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Coprological and molecular
prevalence of Cryptosporidium

and Giardia in cattle and irrigation
water from Beni-Suef Governorate,
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Cryptosporidium and Giardia are globally significant protozoan parasites responsible for severe
foodborne and waterborne outbreaks, posing substantial zoonotic and environmental risks. This study
aimed to comprehensively assess the prevalence of cryptosporidiosis, giardiasis, and co-infections in
Beni-Suef Governorate, Egypt, using an integrated diagnostic approach combining microscopy and
molecular techniques. Additionally, it was sought to identify associated risk factors in cattle fecal
samples. Microscopical examination of 970 cattle fecal samples revealed an overall infection rate of
67.42% (654/970), with Cryptosporidium detected in 42.68% (414/970), Giardia in 11.96% (116/970),
and co-infections in 12.78% (124/970) of cases. In irrigation water, Cryptosporidium oocysts and
Giardia cysts were detected in 2/24 (8.33%) and 1/24 (4.16%) of samples, respectively. Molecular and
phylogenetic analyses identified Cryptosporidium hominis in cattle and, for the first time in Egypt,
Cryptosporidium ubiquitum and Cryptosporidium ryanae in irrigation water, while also proving the
presence of Cryptosporidium bovis and Giardia assemblage A in cattle. Risk factors, including sex,
age, season, and fecal consistency, significantly influenced infection rates, with higher prevalence in
females, calves under two months, spring season, and diarrheic feces. These findings underscore the
urgent need for One Health-based control strategies, integrating targeted interventions to mitigate
the burden of Cryptosporidium and Giardia infections and environmental contamination.

Keywords Cryptosporidium hominis, Cryptosporidium ubiquitum, Cryptosporidium ryanae, Cryptosporidium
bovis, Giardia assemblage A, Risk factors

Cryptosporidium and Giardia are globally significant protozoan parasites frequently associated with severe
foodborne and waterborne outbreaks!. These pathogens contribute substantially to morbidity and mortality
worldwide, particularly in low-resource settings where they disproportionately impact vulnerable populations,
including children, immunocompromised individuals, and newborn animals®-. Both parasites exhibit a wide
range of vertebrate hosts, infecting humans, livestock, wildlife, and birds, causing self-limited diarrhea alongside
other clinical manifestations’~!!. Their zoonotic potential and diverse transmission pathways, including zoonotic,
foodborne, and waterborne routes, underscore their relevance as a critical One Health concern, highlighting the
interconnectedness of human, animal, and environmental health!'?-'4,

Cryptosporidium oocysts and Giardia cysts are highly resilient in the environment, persisting in diverse
matrices such as soil, water, and food. Their transmission is facilitated through contaminated tap water, bottled
water, surface water, ground water, and irrigation systems, posing significant public health and environmental
challenges!>~!8. Farm animals, particularly cattle, play a pivotal role in the epidemiology of these protozoa, as
young calves serve as major reservoirs, shedding millions of infectious oocysts and cysts into the environment,
contaminating water sources, and amplifying the zoonotic transmission risks®!°-2!. The remarkably low infective
dose of Giardia, fewer than 10 cysts, further exacerbates the ease of transmission, complicating public health and
environmental management efforts?*~22. The infective dose of Cryptosporidium parvum ranges from 5.8 to 16.6
oocysts? yet a single infected host can shed over 3 x 10!° oocysts into the environment®* creating a significant
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potential reservoir for environmental contamination?. To date, more than 40 Cryptosporidium spp. have been
identified in mammals, reptiles, birds, fish, and amphibians?®. Of the approximately 20 species known to infect
humans, C. parvum and Cryptosporidium hominis are the most prevalent, accounting for over 90% of human
cases globally®. In cattle, the predominant species include C. parvum, Cryptosporidium bovis, Cryptosporidium
andersoni, and Cryptosporidium ryanae®. Among these, C. parvum is particularly notable for its broad host
range and significant zoonotic potential. Giardia intestinalis (synonyms: Giardia lamblia and Giardia duodenalis)
is a species complex comprising eight genetically distinct assemblages (A-H). Assemblages A and B are of
particular concern due to their low host specificity, allowing them to infect both humans and a wide variety of
animal species?»*”8, Co-infections involving Cryptosporidium and Giardia are increasingly documented in both
humans and animals, particularly in regions with inadequate sanitation or environmental contamination?*>>3,
Emerging evidence suggests that co-infections may exacerbate clinical severity, leading to prolonged diarrhea,
persistent inflammation, and malnutrition, especially in newborn animals®"*2. The concurrent presence of
both pathogens within a host may compromise immune responses, potentially facilitating the colonization or
persistence of one pathogen by the other, thereby complicating disease management and treatment outcomes™.
Furthermore, their simultaneous detection in environmental matrices, such as irrigation water and soil,
underscores the heightened risk of widespread contamination and transmission!®!>.

Cryptosporidiosis is endemic in cattle worldwide, with reported prevalence rates ranging from 11.7 to 78%,
particularly affecting pre-weaned calves**~*¢. In humans, the global prevalence of cryptosporidiosis has been
estimated at 14.1% in high-income countries and up to 31.5% in low-income countries*”*. Human infections
with Giardia spp. are similarly widespread, ranging from 2 to 5% in developed nations to 20-30% in developing
regions® 2. In cattle, the pooled prevalence of giardiasis has been estimated at 24% based on microscopic
examination®®. Both Cryptosporidium and Giardia are well-recognized as major pathogens responsible for
numerous foodborne and waterborne outbreaks'*-4°. Globally, the proportion of waterborne outbreaks
attributed to Cryptosporidium increased markedly to 77.4% between 2017 and 2022, while those caused by
Giardia declined significantly to 17.1% during the same period*’.

Cryptosporidiosis and giardiasis pose significant One Health challenges due to their intricate interplay across
human, animal, and environmental systemsl3'l4. Accurate diagnosis requires a combination of microscopical
and molecular techniques to identify species and genotypes, which are critical for understanding host specificity,
pathogenicity, and zoonotic potential***®4%. Elucidating the prevalence, risk factors, and potential synergistic
effects of co-infection is essential for designing effective surveillance, prevention, and control strategies within
the One Health framework”-20.

This study aimed to comprehensively assess the prevalence of cryptosporidiosis, giardiasis, and their co-
infections in Beni-Suef Governorate, Egypt, using microscopical examination followed by genetic identification
of detected species. Additionally, it seeks to identify associated risk factors in cattle fecal samples, emphasizing
their role in the epidemiology of these protozoan infections.

Materials and methods

Study area

The study was conducted in Beni-Suef province (29.0667° N, 31.0833° E) in northern Upper Egypt (Fig. 1), an
agricultural hub where cattle rearing plays a key economic role. Cattle are raised for milk and meat, providing
vital income and resources for local households. The region’s semi-arid climate, with hot summers and mild
winters, shapes cattle farming practices, with farmers using irrigated pastures and crop residues for feed. The
nearby Nile River ensures reliable water access, supporting cattle health and productivity.

Sampling

A cross-sectional study was conducted in 2023 and 2024, involving 970 cattle. Fecal samples were randomly
collected from cattle owned by smallholders, private farms, and at the Beni-Suef slaughterhouse. Various risk
factors were recorded for each animal, including sex (female and male), age categories (< 2 months, 2—-4 months,
4-6 months, and >6 months), seasons (autumn, spring, summer, and winter), and observed fecal consistency.
Rectal samples were collected from each animal and placed into clean, labeled plastic containers. The samples
were then transported in an icebox to the Parasitology and Immunology Laboratory, Department of Parasitology
and Animal Diseases, NRC, Egypt, on the collection day49. In addition, 24 irrigation water samples (20 L each)
were collected from the same locations using sterile polypropylene containers. These water samples were
transported to the Environmental Parasitology Laboratory, Water Pollution Research Department, NRC, Giza,
Egypt, on the same day'.

Parasitological examination

Fecal examination

Macroscopical examination Fecal samples were examined macroscopically to assess consistency, color abnor-
malities, and the presence of blood, mucus, or other unusual components, following the methodology described
by Zajac et al.>2.

Microscopical examination The fecal samples were filtered through two layers of gauze to remove large par-
ticles. Approximately 2 mg of feces was then mixed with a drop of normal saline (0.85% NaCl) and a drop of
Lugol’s iodine solution, and the mixture was spread on a clean glass slide. Each specimen was examined under a
light microscope (LEICA Imaging Systems Ltd., England) at 100x and 400x magnification for the morphological
identification of Giardia cysts and trophozoites*>*. Cryptosporidium spp. were identified using the Modified
Ziehl Neelsen (MZN) staining technique, as described by Henriksen and Pohlenz>>. MZN-stained slides were
examined at 400x and 1000x magnification®*. The severity of infection was assessed by counting Cryptosporid-
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Fig. 1. A map of Egypt showing the provinces, with Beni-Suef province highlighted in orange to indicate
where the samples were collected.

ium oocysts per field at 1000x magnification, following the criteria outlined by Anderson and Bulgin®®: mild
(1-5 oocysts/field), moderate (6-20 oocysts/field), and severe (more than 20 oocysts/field). Samples were stored
at 4 °C in an equal volume of 2.5% potassium dichromate solution (Sigma-Aldrich, Canada) until molecular
identification®®.

Water examination

Each water sample was filtered using a stainless-steel pressure filter holder (Sartorius, Germany) fitted with a
nitrocellulose membrane 142 mm diameter, 0.45 pm pore®’. The membrane filters were washed three times
with sterile saline, and the washing solution was centrifuged at 2000 rpm for 5 min®. The supernatants were
discarded, and the resulting sediments were separately collected in sterile Eppendorf tubes. Parasitological
examination was performed as previously described, and the samples were subsequently stored at —20 °C for
molecular identification.

Molecular screening

DNA extraction

DNA was extracted from heavily infected fecal and water samples that tested positive during microscopic
examinations; 200 pL of each fecal sample and 500 pL of each water sample, containing concentrated oocysts,
using the QIAampﬁ DNA Stool Mini Kit (Qiagen GmbH, Hilden, Germany), following the manufacturer’s
protocol. Before extraction, the samples underwent five freeze-thaw cycles, alternating between liquid nitrogen
and a 95 °C water bath. The DNA concentration of each sample was measured using a Q9000 microvolume
spectrophotometer (Quawell, USA). The extracted DNA was stored at —20 °C until further analysis for pathogen
screening.
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Screening of pathogens DNA by standard PCR

All extracted DNA samples were screened using PCR with universal primers targeting the Cryptosporidium spp.
18S rRNA® and Giardia spp. f-giardin (bg) gene®. The PCR assays were conducted using Emerald Amp GT
mastermix™ (Takara) in a BIO-RAD Thermal Cycler (BIO-RAD, Singapore). Amplification conditions for both
Cryptosporidium and Giardia followed the protocols outlined by Yusof et al.>?, Caccio et al.%° (Table 1). Each PCR
run included positive controls (genomic Cryptosporidium and Giardia DNA) and negative controls (molecular-
grade water). Amplification products were verified by electrophoresis on a 1% agarose gel stained with Red Safe
and visualized using a UV transilluminator. A 100 bp DNA ladder (Fermentas, Thermo Fisher Scientific) was
used to determine the size of the PCR products.

Sequencing and phylogenetic analyses

PCR products were purified using the QIAquick PCR Purification Kit (Qiagen, Germany) following the
manufacturer’s instructions. Sequencing of the purified products was carried out on an ABI 3130 automated
sequencer (Applied Biosystems, USA) using the Big Dye Terminator v3.1 Cycle Sequencing Kit (Applied
Biosystems). The resulting sequences were assembled and refined using the Chromas Pro program (ChromasPro
1.7, Technelysium Pty Ltd., Tewantin, Australia). After submission to GenBank, the corrected sequences for
Cryptosporidium spp., and Giardia spp. were compared to existing sequences in the GenBank database using
NCBI BLASTn (http://blasdt.ncbi.nlm.nih.gov/Blast.cgi). The consensus sequences were aligned with reference
sequences from GenBank using CLUSTAL W v1.83°!. Phylogenetic trees were constructed using the Maximum
Likelihood method in MEGA X, based on the Tamura-Nei model, with 1,000 bootstrap replicates to ensure
statistical reliability®>®.

Data analysis

The impact of various risk factors, including sex, age, season, and fecal consistency, on the prevalence of
Cryptosporidium, Giardia, and co-infections were assessed using the chi-square (y?) test in SAS software, Version
9.4 (SAS Institute Inc., Cary, NC, USA). Statistical significance was determined at a threshold of P<0.05.

Results

Prevalence of cryptosporidiosis, giardiasis, and their Co-infection

Parasitological examination revealed that out of 970 cattle examined, 654 animals (67.42%) tested positive for
one or more parasitic infections. Cryptosporidium mono-infections had the highest prevalence, affecting 414/970
cattle (42.68%), followed by co-infections of Cryptosporidium with Giardia sp. in 124/970 cases (12.78%) and
Giardia mono-infections in 116/970 cases (11.96%; Table 2). In irrigation water samples, Cryptosporidium sp.
was more prevalent, detected in 2 out of 24 samples (8.33%), whereas Giardia sp. was identified in 1 out of 24
samples (4.16%).

Epidemiological risk factors associated with cryptosporidiosis, giardiasis, and their Co-
infection
Epidemiological analysis demonstrated that the prevalence of cryptosporidiosis was significantly associated with
sex, age, seasonal variation, and fecal consistency. The highest occurrence was observed among females (45.21%;
P=0.0180), calves less than 2 months of age (47.68%; P<0.0001), during autumn (51.28%; P<0.0001), and in
diarrheic cases (46.88%; P<0.0001). In contrast, the prevalence of giardiasis was significantly influenced by age
and seasonal variation, with the highest rates recorded in calves aged between 4 and 6 months (15.38%; P<0.001)
and during spring (19.09%; P=0.0033). However, no statistically significant differences were found in giardiasis
prevalence concerning sex or fecal consistency (Table 2). For cases of co-infection involving both pathogens, age,
seasonal variation, and fecal consistency also emerged as significant determinants. The highest co-infection rates
were detected in calves aged between 4 and 6 months (15.38%; P <0.0001), during spring (25.45%; P <0.0001),
and among diarrheic cases (15.07%; P<0.001). Similar to giardiasis, co-infection prevalence was not significantly
associated with sex (Table 2).

Opverall, the infection rates for both pathogens combined were significantly linked to all examined risk factors.
Specifically, the highest prevalence was noted among females (68.19%; P=0.0380), calves less than 2 months of
age (70.66%; P=0.0160), during spring (82.27%; P <0.0001), and in diarrheic cases (72.98%; P <0.0001).

Molecular and phylogenetic analyses of cryptosporidiosis and giardiasis

All microscopically positive samples were screened by species-specific primers, the 185 rRNA gene for
Cryptosporidium spp., and the $-giardin primer for Giardia (S1 and S2 Appendix). The 185 rRNA gene sequencing
confirmed the presence of four Cryptosporidium species: Cryptosporidium hominis and Cryptosporidium
bovis in cattle feces, and Cryptosporidium ubiquitum and Cryptosporidium ryanae in irrigation water. BLAST

Annealing
Pathogens Gene name | Primer sequences temperature | Amplicon size | References
o CAA TTG GAG GGC AAG TCT GGT GCC AGC o 59
Cryptosporidium | 185 rRNA CCT TCC TAT GTC TGG ACC TGG TGA GT 68 °C 655 bp
s e AAG CCC GAC GAC CTC ACC CGC AGT GC GAG GCC o 60
Giardia B-giardin | GCC CTG GAT CTT CGA GAC GAC S0°C 753 bp

Table 1. Oligonucleotide sequences of primers used for PCR and sequencing.
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Giardia
mono-
Examined | Cryptosporidium infections Overall infected
Risk factors animals mono-infections (%) (%) Co-infection (%) | animals (%) X2 Pvalue
Female | 511 231 (45.21%) 51 (9.98%) 66 (12.92%) 348 (68.19%)
Male 459 183 (39.87%) 65 (14.16%) 58 (12.64%) 306 (66.66%) .
8.45 0.0380
o 5.57 1.72 0.52
Pvalue 0.0180" 0.1900 0.4710
<2m 518 247 (47.68%) 52 (10.04%) 67 (12.93%) 366 (70.66%)
2to4m 177 68 (38.42%) 26 (14.69%) 23 (12.99%) 117 (66.10%)
4to6m |52 17 (32.69%) 8 (15.38%) 8 (15.38%) 33 (63.46%) .
20.34 | 0.0160
>6m 223 82 (36.77%) 30 (13.45%) 26 (11.66%) 138 (61.88%)
sz 258.12 24.83 62.23
P value <0.0001" <0.001" <0.0001"
Autumn | 312 160 (51.28%) 17 (5.45%) 13 (4.17%) 190 (60.90%)
Spring 220 83 (37.73%) 42 (19.09%) 56 (25.45%) 181 (82.27%)
Summer | 221 84 (38.01%) 22 (9.95%) 27 (12.22%) 133 (60.18%) .
Season 100.99 | <0.0001
Winter 217 87 (40.09%) 35(16.13%) 28 (12.90%) 150 (69.12%)
X 41.21 13.72 31.42
Pvalue <0.0001 0.0033" <0.0001"
Diarrheic | 544 255 (46.88%) 60 (11.03%) 82 (15.07%) 397 (72.98%)
Formed 426 159 (37.32%) 56 (13.15%) 42 (9.86%) 257 (60.33%) <
Fecal consistency 20.34 *
o 22.12 0.14 12.90 0.0001
Pvalue <0.0001" 0.7110 <0.001"
970 414 (42.68%) 116 (11.96%) | 124 (12.78%) 654 (67.42%)

Table 2. Epidemiological risk factors associated with the prevalence of cryptosporidiosis and giardiasis.
*Indicate the presence of a statistically significant association.

analysis revealed a single genotype for each species, consistent across different seasons. C. hominis (GenBank:
PQ149132.1) showed 100% identity (464/464 bp) with C. hominis detected in the feces of rhesus macaques
(Macaca mulatta), an Old World monkey species, in Bangladesh (GenBank: MK982514). Similarly, C. bovis
(GenBank: PQ149134.1) demonstrated 100% identity (453/453 bp) with C. bovis detected in the feces of dairy
cattle in China (GenBank: MF074601). In irrigation water, C. ubiquitum (GenBank: PQ149133.1) exhibited
100% similarity (462/462 bp) to C. ubiquitum identified in goat feces from China (GenBank: MN833283),
while C. ryanae (GenBank: PQ149135.1) showed 100% similarity (453/453 bp) to C. ryanae identified in calf
feces from Ethiopia (GenBank: KT922233). Phylogenetic analysis of Cryptosporidium spp. indicated that our
sequences clustered within the same clade as reference species (Fig. 2).

All Giardia-positive samples were identified as G. intestinalis using S-giardin primers. BLAST analysis
showed one genotype of G. intestinalis (GenBank: PP316111.1), with 100% identity (474/474 bp) to G. intestinalis
detected in human feces from Brazil (GenBank: KX015671). However, the irrigation water sample yielded low-
quality sequences, making identification challenging. Based on the B-giardin gene, the phylogenetic tree showed
that our sequence clustered with other G. intestinalis of the assemblage A clade (Fig. 3).

Discussion

Understanding the distribution and risk factors of Cryptosporidium and Giardia is crucial due to their significant
role in zoonotic transmission and environmental contamination. Cattle, particularly pre-weaned calves, are
major reservoirs, shedding large quantities of (0oo)cysts, which contribute to environmental contamination and
pose serious public health and veterinary risks?>®%. Accurate species identification at the herd level is essential
for implementing effective treatment and prevention strategies®®. Therefore, this study aimed to investigate the
prevalence of Cryptosporidium and Giardia infections, as well as co-infections, in cattle feces and nearby irrigation
water in Beni-Suef Governorate, Egypt, using an integrated diagnostic approach combining microscopy and
molecular techniques.

In this study, microscopic analysis revealed an overall infection rate of 67.42% for bovine cryptosporidiosis
and giardiasis, with Cryptosporidium oocysts detection in 42.68%, Giardia cysts in 11.96%, and co-infections
in 12.78% of the examined cattle. The prevalence of cryptosporidiosis was comparable to the 46% infection
rate reported in cattle from Cairo, Giza, and Beni-Suef®® but was relatively higher than rates recorded in other
Egyptian Governorates, such as 34.33% in Minufiya®38.27% in Upper Egypt* and 24.67% in Kafr ElSheikh,
14.29% in Qalyubia, and 17.14% in Gharbia®. Globally, cryptosporidiosis prevalence varies widely, with reported
rates of 1.61% in China® 4.4% in Korea’?, 8.3% in Kenya’! 10% in Ethiopia’? 13.7% in Algeria”® 19.23% in Saudi
Arabia®® 27.3% in Canda’ and 55.4% in Austria’®. These variations may be influenced by hygienic practices,
infection severity, geographic location, cattle breed, animal age, seasonal factors, and sample size”®.
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Fig. 2. 18S rRNA-based phylogenetic tree of Cryptosporidium spp. The Maximum Likelihood method was
constructed based on the Tamura-Nei model with 1000 bootstrap replicates.

Similarly, the giardiasis infection rate (11.96%) observed in this study is consistent with a previous report from
El-Dakahlia, El-Gharbia, and Damietta Governorates, where a prevalence of 13.3% was recorded”’. Globally,
giardiasis prevalence in calves varies considerably, with reported rates of 2.1% and 2.2% in China®®’® 5.6% and
12.7% in Korea”®”® 5.7% in Bangladesh® 7.5% in Brazil®! 27.1% in Austria” 27.5% in Algeria’® 33.5% in the
USA®? 39% in Ethiopia’? and 42% in Canada’*. These variations in prevalence may be attributed to differences
in geographic location, climate, herd management practices, diagnostic methods, and sample size?’.

Co-infection with Cryptosporidium and Giardia was detected in 12.78% of studied cattle, consistent with
previous reports indicating that such co-infections are common in bovines®’. A higher prevalence (36%) was
recorded in Ismailia Governorate, Egypt3* while lower rates were reported in Canada 8.5%* and Austria 11.8%7°.
Moreover, several studies suggested a positive association between Cryptosporidium and Giardia infections,
which may be linked to water contamination as a shared transmission route®>-%7.

Water was identified as a key risk factor for animal exposure to Cryptosporidium and Giardia in this study.
Cryptosporidium spp. was detected in 2 of 24 irrigation water samples (8.33%), while Giardia was identified
in 1 sample (4.16%). In Egypt, previous studies have reported Cryptosporidium and Giardia prevalence in
water ranging from 5.2 to 80% and 13.6-100%, respectively®>86-! with the highest prevalence observed
in raw wastewater and the lowest in treated water®>’. Detecting these protozoan parasites in water remains
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Fig. 3. p-giardin -based phylogenetic tree of Giardia spp. The Maximum Likelihood method was constructed
based on the Tamura-Nei model with 1000 bootstrap replicates.

challenging due to the complexity of the water matrix, the typically low concentration of (00)cysts®? variations
in contamination levels, and differences in water sources used for irrigation®.

The analysis of epidemiological risk factors revealed a significant association between animal sex and the
prevalence of both overall infection and cryptosporidiosis, with female calves exhibiting higher infection
rates. These findings are consistent with previous studies that have also reported a greater prevalence of
cryptosporidiosis among female animals®*~°. This increased susceptibility may be attributed to physiological
and hormonal differences, as well as management practices such as the preferential retention of female calves for
breeding, which may result in prolonged housing, higher stocking densities, and increased pathogen exposure.

In addition to sex, age also plays a critical role in infection susceptibility. Calves younger than 2 months
showed higher morbidity rates for both overall infection and cryptosporidiosis, a trend that aligns with previous
studies reporting increased susceptibility in this age group’”*+°>%7. This heightened vulnerability is likely due to
an underdeveloped and immature immune system?. Conversely, calves between 4 and 6 months of age exhibited
a higher prevalence of giardiasis, which is consistent with findings indicating that giardiasis is most common in
calves aged 2 months and older”>77%,

Beyond age and sex, seasonal variations also influenced infection patterns. While both overall infection
and giardiasis were more prevalent in the spring, cryptosporidiosis cases peaked in the autumn. These findings
are somewhat variable across studies, as some have reported a higher prevalence of infection during the rainy
season® whereas others have noted increased cases in the summer!?’. These divergences may be attributed to
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regional differences in farming practices, environmental conditions, and the availability of resources to minimize
contamination®*%,

Furthermore, clinical signs such as diarrhea were strongly associated with cryptosporidiosis, with diarrheic
cattle exhibiting a higher prevalence of infection compared to non-diarrheic ones. This observation aligns with
previous studies that have established diarrhea as a predominant clinical sign of cryptosporidiosis®**%101:102,

Molecular analysis confirmed the presence of Cryptosporidium and Giardia species in cattle feces and
irrigation water, underscoring the complex transmission dynamics of these protozoan parasites within the One
Health framework?>!93104, Four Cryptosporidium species were identified, C. hominis and C. bovis in cattle feces,
and C. ubiquitum and C. ryanae in irrigation water, highlighting the diversity of species circulating in animal
and environmental reservoirs. Notably, this study represents the first detection of C. hominis in cattle in Egypt,
a significant finding given that C. hominis is primarily associated with human infections'%. Its presence in cattle
suggests potential anthroponotic transmission, likely resulting from environmental contamination or direct
human-cattle interactions, consistent with previous reports of cross-species transmission?. In Egypt, C. hominis
has been documented in humans!%¢1%7 and recently in sheep®®. Globally, C. hominis has been detected in various
animal hosts, including cattle, sheep, goats, horses, donkeys, and camels'%. The detection of C. bovis in cattle feces
from Beni-Suef Governorate further supports the role of livestock as reservoirs, contributing to environmental
contamination and potential zoonotic transmission. Previous studies in Egypt have reported C. bovis in cattle
from different Governorates, including Ismailia!% Kafr El Sheikh®*!° Beheira, Menofia, Qaliubiya, Assiut, and
Sohag!!?. Consistent with global trends, C. bovis is commonly detected in cattle populations, often with low or
no occurrence of C. parvum, as observed in Sweden''! China ' Australia!!® and Canada'!*.

The identification of C. ubiquitum and C. ryanae in irrigation water underscores the significance of waterborne
transmission pathways. To the best of our knowledge, this study represents the first molecular detection of both
species in irrigation water in Egypt. Previously, only C. parvum and C. hominis have been reported in drinking
water in the country®®°%115 Cryptosporidium ubiquitum is recognized as the most prevalent Cryptosporidium
spp- in sheep and goats?®!1¢-118 and is also emerging as a human pathogen''®. In Egypt, C. ubiquitum has
previously been detected in sheep!®’. Similarly, C. ryanae is primarily associated with cattle?®!?! and has been
reported in cattle®>77108109 and buffaloes!%®19122 jn Egypt. The detection of these species in irrigation water
suggests that runoff from livestock operations may be a significant source of environmental contamination. This
finding highlights the urgent need for water quality monitoring and improved agricultural waste management
strategies to mitigate the risk of protozoan transmission through irrigation systems.

In this study, the identification of assemblage A, further supports the risk of cross-species transmission. In
Egypt, Giardia assemblage A has been previously reported in cattle’”” humans*>!2*-125 and tape water in the
Beni-Suef Governorate®. The inability to obtain high-quality sequences from irrigation water suggests that
environmental factors, such as microbial competition or DNA degradation, may influence Giardia detectability
in water sources”. Nevertheless, the presence of G. intestinalis in cattle feces, along with its previous detection
in tap water from the same region® indicates that livestock may serve as reservoirs, with potential transmission
occurring through direct contact, fecal contamination of water sources, or consumption of contaminated
agricultural products.

Conclusion

This study highlights the high prevalence of Cryptosporidium and Giardia infections in cattle and irrigation water
in Beni-Suef Governorate, Egypt, underscoring the role of cattle as reservoirs and the risk of environmental
contamination. The first detection of C. hominis in cattle and C. ubiquitum and C. ryanae in irrigation water in
Egypt suggests potential anthroponotic and waterborne transmission pathways while confirming the presence of
C. bovis and Giardia assemblage A in cattle. Risk factor analysis showed higher infection rates in females, young
calves, and during spring, with diarrheic feces strongly linked to parasite shedding. These findings emphasize
the need for enhanced surveillance, improved livestock management, and stricter water quality monitoring.
This study has some limitations, including its cross-sectional design, limited PCR sensitivity due to low (00)
cyst counts, and the lack of direct evidence linking water contamination to animal infection. Further research is
needed to clarify transmission pathways and assess long-term impacts. Implementing One Health strategies with
targeted interventions is essential to reducing infection risks and environmental contamination.

Data availability

Data availability: All data generated and analyzed in this study are included in the published manuscript. The nu-
cleotide sequences of C. hominis, C. bovis, C. ubiquitum, and C. ryanae for the 185 rRNA gene and G. intestinalis
for the -giardin gene obtained in this study have been submitted to the GenBank, GenBank accession numbers:
PQ149132.1, PQ149134.1, PQ149133.1, PQ149135.1 and PP316111.1 (https://www.ncbi.nlm.nih.gov/genbank).
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