distillation column2 for separating unreacted ethanol. 
The top stream of column2 is recycled to reaction section and bottom stream is wasted. The top stream of 
column1 enters drum 2, where the residual gas is separated from the liquid product. This ensures that the final 
product has the desirable purity. The purified DEE exiting drum 2 is the final product and is ready for industrial 
use.
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Thermodynamic model selection
In Aspen-Hysys-V14 simulation, the non-random two-liquid (NRTL) model was selected as the thermodynamic 
model to represent the behavior of mixture. By using NRTL within simulation, vapor-liquid equilibrium (VLE), 
liquid-liquid equilibrium (LLE), and other non-ideal phenomena can be modeled. This results in more accurate 
process simulations, better design decisions, and improved operational strategies.

Experimental design
Several units are included in the separation section, and the performance of each unit affects the others. Therefore, 
this section was divided into two subsections, termed 1 and 2, and each subsection was investigated separately. 
Subsection 1 includes drum1, distillation column1, and distillation column2. Subsection2 includes drum2.

Using RSM and central composite design (CCD) techniques, a structured experimental design is developed 
for each subsection. RSM-CCD ensures efficient exploration of the operational parameter space while 
minimizing the number of required simulations runs. Key parameters to be investigated and their operational 
ranges for each subsection have been presented in Table 1.

Statistical modeling
The data generated from the simulations will be used to develop statistical models that describe the relationships 
between operational parameters and outputs, such as DEE purity and energy consumption. Several models 
such as linear, two-factor interaction (2FI), and polynomial are investigated and the best fitted model is 

Fig. 1.  Process flow diagram (PFD) of separation and purification section in DEE production process.
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selected for each unit. These models will be validated using metrics such as R², adjusted R², and predicted R² to 
ensure accuracy and reliability. Further, analysis of variance (ANOVA) was performed to explore the degree of 
importance of each factor and their interactions.

Results and discussion
In previous study, the ethanol dehydration reaction was simulated and optimized from both technical and 
economic perspectives30. In the current study, the process was first run based on the reactor optimum conditions 
obtained in the previous work. Next, the separation and purification section are investigated, simulated, and 
optimized.

Subsection1
Drum1
The first unit in subsection1 is drum1. The placement of a drum downstream of the reactor is due to the presence 
of a two-phase fluid within the pipeline. Specifically, the drum functions to separate and remove the gas phase, 
which is subsequently vented. The objective of this optimization is to determine conditions that minimize the 
release of DEE into the atmosphere. The temperature and pressure of drum are set using a heat exchanger and a 
pressure reducing valve.

Table 2 presents the ANOVA for two critical metrics in drum1: cooler energy consumption and DEE flowrate 
in the vent stream. These outputs are essential for optimizing the efficiency of the separation process in this 
unit. Cooler energy consumption refers to the energy required to regulate the temperature of the stream before 
entering drum1, while the DEE flowrate in the vent stream indicates the amount of DEE loss to the atmosphere. 
The ANOVA results reveal that temperature of drum1 (A) and the pressure of column2 (E) are the most 
influential factors for both metrics, showing the highest F-values and statistical significance (p < 0.0001). For 
DEE flowrate, the squared term of temperature of drum1 (A²) also demonstrates significant non-linear effects. 
This highlights the complexity of temperature role in DEE flowrate. Additionally, the interaction between AE 
and BE influence the DEE flowrate. This issue showcases the interdependence of these variables.

The Eqs. 1 and 2 derived from the obtained data provide a mathematical representation of the relationships 
between input and output parameters. Note, the DEE flowrate equation captures the effects of temperature 
of drum1 and column1, pressure of column2, and their interactions, while the energy consumption equation 
focuses on the influence of temperature of drum1 and pressure of column2. These equations are pivotal for 

Source Sum of Squares df Mean Square F-value p-value

Cooler Energy Consumption

Model 5.292E + 09 2 2.646E + 09 95.36 < 0.0001 significant

A-Temperature-D1 1.693E + 09 1 1.693E + 09 61.01 < 0.0001

E-Pressure-C2 3.599E + 09 1 3.599E + 09 129.72 < 0.0001

Residual 1.110E + 09 40 2.775E + 07

Cor Total 6.402E + 09 42

DEE Flowrate

Model 0.0200 7 0.0029 4949.28 < 0.0001 significant

A-Temperature-D1 0.0197 1 0.0197 34145.94 < 0.0001

B-Temperature-C1 7.384E-07 1 7.384E-07 1.28 0.2652

E-Pressure-C2 0.0001 1 0.0001 156.37 < 0.0001

AE 4.880E-06 1 4.880E-06 8.47 0.0062

BE 6.120E-06 1 6.120E-06 10.63 0.0025

A² 0.0002 1 0.0002 317.96 < 0.0001

E² 2.171E-06 1 2.171E-06 3.77 0.0603

Residual 0.0000 35 5.759E-07

Cor Total 0.0200 42

Table 2.  ANOVA for DEE flowrate in fuel stream and cooler energy consumption of drum1.

 

Independent Variable Sign Unit Operational Range

Subsection1

Inlet Temperature-D1 A °C 15–40

Inlet Temperature-C1 B °C 40–70

Pressure-C1 C kPa 100–300

Inlet Temperature-C2 D °C 95–120

Pressure-C2 E kPa 50–100

Subsection2
Inlet Temperature-D2 F °C 5–30

Pressure-D2 G kPa 30–88

Table 1.  Operational range of independent variables.
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optimizing the operational parameters, reducing energy consumption, and minimizing DEE loss. So, these 
models are useful in improving the overall efficiency and sustainability of the production process.

	

DEE Flowrate = + 0.0988 + 0.0213 × A − 0.0001 × B − 0.0014 × E−
0.0004 × AE + + 0.0004 × BE + 0.0019 × A2 + 0.0002 × E2 � (1)

	 Energy Consumption = + 4.647E + 05 − 6251.53 × A − 9115.93 × E� (2)

Table  3 presents the specifications of the developed models. The introduced metrics evaluate the statistical 
robustness and reliability of the models. The Adjusted R² for both models is slightly lower than the R². The 
predicted R² is a measure of how well the model can predict new data that were not used to fit the model. It 
gives an indication of the model predictive accuracy. The predicted R² value for cooler energy consumption 
and DEE flowrate are 0.7965 and 0.9982, respectively. These values indicate a very high predictive accuracy. So, 
these models can reliably predict energy consumption and DEE loss based on input parameters Further, the low 
coefficient of variation (C.V.%) for both models highlights their high precision. This information validates the 
use of these models for optimizing operational parameters, which are critical for reducing energy consumption 
and minimizing DEE loss.

Figure 2 examines energy consumption and DEE loss in drum1. Figure 2a shows that as temperature-D1 
increases, the DEE flowrate in the vent stream rises significantly. This suggests that elevated temperatures enhance 
the vaporization of DEE, leading to increased losses through the vent. Additionally, increasing pressure-C2 
reduces DEE flowrate in the vent stream, slightly. It is clear that the effect of pressure-C2 is negligible. Figure 2b 
shows that by decreasing the temperature-D1, energy consumption increases due to the increased cooling 
demand required to maintain process temperature. This trend suggests that lower temperatures drastically 
increase operational costs.

Distillation column1
Following the optimization of drum1, the focus shifts to modeling and optimizing the separation performance 
and energy efficiency of distillation column1. This involves examining the effects of the selected operational 
parameters. Figure 3 shows the composition of top stream leaving the distillation column for different operational 
conditions at different runs. It is obvious that there is no considerable change in composition. So, the focus shifts 
only to minimizing the energy consumption.

Table 4 presents the ANOVA for energy consumption related to this column. The energy consumption in 
heater E-104 and reboiler were modeled. It is worthwhile noting that a reliable model for predicting energy 
consumption in condenser was not extracted from the obtained data. For heater, the model is highly significant. 

Fig. 2.  Effects of temperature and pressure on DEE flowrate and cooler energy consumption in drum1.

 

Std. Dev. Mean C.V. % Adeq Precision R² Adjusted R² Predicted R²

Cooler Energy Consumption 5267.58 4.647E + 05 1.13 31.1660 0.8266 0.8180 0.7965

DEE Flowrate 0.0008 0.1010 0.7516 309.6446 0.9990 0.9988 0.9982

Table 3.  Specifications of statistical models for predicting DEE flowrate and cooler energy consumption in 
drum1.
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The inlet temperature of column1 (B) and pressure of column1 (C) have very high F-value and an extremely low 
p-value. This indicates that temperature and pressure are major factors influencing heater energy consumption. 
Temperature of drum1 (A), with an F-value of 973.04, is also significant, but less so than B and C. Further, BC, 
B2, and C2 are significant factor. This implies that non-linear effects also matter in heater energy consumption. It 
is important to note that the significance of BC is higher than B2 and C2. For reboiler, B, C, and their interactions 
have significant effects on energy consumption. The values of predicted R2 for heater and reboiler are 0.9961 and 
0.9744, respectively. These high values indicate high preciseness of the developed models.

Figure 4 illustrates the energy consumption patterns for the heater and reboiler in distillation column1 as a 
function of key operational parameters. Figure 4a shows a strong dependence of heater duty on the temperature 
of column1 and its pressure. Increased temperature and decreased pressure values lead to significant energy 
demands for heater. Figure 4b shows that reboiler energy consumption rises with decreasing inlet temperature 
and increasing pressure in column 1. This observation implies the need for careful calibration of these parameters.

Distillation column2
Table 5 presents the results of ANOVA for energy consumption in condenser and reboiler of culmn2. The energy 
consumption in the condenser is significantly influenced by the pressure of column2 (E), which has the highest 
influence (F-value of 118.87) and in less extent by pressure of column1 (C). The energy consumption in reboiler 
is predominantly determined by pressure in column2 (E). Elevated pressure enhances the boiling point of the 
mixture. This requires greater energy input to maintain operational efficiency. The predicted R2 of these two 
models are 0.71 that have less preciseness in comparison with previous models.

Source Sum of Mean F-value p-value Description

Heater

Model 3.672E + 10 6 6.119E + 09 3674.92 < 0.0001

A-Temperature-D 1.620E + 09 1 1.620E + 09 973.04 < 0.0001

B-Temperature-C1 1.930E + 10 1 1.930E + 10 11590.52 < 0.0001

C-Pressure-C1 1.497E + 10 1 1.497E + 10 8989.06 < 0.0001

BC 6.981E + 08 1 6.981E + 08 419.25 < 0.0001

B² 8.676E + 07 1 8.676E + 07 52.10 < 0.0001

C² 1.840E + 07 1 1.840E + 07 11.05 0.0020

Residual 5.995E + 07 36 1.665E + 06

Cor Total 3.678E + 10 42

Reboiler

Model 4.167E + 10 3 1.389E + 10 633.48 < 0.0001

B-Temperature-C1 1.782E + 10 1 1.782E + 10 812.90 < 0.0001

C-Pressure-C1 2.343E + 10 1 2.343E + 10 1068.67 < 0.0001

BC 4.138E + 08 1 4.138E + 08 18.87 < 0.0001

Residual 8.550E + 08 39 2.192E + 07

Cor Total 4.252E + 10 42

Table 4.  ANOVA for reduced models developed for energy consumption in different units of distillation 
column1.

 

Fig. 3.  Composition of the top stream in distillation column1 under varying operational conditions.
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Optimization-subsection1
Table  6 presents the results of performing optimization for subsection1. Two scenarios were considered for 
optimizing the performance of this subsection. Scenario I emphasizes achieving the lowest DEE flowrate in 
the fuel stream and energy consumption. This scenario aims to improve economic efficiency and align with 
sustainable practices. Scenario II prioritizes minimizing the energy consumption to reduce operational costs, 
while the DEE flowrate in the fuel stream is considered within the acceptable range. So, slightly higher DEE loss 
is observed compared to Scenario I.

Subsection2
After adjusting the values of operational parameters of subsection1, the subsection2 is investigated and examined. 
The main unit in this subsection is drum2. For this unit, two operative parameters are selected and their effects 

Scenario No. Temperature-D (°C) Temperature-C1 (°C) Pressure-C1 (kPa) Temperature-C2 (°C) Pressure-C2 (kPa)

Total Energy 
Consumption 
(kJ/h)

DEE 
Flowrate-
Fuel Stream 
(kgmole/h)

Ι 31.213 40.000 132.806 96.541 55.500 1,255,110 0.116

ΙΙ 38.674 40.000 125.491 104.368 53.181 1,224,632 0.155

Table 6.  Optimum conditions for subsection 1 under different scenarios.

 

Source Sum of Squares df Mean Square F-value p-value

Condenser

Model 1.120E + 08 6 1.866E + 07 28.89 < 0.0001 significant

B-Temperature-C1 2428.55 1 2428.55 0.0038 0.9515

C-Pressure-C1 1.190E + 07 1 1.190E + 07 18.42 0.0001

E-Pressure-C2 7.680E + 07 1 7.680E + 07 118.87 < 0.0001

BC 4.598E + 06 1 4.598E + 06 7.12 0.0114

BE 9.952E + 06 1 9.952E + 06 15.40 0.0004

E² 8.731E + 06 1 8.731E + 06 13.51 0.0008

Residual 2.326E + 07 36 6.461E + 05

Cor Total 1.352E + 08 42

Reboiler

Model 2.051E + 10 1 2.051E + 10 118.65 < 0.0001 significant

E-Pressure-C2 2.051E + 10 1 2.051E + 10 118.65 < 0.0001

Residual 7.087E + 09 41 1.729E + 08

Cor Total 2.759E + 10 42

Table 5.  ANOVA for energy consumption in reboiler and condenser of distillation column2.

 

Fig. 4.  Energy consumption in heater and reboiler of distillation column 1 as a function of key operational 
parameters.
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on DEE flow rate in the vent stream and energy consumption in cooler-E105 are investigated. Table 7 presents 
the results of an ANOVA conducted on the operational parameters of Drum 2 in the DEE separation process. 
Both temperature (F) and pressure (G) of Drum 2 significantly influence the DEE flow rate, with F-values of 
119.69 and 121.91, respectively. The squared terms of these parameters (F² and G²) also highlight non-linear 
relationships between these factors and the DEE flow rate. Similarly, temperature and pressure significantly 
affect the cooler energy consumption, with high F-values (156.13 for temperature and 122.65 for pressure). With 
p-values < 0.01, non-linear effects (F² and G²) also play a significant role in energy consumption of cooler.

With R² values of 0.9717 for DEE flow rate and 0.9749 for cooler energy consumption, the developed models 
demonstrate excellent statistical robustness. Predicted R² values are slightly lower (0.8696 for DEE flow rate and 
0.8840 for cooler energy consumption). These values of predicted R2 reflect strong predictive capabilities.

Figure 5a shows as temperature increases, the DEE flow rate in the vent stream rises significantly. This 
indicates that higher temperatures enhance the vaporization of DEE. This results in increased loss through the 
vent. Further, an increase in pressure reduces the DEE flow rate in the vent stream. This occurs because higher 
pressure suppresses vaporization. So, more DEE retains in the liquid phase. According to Fig. 5b, as temperature 
decreases, cooler energy consumption rises. This is because maintaining lower temperatures requires more 
energy for cooling.

The trends in Fig. 5(a) and Fig. 5(b) highlight the trade-off between minimizing DEE losses and reducing 
energy consumption. It is obvious that lower temperatures and higher pressures reduce DEE loss but demand 
more energy for cooling. Optimizing operational conditions involves balancing these parameters to achieve 
sustainable and cost-efficient performance. To perform this, two scenarios were defined. In scenario 1, the values 

Fig. 5.  Effects of temperature and pressure on DEE flowrate and cooler energy consumption in drum2.

 

Source Sum of Squares df Mean Square F-value p-value

DEE Flowrate

Model 4.16 4 1.04 68.55 < 0.0001 significant

F-Temperature-D2 1.82 1 1.82 119.69 < 0.0001

G-Pressure-D2 1.85 1 1.85 121.91 < 0.0001

F² 0.2746 1 0.2746 18.08 0.0028

G² 0.2848 1 0.2848 18.75 0.0025

Residual 0.1215 8 0.0152

Cor Total 4.29 12

Cooler Energy Consumption

Model 5.079E + 09 4 1.270E + 09 77.67 < 0.0001 significant

F-Temperature-D2 2.552E + 09 1 2.552E + 09 156.13 < 0.0001

G-Pressure-D2 2.005E + 09 1 2.005E + 09 122.65 < 0.0001

F² 2.752E + 08 1 2.752E + 08 16.83 0.0034

G² 3.144E + 08 1 3.144E + 08 19.23 0.0023

Residual 1.308E + 08 8 1.635E + 07

Cor Total 5.210E + 09 12

Table 7.  ANOVA for DEE flowrate in vent stream and cooler energy consumption in drum2.
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of both DEE loss and energy consumption were set at minimum. But scenario 2 aims to set the value of energy 
consumption at the minimum value and DEE loss in range. The results of optimization of drum2 has been 
presented in Table 8. It is worthwhile noting that scenario 2 leads to liquid stream with zero flowrate that is not 
of interest. So, scenario 1 was selected as optimum condition.

Optimum condition
The results in Tables 9 and 10 are specifically related to the optimum operating conditions identified during 
the study. In other words, these results in both tables reflect the outcomes of operating the process under 
optimized conditions. As mentioned earlier, these conditions were carefully selected to maximize efficiency and 
sustainability, minimizing energy usage and material losses while achieving the desired DEE purity. According 
to Table 9, acceptable purity of DEE (96.43% in Stream 15) was achieved while minimizing ethylene, unreacted 
ethanol and water in the product stream. Additionally, the low DEE mol. fraction in waste streams (e.g., Stream 
18 with 0% DEE) implies that the process is effectively separating DEE from others.

Table  10 details the energy consumption across various units in the reaction and separation/purification 
sections, while conducting the process at optimum conditions. According to this table, the energy required 

Energy Stream Name Heat Flow (kJ/h)

Reaction Section - 555120.8

Separation and Purification Section

q3 457494.8

q4 49326.75

q5 45746.74

q6 4066.138

q7 231699.4

q8 206.8164

q9 322055.5

qc 55520.78

qr 85013.41

qc’ 229255.3

qr’ 115,059

Total 1,595,445

Total - 2,150,566

Table 10.  Energy consumption across various units in the reaction and separation/purification sections under 
optimized conditions.

 

Stream Name

Mol. Fraction

DEE Ethanol Ethylene Water

Feed 0.0000 0.8880 0.0000 0.1120

V 0.0000 0.6402 0.0000 0.3598

L 0.0034 0.0189 0.0000 0.9776

6 0.1567 0.0851 0.1643 0.5939

7 (Fuel Gas) 0.0780 0.0031 0.9132 0.0057

8 0.1734 0.1025 0.0057 0.7185

11 0.9392 0.0177 0.0308 0.0123

12 0.0000 0.1216 0.0000 0.8784

14 (Vent to Flare) 0.8194 0.0045 0.1643 0.0118

15 (DEE) 0.9643 0.0204 0.0028 0.0124

18 (Wastewater) 0.0000 0.0001 0.0000 0.9999

19 0.0000 0.1746 0.0000 0.8254

Table 9.  Composition of different streams under optimized conditions.

 

Scenario No. Temperature-D2 Pressure-D2 Cooler Energy Consumption DEE Flowrate in Vent Stream

1 26.067 87.990 28728.510 0.778

2 29.971 53.115 184.017 1.628

Table 8.  Optimum conditions for drum2 under different scenarios.
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for the initial ethanol dehydration reaction is 555,120.8  kJ/h. In separation and purification section, energy 
is divided into multiple streams. Each of these streams represents the energy used in specific components 
like distillation columns, drums, heaters or coolers. The energy consumption in separation and purification 
section is 1,595,445 kJ/h. The total energy consumption for production process is 2,150,566 kJ/h. Accordingly, 
1,499,754.87 kJ energy is needed for production of each kgmol DEE product with 96.43% purity.

Significance of the study
This research aims to improve the overall efficiency and sustainability of DEE production process. Further, the 
integration of process simulation with statistical modeling and optimization represents a robust and systematic 
approach that can be applied to other chemical processes. The scenario-based optimization strategy, where trade-
offs between competing objectives (e.g., purity vs. energy consumption) are evaluated, can readily be applied to 
other processes seeking balanced performance.

The findings of this study are expected to contribute to the development of more energy-efficient and cost-
effective DEE production processes. By identifying optimal operating conditions and strategies for the separation 
and purification section, this research aims to reduce energy consumption, minimize waste, and improve product 
quality. These improvements make this study interesting for both academic research and industrial applications.

Conclusion
This study optimized the separation and purification processes in diethyl ether (DEE) production by focusing 
on enhancing energy efficiency, minimizing material losses, and achieving high product purity. Through a 
systematic approach combining process simulation, statistical modeling, and optimization techniques, significant 
advancements were achieved in balancing technical and economic objectives. The optimization reduced DEE 
losses in fuel and vent streams that demonstrates improved efficiency in material recovery. Statistical models 
developed using response surface methodology (RSM) and central composite design (CCD) revealed critical 
non-linear relationships between operational parameters such as temperature and pressure that ensures 
reliable predictions of system performance with high accuracy. The study highlighted the trade-offs inherent in 
optimizing separation processes. The insights from scenario-based optimization emphasized the importance of 
integrating technical and economic considerations to achieve sustainable production. The findings align with 
global efforts to reduce the environmental footprint of industrial operations by enabling energy-efficient and 
cost-effective production methods. Since the proposed configuration is simulation-based, industrial trials or 
scale-up studies will be critical for translating theoretical energy savings and separation improvements into 
practical, commercially viable applications. Future work could explore the integration of energy generation 
from vent and fuel streams into current work. Further, future investigations should integrate catalyst recovery 
strategies to address operational and ecological challenges posed by homogeneous acid catalysts that ensures a 
more complete and sustainable DEE production process.

Data availability
“The datasets used and/or analysed during the current study available from the corresponding author on rea-
sonable request.”
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