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The axolotl (Ambystoma mexicanum) possesses a remarkable ability to regenerate tissues. Following 
limb amputation, a blastema of progenitor cells forms, expands, and reconstructs all distal structures, 
implying that mature cells near the wound retain positional memory along the proximal–distal (PD) 
axis. Key regulators of positional identity, such as Prod1 and Tig1, promote proximalisation—a shift 
toward a more proximal identity—when overexpressed, but the mechanisms governing this process 
remain unclear. In this study, we tracked changes in cellular density along the PD axis of regenerating 
axolotl limbs after transfecting distal blastemas with Tig1 and Prod1, mapping the spatiotemporal 
distribution of transfected cells and their progeny throughout regeneration. Using a continuous 
mathematical modelling approach, we predict a proximalisation velocity induced by factors eliciting 
proximal identity as Prod1 and Tig1, which is consistent with a proximalisation force driven by a 
positional potential. Our findings provide a foundational framework for understanding how cells 
acquire positional identity to guide limb regeneration in axolotls.

Tissue regeneration showcases nature’s ability to restore lost or damaged structures, which spans across a wide 
range of species, from invertebrates to vertebrates1. What makes an animal capable of regeneration and how 
this relates to its normal development are not clear2. In stark contrast to most mammals, which exhibit a rather 
limited regenerative capacity, urodele amphibians, such as the axolotl and newts, regenerate a wide range of 
complex structures, including the spinal cord, parts of the brain, heart tissues and the limbs throughout their 
lives3. The remarkable ability of the axolotl (Ambystoma mexicanum) limb to regenerate after amputation has 
turned it into a powerful system for studying regeneration, providing a unique opportunity to unveil the cellular 
and molecular processes involved4.

As in frog tadpoles and fish, amputation of the axolotl limb leads to the formation of a specialised structure 
at the injury site called the blastema, which constitutes a mass of proliferative, undifferentiated cells that arise 
from the dedifferentiation of mature cells within the adjacent stump tissue5–8, mainly from connective tissue 
dermal fibroblasts9–12. These cells, under the influence of the apical epidermal cap (AEC), a signalling hub that 
forms over the wound, and nerve-derived signals, re-enter the cell cycle and proliferate to replace only the lost 
tissue13,14.

The blastema is a highly organised structure that contains critical information necessary for accurate 
limb reconstruction. Classic proximal–distal polarity reversal experiments15–17 have shown that the blastema 
only regenerates structures distal to the level of the amputation, a phenomenon known as the rule of distal 
transformation13,18. For example, a wrist blastema will regenerate the hand, whereas a shoulder blastema will 
give rise to an entire arm18–21. These experiments suggest that the progenitor cells within the limb stump 
retain a memory of their original position along the proximal–distal (PD) axis. This ‘positional memory’ is 
preserved and interpreted during the blastema stages, enabling the autonomous regeneration of only the missing 
structures—a property known as positional identity22. This inherent ability of the blastema cells to recognise and 
follow positional cues ensures that regeneration occurs with the correct morphological patterning. Despite these 
insights, the mechanisms by which blastema cells maintain their positional identity and how this information is 
used to regenerate the precise amount of tissue are still not fully understood23,24.

Seminal grafting studies have supported the hypothesis that positional identity is encoded in a 
molecular gradient along the PD axis and is manifested as a cell surface property20,25–27. In 2002, PROD1, a 
glycosylphosphatidylinositol (GPI)-anchored surface protein present in regenerating newt limb tissues, was 
identified28. Similar to the newt, Prod1 expression in axolotls is distributed in a decreasing gradient along the 
PD axis and is upregulated by retinoic acid (RA) but interestingly, it lacks a GPI anchor domain29–31. When 
Prod1 is overexpressed in axolotl distal blastema cells—normally responsible for integrating distal structures 
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like the hand—these cells undergo displacement and contribute to more proximal structures, such as the upper 
arm, in the final regenerate. This phenomenon is known as proximalisation32. Recently, another gene has been 
identified as a potential determinant of proximal positional identity, namely the transmembrane factor Tig133. 
This retinoic acid-responsive gene encodes a cell surface molecule, and its expression follows a gradient along 
the PD axis during limb regeneration. Tig1 promotes cell differential affinity and induces proximalisation of 
distal blastema cells, likely by reprogramming them towards a proximal-like identity, through the regulation of 
key genes such as Prod1 and Meis133. However, how the positional memory system in the axolotl limb blastema 
is affected by Prod1 and Tig1 after amputation, leading to proximalisation, remains to be elucidated.

This study quantitatively investigates proximalisation induced by factors eliciting proximal identity, 
like Prod1 or Tig1, during axolotl limb regeneration. We performed image analysis of distal blastema cells 
overexpressing Tig1 or Prod1 at sequential time points during regeneration, and extracted their spatio-temporal 
distribution along the PD axis within regenerating limbs using the newly developed Meandros software. To 
analyse these distributions, we developed a partial differential equation (PDE) of a reaction–diffusion-advection 
(RDA) mathematical model that introduces a proximalisation velocity as a readout of the proximalisation 
dynamics resulting from changing positional cues due to Tig1 or Prod1 overexpression. Fitting the model to the 
experimental data allowed us to infer this velocity. We hypothesise that the proximalisation velocity is caused by a 
proximalisation force, which in turn is derived from a proximalisation potential. Our work provides a theoretical 
framework for analysing the underlying basis of proximalisation, central to achieving faithful regeneration.

Results
Tig1 and Prod1 overexpression promotes cell-autonomous proximal displacement in the 
regenerating limb
To investigate the dynamics of the proximalisation mechanism in the context of a regenerating axolotl limb, we 
revisited previous experiments in which two proximalising factors, Prod1 and Tig1, were overexpressed32,33. 
In the current study, we build on the data from Oliveira et al. (2022) and extend our analysis to examine the 
temporal evolution of the position of the transformed cells along the PD axis throughout regeneration.

In these experiments, the distal compartment of 4-day blastemas was electroporated with either Gfp 
(Control), Tig1 + Gfp or Prod1 + Gfp plasmid combinations. The labelled cells were then monitored at 1, 7, 12, 18 
and 24 days post-electroporation and their distribution along the proximal–distal axis analysed (Supplementary 
Fig.  1). Our observations show that both Tig1 and Prod1 overexpression resulted in a notable proximal 
translocation of GFP+ cells in comparison to the control condition, in which GFP+ cells largely remain in distal 
locations (Fig. 1). Changes in relative positions are apparent as early as the 12th day time point and a marked 
distinction is visible between control and the Prod1 and Tig1 conditions by the 18th day time point (Fig. 1). 
Overexpression of Tig1 and Prod1 results in distinct phenotypes, with some of the Prod1-transformed cells 
achieving the longest displacement distances along the PD axis by the end of regeneration, remarkably including 
displacement to regions beyond the amputation plane. On the other hand, Tig1-overexpressing cells tended to 
overall exhibit lesser spatial dispersion than Prod1-overexpressing ones.

To gain deeper insight into the spatio-temporal dynamics of electroporated cells and their progeny during 
limb regeneration, we went beyond these qualitative observations by performing quantitative analysis of the 
experimental data through image analysis.

Image analysis allows quantification of the proximalisation effect driven by Prod1 and Tig1
In order to quantitatively investigate how overexpression of Prod1 and Tig1 affects the spatial and temporal 
position of electroporated cells and their progeny, we aimed to extract their spatial distribution along the PD 
axis from the microscopy images acquired at the mentioned time points. A first and direct observation of the 
morphology of the axolotl limb anticipated a major challenge to this task: the PD axis exhibits a curvature that 
becomes more pronounced as the regeneration process progresses (Fig. 1). Therefore, any attempt to analyse the 
spatio-temporal distribution of fluorescence signals along the proximal–distal dimension should be performed 
in relation to a curved axis. To this end, we developed Meandros, a software whose primary function is to 
collapse the two-dimensional space of microscopy images into a single spatial dimension, in this case the PD axis 
(Fig. 2A,B). The software uses AI tools to extract the region of interest (ROI) from the brightfield channel of the 
microscopy image. The PD axis, along which the intensity profile of the image is analysed, is set via the Graphical 
User Interface (GUI) (Fig. 2A,B). The intensity threshold of the fluorescence signal is set on the fluorescence 
channel to subtract the background signal, and artefacts can be manually excluded using the exclusion area tools 
(see Materials and Methods "Image Analysis to determine the cell density profile from fluorescent microscopy 
images" and Supplementary Information, Sect. 2.2 for more details). Briefly, to collapse the two-dimensional 
space of the image and assign the fluorescence signal to the single dimension of interest, the PD axis in this 
study, our algorithm takes the local derivative at each point of the curved axis using the adjacent spatial positions 
(Fig. 2A,B). The fluorescence signal within the orthogonal line is then summed and the result is assigned to the 
current position of the axis. This quantity can be normalised in various ways; in this study, normalisation was 
performed relative to the maximum intensity collected over the entire analysis space (see details in Materials 
and methods "Blastema generation, plasmid electroporation and imaging of the regeneration timeline" and 
Supplementary Information, Sect. 2.6).

Using Meandros, we exported the spatial profile of the normalised density for the electroporated cells and 
their progeny in control experiments, as well as under Prod1 or Tig1 overexpression, at the different timepoints 
(Fig. 3A–C). To analyse the density profiles quantitatively and in an unbiased manner, we performed a Gaussian 
fit. Our results show that both Tig1 and Prod1 exhibit a shift in the Gaussian mean towards proximal locations 
as well as an increase in the Gaussian standard deviation compared to the control condition (Fig. 3A–E). These 
results quantitatively confirm what has been observed qualitatively in previous reports: overexpression of Tig1 
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Fig. 1.  Tig1 and Prod1 overexpression elicits cell-autonomous displacement toward proximal regions during 
axolotl limb regeneration. Time series representing the displacement assay using control, Tig1 and Prod1 
overexpression experimental conditions (columns). Images were taken at 1, 7, 12, 18 and 24 days post-
electroporation (dpe) (rows). Despite their initial localization in the distal-most blastema compartment, 
control-electroporated cells remain at the distal region of the regenerating limb, while both Tig1 and Prod1-
transfected cells can shift their position towards more proximal locations along the regenerate. Asterisk 
indicates unspecific autofluorescence in the trunk. Scale bar = 1 mm.
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and Prod1 causes cells to relocate to more proximal regions than those dictated by their original fate under 
control conditions29,32,33.

The area under the curve of the density profiles increases in control, Tig1 and Prod1 conditions 
(Supplementary Fig. 2D–F). However, the exponential rate, the inverse of which would be proportional to an 
average cell cycle length of the labelled cells, is not affected by Tig1 or Prod1 overexpression (Supplementary 
Fig. 2D–F). Consistently, the regenerated limb grows exponentially during regeneration and the corresponding 
exponential rate was not affected by Prod1 or Tig1 overexpression (Supplementary Fig. 2A–C), which might 
have been expected according to previously reported experiments32,33. This probably reflects the low transgene 
dose combined with the limited number of electroporated cells, which were not sufficient to generate widespread 
effects in the regenerate. In contrast, global higher doses of Tig1 result in tissue-scale defects33.

Mathematical model of proximalisation in the regenerating axolotl limb
To gain a mechanistic understanding of the proximalisation effect induced by factors eliciting proximal identity 
as Tig1 and Prod1, we employed a modelling approach. Since cell diameters are approximately 10–3 the size of the 
limb or smaller, we adopted a continuous formalism to represent the dynamics of the density of electroporated 
cells and their progeny within the limb tissue during regeneration (for details see Supplementary Information, 
Sect. 3.1). Consistent with our Meandros-based quantification, we focused on the spatio-temporal distribution 
of cell density along the PD axis.

As our results indicate that the area under the density profiles grows exponentially (Supplementary Fig. 2D–
F), we interpret this as a proliferative process and modelled it as first order kinetics, i.e., proportional to the 
number of cells. Furthermore, the growth of the distribution width over time, as measured by the standard 
deviation (Fig. 3E), suggested diffusive spreading, which we modelled accordingly. To account for the fact that 

Fig. 2.  Meandro’s pipeline enables analysis of electroporated cells and their progeny in regenerating limbs. 
(A) Top: Algorithm scheme for image analysis. Bottom: Detail of the upper image. At each position along the 
proximal–distal (PD) axis, the local tangent is calculated based on nearby points along the axis. Subsequently, 
the orthogonal line is computed, and the number of pixels that have an intensity above the threshold. This 
information is then assigned to the corresponding position along the axis. The outcome is a one-dimensional 
representation of the signal in the limb. (B) Software pipeline: (i–iii) the Region Of Interest (ROI) is detected 
by AI and fine-tuned by the user. (iv) the user sets the PD axis manually. (v–vii) the software reads fluorescent 
signals above a user-defined threshold. (viii) cell density along the PD axis plot. AP Amputation plane.
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Fig. 3.  Overexpression of Tig1 and Prod1 broadens spatial cell density distributions and shifts them 
proximally. (A–C) Spatial distributions of labelled cells along the proximal–distal (PD) axis of the regenerating 
limb of the axolotl at different times post electroporation for the Control (n = 3), Tig1 (n = 4), and Prod1 
(n = 4) conditions. The continuous green line and the green shaded area represent the mean and the standard 
deviation, respectively. The coloured continuous line represents the fit of the distributions to a Gaussian for 
each condition: Control (black), Tig1 (orange) and Prod1 (blue). The fits were performed by calculating the 
first two moments of the experimental distribution. (D) Difference between the means of the distributions 
at each time point, with the color code consistent with (A–C). (E) Standard deviation versus time for control 
(black), Tig1 (orange) and Prod1 (blue).
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the electroporated cells and their progeny move within an expanding host tissue, we introduced an advective 
velocity va. Finally, and more importantly, we extended this idea to model the proximalisation effect induced by 
factors like Tig1 and Prod1 as an additional advective velocity vp directed towards proximal regions, which we 
call the proximalisation velocity, which we notate as vp. All these assumptions are crystallised in the following 
one-dimensional reaction–diffusion–advection equation (Fig. 4A):

	
dρ

dt
= rρ + D

∂2ρ

∂x2 − ∂ (vaρ)
∂x

+ ∂ (vpρ)
∂x

� (1)

Which means:

	
dρ

dt
= rρ + D

∂2ρ

∂x2 − ρ
∂va

∂x
− va

∂ρ

∂x
+ ρ

∂vp

∂x
+ vp

∂ρ

∂x
� (2)

where ρ represents the cell density along the PD axis position x, r is the proliferation rate, and D is the diffusion 
coefficient. Additionally, va and vp correspond to the advective and proximalisation velocities, respectively, as 
mentioned above.

With the following initial and boundary conditions:

	
ρ (x, t = 0) = f (x) ,

∂ρ

∂x
(x = 0, t) = 0,

∂ρ

∂x
(x = L(t), t) = 0� (3)

With f(x) a prescribed initial profile along the PD axis and L(t) the growing tissue length.
The first reaction term on the right-hand side of Eqs. (1) and (2) encodes the average net proliferation rate 

of the limb tissues r. This parameter can be related to the average net cell cycle length of the electroporated cells 
(Tc) as follows:

	
r = ln2

TC
� (4)

The second term on the right-hand side of Eqs. (1) and (2) corresponds to the cell diffusion process within the 
limb and is controlled by the cell diffusion coefficient D. The following term models the expansion of the host 
tissue with an advective velocity va as the regenerating limb grows exponentially (Supplementary Fig. 2A–C)34:

	 va = ax� (5)

As a consequence, we obtain:

	
dρ

dt
= rρ + D

∂2ρ

∂x2 − ρa − ax
∂ρ

∂x
+ ρ

∂vp

∂x
+ vp

∂ρ

∂x
� (6)

Assuming that the proximalisation velocity along the PD axis is constant, ∂vp

∂x
= 0 :

	
dρ

dt
= (r − a) ρ + D

∂2ρ

∂x2 + (vp − ax) ∂ρ

∂x
� (7)

Thus, Eq.  (7) and Eq.  (3) allow us to describe the spatio-temporal distribution of electroporated cells and 
their progeny under the influence of proximalisation velocity during limb regeneration. Interestingly, the 
proximalisation velocity can be derived from a proximalisation force (see Supplementary Information, Sect. 
3.2), which arises from the spatial landscape of a proximalisation potential (see Supplementary Information, 
Sect. 3.3) and could be associated with a chemotaxis-like process (see Supplementary Information, Sect. 3.4 and 
Discussion). Our hypothesis was that the proximalisation velocity would be very low in the control experiments 
and higher in the case of overexpression of factors as Prod1 or Tig1.

Prod1 and Tig1 distal-to-proximal displacements can be described in terms of non-zero 
proximalisation velocities
To explore whether our model is sufficient to reproduce our experimental cell density spatiotemporal 
distributions, we undertook its parametrization. The model described by Eq. (7) has four parameters but two 
of them can be estimated. Specifically, we estimated the advection rate a and the proliferation rate r from the 
exponential rates of regenerating limb length kinetics (Supplementary Fig. 2A–C) and the time evolution of 
the area under the density profiles (proportional to the number of marked cells) extracted from Meandros 
(Supplementary Fig. 2D–F), respectively. To test our model, and also to determine the remaining parameters vp 
and D, we decided to fit the model to the experimental density profiles at different times by adopting a Bayesian 
inference approach. With this method, we used the evidence from past time points to constrain the fitting of the 
future time point35.

Before fitting the experimental data, we performed a validation of the proposed method. For this purpose, 
artificial data were generated using the Reaction–Diffusion–Advection model with known values of vp, D and σ, 
which were then subjected to the aforementioned analysis. The method successfully retrieved the most probable 
values of the parameters that originated to the artificial data (Supplementary Fig. 3A,B).
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Fig. 4.  Tig1 and Prod1 overexpression increase model-predicted Proximalisation velocity and Diffusion 
coefficient. (A) Schematic representation of the Proximalisation model indicating its different terms and their 
effects on an ideal cellular density profile in a cartoonish limb. (B–D) (i) Spatial distributions of cell density for 
control (B), Tig1 (C) and Prod1 (D) along the proximal–distal (PD) axis at different days post electroporation 
(dpe). In grey, experimental data (Control, n = 3; Tig1, n = 4; Prod1, n = 4); in green, simulation using the 
Proximalisation model. The amputation plane is at the 0 μm position. The dashed vertical line indicates the 
mean position of the wrist, while the dotted vertical line indicates the mean position of the elbow (the shaded 
region represents the standard deviations). (ii) Posterior distributions of the parameters vp and D for the 
Proximalisation model.
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When we fitted the model to the experimental spatiotemporal distribution of electroporated cells and their 
progeny by using the distribution of cell density at 1 dpe as the initial condition, we observed that the model 
captured a notable shift towards proximal positions of cells overexpressing Tig1 and Prod1, accompanied by an 
increase in their spreading along the PD axis when compared to the control condition (Fig. 4B–D). Our results 
show that Prod1 overexpression leads to an increase of both diffusion coefficient and proximalisation velocity, 
with both parameters being higher for Prod1 than for Tig1 (Table 1). Noteworthy, we obtained similar results 
(Supplementary Fig. 4A–C) when performing the fitting by using the likelihood-free method facilitated by the 
PyABC software, a distributed and scalable ABC-Sequential Monte Carlo (ABC-SMC) framework36.

Proximalisation velocity contributes most to model variance
After corroborating that the model is sufficient to explain the experimental spatio-temporal distribution of 
the density of electroporated cells and their progeny, one essential question arises: which parameters are most 
correlated with the obtained output? In other words, which of the input parameters contribute the most to the 
variability of the output37. To address this question, we conducted a variance-based sensitivity analysis38 on the 
four model parameters D, vp, a and r. The variance decomposition allows us to establish a ranking of which 
parameters contribute most to the output variance.

We calculated the first-order index that represents the contribution of each parameter to the total variance while 
keeping all other parameters fixed, and the global sensitivity index which corresponds to the total contribution 
of each parameter, including interactions between parameters. Our results indicate that the proximalisation 
velocity has the highest contribution to the total variance displayed in the best-fitting simulations, followed by 
the diffusion coefficient, in turn followed by the advection and the proliferation rates (Fig. 5A,B). This analysis 
highlights the relevance of the proximalisation velocity to the dynamics of the electroporated cells and their 
progeny within the expanding limb during the time of regeneration.

Model-predicted high expression of proximalisation factors enhances proximal patterning
An interesting question is whether increasing the initial expression levels of proximalisation factors such as 
Prod1 and Tig1 would further shift the cell density distributions toward more proximal positions. To test this 
hypothesis, we first ran simulations in which the initial conditions used in Results "Prod1 and Tig1 distal-to-
proximal displacements can be described in terms of non-zero proximalisation velocities" for the Control, 
Prod1, and Tig1 conditions were replaced by Gaussian distributions. For each condition, we retained the same 
parameter values previously used in Results "Prod1 and Tig1 distal-to-proximal displacements can be described 
in terms of non-zero proximalisation velocities"—that is, the corresponding best-fitting values for diffusion 
coefficient, proliferation rate, advective velocity, and proximalisation velocity. These simulations revealed that 
doubling the area under the initial Gaussians broadened the resulting density profiles but did not change the 
distance between their peaks (Supplementary Fig. 5), suggesting that the proximalisation velocity does not 
depend on the initial density of electroporated cells.

In prior work, we showed that higher doses of Tig1 or Prod1 reduce cell proliferation by over 50%33, and 
that elevated Tig1 levels impair the invasive capacity of AL1 cells in vitro by approximately half33. To reflect this 
scenario, we re-simulated the Tig1 condition with both the proliferation rate and advective velocity reduced by 
50%, while keeping the diffusion coefficient and proximalisation velocity unchanged. Under these conditions, 
the Tig1 density peak shifted further toward proximal positions, and the overall length of the regenerating 
domain decreased (Supplementary Fig. 6), consistent with our previous experimental observations33. Notably, 
in vivo, high Tig1 levels are also associated with additional morphological alterations that lie beyond the scope 
of our one-dimensional model.

Discussion
Understanding how an organism such as the axolotl is able to regenerate limbs could push the boundaries of 
what is possible39. Upon amputation, progenitor cells at the stump can migrate over distances on the order of 
half a millimetre to reach the wound site, where they begin to form the blastema40, but how do they know where 
to go and where they are in the first place? Previous evidence shows that PROD1 and TIG1 act as chemical cues 
conferring proximal positional information in the limb. Overexpression of the respective genes during the early 
stages of axolotl limb regeneration induces a displacement of cells towards more proximal regions, a phenomenon 
known as proximalisation, suggesting that these genes play a key role in determining the positional identity of 
cells20,22,25,26,28,32,33,41–43. Although much experimental work has been done to uncover where the blueprint that 
orchestrates the orderly regrowth of missing tissue is encoded, there is currently no theoretical approach aimed 
at unravelling the spatio-temporal dynamics of the proximalisation process.

Condition a (day−1) r (day−1) vp (μm/day) D (μm2/day)

Control 0.092 ± 0.005 0.08 ± 0.02 1.2 ± 0.2 977 ± 34

Tig1 0.087 ± 0.005 0.09 ± 0.02 22.5 ± 0.5 1617 ± 66

Prod1 0.084 ± 0.004 0.05 ± 0.03 46 ± 3 7022 ± 447

Table 1.  Summary statistics of proximalisation model parameters. The table contains the mean ± confidence 
interval (95%) of the parameters a and r, together with the mean ± two times the standard deviation of the 
posterior distributions corresponding to the parameters vp and D.
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In this study, we quantitatively analysed displacement assays in which local electroporation of Prod1 or Tig1 
onto the distal-most compartment of 4-day blastemas led to displacements of the labelled cells towards more 
proximal regions. Using Meandros, a Python-based image analysis script, we determined the linear density of 
distally electroporated cells and their progeny along the PD axis of the regenerating axolotl limb and estimated 
the mean and standard deviation from Gaussian fits (Figs. 2A,B and 3A–E). The temporal evolution of the 
mean confirmed previous reports: compared to controls, cells overexpressing Prod1 or Tig1 experience a shift 
towards proximal regions28,32,33. Notably, we observed that the standard deviation increases with time and is 
enhanced by Tig1 and Prod1 overexpression, suggesting that a diffusive phenomenon could partially explain the 
cellular shifts. Nevertheless, electroporated cells and their progenies were immersed in the expanding domain 
of the regenerating limb (Fig. 3A–C and Supplementary Fig. 2A–C). The anisotropic growth of the axolotl limb 
generates a distortion in the symmetry of the original linear density distributions (Fig. 3A–C). In parallel, we 
observed that the area under the curve of linear density increased in time, suggesting that electroporated cells 
were proliferating (Supplementary Fig. 2D–F). From both time courses we extracted the advection coefficients 
of tissue expansion and the proliferation rates. Noteworthy, the mean growth rates (day−1) for the control 
(0.093 ± 0.005), Tig1 (0.087 ± 0.005) and Prod1 (0.084 ± 0.004) (Table 1) are consistent with growth rate previously 
measured in regenerated limbs of axolotls of similar size44. Neither the expansion of the limbs nor the increase 
of the area under the curves of linear densities was affected by overexpressing Prod1 or Tig1 (Supplementary 
Fig. 2A–F). This probably reflects the fact that the doses used for these two factors were smaller than those used 
in previous reports, where defects and malformations in the regenerated tissue were observed, particularly in 
the distal parts32,33. A global dosage-effect probably underlies the absence of morphological defects and size 
reduction observed32,33. Here, the lower transgene dose used and the small number of transfected cells were 
likely insufficient to generate broad-scale effects. However, in whole-blastema Tig1-transfected samples, where 
higher transgene load and a wider distribution of Tig1 expression was achieved, significant size reduction, 
specially affecting distal structures, and other morphological alterations consistently occur33.

Time (dpe) Time (dpe)
Fig. 5.  Proximalisation velocity is the primary contributor to model variance. Sobol indices for parameters 
D, vp, r, a as a function of time in days post electroporation (dpe). (A) First-order Index. (B) Total-order 
Index. Shaded areas represent the confidence interval of the indices. In all cases, the analysis was conducted 
evaluating the distance function defined in Materials and Methods "Posterior distributions of the parameters 
obtained by using pyABC" involving the experimental cell densities for the control, Tig1 and Prod1 conditions.
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To disentangle proximalisation from the complexity of the axolotl limb regeneration response, we developed 
a minimal PDE-based mathematical model of electroporated cells and their progeny. Beginning with the seminal 
article by Alan Turing45, PDE-based mathematical models were proposed to understand pattern formation 
problems in biological contexts. This article, together with that of Alfred Gierer and Hans Meinhard46, exemplified 
the use of reaction–diffusion models that would become widespread in both development and regeneration. A 
notable example of this type of model was developed to understand the spatio-temporal distribution of skeletal 
elements in the developing chick limb47 and, more recently, the developing limb skeletal structures in mice 
and axolotl48 as well as the problem of morphogen scaling in the axolotl limb during regeneration49,50. In our 
study, we modelled both the domain expansion of the regenerating limb in which cells are immersed and the 
proximalisation phenomenon experienced by cells overexpressing Prod1 or Tig1 as advective processes, inspired 
by a large tradition of reaction–diffusion–advection mathematical models (see, e.g.,34,51–53.

By fitting the model to the spatio-temporal distribution of linear densities, we estimated diffusion 
coefficients and proximalisation velocities of electroporated cells and their progeny. Our results indicate 
that cells overexpressing Prod1 diffuse and move proximally more than those overexpressing Tig1, which in 
turn diffuse and move proximally faster than controls (Fig. 4B–D). This is the first study to predict diffusion 
coefficients and proximalisation velocities of cells within regenerating axolotl limbs, which range from 0.9 to 
7.0 (103µm2day−1) and 1.0 to 50.0 (µm day−1), respectively. The lack of information on diffusion coefficients 
and proximalisation velocities of cells in regenerating tissues, let alone axolotls, makes it extremely difficult 
to compare our predictions with previous reports. However, diffusion coefficients and migration velocities of 
individual cells in different in vitro systems can be given as an upper bound. As examples of diffusion coefficients, 
human leukocytes and endothelial cells in agarose include values of approximately 854 and 2055 (103µm2day−1), 
respectively. In terms of migration rates, rat embryo fibroblasts show migration rates of approximately 700–
900 µm day−156. The spontaneous mammary adenocarcinoma cell line CSML0 and the highly invasive rat 
glioma cell line BT4Cn exhibit cell speeds of 500–700 µm day−157. Mouse bone marrow-derived macrophages 
migrate at a speed of ~ 70 µm day−1, increasing to ~ 600 µm day−1 in response to Colony Stimulating Factor 1 
(CFS-1)58. Our model predicts diffusion coefficients and migration rates that are significantly slower than those 
previously reported. This is probably because the aforementioned analyses were based on cells in culture, while 
our predictions derived from in vivo settings. Further, the electroporated cells and their progeny are not single 
cells, but clusters of cells that grow by cell proliferation, are exposed to the complex extracellular matrix in which 
they are embedded, and are subject to the cell–cell interactions that occur in vivo and are expected to dampen 
their movements.

The most important parameter of our model is the proximalisation velocity, as indicated by the sensitivity 
analysis (Fig. 5A,B). The model predicts that the proximalisation process results from a constant proximalisation 
velocity experienced by the electroporated cells and their progeny overexpressing factors such as Prod1 and 
Tig1. Using Smoluchowski’s theory, this velocity can be rewritten as a proximalisation force which, assuming 
constant mobility, should also be constant (Fig. 6A,B, Supplementary Information, Sect. 3.2). Assuming that the 
force is conservative, it can be derived from a proximalisation potential whose minimum is at the shoulder of 
the limb and which increases linearly along the PD axis (Fig. 6A,B, Supplementary Information, Sect. 3.3). Thus, 
according to our derivation, the electroporated cells and their progeny expressing high levels of Prod1 or Tig1 
move proximally to minimise the proximalisation potential. Interestingly, this proximalisation potential can be 
associated with a chemotaxis-like process59,60, where the resulting proximalisation velocity can be written as the 
product of a chemotaxis strength and the negative gradient of the chemotactic species concentration gradient 
(Fig. 6A,B, Supplementary Information, Sect. 3.4). To explain our results, electroporated cells and their progeny 
highly expressing Prod1 or Tig1 should be capable of “sensing” gradients of chemotactic attractants, whose 
concentration should decrease linearly towards the distal end of the limb. Further, the chemotactic gradients or 
their strengths may differ between Prod1 and Tig1. What might this hypothetical chemotactic attractant be? A 
simple possibility could be Prod1 or Tig1 themselves since both show a decreasing expression along the PD axis 
(Fig. 6A,B,29,33, although precise quantification of both is lacking. While the nature of their interaction partners 
and their capacity for homotypic interaction are unknown, this remains an intriguing possibility.

An alternative hypothesis is that the increased presence of Tig1 and Prod1 membrane proteins modifies some 
physicochemical variable, such as surface tension, a hypothesis that has been repeatedly suggested in previous 
studies investigating Prod126,61,62. A paradigmatic example consistent with this interpretation is the engulfment 
assay, where it has been suggested that the invasion of proximal cells into distal cells originates from differential 
adhesion due to increased levels of Prod1 at the cell surface25. Engulfment assays have also been conducted for 
Tig1, yielding similar results as Prod133. Thus, transient distal expression of cells expressing high levels of Tig1 
or Prod1 could lead to disruption of surface tension gradients and consequent cell migration to reduce these 
gradients29. Similarly, the gradient of proximalisation potential here proposed could reflect a gradient of stiffness. 
Interestingly, axolotl distal blastema cells are stiffer than proximal ones63, suggesting that proximalisation could 
be driven by negative durotaxis64.

Limitations of our study and conclusions
In our study, the proximalisation process was modelled assuming that the electroporated cells and their 
progeny overexpressing factors like Prod1 and Tig1 are subjected to a constant proximalisation velocity. This 
velocity could encapsulate a more sophisticated mechanism involving feedback processes regulating positional 
memory while operating along the perpendicular anterior–posterior axis of the axolotl limb65. In general, the 
proximalisation velocity could depend on the regeneration stage as well as on the position along the PD axis. On 
the other hand, the population of electroporated cells could have an inherent heterogeneity, which could mean 
that each cell could have a unique proximalisation velocity. Thus, while the constant proximalisation velocity 
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assumed by our minimal model fits the data presented here and satisfies Occam’s razor, it can also be conceived 
as an average over time, space and cellular identities.

In conclusion, this study presents a quantitative pipeline for analysing proximalisation in the limb during 
regeneration and introduces a continuous theoretical framework that portrays this phenomenon in terms of 
a proximalisation velocity. We hypothesise that proximalisation may be driven by a potential-driven force, 
consistent with a chemotaxis-derived process. Future studies are needed to further investigate the molecular 
and/or mechanical basis of proximalisation in vertebrates.

Materials and methods
Animal husbandry
Care of axolotls and all experimental protocols used in this study were approved by the United Kingdom 
Home Office and the State of Saxony, Germany. All methods were performed in compliance with the Animals 
-Scientific Procedures-Act 1986 (United Kingdom Home Office), and the laws and regulations of the State of 
Saxony, Germany. Axolotls (A. mexicanum) were obtained from Neil Hardy Aquatica (Croydon, UK) and from 
the axolotl Facility at Center for Regenerative Therapies Dresden (Germany). Axolotls of the leucistic (d/d) 
strain, of 4 cm snout-to-tail length, were used in all experiments. The animals were maintained in individual 
aquaria at 18–20 °C with a 12/12 day/night cycle, and were anaesthetised in 0.03% benzocaine (Sigma) prior to 
any surgical procedure or imaging. All methods are reported in accordance with ARRIVE guidelines.

Blastema generation, plasmid electroporation and imaging of the regeneration timeline
Animal procedures were conducted as described33. Briefly, blastemas were generated by amputating the intact 
limb at the distal end of the upper arm (stylopod), followed by trimming of the jutted-out tip of the humerus. To 
prevent postoperative pain, animals were treated with a centrally acting analgesic for the next 24 h, by keeping 
them in shallow water containing 0.5  mg/l butorphanol tartrate (Alvegesic vet. 10  mg/ml, Selectavet). They 
were then returned to their individual holding tanks, where they were kept until the end of regeneration. At 
the 4th day of regeneration, the distal region of the blastema mesenchyme was transfected via microinjection 
and co-electroporation of Tig1 or Prod1 gene-containing plasmids and a reporter plasmid (pEGFP-N2 or 
pRFP-N2; Clontech), at a 1:3 molar ratio. Both the cloning strategy, electroporation protocol and experimental 
details were previously described33. Fluorescent and brightfield images were acquired at 1, 7, 12, 18, 24 days 

PD position (μm) PD position (μm)

(Time = 1 dpe) (Time = 28 dpe)

Prod1/Tig1
(|��������������� �����| > 0)

Control
(|��������������� �����| = 0)

Prod1/Tig1
(|��������������� �����| > 0)

Control
(|��������������� �����| = 0)

Control
Prod1/Tig1 Control

Prod1/Tig1

Blastema Regenerated limb

A B

Fig. 6.  Proximalisation velocity is consistent with the proximalisation force derived from a spatially dependent 
potential. (A) Electroporated cells in the most distal region of the blastema at 1 day post electroporation (dpe): 
when only Gfp is electroporated (control, red), a spatially uniform proximalisation potential is generated. In 
contrast, electroporation of Tig1 or Prod1 (green) results in a non-uniform proximalisation potential. (B) 
Electroporated cells at 24 dpe: the proximalisation potential is constant for control cells (red), which motivates 
zero proximalisation force, forcing the cells to remain distally where they were electroporated. In contrast, the 
cells overexpressing Tig1 and Prod1 (green) experience a spatially dependent proximalisation potential that 
triggers a proximalisation force that induces their movement towards proximal regions.
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post-electroporation (dpe), using a stereomicroscope (Zeiss) to track the distribution of electroporated cells 
(Supplementary Fig. 1). Exposure times were generally maintained constant within and between conditions, only 
slightly adjusted, if necessary to capture sufficient fluorescent signal. During imaging, animals were consistently 
positioned in a similar orientation to ensure comparability across all samples and timepoints.

Landmark setting
The cross-sectional plane created upon amputation, denominated as ‘amputation plane’, was defined at 1 dpe 
using the brightfield channel, and is morphologically defined by a decrease of epidermal tissue thickness and a 
disruption in mesenchymal mass. Its relative location was manually identified and defined conservatively across 
timepoints, setting the proximal boundary of the blastema/regenerate. The hand (autopod) segment was defined 
from a section crossing the point where the proximal radius and ulna bone epiphyses are at the closest point, 
and extends until the distal end of the computed PD axis. The ‘lower arm’ (zeugopod) segment is limited by the 
later boundary and by the distal tip of the humerus, which in turn simultaneously defines the distal end of the 
‘upper arm’ (stylopod) segment. Segment boundaries were defined manually by the same user, across samples 
and between timepoints. These landmarks appear as vertical regions in Fig. 4B–D.

Image analysis to determine the cell density profile from fluorescent microscopy images
To obtain the cell density profiles along the PD axis (Posterior-Distal), we used our software Meandros. The 
microscopy images were individually loaded for each time point. The region corresponding to the axolotl’s 
limb (ROI) was obtained using the ROI detection tool, followed by manual fine-tuning to ensure that the ROI 
contained the entire limb to be analysed. Using the GUI, the PD axis was traced so that it passed through pre-
established bony landmarks: the elbow joint, wrist joint. This ensured that all PD axes for all replicates were 
systematically established.

A lower intensity threshold was set to avoid background noise and filter only positive intensity. In cases 
where artifacts were identified, the exclude area tool was used to exclude regions of false-positive intensity signal. 
To distinguish true intensity signal from false positives, we relied on our extensive familiarity with the image 
datasets, which allowed us to recognize and therefore discard artefactual autofluorescence. More importantly, 
since the trajectories of electroporated signals were tracked over time, it was possible to anticipate their likely 
spatial paths and exclude intensity signals that appeared in locations inconsistent with plausible trajectories. This 
temporal continuity provided an additional criterion to discard spurious intensity signals that could not have 
originated from the electroporated region. The profiles were normalized according to the number of positive 
pixels (above the threshold) perpendicular to the point of the PD axis relative to the maximum found along the 
PD axis.

ρi = fi
fmax

, where i represents the position along the PD axis, and, 0 < i < L(t)
Mean and error of all replicates for each condition in Fig. 3A–E were calculated using the stats module of 

SciPy66. The signal for each time point was normalized by the integral under the curve at time 1. This way, the 
growth of the area under the curve is expressed in multiples of the area of the initial condition.

Mathematical modelling of proximalisation
Model implementation
We numerically implemented the mathematical model described in Results  "Mathematical model of 
proximalisation in the regenerating axolotl limb".

When numerically solving Eq.  (7) we made a change of variables to a non-growing domain (see, for 
example51,52). The chosen variables were:

	
δ = x

L0eat , δ ∈ [0,1]� (8)

	 θ = t� (9)

Equation (7) written in these new variables is:

	

∂ρ

∂θ
= D

(L0eaθ)2
∂2ρ

∂δ2 + (r − a)ρ + vp

L0eaθ

∂ρ

∂δ
� (10)

And the new non-growing boundary conditions are the following:

	
∂ρ

∂δ
(δ = 1, θ) = 0� (11)

	
∂ρ

∂δ
(δ = 0, θ) = 0� (12)

This change of variables had two main advantages, the first one being that the new domain size is fixed (going 
from 0 to 1) and secondly that Eq. (10) now has one less advective term than Eq. (7).

The upwind method was used to simulate Eq. (10) because it is more stable than using the finite difference 
method. A similar implementation as the one proposed in67 and68 was used. This method is applicable to 
equations with the following shape:
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ρn+1

i − ρn
i

∆θ
+

(ρG)i+ 1
2

− (ρG)i− 1
2

∆δ
= 0� (13)

where G is an arbitrary function of ρ, δ, θ, ∂ρ
∂δ . In our implementation G took the form:

	
G = −D

(L0eaθ)2
ρ

∂ρ

∂δ
− vp

L0eaθ � (14)

To calculate (ρG)i+ 1
2

 and (ρG)i− 1
2

, we followed the rule:

	
(ρG)i+ 1

2
= ρi

Gi + Gi+1

2 if
Gi + Gi+1

2 > 0� (15)

	
(ρG)i+ 1

2
= ρi+1

Gi + Gi+1

2 if
Gi + Gi+1

2 < 0� (16)

This scheme has a Courant–Friedrichs–Lewy (CFL) condition given by 2max |G| ∆θ
∆δ . This condition ensures 

that information does not propagate farther than one spatial grid cell during a single time step, which is crucial 
for maintaining numerical stability. We used an n0 = 200 nodes array, with x step  dx = 1

n0
 y dt = dx2

3D

Estimation of the advection rate parameter a
To estimate the value of the parameter a in Eq. (7), we fitted an exponential to the length of the regenerating tissue 
L(t) (Supplementary Fig. 2A–C). The L(t) was calculated as the arc length of the PD axis s ≈

∑n

i=1

√
∆x2

i + ∆y2
i  

for all replicates of each experimental condition. L(t) was then adjusted over time to a target function c.exp(a.t) 
using the curve_fit tool from the optimize module of the Scipy library66. The standard deviation of the parameters 
was calculated and confidence intervals were determined using a Student’s t-distribution with N − 1 degrees 
of freedom, where N is equal to the number of replicates. The calculation of confidence intervals is given by 
CI = a ± t α

2
.std, where a is the advection parameter, t α

2
 is the critical value from the Student’s t-distribution 

for a significance level α and N − 1 degrees of freedom, and std is the standard deviation.

Estimation of the proliferation rate parameter r
In order to estimate the parameter r in Eq. (7), we calculated the area under the curve of cell density profiles 
for all replicates individually using the numerical integration tool simps from the integrate module of Scipy. 
The Areas Under the Curve (AUCs) were then normalized by the area of the initial condition: AUC(t) = I(t)

I0
 

where I(t) represents the area at time t and I0 is the area of the initial condition. The normalized values Mass(t) 
were adjusted over time to a target function c.exp(r.t) and confidence intervals were obtained using the same 
procedure as for the parameter a.

Posterior distributions of the parameters vp and D using a Bayesian inference framework.
To estimate the parameters vp and D, we used the formalism of Bayesian Inference and obtained the posterior 
distribution of the parameters. Within the context of Bayes’ Theorem, we have:

	
P (θ|Y ) = P (Y |θ) · P (θ)

P (Y ) = P (Y |θ) · P (θ)
P (Y |θ) · P (θ) � (17)

where Y t = {y0, y1, y2, ..., yN } are the points belonging to the density profile at time t for each t ∈ {6,12,18,24}, 
and θ represents the set of parameters.

Assuming a Normal error of the experimental data with µ(θ) and standard deviation σ, likelihood is:

	 P (yt
i |θ) = N (yt

i |µ(θ), σ)� (18)

And assuming that the observations yt
i  are independent.

	
P t(Y t | θ) =

N∏
i=0

N (yt
i | µ(θ), σ) =

N∏
i=0

N (yt
i | µ(v, D), σ)� (19)

where θ = {v, D, σ}
The posterior distribution over the parameters at time t + 1 is:

	
P t+1(v, D, σ | Y t+1) =

∏N

i=0 N (yt+1
i | µ(vj , Dk), σl) · P t(vj , Dk, σl)∑

v,D,σ

∏N

i=0 N (yt+1
i | µ(vj , Dk), σl) · P t(vj , Dk, σl)

� (20)

As a prior distribution P 0(v, D, σ) a uniform distribution in the parameter space v, D, σ was used. A matrix of 
dimensions N3 with N = 100 for all possible combinations of parameters was constructed, and (4) was iteratively 
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calculated. The marginal distributions shown in Fig.  4B–D were obtained by numerical integration of the 
posterior distribution.

	
Pθ=x(xi) =

∑
j

∑
k
P (θi,j,k)� (21)

To smooth the results due to the discretization of the explored parameter space, spline interpolation was applied 
using the interp2d tool from Scipy69.

To avoid overflow problems in the computational calculation of Eqs. (20) and (21), the "log-sum-exp trick" 
was applied to calculate a relative posterior within the range [0,1]70.

	
Prelative

t(Y t | θ) = elog(P t(Y t|θ))

emax(log(P t(Y t|θ)) = elog(P t(Y t|θ))−max(log(P t(Y t|θ)))� (22)

As shown in Results "Image Analysis allows quantification of the proximalisation effect driven by Prod1 & Tig1", 
our experimental data consist of individual distributions of cell density ρdata(x, t) averaged for each condition 
(Control, Tig1 and Prod1). Here, the different measurements were acquired at time points 1, 6, 12, 18 and 24 dpe. 
We used as initial conditions the quantified density profile at time 1 dpe of each experiment. We assumed that 
the observations ρdata(x, t) are noisy versions of the model-predicted density ρmodel. We assumed the errors 
being additive, independent and normally distributed with variance σ2, enabling us to the model the error as:

	 ρdata(xi, tj) = ρmodel(xi, tj) + ε, ε ∼ N(0, σ)� (23)

We used a non-informative uniform prior in the 3D parameter space given by vp, D and σ, constructed a matrix 
of dimensions N3 for the parameters and calculated the posterior distributions p(vp, D, σ) across the entire 
parameter range, where N = 100. Finally, we obtained the marginal distributions p(vp), p(D), p(σ) as well as the 
mean and standard deviation of each parameter.

Validation of Bayesian Inference implementation
To validate our Bayesian inference implementation described in Results  "Prod1 and Tig1 distal-to-proximal 
displacements can be described in terms of non-zero proximalisation velocities", we generated synthetic noisy 
data to test its ability to recover the true parameter values. Cell density profiles were generated using the RDA 
model with known parameters within the range vp(day−1) = (0.0005,0.05), D(day−1) = (0.00005,0.005) 
and σ = (0.0001,0.01). The posterior distributions and marginal distributions of the parameters were obtained 
following the same approach described in Sect.   4.3.3. These results confirm that our Bayesian inference 
implementation successfully identifies the optimal parameter values for synthetic data generated by the RDA 
model within the specified study ranges.

Posterior distributions of the parameters obtained by using pyABC
PyABC (Approximate Bayesian Computation in Python) is a Python library for performing Approximate Bayesian 
Computation (ABC), which is used to estimate parameters of complex models by comparing simulated and 
observed data without requiring an explicit likelihood function. The implementation of pyABC fundamentally 
requires specifying the prior distributions of the parameters and a distance function to be minimized36. Since 
there is no prior knowledge about the parameter values, we used uniform priors for the parameters vp and 
D, limiting the analysis within the appropriate bounds for each condition. We defined a distance function in 

the form: 
∑N

i
(yi−f(xi))2

σ2 , where yi are the experimental values of cell density at position i of PD axis (which 

are assumed independent and normally distributed), f(xi) are the corresponding values generated by the 
RDA model and σ is the sample variance by condition. Here, we used the σ values from previous analysis 
(see Sect.   4.3.3): Control (0.006367), Tig1 (0.005426), Prod1 (0.005803). The following model params were 
setted: population_size = 100, max_nr_population = 20 y minimum_epsilon = 0.1 (acceptance threshold). Results 
are shown in Supplementary Fig. 4A–C.

Data availability
The data corresponding to Figs. 1, 2, 3A–E, 4B–D and 5A,B as well as Supplementary Fig. 2A–F, Supplementa-
ry Fig. 3A,B and Supplementary Fig. 4 is available in https://doi.org/10.5281/zenodo.15365665. The Meandros 
software (see more details in the "Introduction" of Supplementary Text) can be found in ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​5​2​8​
1​/​z​e​n​o​d​o​.​1​5​0​3​6​3​1​7​​​​​​.​​​

Code availability
The codes corresponding to the model, simulations and calculations of the parameter posterior distributions 
described in "Mathematical modelling of proximalisation" can be found in ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​5​2​8​1​/​z​e​n​o​d​o​.​1​
5​3​6​5​6​6​5​​​​​. Further information and requests for data should be directed to Osvaldo Chara (Osvaldo.Chara@
nottingham.ac.uk).
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