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Parallel sub class modified teaching
learning based optimization

Ghanshyam G. Tejani®%2*, Sunil Kumar Sharma3" & Shailendra Mishra***

Meta-heuristic optimization algorithms need a delicate balance between exploration and exploitation
to search for global optima without premature convergence effectively. Parallel Sub-Class Modified
Teac hing-learning-based optimization (PSC-MTLBO) is an improved version of TLBO proposed in

this study to enhance search efficiency and solution accuracy. The proposed approach integrates

three existing modifications—adaptive teaching factors, tutorial-based learning, and self-motivated
learning—while introducing two novel enhancements: a sub-class division strategy and a challenger
learners’ model to enhance diversity and convergence speed. The proposed method was evaluated
using three benchmark function sets (23 classical functions, 25 CEC2005 functions, and 30 CEC2014
functions) and two real-world truss topology optimization problems. Experimental results confirm that
PSC-MTLBO performs better than normal TLBO, MTLBO, and other meta-heuristics such as PSO, DE,
and GWO. For instance, PSC-MTLBO obtained the maximum overall rank in 80% of the test functions
with the minimization of function errors by as much as 95% over traditional TLBO. In truss topology
optimization, PSC-MTLBO designed lighter and more cost-effective structures with a weight reduction
of 7.2% over the best solutions previously obtained. The challenger learners’ model enhanced the
adaptability, whereas the sub-class strategy increased the convergence and stability of results. In
conclusion, PSC-MTLBO offers a remarkably efficient and scalable optimization framework and
exhibits notable advances over current algorithms, with its suitability in solving complex optimization
problems.

Keywo rds Meta-heuristic, Benchmark functions, Friedman rank, Optimization, CEC2005, CEC2014, Truss
topology optimization

Over the past years, optimization techniques have undergone substantial development and refinement, emerging
as crucial tools for optimizing complex problems. The introduction of the Genetic Algorithm (GA) (Holland,
1975)! marked a seminal moment in the evolution of meta-heuristics, leading to the development of several
subsequent algorithms. Among these, notable contributions include Simulated Annealing by Kirkpatrick et al.
(1983)2, Evolution Strategy by Auger and Hansen (2005)%, Passing Vehicle Search (Tejani et al., 2018a)*, Kumar
et al. (2021)°, and Ameliorated Follow The Leader (Singh et al., 2022)¢, along with numerous other pioneering
algorithms.

In 2021, Dong et al.” discussed KTLBO which employed Kriging to construct dynamically updated surrogate
models for expensive objective and constraint functions. Using an adaptive penalty function for elite selection, a
data management technique was created to store, categorize, and update pricey samples. Prescreening operators
were used to balance exploration and exploitation in a two-phase optimization framework that alternated
between local and global searches. KTLBO showed notable benefits in costly constrained optimization when
compared to six popular approaches on 27 benchmark problems. It was then used to create a good solution for the
structural design of an underwater glider with a blended wing body. In 2021, Ma et al.® presented the traditional
Teaching-Learning-Based Optimization algorithm was enhanced with a novel population group mechanism by
MTLBO. Students were split up into two groups with distinct approaches to updating their solutions during the
Teaching and Learning stages. Tested on 14 unconstrained numerical functions, the algorithm outperformed
TLBO and other cutting-edge techniques in terms of convergence speed and solution quality. Next, an extreme
learning machine for modeling NOx emissions was tuned using MTLBO. Lastly, it successfully decreased the
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concentration of NOx emissions by optimizing the operating characteristics of a 330 MW circulation fluidized
bed boiler.

In 2021, Chen et al.® suggested the SHSLTLBO which enhanced the original TLBO’s performance on shifted
issues by using a self-adaptive framework with a Gaussian distribution. A self-learning phase was included to
avoid local convergence during startup, and a novel updating rule alternated between two modes according to
fitness. The approach was evaluated on numerical benchmark functions and contrasted with meta-heuristic
techniques and the most recent TLBO variations. The results showed that SHSLTLBO is better at maintaining
stability across dimensions and balancing evolutionary stages. It demonstrated the best convergence and stability
across all 28 benchmarks, outperforming LSHADE and HCLPSO on low-dimensional and shifted issues.

In 2022, Dastan et al.! presented Charged System Search (CSS) and Teaching-Learning-Based Optimization
(TLBO) were coupled by HTC to improve exploration and exploitation. To overcome TLBO’s potential to
become stuck in local optima, CSS stored and used ideal positions by applying the rules of electrostatic physics.
The approach was used to optimize benchmark truss structures after being verified on CEC2021 and CEC2005
mathematical functions. The results showed optimal weight reduction and enhanced convergence under stress
and displacement limits. HTC performed better than other meta-heuristic techniques, obtaining optimal
designs more quickly. In 2024, Chen et al.!! discussed STLBO which enhanced the original TLBO by introducing
a linear increasing teaching factor, an elite system with a new teacher and class leader, and Cauchy mutation.
To enhance exploration and exploitation, these techniques were combined to create seven STLBO versions.
In thirteen numerical optimization tasks, the algorithm was evaluated, and STLBO7 performed the best.
STLBO7 demonstrated improved local optimal avoidance, faster convergence, and higher solution accuracy
when compared to other sophisticated optimization approaches. Overall, TLBO’s search performance and
optimization capabilities were greatly enhanced by STLBO.

Teaching-Learning-Based Optimization (TLBO) was pioneered by Rao et al. (2011)!%, motivated by the
student-teacher dynamic in a classroom. Building on this foundation, subsequent research by Rao and Patel
(2013)!3, Patel and Savsani (2014)'4, Wang et al. (2014)!°, Savsani et al. (2016, 2017)'!7, Tejani et al. (2016b,
2017)'81% Kumar et al. (2021, 2022a)>%, Savsani et al. (2024)*!, and Kalpana & Kesavamurthy (2024)*? has
introduced progressive enhancements to the core TLBO algorithm, aiming to improve its exploration and
exploitation capabilities. These adaptations have been recognized for their efficiency in addressing both single
and multiple objective optimizers.

However, despite the proliferation of algorithms and enhancements in literature, the No Free Lunch theorem
reminds us that no single algorithm is a universal problem-solver. As a result, scholars persistently strive to refine
existing meta-heuristics and develop novel ones. This very impetus drove our endeavor to advance TLBO through
the development of the parallel sub-class (PSC-MTLBO) algorithm. The efficacy of these proposed algorithms is
rigorously assessed across three widely recognized benchmark test sets and two practical complications.

In the initial evaluation, the performance of the proposed methods is evaluated across 23 classical benchmark
functions, comparing them against established cutting-edge algorithms for benchmarking purposes. This
comparative analysis includes Particle Swarm Optimization (PSO) (Su et al., 2024)*%, Fast Evolutionary
Programming (FEP) (Sinha et al., 2003)%, Differential Evolution (DE) (Ahmad et al., 2022)%, Artificial Bee
Colony (ABC) (Xiao et al., 2023)?’, Gravitational Search Algorithm (GSA) (Mittal et al., 2021)%, Cuckoo Search
(CS) (Xiong et al., 2023)?°, Firefly Algorithm (FA) (Karthikeyan, 2024)3°, Grey Wolf Optimizer (GWO) (Qiu et
al., 2024)*!, and Animal Migration Optimization (AMO) (Abualigah et al., 2024)32,

In a second round of testing, the proposed algorithms were evaluated using 25 benchmark functions from
CEC2005. Here too, they were compared against a broad range of state-of-the-art optimization methods,
including established algorithms like Particle Swarm Optimization (PSO) (Su et al., 2024)** and Steady-State
Genetic Algorithm (SSGA) (Ghoshal and Sundar, 2023)33, as well as more recent advancements such as variants
of Differential Evolution (DE, DE-Bin, DE-Exp, SaDE) (Phocas et al., 2020)3*, IPOP-CMA-ES [Auger and
Hansen, 2005]3, ant-colony optimization (ACO) [Korzeri and Gisterek 2024]°°, Artificial Bee Colony (ABC)%,
Bat Algorithm (BA) [Yuan et al., 2024]%, and Artificial-Algae Algorithm (AAA) [Turkoglu et al., 2024]%".

The fourth assessment phase utilized 30 benchmark functions from CEC2014. In this stage, the proposed
algorithms were pitted against another set of well-established optimization techniques, including Invasive Weed
Optimization (IWO) [Rahmani et al., 2021]%%, Biogeography-Based Optimization (BBO)*, Gravitational Search
Algorithm (GSA)?, Hunting Search (HuS) [Oftadeh et al., 2010]%°, Bat Algorithm (BA)*¢, and Water Wave
Optimization (WWO) [Zheng, 2015]*.

In the final assessment phase, two real-world truss topology optimization (TTO) problems were employed.
During this stage, the proposed algorithms were compared against a set of established optimization techniques,
including the Invasive Ant Lion Algorithm (ALO), Dragonfly Algorithm (DA), Whale Optimization Algorithm
(WOA), and Heat Transfer Search (HTS)*2 The shortcomings of TLBO include inefficiency in high-dimensional
problems, insufficient exploration—exploitation balance, and premature convergence. It has trouble catching
local optima and is not able to adapt to complicated terrain. Nowadays, they include improvements such as
adaptive learning and Kriging models but still have limitations in terms of scalability and organized information
transmission. Additionally, the sequential nature of TLBO limits parallelization, which lowers computational
efficiency. PSC-MTLBO addresses these problems by using adaptive teaching variables, parallel learning
techniques, and structured sub-class partitioning for better optimization performance.

The following segments of this study are organized as follows: Section"Teaching-learning-based optimization
(TLBO)"elaborates on TLBO, detailing its foundational principles. Section"Modifications in TLBO"expounds
upon the enhancements proposed for TLBO. Section"Experiment and discussion'presents an inclusive
investigation of the planned algorithm’s performance across various unconstrained benchmark functions.
Ultimately, Sect. 5 concludes this investigation, summarizing the findings and implications of the study.
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Teaching-learning-based optimization (TLBO)

The process of teaching and learning holds significant importance as learners gain knowledge from both
instructors and peers. Drawing inspiration from this educational dynamic, Rao et al. (2011)'3 introduced TLBO.
This meta-heuristic mirrors the interactive learning process observed in a classroom setting.

TLBO functions as a population-based meta-heuristic, conceptualizing learners as the population and
considering various subjects as the design variables. In contrast to methods such as GA, DE, BBO, and GWO,
which rely on specific parameters like mutation, crossover, and selection rates, TLBO operates with only
fundamental controlling factors such as population size and iteration count. Consequently, TLBO can be
characterized as a parameter-free, population-based meta-heuristic.

TLBO operates through two primary learning modes: (i) learning facilitated by a teacher and (ii) learning via
interactions among learners. Detailed descriptions of these phases are provided.

Teacher phase

The influence of an instructor’s caliber on students within a classroom environment is profound. A proficient
teacher not only inspires students but also aids in enhancing their knowledge. In this phase, the optimal solution
within the class is deemed as the ‘teacher’ This instructor consistently enhances learners’ understanding and
strives to boost the collective performance of the class.

Additionally, students augment their knowledge through a combination of the instructor’s expertise and
their capabilities in the class. Therefore, the contrast between the instructor’s grade and the average grade of the
students in each subject is employed for assessing the difference in means (DM) and subsequently updating the
current solution (Egs. 1-3).

Learner phase

TLBO further emulates learning through interactions among the learners. Within this phase, learners have the
opportunity to acquire knowledge by interacting with their peers. This learning dynamic is mathematically
articulated in Eq. 4, outlining the phenomenon of knowledge acquisition through peer interactions. The detailed
steps of TLBO are elaborated upon in the subsequent section.

TLBO steps

Step I: Articulate the optimization problem, aiming to minimize f (X) . Where f (X) represents the objec-
tive function, where X’ stands as the design variable.
Step II: Establish the population (i.e., learners, denoted as k=1,2,...,n) and the design variables (i.e., the
number of topics available for learners, j=1,2,...,m), as well as the termination criterion (such as the limiting
function evaluation number, FEmaX).
Step III: Initiate the randomly generated population while ensuring adherence to their respective upper and
lower bounds, followed by their evaluation.
Step IV: Sort the population from lowest to highest according to their performance.
Step V: Calculate the average performance of the group of students in each topic. (i.e. M.).

. ; T . .
Step VI: Compute the variance between the present mean and the teacher’s respective grades in each subject,
employing the teaching factor. (TF) using Eq. (1) (2).

DM =rand * (X; — TF x Mj) (1)
where, TF = round[l + rand (0, 1)] (2)

Step VII: In the teacher phase, learners enhance their grades by leveraging the expertise of the teacher is
determined by Eq. (3).

X { (X, + DMy) +rand » (X, — Xp)],if f(Xp) < f(Xg) 3)
k (X}, + DM;) + rand « (X — Xp)],if f(Xp) > f(Xk)

Where p is any learner of the class (p #k) and X/ is the design vector of the updated learner.
Step VIII: Enhance the learners’ knowledge by integrating insights from fellow learners and through self-di-
rected learning processes through Eq. (4).

X (X}, + rand x (X, — X}) + rand * (X1 — Er « X})],if [ (X},) < f(X}) @
P X +rand « (Xg — X)) + rand = (X1 — Er * Xp)),if f (X5) > f(X])

where E=exploration factor=round (1+rand); X, is the design vector of the teacher; g is any learner
(q#k); X}/ is a design vector of the updated learner.

Step X: Termination criterion (FE<FE__ ): Carry out the steps starting from IIT until the specified termina-
tion condition is satisfied.

The flowchart illustrating TLBO is depicted in Fig. 1. Pseudo-code of TLBO is shown below:
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Define %, 7 U, L, FEna, Emax

v

Initialize the random generated populations (X) and evaluate them, g = /
Evaluate the population and arrange them in ascending order - FE = n

v

Determine the mean result of learners in each subject (i.e. M)

!

Calculate DM, and TF using Equations 1 and 2

v

Find new solutions in Teacher Phase using Equation 3

A

FE =FE+]

v

Update solution if new solution fitter than the current solution

v

Find new solutions in Lerner Phase using Equation 4

FE=FE+]

A4
Update solution if new solution fitter than the current solution

!

Sort the population in ascending order of functional values and store the best population (X;)

k=k+1

Is termination

g=gHe

criteria satisfied?

Display final solution

Fig. 1. Flowchart of the TLBO algorithm?®.
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START

Define objective function f(X), population size (n), set several design variables (m), limits on design variables (LB,
UB), and set termination criterion ('"FEax' o 'Gmax'); Where, F(X) is the objective function and 'X' is the design
vector. The class has 'n' number of learners (i.e. population size, i = 1,2,..,n) studying the 'm' number of the subjects
(i.e. design variables, j = 1,2,..,m).

/* Initialization */
Initialize the randomly generated population within its upper and lower bounds and evaluate it.

/* Initialize population */
FE =0
forg = 1to gmax do /* Initialize the optimization loop*/

Arrange the population in ascending order of F(X;) values, Identify the best solution (Xteacher) of the population, and

calculate the mean of each design variable (Xean)-
fork = 1tondo /* The teacher phase */

Generate a new population in the teacher phase as per Eq (3)

/* Generate new population in teacher phase */
FE = FE +1 /* Count Function evaluation */

if F(X}) < F(X;) then

X=X}, /* Greedy selection */

end if

Generate a new population in the teacher phase as per Eq (4) /* The learner phase */
FE = FE + 1 /* Count Function evaluation */

if F(X}) < F(Xy) then

X =X; /* Greedy selection */
end if
if FE > FEqax then /* Termination criterion */

break optimization loop

end if

end for /* Population loop ends */
end for /* Optimization loop ends*/
STOP

Algorithm 1. TLBO
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Modifications inTLBO

In TLBO, learner grades undergo improvement through both teacher intervention and interactive learning
among the learners themselves. Learners engage in interactions among themselves, fostering grade improvement.
The teaching factor within TLBO exists as either one or two, representing two extremes: learners either absorb all
or none of the teacher’s knowledge. In scenarios where the teaching factor is set to its higher value, the teacher
expends additional effort to enhance learner grades. Additionally, the convergence process is steered by both the
teacher’s influence and the mean performance of the learners across the search space.

Consequently, as the instructor nears the average performance of the learners, and when individual learners
near each other during optimization, there may be minimal changes in the learners’ positions. This scenario has
the potential to result in premature convergence and the identification of localized optimal solutions, limiting
overall optimization, as learners tend to remain nearby without significant movement.

To address this, three modifications from previous studies—namely, adaptive-teaching factors (ATF), self-
motivated learning (SML), and tutorial-based learning (TBL)—are integrated into TLBO. Additionally, two
novel modifications, sub-classes, and the challenger learners’ model are introduced. These improvements are
intended to accelerate the search process, increase the rate of convergence, and avoid falling into local optima.
Detailed descriptions of these improvements are provided in the subsequent sections.

Number of sub-classes

In TLBO, a solitary instructor is responsible for instructing and attempting to enhance the mean grades of
the entire class. However, in this teaching-learning scenario, the teacher’s efforts might become diffused,
and conversely, students could demonstrate reduced engagement, resulting in diminished learning intensity.
Furthermore, when a substantial portion of the class consists of students performing below the average, the
teacher might need to apply additional effort to improve their grades. Despite these efforts, noticeable grade
improvements might not manifest, potentially leading to premature convergence.

To mitigate these challenges, the first modification in TLBO involves dividing the entire class—comprising
learners (k=1,2,...,n) and the subjects offered (j=1,2,...,m)—into sub-classes of similar size based on the
learners’ proficiency levels (grades). Each sub-class is assigned a dedicated teacher responsible for improving the
grades within that specific sub-class. As learners progress to higher levels, they are reassigned to more proficient
teachers. This adjustment is designed to deter premature convergence by ensuring continual progress among the
learners. The mathematical rationale behind this adaptation is elucidated in Egs. 5 and 6.

Allocate learners to individual sub-classes based on their respective fitness values using Eq. (5):

Sub — class 1 = |Xq, Xround(n/s)] )
Sub — class 2 = | X,ound(n/s)+1s Xv-ound<2*n/5)] )
Sub — class 3 = Xround(Q*n/s)+la Xround(S*n/s)} s (5)

Sub —class s = [Xround((sfl)*n/s}l»h Xn]

Assigning a teacher to each sub-class is defined as per Eq. (6):
T = f (Xl) 7T2 = f (Xround(n/s)+1) PR 7TS = f (Xround((sfl)*n/s)Jrl) (6)

Adaptive-teaching factor

In TLBO, the determination of the teaching factor (TF) occurs via a heuristic procedure, offering two extreme
values: TF equals one or two, implying learners either absorb all or none of the knowledge provided by the
teacher. However, in practical scenarios, learners typically acquire knowledge in varying proportions from the
teacher.

Throughout the optimization process, a TF close to 1 facilitates finer search increments, leading to slower
convergence, while a TF near 2 accelerates the search but diminishes exploration capabilities. To address this, Rao
and Patel (2013) and Patel and Savsani (2014a; 2014b) introduced an ATF within TLBO. The ATF dynamically
adjusts during the search, enhancing the algorithm’s performance. This adaptive modification is encapsulated
in Eq. (7) and (8).

DM ; =rand x (X; — ATF x Mj) (7)

fl(Xk)) Jif f(X1) # 0;where, [ (Xy) istheresultofanylearnerk

where, ATF = (f(Xl) (8)
(1),iff(X1) =0

Learning through tutorial

In contemporary educational approaches, educators frequently allocate interactive assignments, problem sets,
and tutorial sessions to learners during tutorial hours. During these sessions, learners engage in discussions with
their peers or the teacher, enhancing their understanding while working through these tasks collaboratively.
Acknowledging the potential for students to improve their knowledge through these interactions, this particular
search methodology becomes integrated into the teacher phase.
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This alteration, known as learning through tutorials (introduced by Rao and Patel, 2013; Patel and Savsani,
2014a; 2014b), combines the learning process from tutorials with the learner phase. The mathematical
representation of this integration is encapsulated in Eq. (9).

Xi = (X, + DMg) + rand * (X, — Xp)}sif f(Xp) < f(Xk) ©)
Xi = (X + DM;) + rand (X, — Xp);if f(Xp) > f(Xk)

Wherepisanylearner of class; p # k; X}, is design vector updated learner

Self-motivated learning

In TLBO, learner grades improve through learning from the teacher or interaction among learners. However,
self-motivated learners possess the ability to enhance their knowledge through self-directed learning. Therefore,
incorporating SML (as introduced by Rao and Patel, 2013; Patel and Savsani, 2014a; 2014b) is embraced within
the modified TLBO framework. This addition further amplifies TLBO’s capacity for exploration and exploitation.
This modification is integrated within the teacher phase, and its mathematical representation is outlined in
Eq. (10).

Xil = [X}, +rand* (X}, — X;) + rand = (X1 — Er * X;)[if f (Xi) < f(X) (10)
Xil = [X}, +rand* (Xy — X},) + rand = (X1 — Er * Xp)[if f (Xi) > f(X)

where Er = exploration factor = round (1 + rand) ; X1 is design vector of teacher;

qisanylearner; g # k; Xy, is design vector of updated learner

Challenger learners’ model

During the optimization process, there is a risk of becoming trapped in local optimal segments, which can lead
to stagnation in learners’ improvement and possibly result in a local optimal solution. This situation not only
reduces the algorithm’s accuracy but also poses a challenge in achieving numerical stability. The effectiveness of
many meta-heuristic techniques depends heavily on avoiding local optima, improving stability, and enhancing
precision. Additionally, the success of a solution often depends on the early populations, and there are cases
where the initial population fails to effectively explore the global optimum. In such situations, regenerating the
initial population becomes necessary to move towards a better solution and escape trapped in local optima.

To tackle these challenges, this study introduces the concept of challenger learners. This model analyzes
changes in the teacher’s performance and mean results over a finite number of generations. When the teacher
remains constant for a predetermined number of generations, this approach initiates a separate parallel
algorithm. So, this characteristic justifies the algorithm’s name PSC-MTLBO, which stands for Parallel Sub-Class
Modified Teaching-Learning-Based Optimization. This model operates under two conditions: (1) the initiation
or cessation of the Challenger Learners’ Model and (2) the suspension or continuation of the primary PSC-
MTLBO algorithm. The model only activates if there’s no improvement in the teacher of a class for a specified
number of generations (i.e., idtgen). The mathematical expressions for this section are detailed in the steps of
PSC-MTLBO.

In this paper, based on the stated modifications, Modified TLBO (MTLBO) is investigated by considering
three modifications (ATF, TBL, and SML) as per Rao and Patel (2013) and Patel and Savsani (2014a; 2014b).
Moreover, PSC-MTLBO is formulated by considering all the stated modifications. Detailed steps of MTLBO and
PSC-MTLBO are briefed in subsequent sections.

MTLBO steps:

Step I: Articulate the optimization problem, pointing to minimize f (X) . Where f (X)) represents the objec-
tive function, where X’ stands as the design vector.

Step II: Establish the population (i.e., learners, denoted as k=1,2,...,n) and the design variables (i.e., the
number of topics available for learners, j=1,2,...,m), as well as the termination criterion (such as the limiting
function evaluation number, FEmax).

Step III: Initiate the randomly generated population while ensuring adherence to their respective upper and
lower bounds, followed by their evaluation.

Step IV: Sort the population from lowest to highest according to their performance.

Step V: Calculate the average performance of the group of students in each subject. (i.e. M.).

Step VI: Determine the variance between the present mean and the respective grades (DM;) of the teacher for
each subject by incorporating AT'F' (Egs. 7 and 8).

Step VII: Within tutorial hours, learners enhance their grades by leveraging the teacher’s expertise (Eq. 9).
Step VIII: Enhance the learners’ knowledge by incorporating insights from other learners and through self-di-
rected learning (Eq. 10).

Step X: Termination criterion (FE<XFE
tion condition is satisfied.

may): Carry out the steps starting from III until the specified termina-

The flowchart illustrating MTLBO is depicted in Fig. 2.
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Deﬁne k, j, U, L, FEma.\‘y max

¥

Initialize the random generated populations (X) and evaluate them, g = /
Evaluate the population and arrange them in ascending order - FE = n

.

. . . . <—
Determine the mean result of learners in each subject (i.e. M))

!

Calculate DM; and ATF using Equations 7 and 8.

v

Find new solutions in Teacher Phase using Equation 9

A

FE = FE+1

\4

Update solution if new solution fitter than the current solution

v

Find new solutions in Lerner Phase using Equation 10

FE =FE+]

v
Update solution if new solution fitter than the current solution

¥

Sort the population in ascending order of functional values and store the best population (X;)

k=k+1

Is termination
criteria satisfied?

g=gtl

Display final solution

Fig. 2. Flowchart of the MTLBO algorithm®.

The PSC-MTLBO algorithm steps

Step I: Articulate the optimization problem, aiming to minimize f (X)) . Where f (X) represents the objec-
tive function, where X’ stands as the design vector.

Step II: Establish the population (i.e., learners denoted as k=1,2,...,n), design variables (i.e., the number of
topics available for learners, j=1,2,...,m), the number of sub-classes (s), and the termination criterion (FE__ ).
Step III: Initiate the randomly generated population while ensuring adherence to their respective upper and
lower bounds, followed by their evaluation.

Step IV: Sort the population from lowest to highest according to their performance. Segment the class into
‘s’ sub-classes and allocate an equal number of learners to each sub-class based on their fitness value (Eq. 5).
Step V: From each sub-class, designate the optimal solution within the sub-class as the teacher, denoted as Ts
(Eq. 6). Calculate the average performance of each sub-class of learners in every subject. (i.e. M)

Step VI: Compute the variance between the present mean and the respective grades within each sub-class,
(DMj) of the teacher within that specific sub-class for each subject, employing ATE.
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Step VII: Within tutorial hours, each sub-class enhances the learners’ knowledge by leveraging the teacher’s
expertise (Eq. 9).

Step VIII: Update the learners’ knowledge within each sub-class by integrating insights from other learners
and through self-directed learning (Eq. 10).

Step IX: Meagre all sub-classes.

Step X: Starting condition of challenger learners’ model: f (X1),
generation number.

Stooping condition of challenger learners’ model: f (Y1)
ulation.

Step XI: Replace the learners (k=1,2,...,
challenger is better.

Step XII: If mean grades of class (i.e.Y | f (Xx)) do not improve for the next generation, pause main SC-MTL-
BO but the challenger learners’ model keeps the search continues. If the mean grades of the teacher improve
for the next generation continue the main SC- MTLBO

Stopping condition of main SC- MTLBO% g =0
(X F(X), >0

Starting condition of main SC-MTLBO:
Step XIII: Termination criterion (FE<FE__ Carry out the steps starting from IIT until the specified termi-

= f(X1), ias gen> Where g is the present
> f(X1).Y is the challenger learner pop-

challenger

n) of the basic model with the challenger learners, if the grade of the

nation condition is satisfied.

A detailed flowchart of PSC-MTLBO is illustrated in Fig. 3. Pseudo-code of the PSC-MTLBO is shown below:

TLBOI1 =1, TLBO2 = 0; %% 1 and 0 signifies on and off respectively %%

i

Initialize the random generated populations (X) and evaluate them, g = 1
Evaluate the population and arrange them in ascending order - FE = n

| Define &, 5, U, L, FEnax, gnax

| Divide the class into ‘s’ number of sub-classes as per Equation 5

v ‘
| Select the best solution of each sub-class as a teacher, T; as per Equation 6 I
| Determine the mean result of each sub-class of learners in each subject (i.e. Mj) |
SC-MTLBO For each sub-class, calculate DM and ATF using Equations 7 and 8. |
optimization
loop 1

| For each sub-class, find new solution in Teacher Phase using Equation 9 I

l| FE = FE+1

| For each sub-class, update solution if new solution fitter than the current solution I

!

I For each sub-class, find solution in Lerner Phase using Equation 10 |

l FE =FE+1

I For each sub-class, update solution if new solution fitter than the current solution I

| Meagre all sub-classes |
l Sort the lation in ding order of 1 values and store the best population (X1) I

Initialize the random generated populations (Y) and evaluate them,
Evaluate the population and arrange them in ascending order - FE = FE + n

T

| Divide the class into ‘s’ number of sub-classes as per Equation 5

|

l For each sub-class, find new solutions in Lerner Phase and Teacher Phase like SC-MTLBO |
Challenger ¥

g, | Find new solution Y’ & Y like SC-MTLBO | FE=FE+]
learners
model ¥
optimization I Update the population (Y) like SC-MTLBO |
loop 2 *

Sort the population (Y) in ascending order and store the best population |

Stop Challenger learners’ model if the best solution remains identical for identical
generations OR F (Y;) < F(X;) -» TLBO2=0, TLBO1 =1

i

| If F(Y,) < F(X}) © X, =Y, Update the new solution of SC-MTLBO loop

If mean grades of class do not
improve in next generation, pause
main SC-MTLBO — TLBOI=0

Is termination
criteria satisfied?

g=g+l

Else T

Display final solution

| Start chall

learners’ model optimization loop if the best solution remains identical for identical generations - TLBO2=1 |

Fig. 3. Flowchart of the PSC-MTLBO algorithm.
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START

Define objective function f(X), population size (n), set several design variables (m), limits on design variables (LB,
UB), and set termination criterion ('FEmay’, OF ‘Gmay ); Where, F(X) is the objective function and 'X" is the design
vector. The class has ‘' number of learners (i.c. population size, { = 1,2,..,) studying 'm' number of the subjects (i.c.
m), TLBO1 = 1(SC— TLBO loop 1 on), TLBO2 = 0 (SC — TLBO loop 2 of f). 1

and 0 signify on and off respectively. /*Initialization*/

design variables), j = 1,2,..,

Initialize the arbitrarily generated population within its LB & UB and evaluate it

/* Initialize population */
FE =0 /* Function evaluation */
for g = 110 gmax do /* Initialize the optimization loop */
Arrange the population in ascending order of F(X;).

Divide the class into 's’ number of sub-class as per Equation 5.

Select the best solution of cach sub-class as a teacher, T, as per Equation 6.
Allocate learners to individual sub-classes based on their respective fitness values.
fori = 1tondo
Determine the mean result of each sub-class of learners in each subject (i.e. M)
/* The teacher phase */

For each sub-class, calculate DM}, and ATF using Equations 7 and 8.

/* ATF is an adaptive teaching factor */
For each sub-class, find a new solution in the Teacher Phase using Equation 9

/* Generate new population */

E=FE+1 /* Count Function evaluation */
IfFF(X}) < F(X)—  X;=X; endif /* Greedy selection */
IfF(X}) < F(X)— /* The learner phase */
For each sub-class, find a solution in the Lerner Phase using Equation 10. /* Generate new population */
FE =FE + 1 /* Count Function evaluation */
IfF(X;) < F(X)— X;=X; endif I* Greedy selection */
end for /* Population loop ends */

Meagre all sub-classes.

Storing condition of challenger learners' model: f(X1)g =: f(X1)g—ide_gen, Where g is the present generation
number.
If f(X1)g = f(X1) g—ide_gen, then
TLB0O2 =1 /* Initialize challenger learners' model */
Initialize the randomly generated population within its UB & LB and evaluate it.

/* Initialize population */
Arrange the population in ascending order of F(Y;) values. Y is the challenger learner population.
Divide the class into 's' number of sub-classes as per Equation 5.
Select the best solution of each sub-class as a teacher, T, as per Equation 6.
Allocate learners to individual sub-classes based on their respective fitness values.
fori = 1tondo
Determine the mean result of each sub-class of learners in each subject (i.e. M)

/* The teacher phase */
For each sub-class, calculate DM, and ATF using Equations 7 and 8.

/* ATF is an adaptive teaching factor */
For each sub-class, find a new solution in the Teacher Phase using Equation 9
/* Generate new population */
E=FE +1 /* Count Function evaluation */

For each sub-class, update the solution if the new solution is fitter than the current solution.

IfF(Y) < F(Y;)then Y;=Y; endif /* Greedy selection */

IfF(Y) < F(Y)) then /* The learner phase */

For each sub-class, find a solution in the Lerner Phase using Equation 10. /* Generate new population */
E=FE +1 /* Count Function evaluation */

IfFF(Y) < F(Y))then Y;=Y; endif /* Greedy selection */

end for /* Population loop ends */

Meagre all sub-classes. & Sort the population () in ascending order and store the best solution
Stooping condition of challenger learners' model: f(Y1)chattenger > f(X1). Y is the challenger learner population.
Or If mean grades of class do not improve in the generation, pause main SC — MTLBO - TLB0O1 = 0
F(Y1) < F(X{)~TLBO2 = 0,TLBO1 = 1
If F(Y;) < F(X;)< X} = Yy Update the solution of the main SC-MTLBO

If FE = FE pq,—break optimization loop

end if /*termination criterion*/
end for /* Optimization loop ends */
STOP

Algorithm 2. PSC-MTLBO
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TLBO’s computational complexity is O (N - D - T'), where N is the population size, D is the problem
dimension, and T is the number of iterations. The complexity risesto O (G - N - D - T') , where G is the number
of sub-classes since PSC-MTLBO adds parallel sub-classes. Although TLBO is computationally efficient, its
early convergence may cause it to struggle with high-dimensional, complex situations. Although PSC-MTLBO
improves exploration and convergence, the additional group processing it requires raises computing costs. The
overhead is still controllable for small G, but PSC-MTLBO needs much more processing power for large G.

Experiment and discussion

Within this unit, the performance assessment of PSC-MTLBO encompasses three categories of unconstrained
benchmarks, varying across dimensions and search spaces. Comparative analyses are conducted between
the results achieved using PSC-MTLBO and those attained through basic TLBO, MTLBO, and several other
prevalent meta-heuristics documented in existing literature.

The initial two sets encompass 23 classical benchmarks, while the subsequent test involves 25 benchmark
functions sourced from the CEC2005 set. The fourth test involves the evaluation of 30 benchmark functions
from the CEC2014 collection. The final test involves two real-world TTO problems constrained by real-world
considerations. Notably, all functions are configured for minimization purposes. The selection of parameter
settings is predicated on previous research and benchmark criteria. To provide fair comparisons, population size
and function evaluations (F'E'nax) changed according to function complexity. The parameters were consistent
across evaluated algorithms and matched the CEC2005 and CEC2014 benchmarks. To reduce manual tuning,
the adaptive teaching factor, sub-class division, and challenger learners’ model were dynamically modified.
The parameters for real-world truss topology optimization were selected for practical application based on
engineering research and structural restrictions.

The rationale behind selecting these benchmark functions lies in their established prominence within the
field, facilitating the comparability of results against other algorithms documented in existing literature.

The ensuing discussion and results will elucidate various investigations undertaken to analyze and interpret
the performance of PSC-MTLBO across these diverse benchmark functions.

Results on benchmark suite 1

This experiment employs 23 benchmarks (outlined in Table 1) to assess the efficacy of PSC-MTLBO. Among
these benchmarks, f1-f7 are unimodal, f8-f13 are multimodal in high dimensions and functions f14-f23
are multimodal in low dimensions. The table provides details on the function’s dimension (D), search space
boundaries (range), and the function’s minimum value (optimum).

PSC-MTLBO, MTLBO, and TLBO undergo 25 independent runs for every benchmark function. The
maximum number of Function Evaluations (FE__ ) for each test function is detailed below: 150,000FE for
functions f1,{6,f10,f12, and f13; 200,000FE for 2 and f11; 300,000FE for f7 to f9; 500,000 FE for f3-f5; 40,000
FE for f15; 10,000FE for f14, 16, f17, f19, and f21-23; 3,000FE for f18; and 20,000FE for f20. The proposed
algorithm’s performance is compared against PSO, DE, BBO, CS, FA, GSA, ABC, AMO, MTLBO, and TLBO.

Table 2 focuses on comparing the mean outcomes, standard deviations (SD), and their corresponding ranks
for the unimodal high-dimensional functions (f1-f7), which are suitable for assessing an algorithm’s exploitation
capability. The analysis highlights PSC-MTLBO’s achievement of the global optimum mean value for f1-f4 and
its attainment of the second-best mean result for functions f6 and 7.

Notably, for functions f5-f7, ABC, AMO, and TLBO demonstrate superior performance compared to
the remaining algorithms. TLBO exhibits improved performance for functions f2, f4-f6, with PSC-MTLBO
yielding identical results for functions f1 and f3. However, for function 7, PSC-MTLBO slightly underperforms
compared to TLBO.

In addition to its performance on functions f1-f4, the MTLBO algorithm demonstrates significant
improvements for functions 5, f6, and f7, while maintaining the same results for the former set. This enhancement
is particularly evident in the fundamental TLBO, which sees its overall ranking improve from 3 to 1 in mean
results and from 2 to 1 in terms of standard deviation (SD) for PSC-MTLBO. Moreover, among all the algorithms
tested, PSC-MTLBO achieves the highest overall ranking. The combined performance across functions f1-f7 for
PSO, DE, BBO, CS, FA, GSA, ABC, AMO, TLBO, MTLBO, PSC-MTLBO is reported as 10, 5,11, 8,9, 6,7, 2, 3,
3, and 1, respectively, showcasing the effectiveness of MTLBO and its variants in solving optimization problems.

These findings provide substantial evidence that the suggested modifications notably enhance the algorithm’s
exploitation capabilities, contributing to a heightened convergence rate in search algorithms.

In Table 3, the comparison is centered on mean values, standard deviation (SD), and algorithm ranks for
multimodal functions f8-f13, which are specifically designed to evaluate an algorithm’s ability to explore diverse
solutions. The analysis reveals that PSC-MTLBO successfully converges to the global optimum for functions
f9-f11 and f13, achieving the second-best result for function f12. TLBO demonstrates improved performance
for functions f8-f10, f12, and f13, matching PSC-MTLBO?’s results for function f11.

Additionally, AMO exhibits superior performance compared to other algorithms for functions f8f8 and
f12, achieving global optimum mean results for functions f9 and f11. GSA also shows notable mean results for
function f13 compared to the other algorithms.

The modifications made to the fundamental TLBO algorithm resulted in a significant improvement in PSC-
MTLBO’s overall rank, elevating it from 7 to 2 in mean results and from 8 to 3 in standard deviation (SD).
However, AMO demonstrates the most exceptional overall performance in both mean and SD metrics.

Scientific Reports |

(2025) 15:31867 | https://doi.org/10.1038/s41598-025-10596-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Test function

D | Range Optimum

n 2
fl= Zi:lwi

30 | [-100,100]° |0

=30 el + [0l

30 | [-10,10]P 0

;3= (23—11-7)2

30 | [-100,100]° |0

f4=maz; {|z;],1 <i<n}

30 | [-100,100]° |0

n— 2
f5 = Zi:f {100 (zm - xf) + (i — 1)2} 30 | [-30,30]° |0

f6=>3" (e +0.5)?

30 | [-100,100]° |0

7= Z:l:lia:? + rand[0,1]

30 | [-1.28,1.28]° | 0

8= Z:':l—z,isin (m)

30 | [-500,500]P | -418.9829¢5

k(—z; —

£9 = 2:1 [90? + 10cos (2mx;) + 10] 30 | [-5.12,5.12]° | 0
£10 = —20exp (w.z@) —eap ()7 cos (2mw;)) +20+ e 30 | [-3232]° |0
fil= o> 22— ] eos (%) +1 30 | [-600,600]° |0
f12 :hnﬂL / }Efin (ry1) D"y = 1)? [1 + 10sin? (7yi41) + (Yn — 1)2] } + 307 u(i,10,100,4)

Yi = -1

k(ﬁ,;—
u(zi,a, k,m)= O—a<z;<a

30 | [-50,50]P 0
U.)”l:ti >a

a)"z; < —a

f13 =0.1 {sin2 (Brz1) + Y0 (@i —1)? [1 + sin? (37x; + 1)} + (zp — 1)2 [1 + sin? (2771-,;)] } + 307w (i,5,100,4) |30 | [-50501° |0

—1
f14 = %4_22&_1+ﬁ 2 | [-65,65]° 0.998004
. '7+ZZ=1(ml_a'ij)

2
11 Ti (bi+bi$2) D
f15 = Ei:l |:a13 - V24bsa3+ay 4|15 0.00030
f16 = 427 — 2,127 + 128 + x122 — 423 + 423 2 |[-55]P -1.0316
- ] 2
f17= (2o — 2L 22 4+ 5, —6) 410 (1 — &) cos (z1) + 10 2 | [-5,5]P 0.398
2Ty 8
f18 = [1 + (x4 w2+ 1)2 (19 — 14z, + 3:1:f — 14xzy + 6122 + 3.’1:3)] * [30 + (221 — 3x2)? (18 — 32z1 + 12:1;% + 48xy — 36x122 + 27:1:5)} 2 [-2,2]P 3
4 3
f19==3""_ Cieap (—ZFlaz:j(mj - pis)?) 3| 3P -3.86
4 6
£20= =377 Cieap (=27 aui(@; — pi)?) 6 |[01] —3322
5 T -1
= — X x—a;)(x—a; i > Y
fa1=-37 [( )( Y 4o ] 4 |[0,10]° 10.1532
7 T -1 D
fo2=-3"" [(m —ai) (@ —a)T + Ci] 4 | [0,10] -10.4028
-1
1282 -3 [0 - a) (o - a)” + ] + P | se

Table 1. Benchmark functions used in investigation 1 and 2.

The overall Friedman rank for functions f8-f13 for PSO, DE, BBO, CS, FA, GSA, ABC, AMO, TLBO, MTLBO,
PSC-MTLBO is reported as 9, 5, 8, 11, 10, 6, 3, 1, 7, 4, and 2, respectively. These findings validate that the
suggested modifications significantly enhance the algorithm’s exploratory capabilities, especially in challenging
multimodal optimization scenarios.

In Table 4, the comparison encompasses mean values, standard deviations (SD), and algorithm ranks for
unimodal low-dimensional functions f14-f23, designed to assess algorithm performance. The analysis reveals
that PSC-MTLBO achieves the global optimum value for functions f14-f20 and f23. However, DE demonstrates
superior results for functions 21 and f22 compared to other algorithms.
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TLBO demonstrates enhanced performance for functions f14, f15, and f18-f23 while achieving identical
results to PSC-MTLBO for functions 16 and f17. Similarly, MTLBO shows improvement for functions f14, f15,
£19, £20, and 23, maintaining identical performance to PSC-MTLBO for functions f16 and f17.

The overall Friedman rank for functions f14-f23 for PSO, DE, BBO, CS, FA, GSA, ABC, AMO, TLBO,
MTLBO, PSC-MTLBO is reported as 6, 3, 11, 5, 7, 8, 2, 4, 10, 9, and 1, respectively. The modifications within
the basic TLBO significantly elevate the overall mean rank from 10 to 1 in mean results and from 11 to 1 in the
overall SD rank for PSC-MTLBO. These results underscore the effectiveness of the proposed modifications in
enhancing the algorithm’s performance on unimodal low-dimensional functions, particularly in achieving the
global optimum.

Moreover, among the tested algorithms, PSC-MTLBO attains the highest overall ranking as per Friedman’s
rank. These outcomes affirm that the proposed modifications considerably enhance the algorithm’s exploration
capability.

Results on benchmark suite 2

In this investigation, 23 benchmarks (as displayed in Table 1) were employed to evaluate the efficacy of PSC-
MTLBO. Detailed specifications of the benchmarks are outlined in Table 1. The performance of the suggested
method was evaluated against GWO, PSO, GSA, FEP, MTLBO, and TLBO. Each PSC-MTLBO, MTLBO, and
TLBO underwent 30 independent runs for every benchmark function. GWO, PSO, GSA, and FEP were assessed
across all functions with a maximum of 15,000 FE. For consistency in comparison, PSC-MTLBO, MTLBO, and
TLBO were also evaluated using the same maximum FE limit. Statistical outcomes, such as mean results and
standard deviations, are presented in Table 2.

Upon detailed analysis presented in Table 5, it was observed that PSC-MTLBO demonstrated exceptional
performance across a range of benchmark functions. PSC-MTLBO achieved the global optimum mean result for
several functions, including f1, 9, f11, f14, f16-f19, £20, £22, and f23. This indicates the algorithm’s strong ability
to converge to optimal solutions for these specific functions.

Additionally, PSC-MTLBO outperformed other algorithms in terms of mean results for functions 2, f4, {10,
and f12, showcasing its competitive edge in optimization. Comparatively, TLBO showed superior performance
for functions 3 and {7, and it achieved the global optimum mean result for functions f11, f16-f18, demonstrating
its strengths in specific scenarios.

Interestingly, the Grey Wolf Optimizer (GWO) demonstrated the best performance for functions f15 and
f21, and it excelled in functions f16-f19 and {22, showcasing its effectiveness in certain optimization contexts.

Moreover, improvements or identical performances were observed for the Modified TLBO (MTLBO)
algorithm in functions f2, {5, 6, and f8-f19, while PSC-MTLBO exhibited improvements in functions f1, f2,
f4-f6, and f8-f23 compared to TLBO. This suggests that the modifications made to TLBO, particularly in the
form of MTLBO and PSC-MTLBO, have significantly enhanced their optimization capabilities across various
functions.

Opverall, the results table indicates that among the benchmark functions, PSC-MTLBO, MTLBO, and TLBO
reported the best mean solutions in 15, 7, and 6 instances, respectively. PSC-MTLBO showcased superior
performance in 10 out of the 25 benchmark functions, securing the top rank among the evaluated methods.
These findings highlight the effectiveness of PSC-MTLBO in achieving optimal solutions across a diverse set of
benchmark functions, underscoring its potential as a robust and versatile optimization algorithm.

Results on benchmark suite 3

In this section, the assessment of PSC-MTLBO’s performance involves the use of the CEC2005 (Suganthan et
al., 2005)%, see Table 6. These functions encompass large-scale global optimization problems classified into
unimodal functions (F1-F5), multimodal functions (F6-F12), expanded multimodal functions (F13-F14), and
hybrid composition functions (F15-F25). All functions feature a shifted global optimum, deliberately biased
away from zero, to prevent search space symmetry.

PSC-MTLBO, MTLBO, and TLBO outcomes are juxtaposed with renowned algorithms from pertinent
literature, encompassing PSO, IPOP-CMA-ES, CHC, SSGA, SS-BLX, SS-Arit, DE-Bin, DE-Exp, and SaDE (as
discussed in Derrac et al., 2011)*%. Mean error values derived from 25 independent runs are outlined in Table 7,
computed as |FX—F|, where F represents the optimum fitness and FX represents the recognized global optimum
of the function.

The results analysis reveals that PSC-MTLBO stands out by achieving the global optimum for a substantial
number of benchmark functions, including F1, F4, F5, F7, F13, F18, and F22-F25. This highlights the algorithm’s
robustness and effectiveness in finding optimal solutions across a diverse set of optimization problems.

Comparatively, other methods also demonstrated noteworthy performances. IPOP-CMA-ES, for instance,
showed strong performance in functions F1-F3, F6, F8, F11, and F21, indicating its suitability for certain types
of optimization tasks. CHC, on the other hand, excelled in functions F10, F14, F16, and F17, demonstrating its
effectiveness in different problem domains.

Additionally, SSGA exhibited exceptional performance for function F9, indicating its strength in tackling
specific optimization challenges. DE-Exp showcased superiority for functions F19 and F20, highlighting its
effectiveness in optimizing certain types of functions. SaDE demonstrated superior results for functions F12,
F15, and F24, further illustrating the diversity of algorithmic approaches and their applicability to different
optimization scenarios.
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In contrast, while TLBO showed improvements across functions F1-F11, and F13-F23, its performance
was slightly lower in function F12 compared to PSC-MTLBO. MTLBO, on the other hand, showcased
improvements across all functions, with identical performance to PSC-MTLBO in function F1. This indicates
that the modifications made to TLBO, particularly in the form of MTLBO and PSC-MTLBO, have significantly
enhanced their optimization capabilities across a wide range of functions.

In terms of overall rankings, TLBO secured the 7th position, MTLBO claimed the top spot, and PSC-MTLBO
emerged at the pinnacle, underscoring the superior exploratory and exploitative capacities of the proposed
approach.

Moreover, Table 7 provides a comprehensive overview of each algorithm’s performance, outlining the counts
for their best, 2nd best, and worst results. TLBO, for instance, presented 5 worst solutions out of 25 without
any best or 2nd best counts, indicating areas for potential improvement. MTLBO, on the other hand, offered
1 best and 5 2nd best counts, showcasing its strong performance across multiple functions as per Friedman
rank. Interestingly, PSC-MTLBO showed no worst results across the benchmark functions, further solidifying
its position as a robust and reliable optimization algorithm.

Results of the comparative study

The performance assessment of PSC-MTLBO concerning the optimization of CEC2005 benchmark functions
involves a comparison with various meta-heuristics, including AAA, ABC, BA, DE, ACO, HS, MTLBO, and
TLBO. Table 8,9,10 showcase the best, mean, and SD values derived from 25 independent runs, each using a
maximum of 100,000 FEmax on 10-D functions. Table 11 showcases the results of the Friedman rank test.

The initial functions (F1-F5) in Table 8, categorized as unimodal functions, reveal noteworthy outcomes.
PSC-MTLBO, MTLBO, AAA, DE, and HS consistently reach the global optima for function F1. Function F2 sees
convergence close to the global optimum by PSC-MTLBO, MTLBO, and ACO with minimal standard deviation.
For functions F3-F5, PSC-MTLBO exhibits superior performance, highlighting the enhanced exploration
capability and decreased likelihood of falling into local optima traps due to the introduced modifications.

Moving to multimodal functions (F6-F12) in Table 9, diverse performance patterns emerge. For function
F6, AAA presents the best mean and SD, with PSC-MTLBO ranking third in mean result, surpassing MTLBO
and TLBO. Notably, PSC-MTLBO outperforms other algorithms in functions F7, F9, F10, and F11. Functions
F12 and F13 highlight ABC’s better mean performance compared to others, where PSC-MTLBO surpasses its
variants. On function F14, HS secures the best mean solution, while PSC-MTLBO and MTLBO take the second
and third positions, respectively, in the mean solution. Overall, PSC-MTLBO achieves the highest ranking
among the considered algorithms, affirming the improved exploration capabilities from the modifications.

The composition functions (F15-F25) discussed in Table 10, constructed from basic functions, exhibit various
algorithmic performances. PSC-MTLBO secures the best mean result among all algorithms for functions F16-
F18, F22, F24, and F25, showcasing its prowess. On function F23, PSC-MTLBO performs optimally, despite not
being previously tested by other algorithms.

The Friedman rank test in Table 11, excluding function F23, compares the performance of algorithms (AAA,
ABC, BA, DE, ACO, HS, TLBO, MTLBO, and PSC-MTLBO) based on the minimum and mean solutions
obtained from 25 runs. The overall Friedman rank considering minimum solutions for PSO, DE, BBO, CS, FA,
GSA, ABC, AMO, TLBO, MTLBO, PSC-MTLBO is reported as 2, 5,9, 7, 7, 6, 4, 3, and 1, respectively. Similarly,
the overall Friedman rank considering mean solutions for PSO, DE, BBO, CS, FA, GSA, ABC, AMO, TLBO,
MTLBO, PSC-MTLBO is reported as 2, 3, 9, 4, 8, 6, 7, 5, and 1, respectively. These outcomes offer valuable
insights into the comparative performance of the algorithms, highlighting PSC-MTLBO as the top performer in
both minima and mean solutions across the evaluated algorithms.

It asserts PSC-MTLBO’s superiority, ranking first in obtaining minimum and mean solutions among the
considered algorithms, followed by AAA and MTLBO.

Results on benchmark suvite 4

In this study, 30 benchmarks were introduced in the CEC2014 competition (Liang et al., 2014)*. These functions,
classified as unimodal (gl to g3), multimodal (g4 to g16), hybrid (g17 to g22), and composition (g23 to g30),
are summarized in Table 12. The comparison involves 10 methods (IWO, BBO, GSA, HuS, BA, WWO, TLBO,
MTLBO, and PSC-MTLBO). Here, 30-dimensions were employed, spanning search ranges of [-100, 100]D. A
population size of 50 and FEmax set at 150,000 were considered with 60 runs.

The relative outcomes for the unimodal, multimodal, hybrid, and composition functions within the CEC2014
benchmarks are displayed in Table 13,14,15,16. These tables depict the minimum, maximum, median, and
standard deviation (SD) of the fitness.

Table 17 delineates the rank sum of methods across the test functions, relying on the median number. The
findings underscore WWO’s exceptional performance for unimodal, multimodal, and hybrid functions, whereas
PSC-MTLBO excels in composition functions. PSC-MTLBO secures the second-best rank for unimodal and
hybrid functions and the third-best for multimodal functions. Overall, WWO attains the highest ranking, with
PSC-MTLBO securing the second rank across the benchmark functions.

In Table 18, the Friedman rank test contrasts PSC-MTLBO with other cutting-edge algorithms, focusing
on minimum and median values obtained from 60 runs. Across the unimodal function group, PSC-MTLBO
achieves the best median values for function g2, secures the second-best for glgl, and ranks fifth for g3. While
WWO performs the best on functions gl and HuS on g3, PSC-MTLBO demonstrates the second-best overall
performance within this group, surpassing TLBO, MTLBO, and others.
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Function name Search range | f.  (F*)
F1: Shifted sphere function [~100,100]° | -450
F2: Shifted Schwefel’s problem 1.2 [-100,100]° | —450
F3: Shifted rotated high conditioned elliptic function [~100,100]° | —450
F4: Shifted Schwefel’s problem 1.2 with noise in fitness [~100,100]° | —450
F5: Schwefel’s problem 2.6 with global optimum on bounds [~100,100]° | -310
F6: Shifted Rosenbrock’s function [~100,100]° | 390
F7: Shifted rotated Griewank’s function without bounds [0,600]P ** —-180
F8: Shifted rotated Ackley’s function with global optimum on bounds [-32,32]° -140
F9: Shifted Rastrigin’s function [-5,5]P -330
F10: Shifted rotated Rastrigin’s function [-5,5]P -330
F11: Shifted rotated Weierstrass function [-0.5,0.5]P 90
F12: Schwefel’s problem 2.13 [-100,100]° | —460
F13: Expanded extended Griewank’s plus Rosenbrock’s function(F8F2) [-3,1]P -130
F14: Shifted rotated expanded Scaffer’s F6 [~100,100]° | =300
F15: Hybrid composition function [-5,5]P 120
F16: Rotated hybrid composition function [-5,5]P 120
F17: Rotated hybrid composition function with noise in fitness [-5,5]P 120
F18: Rotated hybrid composition function [-5,5]P 10
F19: Rotated hybrid composition function with a narrow basin for the global optimum | [-5,5]° 10
F20: Rotated hybrid composition function with the global optimum on the bounds [-5,5]P 10
F21: Rotated hybrid composition function [-5,5]P 360
F22: Rotated hybrid composition function with high condition number matrix [-5,5]P 360
F23: Non-continuous rotated hybrid composition function [-5,5]P 360
F24: Rotated hybrid composition function [-5,5]P 260
F25: Rotated hybrid composition function without bounds [-2,5]P ** 260

Table 6. The CEC2005 benchmark function. **indicates initial search range.

The overall Friedman rank considering minimum solutions for WWO, BA, HuS, GSA, BBO, IWO, TLBO,
MTLBO, and PSC-MTLBO is reported as 1, 9, 8, 6, 7, 3, 5, 4, and 2, respectively. Similarly, the overall Friedman
rank considering mean solutions for WWO, BA, HuS, GSA, BBO, IWO, TLBO, MTLBO, and PSC-MTLBO
is reported as 1, 9, 8, 6, 7, 3, 5, 4, and 2, respectively. These findings underscore the competitive performance
of PSC-MTLBO, positioning it as a strong contender among state-of-the-art algorithms for solving unimodal
optimization problems.

For multimodal functions, diverse algorithms excel in different functions, with PSC-MTLBO securing
second or third-best median values across various functions but not attaining the first rank. However, TLBO’s
performance improves in all functions for PSC-MTLBO.

In the hybrid function group, PSC-MTLBO achieves the best median values for function g19, and third-best
for g18, g20, and g22. TLBO takes the lead in functions g20 and g21, with WWO leading in g17 and g18. The
modifications in TLBO enhance the overall ranking of PSC-MTLBO for multimodal functions.

For the composition function group, PSC-MTLBO secures the best median values for function g25 and ranks
second or third for several others. TLBO’s performance enhancement is observed across all functions except g24
when employed in PSC-MTLBO.

Results on truss topology optimization (TTO)
TTO (Savsani et al. 2016; 2017; Tejani et al. 2019; 2018b; Kumar et al. 2022b) is a practical approach for structural
design, involving creating a ground structure of all possible element connections and deciding whether to retain
or remove these elements. This process is repetitive until the optimum design is achieved. However, maintaining
removed bars with small sections can be time-consuming and affect natural frequencies. A rebuilding approach
can be used instead. While some research has focused on size optimization with constraints, there is limited study
on TTO with natural frequency bounds. Two-stage optimization involves topology and then size optimization,
but this may not constantly find the best result. In contrast, the one-stage approach optimizes both concurrently
in a single run, which can be more effective for achieving lighter trusses (Tejani et al. 2017; 2018c¢). This article
explores these methods in concurrent TTO, using two real-world problems for demonstration.

The mathematical formulation (Savsani et al. 2016; 2017; Tejani et al. 2019; 2018b; Kumar et al. 2022b) is
represented as per Eq. (11):

Find, X = {X1, X2, X3,.........  Xom} 11)

for weight minimization,
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Function PSO IPOP-CMA-ES | CHC SSGA SS-BLX SS-Arit DE-Bin DE-Exp SaDE TLBO MTLBO | PSC-MTLBO
F1 1.23E-04 | 0.00E+00 246E+00 | 8.42E-09 | 3.40E+01 | 1.06E+00 | 7.72E-09 | 8.26E-09 | 8.42E-09 1.19E-12 | 0.00E+00 | 0.00E+00
Rank 9 1 11 8 12 10 5 6 7 4 1 1
F2 2.60E-02 | 0.00E+00 1.18E+02 | 8.72E-05 1.73E+00 | 5.28E+00 | 8.34E-09 | 8.18E-09 | 8.21E-09 1.92E-12 | 9.00E-13 | 7.78E-13
Rank 9 1 12 8 10 11 7 5 6 4 3 2
F3 5.17E+04 | 0.00E +00 2.70E+05 | 7.95E+04 | 1.84E+05 | 2.54E+05 | 4.23E+01 | 9.94E+01 | 6.56E+03 | 9.50E+04 | 1.12E+05 | 9.26E+04
Rank 5 1 12 6 10 11 2 3 4 8 9 7
F4 2.49E+00 | 2.93E+03 9.19E+01 | 2.59E-03 | 6.23E+00 | 5.76E+00 | 7.69E-09 | 8.35E-09 | 8.09E-09 | 5.54E-01 2.87E-13 | 2.13E-13
Rank 8 12 11 6 10 9 3 5 4 7 2 1
F5 4.10E+02 | 8.10E-10 2.64E+02 | 1.34E+02 | 2.19E+00 | 1.44E+01 | 8.61E-09 | 8.51E-09 | 8.64E-09 |6.90E-11 |7.98E-13 | 0.00E+00
Rank 12 4 11 10 8 9 6 5 7 3 2 1
F6 7.31E+02 | 0.00E+00 1.42E+06 | 6.17E+00 | 1.15E+02 | 4.95E+02 | 7.96E-09 | 8.39E-09 1.61E-02 | 4.05E+00 | 4.50E+02 | 1.85E+00
Rank 11 1 12 8 9 10 2 3 4 7 6 5
F7 2.68E+01 | 1.27E+03 1.27E+03 | 1.27E+03 | 1.97E+03 | 1.91E+03 | 1.27E+03 | 1.27E+03 | 1.26E+03 | 2.69E+00 | 2.77E-01 | 1.12E-01
Rank 4 8 9 10 12 11 7 6 5 3 2 1
F8 2.04E+01 | 2.00E+01 2.03E+01 | 2.04E+01 | 2.04E+01 | 2.04E+01 | 2.03E+01 | 2.04E+01 | 2.03E+01 | 2.03E+01 | 2.04E+01 | 2.03E+01
Rank 12 1 5 10 7 9 3 11 2 5 7 3
F9 1.44E+01 | 2.84E+01 5.89E+00 | 7.29E-09 | 4.20E+00 | 5.96E+00 | 4.55E+00 | 8.15E-09 | 8.33E-09 |2.05E+01 | 1.09E+01 | 7.78E+00
Rank 10 12 6 1 4 7 5 2 3 11 9 8
F10 1.40E+01 | 2.33E+01 7.12E+00 | 1.71E+01 | 1.24E+01 | 2.18E+01 | 1.23E+01 | 1.12E+01 | 1.55E+01 | 2.99E+01 | 1.42E+01 | 1.24E+01
Rank 6 11 1 9 4 10 3 2 8 12 7 5
F11 5.59E+00 | 1.34E+00 1.60E+00 | 3.26E+00 | 2.93E+00 | 2.86E+00 | 2.43E+00 | 2.07E+00 | 6.80E+00 | 548E+00 | 4.84E+00 | 3.90E+00
Rank 11 1 2 7 6 5 4 3 12 10 9 8
F12 6.36E+02 | 2.13E+02 7.06E+02 | 2.79E+02 | 1.51E+02 | 2.41E+02 | 1.06E+02 | 6.31E+01 | 5.63E+01 | 5.67E+03 | 2.46E +04 | 2.27E +04
Rank 8 5 9 7 4 6 3 2 1 10 12 11
F13 1.50E+00 | 1.13E+00 8.30E+01 | 6.71E+01 | 3.25E+01 | 5.48E+01 | 1.57E+00 | 6.40E+01 | 7.07E+01 | 1.02E+00 | 7.16E-01 5.97E-01
Rank 5 4 12 10 7 8 6 9 11 3 2 1
F14 3.30E+00 | 3.78E+00 2.07E+00 | 2.26E+00 | 2.80E+00 | 2.97E+00 | 3.07E+00 | 3.16E+00 | 3.42E+00 | 3.34E+00 | 2.72E+00 | 2.69E+00
Rank 9 12 1 2 5 6 7 8 11 10 4 3
F15 3.40E+02 | 1.93E+02 2.75E+02 | 2.92E+02 | 1.14E+02 | 1.29E+02 | 3.72E+02 | 2.94E+02 | 8.42E+01 | 3.33E+02 | 3.22E+02 | 1.17E+02
Rank 11 5 6 7 2 4 12 8 1 10 9 3
F16 1.33E+02 | 1.17E+02 9.73E+01 | 1.05E+02 | 1.04E+02 | 1.13E+02 | 1.12E+02 | 1.13E+02 | 1.23E+02 | 1.56E+02 | 1.28E+02 | 1.15E+02
Rank 11 8 1 3 2 6 4 5 9 12 10 7
F17 1.50E+02 | 3.39E+02 1.05E+02 | 1.19E+02 | 1.18E+02 | 1.28E+02 | 1.42E+02 | 1.31E+02 | 1.39E+02 | 1.76E+02 | 8.34E+02 | 1.12E+02
Rank 9 11 1 4 3 5 8 6 7 10 12 2
F18 8.51E+02 | 5.57E+02 8.80E+02 | 8.06E+02 | 7.67E+02 | 6.58E+02 | 5.10E+02 | 4.48E+02 | 5.32E+02 | 8.88E+02 | 8.15E+02 | 4.47E+02
Rank 10 5 11 8 7 6 3 2 4 12 9 1
F19 8.50E+02 | 5.29E+02 8.80E+02 | 8.90E+02 | 7.56E+02 | 7Z.01E+02 | 5.01E+02 | 4.34E+02 | 520E+02 | 9.00E+02 | 7.77E+02 | 4.74E+02
Rank 9 5 10 11 7 6 3 1 4 12 8 2
F20 8.51E+02 | 5.26E +02 8.96E+02 | 8.89E+02 | 7.46E+02 | 6.41E+02 | 4.93E+02 | 419E+02 | 477E+02 | 8.71E+02 | 7.94E+02 | 5.02E+02
Rank 9 5 12 11 7 6 3 1 2 10 8 4
F21 9.14E+02 | 4.42E+02 8.16E+02 | 8.52E+02 | 4.85E+02 | 5.01E+02 | 5.24E+02 | 542E+02 | 5.14E+02 | 8.76E+02 | 1.19E+03 | 4.68E+02
Rank 11 1 8 9 3 4 6 7 5 10 12 2
F22 8.07E+02 | 7.65E+02 7.74E+02 | 7.52E+02 | 6.83E+02 | 6.94E+02 | 7.72E+02 | 7.72E+02 | 7.66E+02 | 793E+02 | 8.29E+02 | 6.79E+02
Rank 11 5 9 4 2 3 7 8 6 10 12 1
F23 1.03E+03 | 8.54E+02 1.08E+03 | 1.00E+03 | 5.74E+02 | 5.83E+02 | 6.34E+02 | 5.82E+02 | 6.51E+02 | 1.17E+03 | 1.06E+03 | 5.68E+02
Rank 9 7 11 8 2 4 5 3 6 12 10 1
F24 4.12E+02 | 6.10E+02 2.96E+02 | 2.36E+02 | 2.51E+02 | 2.01E+02 | 2.06E+02 | 2.02E+02 | 2.00E+02 | 4.24E+02 | 2.66E+02 | 2.00E+02
Rank 10 12 9 6 7 3 5 4 1 11 8 1
F25 5.10E+02 | 1.82E+03 1.76E+03 | 1.75E+03 | 1.79E+03 | 1.80E+03 | 1.74E+03 | 1.74E+03 | 1.74E+03 | 4.86E+02 | 2.96E+02 | 2.00E+02
Rank 4 12 9 8 10 11 7 6 5 3 2 1
Average rank | 8.92 6 8.04 7.24 6.4 7.2 5.04 4.84 5.4 8.36 7 3.28
Overall rank | 12 5 10 9 6 8 3 2 4 11 7 1
Count best 0 7 4 1 0 0 0 2 3 0 1 10
Count 2nd best | 0 0 1 1 4 0 2 4 2 0 5 4
Count worst 2 5 5 0 2 0 1 0 1 5 4 0

Table 7. Comparison of mean results of 10 dimensional CEC2005 benchmark functions (D =10,

FE__ =100,000).
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AAA ABC BA DE ACO HS TLBO MTLBO PSC-MTLBO
Minimum | 0.000E+00 | 0.000E+00 | 2.997E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 1.023E-12 | 0.000E+00 | 0.000E +00
Fl1 | Mean 0.000E+00 | 1.895E-15 | 4.233E+03 | 0.000E+00 | 2.274E-14 | 0.000E+00 | 1.187E-12 | 1.637E-13 | 0.000E+00
SD 0.000E+00 | 1.038E-14 | 3.812E+03 | 0.000E+00 | 3.533E-14 | 0.000E+00 | 6.266E-13 | 3.828E-13 | 0.000E+00
Minimum | 1.541E-08 | 3.077E-01 | 4.257E+00 | 5.013E+00 | 0.000E+00 | 4.607E-03 | 1.023E-12 | 0.000E+00 | 0.000E +00
F2 | Mean 1.184E-06 | 3.322E+00 | 4.898E+03 | 1.403E+01 | 1.478E-13 | 2.774E+01 | 1.921E-12 | 9.004E-13 |7.776E-13
SD 1.757E-06 | 2.893E+00 | 3.547E+03 | 5.389E+00 | 1.263E-13 | 3.481E+01 | 1.134E-12 | 3.394E-13 | 4.460E-13
Minimum | 5.199E+04 | 1.860E+05 | 3.169E+05 | 3.482E+05 | 8.126E+04 | 3.230E+04 | 2.514E+03 | 4.329E+03 | 3.268E +02
F3 | Mean 3.111E+05 | 7.224E+05 | 1.528E+07 | 1.753E+06 | 2.238E+06 | 2.196E+05 | 9.503E+04 | 1.116E+05 | 9.255E + 04
SD 2.441E+05 | 3.527E+05 | 1.959E+07 | 6.862E+05 | 2.689E+06 | 1.723E+05 | 1.449E+05 | 1.233E+05 | 9.420E+04
Minimum | 4.191E-05 | 2.894E+02 | 1.597E+03 | 5.814E+01 | 5.684E-14 | 8.339E-02 | 1.023E-12 | 0.000E+00 | 0.000E +00
F4 | Mean 8.199E-03 | 1.327E+03 | 8.885E+03 | 1.483E+02 | 3.752E-13 | 5.989E+01 | 5.535E-01 | 2.865E-13 | 2.132E-13
SD 9.187E-03 | 6.884E+02 | 4.665E+03 | 6.227E+01 | 3.221E-13 | 1.074E+02 | 2.055E+00 | 4.689E-13 | 4.245E-13
Minimum | 0.000E+00 | 8.169E+00 | 8.165E+02 | 1.206E-01 | 3.456E+01 | 1.855E-10 | 1.990E-12 | 0.000E+00 | 0.000E +00
F5 | Mean 1.601E-11 | 7.750E+01 | 8.168E+03 | 3.384E+00 | 3.938E+02 | 5.555E+01 | 6.896E-11 | 7.981E-13 | 0.000E+00
SD 3.433E-11 | 8.828E+01 | 3.946E+03 | 3.175E+00 | 4.884E+02 | 1.058E+02 | 6.993E-11 | 1.998E-12 | 0.000E +00
Table 8. Comparative results of F1 to F5 of CEC2005 of benchmark suite 3. (D =10, FE .= 100,000).
AAA ABC BA DE ACO HS TLBO MTLBO PSC-MTLBO
Minimum | 1.623E-06 | 5.465E-02 |7.899E+02 | 3.020E-01 |3.661E-06 |5.533E-01 | 1.807E-04 |8.775E-09 | 3.096E-04
F6 | Mean 1.219E+00 | 1.491E+00 | 2.936E+08 | 3.033E+00 | 8.611E+01 | 2.709E+01 | 4.054E+00 | 1.956E+00 | 1.853E+00
SD 1.491E+00 | 2.487E+00 | 4.188E+08 | 2.213E+00 | 4.412E+02 | 2.839E+01 | 2.289E+00 | 2.241E+03 | 2.034E+00
Minimum | 1.267E+03 | 1.267E+03 | 1.560E+02 | 2.363E-01 |3.161E-01 | 1.267E+03 | 1.428E-01 |5.167E-02 | 7.577E-03
F7 | Mean 1.267E+03 | 1.267E+03 | 1.645E+03 | 4.106E-01 | 8.581E-01 | 1.267E+03 | 2.693E+00 |2.765E-01 | 1.124E-01
SD 3.288E-02 |2.313E-13 |7.414E+02 | 9.131E-02 |2913E-01 | 1.094E-02 |3.748E+00 | 1.935E-01 | 8.916E-02
Minimum | 2.002E+01 | 2.019E+01 | 2.017E+01 | 2.021E+01 | 2.014E+01 | 2.018E+01 | 2.020E+01 | 2.015E+01 | 2.018E +01
F8 | Mean 2.016E+01 | 2.033E+01 | 2.034E+01 | 2.040E+01 |2.035E+01 | 2.033E+01 | 2.034E+01 | 2.035E+01 | 2.033E+01
SD 8.695E-02 |7.863E-02 |7.941E-02 |6267E-02 |8.296E-02 |5.667E-02 |6.437E-02 |8.608E-02 |6.993E-02
Minimum | 0.000E+00 | 0.000E+00 | 1.766E+01 | 0.000E+00 | 2.985E+00 | 0.000E+00 | 6.965E+00 | 4.975E+00 | 1.991E+00
F9 | Mean 0.000E+00 | 0.000E+00 | 5.135E+01 | 0.000E+00 | 7.735E+00 | 2.801E-07 | 2.046E+01 | 1.090E+01 | 7.778E+00
SD 0.000E+00 | 0.000E+00 | 1.820E+01 | 0.000E+00 | 3.603E+00 | 1.534E-06 | 7.750E+00 | 5.093E+00 | 3.947E+00
Minimum | 4.975E+00 | 1.008E+01 | 3.757E+01 | 1.144E+01 | 7.091E+00 | 1.751E+01 | 6.965E+00 | 4.975E+00 | 3.008E+00
F10 | Mean 1.501E+01 | 2.518E+01 | 7.113E+01 | 1.911E+01 | 2.340E+01 | 2.193E+01 | 2.989E+01 | 1.423E+01 | 1.24E+01
SD 5.593E+00 | 7.635E+00 | 2.512E+01 | 3.599E+00 | 7.573E+00 | 2.371E+00 | 1.532E+01 | 6.427E+00 | 6.345E +00
Minimum | 1.499E+00 | 4.175E+00 | 6.003E+00 | 4.875E+00 | 4.981E+00 | 8.113E+00 | 2.562E+00 | 1.874E+00 | 1.615E+00
F11 | Mean 3.667E+00 | 5.415E+00 | 9.360E+00 | 6.102E+00 | 8.604E+00 | 9.221E+00 | 5.479E+00 | 4.843E+00 | 3.901E+00
SD 9.292E-01 |7.297E-01 |1.518E+00 | 6.214E-01 |9.727E-01 | 4.890E-01 | 1.576E+00 | 1.365E+00 | 1.275E+00
Minimum | 2.439E+00 | 8.504E+01 | 6.907E+03 | 1.715E+02 | 1.349E+04 | 4.466E+01 | 1.037E+00 | 6.696E+03 | 9.687E+01
F12 | Mean 5.435E+02 | 3.070E+02 | 3.014E+04 | 4.341E+02 | 2.923E+04 | 3.168E+03 | 5.668E+03 | 2.464E+04 | 2.268E+04
SD 7.766E+02 | 1.634E+02 | 8.858E+03 | 1.850E+02 | 6.722E+03 | 3.135E+03 | 6.295E+03 | 7.140E+03 | 8.920E+03
Minimum | 1.228E-01 | 3.125E-02 | 4.722E+00 | 7.506E-02 | 8.360E-01 |2.048E-01 |1.973E-01 |2.996E-01 | 5.975E-02
F13 | Mean 4231E-01 |2.241E-01 |9.636E+00 | 2.936E-01 | 1.692E+00 | 8.897E-01 |1.016E+00 | 7.164E-01 | 5.966E-01
SD 1.329E-01 | 8.985E-02 |3.494E+00 | 1.176E-01 |5.347E-01 |4.433E-01 |4.212E-01 |2.163E-01 | 3.842E-01
Minimum | 2.698E+00 | 2.992E+00 | 3.256E+00 | 3.174E+00 | 3.219E+00 | 1.170E+00 | 2.453E+00 | 2.113E+00 | 2.126E+00
F14 | Mean 3.296E+00 | 3.412E+00 | 3.940E+00 | 3.459E+00 | 3.800E+00 | 2.485E+00 | 3.341E+00 | 2.719E+00 | 2.686E +00
SD 2.823E-01 |1.441E-01 |[2.307E-01 |1.299E-01 |2.861E-01 |6.736E-01 |2.966E-01 |3.576E-01 | 4.040E-01
Table 9. Comparative results of F6 to F14 of CEC2005 of benchmark suite 3. (D =10, FE .= 100,000).
m n . Yy .
PO =3 Bts Yo 5= { % S clore )
i=1 j=1
subject to:
g1 (X) : Stressconstraints, |B;o;| — o, <0
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AAA ABC BA DE ACO HS TLBO MTLBO PSC-MTLBO
Minimum | 0.000E+00 | 0.000E+00 | 4.100E+02 | 4.867E-01 | 1.026E+02 | 0.000E+00 | 5.724E+01 | 5.188E+01 | 6.554E+01
F15 | Mean 3.311E+01 | 7.329E-02 | 5.921E+02 | 1.653E+01 | 4.355E+02 | 2.782E+02 | 3.325E+02 | 3.219E+02 | 1.174E+02
SD 3.778E+01 | 3.227E-01 | 9.820E+01 | 1.813E+01 | 1.876E+02 | 1.786E+02 | 1.684E+02 | 1.451E+02 | 2.364E+01

Minimum | 9.222E+01 | 1.238E+02 | 1.385E+02 | 1.107E+02 | 1.066E +02

1.159E+02 | 1.093E+02

1.068E+02 | 8.913E+01

F16 | Mean 1.293E+02 | 1.476E+02 | 3.212E+02 | 1.443E+02 | 2.055E+02

1.380E+02 | 1.563E+02

1.276E+02 | 1.148E+02

SD 1.596E+01 | 1.384E+01 | 7.830E+01 | 1.475E+01 | 1.178E+02

1.030E+01 | 3.190E+01

2.112E+01 | 1.591E+01

Minimum | 9.984E+01 | 1.404E+02 | 1.659E+02 | 1.384E+02 | 1.215E+02

1.285E+02 | 1.204E+02

4.344E+02 | 6.175E+01

F17 | Mean 1.353E+02 | 1.694E+02 | 3.442E+02 | 1.730E+02 | 1.890E +02

1.507E+02 | 1.755E+02

8.341E+02 | 1.115E+02

SD 1.825E+01 | 1.529E+01 | 8.931E+01 | 1.422E+01 | 5.524E+01

1.146E+01 | 7.318E+01

1.519E+02 | 2.165E+01

Minimum | 3.000E+02 | 4.035E+02 | 9.685E+02 | 5.114E+02 | 7.794E +02

6.269E+02 | 5.214E+02

3.000E+02 | 3.000E +02

F18 | Mean 4.864E+02 | 5.086E+02 | 1.104E+03 | 7.459E+02 | 9.317E+02

8.541E+02 | 8.884E+02

8.146E+02 | 4.473E+02

SD 2.242E+02 | 7.031E+01 | 5.856E+01 | 1.012E+02 | 9.863E+01

1.013E+02 | 1.619E+02

2.173E+02 | 2.012E+02

Minimum | 3.000E+02 | 4.349E+02 | 9.810E+02 | 3.740E+02 | 8.001E+02

3.002E+02 | 5.737E+02

3.000E+02 | 3.000E+02

F19 | Mean 4.529E+02 | 5.213E+02 | 1.111E+03 | 6.980E+02 | 9.552E+02

8.265E+02 | 9.004E +02

7.772E+02 | 4.741E+02

SD 1.993E+02 | 7.592E+01 | 6.753E+01 | 1.363E+02 | 6.679E+01

1.545E+02 | 1.551E+02

1.617E+02 | 1.849E+02

Minimum | 3.000E+02 | 5.000E+02 | 8.019E+02 | 5.007E+02 | 7.244E +02

5.375E+02 | 5.110E+02

3.000E+02 | 3.000E+02

F20 | Mean 4.842E+02 | 5.430E+02 | 1.097E+03 | 7.536E+02 | 9.396E+02 | 8.674E+02 | 8.712E+02 | 7.938E+02 | 5.021E+02
SD 2.135E+02 | 1.075E+02 | 8.884E+01 | 1.110E+02 | 9.376E+01 | 1.019E+02 | 1.559E+02 | 3.138E+02 | 1.813E+02
Minimum | 3.000E+02 | 2.035E+02 | 5.037E+02 | 2.270E+02 | 5.000E+02 | 5.000E+02 | 3.000E+02 | 1.107E+03 | 3.000E +02

F21 | Mean 5.233E+02 | 3.459E+02 | 1.266E+03 | 4.642E+02 | 1.088E+03 | 1.038E+03 | 8.763E+02 | 1.189E+03 | 4.680E +02
SD 1.006E+02 | 9.939E+01 | 1.574E+02 | 9.040E+01 | 2.130E+02 | 1.990E+02 | 3.228E+02 | 6.625E+01 | 1.220E+02
Minimum | 3.000E+02 | 2.008E+02 | 9.150E+02 | 7.760E+02 | 5.318E+02 | 7.574E+02 | 3.000E+02 | 7.470E+02 | 3.000E +02

F22 | Mean 7.347E+02 | 7.084E+02 | 1.025E+03 | 7.941E+02 | 8.315E+02 | 7.873E+02 | 7.930E+02 | 8.289E+02 | 6.794E +02
SD 1.196E+02 | 1.905E+02 | 6.621E+01 | 7.699E+00 | 1.010E+02 | 2.429E+01 | 1.155E+02 | 6.625E+01 | 1.939E +02
Minimum | 2.000E+02 | 2.000E+02 | 1.110E+03 | 2.000E+02 | 3.744E+02 | 2.000E+02 | 2.000E+02 | 2.000E+02 | 2.000E +02

F24 | Mean 2.000E+02 | 2.000E+02 | 1.264E+03 | 2.000E+02 | 6.038E+02 | 2.400E+02 | 4.240E+02 | 2.662E+02 | 2.000E + 02
SD 0.000E+00 | 0.000E+00 |5.919E+01 | 1.201E-02 | 2.904E+02 | 1.038E+02 | 3.671E+02 | 1.233E+02 | 0.000E +00
Minimum | 8.120E+02 | 6.176E+02 | 1.303E+03 | 8.183E+02 | 3.727E+02 | 2.000E+02 | 2.000E+02 | 2.000E+02 | 2.000E +02

F25 | Mean 8.170E+02 | 7.689E+02 | 1.390E+03 | 8.272E+02 | 5.708E+02 | 3.196E+02 | 4.862E+02 | 2.960E+02 | 2.000E +02
SD 2.464E+00 | 9.427E+01 | 4.070E+01 | 3.619E+00 | 2.967E+02 | 1.165E+02 | 3.816E+02 | 1.881E+02 | 0.000E +00
Minimum | - - - - - - 7.441E+02 | 5.539E+02 | 5.158E+02

F23 | Mean - - - - - - 1.167E+03 | 1.059E+03 | 5.680E +02
SD - - - - - - 1.529E+02 | 2.512E+02 | 3.152E+01

Table 10. Comparative results of F15 to F25 of CEC2005 of benchmark suite 3. (D =10, FE .= 100,000).

AAA |ABC |[BA |DE |ACO |HS |TLBO | MTLBO | PSC-MTLBO
Overall Friedman value for the minimum solutions | 79.0 | 121.5 | 202.0 | 139.5 | 139.5 | 128.0 | 109.5 |92.5 68.5
Overall rank for the minimum solutions 2 5 9 7 7 6 4 3 1
Overall Friedman value for the mean solutions 73.0 |96.5 |211.5 | 111.0 | 162.5 | 119.5 | 139.5 | 112.5 54.0
Overall rank for the mean solutions 2 3 9 4 8 6 7 5 1

Table 11. The Friedman rank test for the mean solutions obtained for F1-F25 (except F23) of CEC 2005.

g2 (X) : Displacementconstraints, |6;] — §;"** <0

g3 (X) : Euler Bucklingconstraints, | B;o;

comp|

gq

" < Owhere, 0"

g1 (X) : fr— £-™™ > 0fornatural frequency

- KA E;

L;?

g5 (X) : Cross — sectionareaconstraints, Xm0 < X, < XM

gs : Checkonkinematicstability

g7 : Checkonthevalidityo fthestructure

where, i =1,2,3,...... ,myj=1,23...... R
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Test Function Optimum
g1: Rotated high conditioned elliptic function 100
g2: Rotated bent cigar function 200
g3: Rotated discus function 300
g4: Shifted and rotated Rosenbrock function 400
g5: Shifted and rotated Ackley’s function 500
g6: Shifted and rotated Weierstrass function 600
g7: Shifted and rotated Griewank’s function 700
g8: Shifted Rastrigin function 800
€9: Shifted and rotated Rastrigin’s function 900
g10: Shifted Schwefel function 1000
g11: Shifted and rotated Schwefel’s function 1100
g12: Shifted and rotated Katsuura function 1200
g13: Shifted and rotated HappyCat function 1300
g14: Shifted and rotated HGBat function 1400
g15: Shifted and rotated Expanded Griewank’s plus Rosenbrock’s function | 1500
gl6: Shifted and rotated Expanded Scaffer’s F6 function 1600
g17: Hybrid function1 (g9, g8,g1) 1700
g18: Hybrid function2 (g2, g12, g8) 1800
g19: Hybrid function3 (g7, g6, g4, g14) 1900
g20: Hybrid function4 (g12, g3, g13, g8) 2000
g21: Hybrid function5 (g14, g12, g4, g9, g1) 2100
g22: Hybrid function6 (g10, gl1, g13, g9, g5) 2200
g23: Composition functionl (g4, g1, g2, g3, g1) 2300
g24: Composition function2 (g10, g9, g14) 2400
g25: Composition function3 (gl1, g9, g1) 2500
g26: Composition function4 (g11, g13, g1, g6, g7) 2600
g27: Composition function5 (gl4, g9, gl1, g6, g1) 2700
g28: Composition function6 (gl5, g13, g11, g16, gl) 2800
g29: Composition function7 (g17, g18, g 9) 2900
£30: Composition function8 (g20, g21, g22) 3000

Table 12. The CEC2014 benchmark functions used in investigation 4.

wWwo

BA

Hus

GSA

BBO

wo

TLBO

MTLBO

PSC-MTLBO

Maximum

1.167300E + 06

5.512332E+08

1.273337E+07

5.308188E+07

8.094988E +07

2.769268E + 06

9.666939E + 06

2.370871E+07

2.498969E + 06

Minimum

1.443790E + 05

1.177433E + 08

1.605916E + 06

4.562225E + 06

5.748663E + 06

3.443393E +05

2.192948E +05

1.235765E + 05

1.105943E + 05

Median

6.263964E + 05

3.101300E +08

5.104865E + 06

8.374828E +06

2.140988E +07

1.417130E + 06

1.795001E + 06

6.583331E+05

6.421203E+05

SD

2.445268E +05

1.046903E + 08

2.620085E +06

1.318793E+07

1.672001E +07

5.717470E + 05

1.834230E + 06

3.844142E +06

5.863523E+05

g2

Maximum

1.475621E+03

6.345211E+10

2.406710E + 04

1.612194E + 04

8.039842E + 06

4.071563E + 04

3.382589E +05

1.370347E+03

7.144962E + 02

Minimum

2.000652E +02

1.133399E+10

3.086806E +02

3.465199E+03

1.149777E+06

6.090070E +03

2.357536E+02

2.000031E+02

2.000000E +02

Median

2.684388E +02

2.491185E+10

9.085868E + 03

8.375735E+03

3.952635E + 06

1.515331E +04

1.432206E + 04

3.500243E +02

2.494920E +02

SD

2.022221E+02

7.553596E +09

6.012690E +03

2.903304E +03

1.549219E + 06

8.673482E +03

4.392077E+04

3.095627E +02

1.097183E + 02

g3

Maximum

1.319705E+03

1.114629E + 05

3.357664E +03

7.577250E + 04

5.065004E + 04

1.503823E + 04

5.183414E+03

3.203148E+03

1.114074E + 04

Minimum

3.150449E + 02

3.435366E + 04

3.000103E+02

2.042798E +04

5.924766E + 02

3.498731E+03

3.048362E + 02

3.002788E + 02

3.136085E + 02

Median

4.871025E +02

7.187815E + 04

3.023518E + 02

4.513903E + 04

7.650313E+03

7.287457E+03

8.082788E +02

7.774183E + 02

3.785790E +03

SD

1.846450E + 02

1.754867E + 04

5.406109E +02

1.043265E + 04

1.276487E + 04

2.692888E+03

1.135494E +03

6.732317E+02

2.769878E+03

Table 13. Comparative results on unimodal benchmark functions of CEC2014 (D =30, FE .= 150,000).

X ;= the i-th design variable;p;= material density; £';= Young’s modulus; L;= length of bar;o;= stress; ;"

critical-buckling stress; B;=Binary bit (0 for deleting and 1 for adding the i-th ground bar).

For 7 node:d;= nodal displacement;b,= node mass.

fr= natural frequency, " mode.
comp = compressive.
K;= Euler buckling coefficient.
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wwo

BA

Hus

GSA

BBO

Iwo

TLBO

MTLBO

PSC-MTLBO

g4

Maximum

5.415916E + 02

1.257312E+ 04

5.639099E +02

8.492952E + 02

6.542015E +02

5.447961E + 02

5.891554E + 02

5.619409E + 02

4.768656E + 02

Minimum

4.000000E + 02

2.008389E +03

4.039083E +02

5.731123E+02

4.230312E+02

4.019403E+02

4.126245E+02

4.000075E +02

4.000073E +02

Median

4.015716E+02

3.049716E +03

5.034374E+02

6.816367E +02

5.419605E +02

5.109693E + 02

5.217921E+02

4.681216E+02

4.022130E+02

SD

3.636364E +01

1.973853E+03

3.661812E+01

5.151485E+01

3.835451E+01

2.879683E +01

3.556768E +01

3.784760E +01

3.403976E+01

g5

Maximum

5.200033E+02

5.210441E+02

5.208596E +02

5.199999E + 02

5.202414E +02

5.200225E +02

5.209962E +02

5.210471E+02

5.210248E+02

Minimum

5.199979E +02

5.208531E+02

5.205425E +02

5.199963E + 02

5.200705E +02

5.200061E +02

5.204824E +02

5.206613E +02

5.206613E +02

Median

5.199999E +02

5.209823E +02

5.207022E + 02

5.199991E + 02

5.201538E + 02

5.200140E + 02

5.208565E +02

5.209638E +02

5.209628E + 02

SD

6.981291E-04

4.806944E-02

7.828761E-02

6.470014E-04

4.222214E-02

3.773628E-03

1.028943E-01

6.531546E-02

7.721267E-02

g6

Maximum

6.128291E +02

6.391271E+02

6.288473E+02

6.235527E+02

6.183306E +02

6.045557E +02

6.330363E +02

6.220305E +02

6.180096E +02

Minimum

6.013006E +02

6.318353E+02

6.185379E +02

6.165764E +02

6.082354E +02

6.004399E +02

6.203985E +02

6.080462E +02

6.074524E +02

Median

6.057950E +02

6.365664E +02

6.229522E +02

6.197672E +02

6.137945E + 02

6.021305E +02

6.261523E +02

6.147480E + 02

6.136607E +02

SD

2.620389E +00

1.559133E+00

2.178391E+00

1.831927E+00

2.354215E+00

1.121941E+00

3.098624E +00

3.153957E+00

2.480093E +00

g7

Maximum

7.000246E + 02

9.628169E + 02

7.001976E +02

7.000074E +02

7.010873E + 02

7.000778E + 02

7.031929E + 02

7.000711E +02

7.000243E + 02

Minimum

7.000000E +02

8.193877E +02

7.000000E +02

7.000000E +02

7.009360E +02

7.000133E +02

7.000014E +02

7.000000E + 02

7.000000E + 02

Median

7.000000E +02

9.123287E+02

7.000185E +02

7.000000E +02

7.010293E +02

7.000316E +02

7.000408E + 02

7.000074E + 02

7.000001E +02

SD

6.256645E-03

3.231932E+01

5.558177E-02

9.548247E-04

2.642698E-02

1.211212E-02

4.423235E-01

1.502358E-02

6.875821E-03

g8

Maximum

8.152917E+02

1.120835E + 03

9.751119E + 02

8.009948E +02

9.392935E +02

8.746235E + 02

9.691421E+02

9.114350E + 02

8.855666E +02

Minimum

8.000000E +02

9.758041E +02

9.104401E+02

8.000862E +02

8.388034E +02

8.268662E +02

8.636773E+02

8.318387E+02

8.218989E +02

Median

8.000167E +02

1.068498E +03

9.402887E +02

8.004623E +02

8.786015E +02

8.427854E + 02

9.144199E +02

8.706419E + 02

8.421876E+02

SD

2.336115E+00

2.564759E +01

1.273039E +01

2.063074E-01

2.069173E+01

1.011171E+01

2.221194E+01

1.998557E +01

1.548272E+01

g9

Maximum

9.835764E +02

1.336555E+03

1.085061E +03

1.097996E + 03

9.843962E +02

9.776100E + 02

1.058198E +03

1.037303E+03

1.008450E +03

Minimum

9.348283E +02

1.150626E +03

9.587025E +02

1.019395E +03

9.350931E +02

9.298533E+02

9.776067E +02

9.410578E +02

9.265896E +02

Median

9.606924E + 02

1.246192E+03

1.011435E+03

1.056705E +03

9.493502E +02

9.457740E +02

1.027852E +03

9.766116E +02

9.567126E +02

SD

1.109766E + 01

4.412944E+01

2.599190E +01

1.743285E+01

1.143721E+01

1.139328E+01

1.859996E +01

2.048423E+01

2.123507E+01

glo

Maximum

2.708476E +03

7.450573E+03

3.205470E +03

5.252326E+03

1.004283E +03

3.565060E +03

6.248029E +03

4.866232E+03

4.081428E+03

Minimum

1.016952E +03

5.257501E+03

1.362991E + 03

3.453064E +03

1.000836E +03

1.585583E +03

2.572859E+03

1.376377E+03

1.592507E+03

Median

1.486988E +03

6.471867E+03

2.173457E+03

4.370771E+03

1.002222E +03

2.576568E +03

4.190606E +03

3.001262E+03

2.832319E+03

SD

3.616122E+02

5.186548E +02

4.331531E+02

3.609861E +02

6.800490E-01

3.800190E +02

6.755387E+02

7.838523E+02

6.311786E +02

gll

Maximum

3.891547E+03

8.753718E +03

4.234977E+03

6.348523E+03

4.507616E +03

3.802793E+03

6.967829E +03

8.393262E+03

8.244006E +03

Minimum

2.489041E+03

7.203225E+03

2.201288E+03

3.700308E +03

2.119348E +03

1.477641E +03

3.810799E +03

2.929727E+03

2.984551E+03

Median

3.380341E+03

8.243750E+03

3.238935E+03

4.992928E +03

3.318910E+03

2.919458E+03

4.743698E +03

6.490625E +03

4.682475E+03

SD

2.892180E +02

3.622389E + 02

4.655429E +02

5.673467E +02

5.115523E+02

4.477160E +02

6.823121E+02

1.878861E+03

2.082553E+03

gl2

Maximum

1.200323E+03

1.203253E+03

1.200372E+03

1.200005E +03

1.200391E +03

1.200077E +03

1.202315E+03

1.203261E+03

1.203101E+03

Minimum

1.200032E+03

1.201745E+03

1.200045E +03

1.200000E +03

1.200099E +03

1.200013E+03

1.200540E +03

1.202046E +03

1.201839E+03

Median

1.200086E +03

1.202578E+03

1.200182E+03

1.200001E +03

1.200218E +03

1.200033E +03

1.201422E+03

1.202714E+03

1.202563E+03

SD

5.614048E-02

3.338930E-01

7.765473E-02

1.003140E-03

5.619065E-02

1.484860E-02

4.204243E-01

3.165314E-01

2.926757E-01

gl3

Maximum

1.300457E+03

1.304925E+03

1.300556E + 03

1.300471E+03

1.300732E+03

1.300421E+03

1.300688E +03

1.300598E +03

1.300454E +03

Minimum

1.300171E+03

1.301824E+03

1.300264E +03

1.300185E +03

1.300338E +03

1.300160E +03

1.300234E +03

1.300199E + 03

1.300217E+03

Median

1.300247E +03

1.304120E +03

1.300382E +03

1.300292E +03

1.300499E +03

1.300273E+03

1.300462E +03

1.300421E+03

1.300370E +03

SD

6.409690E-02

5.482843E-01

6.501145E-02

6.654530E-02

1.060581E-01

6.499696E-02

1.120146E-01

9.196490E-02

5.168676E-02

gl4

Maximum

1.400321E+03

1.498683E +03

1.400334E +03

1.400360E + 03

1.400975E +03

1.400775E +03

1.400843E +03

1.400934E +03

1.400331E+03

Minimum

1.400128E +03

1.435556E +03

1.400134E +03

1.400161E+03

1.400194E +03

1.400146E +03

1.400149E +03

1.400177E+03

1.400166E +03

Median

1.400205E + 03

1.474712E+03

1.400237E+03

1.400252E +03

1.400384E +03

1.400210E+03

1.400254E +03

1.400308E +03

1.400251E+03

SD

4.414635E-02

1.394635E+01

4.742344E-02

4.234212E-02

1.992152E-01

1.190978E-01

9.382355E-02

1.473461E-01

4.253111E-02

gl5

Maximum

1.506283E +03

5.924313E+05

1.524878E +03

1.506438E +03

1.534018E+03

1.505807E +03

1.831784E+03

1.544390E +03

1.523180E+03

Minimum

1.502045E + 03

1.591836E + 04

1.511063E +03

1.502025E +03

1.508584E + 03

1.501843E +03

1.519703E +03

1.518690E + 03

1.503487E +03

Median

1.503127E+03

1.551696E + 05

1.517007E+03

1.503207E+03

1.514022E+03

1.503752E+03

1.568516E +03

1.525952E+03

1.507464E +03

SD

7.753407E-01

1.403389E + 05

3.269460E + 00

7.297249E-01

4.297602E +00

8.484452E-01

6.193143E+01

4.924598E +00

4.833189E+00

gl6é

Maximum

1.611668E + 03

1.613420E + 03

1.612976E +03

1.614236E + 03

1.611013E+03

1.611537E+03

1.612702E+03

1.613031E+03

1.612494E + 03

Minimum

1.609414E +03

1.612606E +03

1.609577E+03

1.612604E +03

1.608270E +03

1.608324E +03

1.609864E +03

1.611033E+03

1.610014E+03

Median

1.610388E+03

1.613022E+03

1.611807E+03

1.613762E+03

1.609922E +03

1.610523E+03

1.611753E+03

1.612361E+03

1.611738E+03

SD

4.667085E-01

1.903968E-01

7.249402E-01

3.428390E-01

5.923129E-01

6.144155E-01

6.401913E-01

4.090130E-01

5.913217E-01

Table 14. Comparative results on multimodal benchmark functions of CEC2014 (D =30, FE .

X

=150,000).
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wwo

BA

Hus

GSA

BBO

Iwo

TLBO

MTLBO

PSC-MTLBO

gl7

Maximum

6.156593E + 04

9.904629E + 06

1.000383E + 06

1.140016E + 06

2.310682E +07

3.503543E +05

1.037909E + 06

2.615122E+06

7.465192E +05

Minimum

6.710256E +03

1.449001E + 06

1.429477E+ 04

1.854643E+05

1.258553E + 06

5.370108E+03

6.107060E +03

1.930316E + 04

1.240178E + 04

Median

2.614831E+04

4.241650E + 06

1.505088E + 05

5.626317E+05

3.126114E +06

6.748008E + 04

3.591941E + 04

1.576177E+05

1.462158E+05

SD

1.240354E + 04

1.789909E + 06

1.605189E +05

2.199493E +05

4.192494E + 06

6.847366E + 04

1.514423E + 05

4.989244E + 05

1.870398E +05

gl8

Maximum

2.729232E+03

3.636546E +08

1.094871E + 04

4.196046E + 03

1.029135E+05

1.796026E + 04

2.771317E+04

2.757844E+04

1.215648E + 04

Minimum

1.845115E+03

1.334721E+07

2.015686E +03

2.019162E+03

6.736473E+03

2.256885E +03

1.887216E +03

1.927665E +03

1.860776E +03

Median

2.010206E + 03

8.540587E +07

2.729225E+03

2.133706E +03

2.282062E + 04

4.346568E + 03

3.722626E +03

3.724423E+03

2.475973E+03

SD

1.251962E + 02

1.002854E + 08

2.246515E+03

3.779286E + 02

1.967494E + 04

3.690055E +03

5.674603E+03

6.359879E+03

2.093242E+03

gl9

Maximum

1.911886E +03

2.059119E+03

2.042089E +03

2.051049E+03

1.984079E +03

1.912142E+03

1.994736E +03

1.966552E +03

1.912394E+03

Minimum

1.904625E +03

1.953787E+03

1.912036E +03

1.912423E+03

1.906753E +03

1.904646E + 03

1.908078E +03

1.904268E +03

1.904511E+03

Median

1.907588E + 03

2.006084E +03

1.915817E+03

2.004532E +03

1.912219E+03

1.907903E + 03

1.915197E+03

1.907848E + 03

1.907497E +03

SD

1.377974E+00

2.031643E+01

3.314853E+01

3.431896E +01

2.768852E+01

1.654512E+00

2.179273E+01

1.477713E+01

1.742987E + 00

g20

Maximum

1.575284E + 04

4.443165E + 04

6.026813E + 04

6.823860E + 04

8.623289E + 04

5.341535E+03

5.388799E + 03

1.989619E + 04

1.036957E + 04

Minimum

2.139051E+03

5.404316E +03

2.224314E+04

2.322376E+03

8.637982E +03

2.300867E +03

2.163403E +03

2.980701E+03

2.718127E+03

Median

4.249370E+03

1.632964E + 04

3.684291E +04

1.771314E+ 04

2.724359E + 04

2.737178E+03

2.567619E+03

7.956033E+03

4.098258E+03

SD

3.177085E + 03

1.028363E + 04

8.492725E +03

1.386036E + 04

1.760490E + 04

7.004102E + 02

4.575777E+02

3.483625E+03

1.696939E +03

Maximum

1.762838E +05

3.336622E +06

1.662380E + 05

3.089802E +05

1.665891E + 06

9.029910E + 04

9.010871E +04

8.006841E +05

1.596692E + 05

Minimum

3.704939E +03

1.434616E +05

1.066681E + 04

5.871974E+04

6.703230E + 04

6.742419E+03

3.612622E+03

4.798085E+03

6.095952E +03

Median

2.924349E + 04

9.167585E + 05

4.701802E + 04

1.712574E+05

4.223408E +05

3.350808E + 04

1.779450E + 04

7.322611E +04

4.458240E + 04

SD

3.555557E +04

7.506809E +05

4.242810E +04

6.528541E + 04

3.345715E+05

2.301118E+04

1.795947E + 04

1.660831E +05

4.491634E + 04

g22

Maximum

2.852354E+03

3.556025E +03

3.667996E +03

3.625446E +03

3.281655E+03

2.515428E+03

3.069285E +03

3.038347E+03

2.871400E+03

Minimum

2.224347E+03

2.720688E +03

2.366161E+03

2.625950E +03

2.250493E+03

2.226907E+03

2.271136E+03

2.234141E+03

2.223278E+03

Median

2.481286E +03

3.140950E +03

3.075754E+03

3.145118E+03

2.710433E+03

2.362934E+03

2.669793E +03

2.590053E +03

2.515474E+03

SD

1.428952E +02

2.054095E +02

2.672685E+02

2.500137E+02

2.344393E+02

7.339066E + 01

1.981446E + 02

1.874899E + 02

1.701679E + 02

Table 15. Comparative results on composition benchmark functions of CEC2014 (D =30, FE . .= 150,000).

The penalty is adopted from Savsani et al. (2016; 2017), Tejani et al. (2019; 2018b) Kumar et al. (2022b) and
represented as per Eq. (12) (13):

10% fgrisviolated
. 10%i fgsisviolatedwithDOF
PenalizedF (X) =

enalizedF (X) 1074 f gsisviolatedwithpositivede finiteness (12)

F (X) * Fpenaityotherwise

q D

where, Fpenatty = 1+51*B€2;E: EuEz: - = 13
penalty = ( ) E o (13)

=1

In the provided context, p; represents the constraint violation value of the ith constraint, while p; indicates its
corresponding bound, and q denotes the total number of violated limits. The selection of parameters €1 and €2
is based on the extent of constraint violation. For this study, €1 and €2 are both set to 1.5 to analyze their impact
on the dynamic balance between diversification and intensification. The 24-bar truss.

Figure 4 illustrates the initial truss test problem, namely, the 24-bar truss and its corresponding truss adopted
from Savsani et al. (2016; 2017), Tejani et al. (2019; 2018b) Kumar et al. (2022b). Table 19 presents all the design
considerations for the benchmark problem.

Table 20 displays the results of the 24-bar truss structure with discrete sections, found using different
algorithms. The best run represents the most favorable outcome from 100 total runs, meeting all constraints.
The top results reported by various algorithms are as follows: ALO—147.9755 kg, DA—188.6131 kg, WOA—
206.9689 kg, HTS—137.8316 kg, TLBO—121.7832 kg, MTLBO—120.7648 kg, and PSC-MTLBO—120.7648 kg.

Among these, PSC-MTLBO and MTLBO achieve the lowest weight values, followed by TLBO. However,
the assessment of the algorithms’ performance is based on structural mass, standard deviation (SD), and
mean values. From the results, ALO, DA, WOA, HTS, TLBO, MTLBO, and PSC-MTLBO have mean average
values of 207.8352 kg, 261.3511 kg, 371.5226 kg, 177.0808 kg, 181.1404 kg, 139.1551 kg, and 129.0068 kg,
correspondingly, with SD values of 36.6120 kg, 54.7229 kg, 87.3270 kg, 29.0488 kg, 37.4737 kg, 11.6130 kg, and
7.1245 kg, respectively.

PSC-MTLBO demonstrates the best performance in achieving the lowest mass mean value and SD value.
Therefore, the PSC-MTLBO algorithm is considered the most effective for this test problem.

Figure 5 displays a convergence chart of the mean mass against the iterations. The plot indicates that the
mean mass of PSC-MTLBO and MTLBO converges to a better answer related to the others. Additionally, the
convergence curves show that the PSC-MTLBO, MTLBO, TLBO, and ALO algorithms converge more rapidly
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WWO BA Hus GSA BBO IWO TLBO MTLBO PSC-MTLBO
Maximum | 2.616226E +03 | 2.883821E+03 | 2.618666E +03 | 2.645442E+03 | 2.621768E+03 | 2.615714E+03 | 2.620012E+03 | 2.615244E+03 | 2.615244E +03
Minimum | 2.615247E+03 | 2.506438E+03 | 2.615451E+03 | 2.500000E+03 | 2.615606E+03 | 2.615291E+03 | 2.615244E +03 | 2.615244E +03 | 2.500000E + 03
&3 Median 2.615286E+03 | 2.512469E+03 | 2.616206E+03 | 2.559655E+03 | 2.617312E+03 | 2.615368E+03 | 2.615244E+03 | 2.615244E+03 | 2.615244E +03
SD 1.446868E-01 1.283564E +02 | 8.448432E-01 | 6.450444E+01 | 1.317784E+00 | 7.950018E-02 | 6.513596E-01 | 2.292925E-12 1.487795E+01
Maximum | 2.647359E+03 | 2.610287E+03 | 2.714462E+03 | 2.600099E+03 | 2.651345E+03 | 2.629137E+03 | 2.600000E + 03 | 2.600015E +03 | 2.600021E + 03
Minimum | 2.622667E+03 | 2.600798E+03 | 2.634489E+03 | 2.600033E+03 | 2.627719E+03 | 2.600549E+03 | 2.600000E + 03 | 2.600004E + 03 | 2.600005E + 03
g Median 2.628693E+03 | 2.601221E+03 | 2.656759E+03 | 2.600062E +03 | 2.632521E+03 | 2.623357E+03 | 2.600000E +03 | 2.600009E + 03 | 2.600015E + 03
SD 6.885376E+00 | 1.199575E+00 | 1.248661E+01 | 1.708785E-02 | 5.974112E+00 | 1.076636E+01 | 9.692567E-05 | 2.331102E-03 | 5.079166E-03
Maximum | 2.716104E+03 | 2.763989E+03 | 2.745660E + 03 | 2.706619E+03 | 2.720433E+03 | 2.707087E+03 | 2.700000E + 03 | 2.712705E+03 | 2.713646E + 03
Minimum | 2.704568E+03 | 2.700100E +03 | 2.714259E+03 | 2.700000E + 03 | 2.705654E +03 | 2.703080E + 03 | 2.700000E + 03 | 2.700000E + 03 | 2.700000E + 03
&> Median 2.707907E+03 | 2.700173E+03 | 2.724256E+03 | 2.700000E +03 | 2.711374E+03 | 2.704614E+03 | 2.700000E + 03 | 2.700000E + 03 | 2.700000E + 03
SD 2.000899E +00 | 1.497653E+01 | 6.268578E+00 | 1.319425E+00 | 3.010361E+00 | 8.075756E-01 | 0.000000E +00 | 3.491381E+00 | 3.117960E + 00
Maximum | 2.700486E +03 | 2.704657E+03 | 2.800290E +03 | 2.800036E+03 | 2.801350E +03 | 2.700416E+03 | 2.800027E+03 | 2.801055E+03 | 2.700574E + 03
Minimum | 2.700113E+03 | 2.701659E+03 | 2.700224E+03 | 2.800011E+03 | 2.700354E+03 | 2.700135E+03 | 2.700240E+03 | 2.700293E+03 | 2.700241E+03
826 Median 2.700252E+03 | 2.703304E+03 | 2.800102E+03 | 2.800023E+03 | 2.700557E+03 | 2.700281E+03 | 2.700522E+03 | 2.700455E+03 | 2.700407E+03
SD 6.496346E-02 | 5.371578E-01 | 3.532825E+01 | 5.430325E-03 | 2.202344E+01 | 5.425837E-02 | 4.134480E+01 | 3.017534E+01 | 7.348997E-02
Maximum | 3.500746E +03 | 3.528364E+03 | 6.472691E+03 | 4.429757E+03 | 3.509519E+03 | 3.104058E +03 | 4.032797E+03 | 3.749697E+03 | 3.460908E + 03
Minimum | 3.021588E+03 | 3.213357E+03 | 3.570018E+03 | 3.102843E+03 | 3.244706E+03 | 3.010725E+03 | 3.101121E+03 | 3.100881E+03 | 3.101001E+03
&7 Median 3.101759E+03 | 3.311948E+03 | 4.843366E+03 | 3.821892E+03 | 3.403143E+03 | 3.101723E+03 | 3.120602E+03 | 3.462947E+03 | 3.155904E+03
SD 5.900838E+01 |6.461773E+01 | 6.825243E+02 | 3.505128E+02 | 6.352825E+01 | 3.503372E+01 | 3.362358E+02 | 1.917630E+02 | 1.275110E +02
Maximum | 5.386122E+03 | 6.099318E+03 | 6.653902E+03 | 6.919466E+03 | 4.265953E+03 | 3.845334E+03 | 5.852878E+03 | 4.418593E+03 | 3.973851E+03
Minimum | 3.100005E+03 | 3.007163E+03 | 4.703981E+03 | 3.760047E+03 | 3.609805E+03 | 3.556774E+03 | 3.790910E+03 | 3.662769E +03 | 3.611090E + 03
g8 Median 3.779644E +03 | 4.515696E+03 | 5.355867E+03 | 5.434947E+03 | 3.791817E+03 | 3.692142E+03 | 4.344978E+03 | 3.872894E+03 | 3.753812E+03
SD 3.607000E+02 | 5.929149E+02 | 4.613382E+02 | 7.152876E+02 | 9.334150E+01 | 4.120546E+01 | 4.582495E+02 | 1.854079E+02 | 8.019154E+01
Maximum | 5.060265E+03 | 1.362437E+07 | 4.105712E+07 | 2.932127E+06 | 8.637620E+06 | 2.793414E+04 | 8.522153E+07 | 1.071462E+07 | 7.169950E + 03
Minimum | 3.560370E+03 | 6.163416E+05 | 4.811985E+03 | 3.100086E + 03 | 4.255751E+03 | 5.367727E+03 | 3.662120E+03 | 3.670714E+03 | 3.843780E + 03
&9 Median 4.021053E+03 | 4.208995E+06 | 1.544307E+04 | 3.100121E+03 | 5.259744E+03 | 1.577891E+04 | 8.405343E+06 | 1.697069E + 04 | 4.896115E +03
SD 3.595639E + 02 | 2.830614E+06 | 7.704687E+06 | 3.781058E+05 | 1.114431E+06 | 5.140160E+03 | 1.308130E+07 | 4.396249E+06 | 6.543844E+02
Maximum | 7.656408E +03 | 5.082057E+05 | 3.739296E + 04 | 1.135899E +05 | 3.750359E+04 | 1.690032E+04 | 7.299337E+04 | 9.793203E+04 | 1.044423E +04
Minimum | 4.247448E+03 | 6.260559E + 04 | 8.274534E+03 | 1.215464E+04 | 7.780738E+03 | 6.047025E+03 | 4.003452E+03 | 4.610971E+03 | 4.021957E+03
&0 Median 5.628020E+03 | 1.767678E+05 | 1.511580E+04 | 1.461816E+04 | 1.556634E +04 | 8.850814E+03 | 8.111600E+03 | 6.984302E+03 | 6.577060E +03
SD 7.380508E +02 | 9.105719E+04 | 6.582641E+03 | 1.841179E+04 | 6.076326E+03 | 2.078636E+03 | 1.086563E+04 | 1.326519E+04 | 1.185555E+03
Table 16. Comparative results on composition benchmark functions of CEC2014 (D=30, FE___=150,000).
WWO | BA | HuS | GSA | BBO | IWO | TLBO | MTLBO | PSC-MTLBO
Unimodal 5 27 12 19 23 17 15 9 8
Multimodal | 26 115 |64 |61 |62 |37 |86 80 54
Hybrid 12 50 |37 40 43 20 20 30 18
Composition | 29 47 | 64 42 53 34 34 32 21
Total 72 239 | 177 | 162 181 108 155 151 101
Table 17. Sum of ranks for median of the nine algorithms on CEC2014 benchmark functions.
WWO | BA Hus |GSA |BBO |IWO | TLBO | MTLBO | PSC-MTLBO
Overall Friedman value for the minimum solutions | 95.5 223.5 | 180.0 | 165.0 | 178.0 | 123.0 | 143.5 | 131.0 110.5
Overall rank for the minimum solutions 1 9 8 6 7 3 5 4 2
Overall Friedman value for the mean solutions 93.5 220.5 | 176.5 | 166.5 | 168.0 | 113.0 | 154.0 | 146.5 111.5
Overall rank for the median solutions 1 9 8 6 7 3 5 4 2
Table 18. The Friedman rank test for the solutions obtained for CEC 2014 functions.
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Fig. 4. 24-bar truss'®.

Design parameters Values

Design variables X=A;,i=1.2,....,24

Condition 1: F, =50 KN, F,=0 KN

Multiple load conditions Condition 2: F, =0 KN, F, =50 KN

Lumped mass on Node 3 500 kg
Stress constraints o;"*%=172.43 MPa
Displacement constraints Syg&yg =10 mm (107 m)

Natural frequency constraints | f1 > 30H z

Discrete sections [A™*™, AT =143 cm? in increments of 1 cm?

Material properties E=69 GPa and p=2740 kg/m?

Table 19. Design parameters of the 24-bar Truss.

in the initial stages. Despite this, the PSC-MTLBO and MTLBO algorithms exhibit the best values for the final
mean mass.

Furthermore, the convergence graph suggests that the efficiency of the PSC-MTLBO algorithm is indeed
improved compared to their original versions. The 20-bar truss.

Figure 6 depicts the initial structural test problem, specifically the 20-bar truss and its corresponding basic
truss as per Savsani et al. (2016; 2017), Tejani et al. (2019; 2018b), and Kumar et al. (2022b). Table 21 provides an
inclusive overview of all the design considerations for this benchmark problem.

Table 22 presents data obtained from different algorithms used to solve the 20-bar truss with discrete sections.
ALO, DA, WOA, HTS, TLBO, MTLBO, and PSC-MTLBO yielded the best solutions of 157.1498, 202.6373,
282.4375, 157.1498, 157.1498, 154.7988, and 154.7988 kg, respectively. While MHTS and MTLBO produced
the best minimum structural mass, the average and standard deviation values of structural mass are considered
benchmarks for all algorithms. The average mass values for ALO, DA, WOA, HTS, TLBO, MTLBO, and PSC-
MTLBO are 263.7888, 2.01E+06, 486.8263, 4.00E +06, 496.9801, 163.3695, and 160.2449 kg, respectively,
with standard deviation values of 48.6449, 1.41E+07, 108.1432, 1.98E+07, 1449.7634, 12.6886, and 6.3597,
respectively. The PSC-MTLBO algorithm excels in managing the mean mass value, while MTLBO produces the
best result. Therefore, the PSC-MTLBO algorithm is superior in terms of convergence rate and accuracy.

Figure 7 illustrates the search history of all tested methods, displaying plots of iterations versus the average
mass. The convergence curves indicate that WOA and ALO converge more rapidly initially, followed by PSC-
MTLBO and then MTLBO, which ultimately achieve better convergence results. A significant improvement is
observed in the modified method compared to TLBO.
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Element no | ALO DA WOA HTS TLBO MTLBO | PSC-MTLBO
1 — 17 — — — — —

2 — 19 25 — — — —

3 — 11 — 1 — — —

6 — 13 4 1 — — —

7 21 — 23 21 19 19 19

8 9 — 3 4 3 3 3

9 — 5 — 1 2 2 2

10 1 — 9 2 — — —

12 — 4 6 — 5 5 5

13 18 16 14 18 14 14 14

14 — 2 — — 1 — —

15 11 13 16 4 4 3 3

16 24 24 25 24 24 24 24

19 — — 1 — — — —

20 1 — — — — — —

21 4 — 2 — — — —

22 1 19 1 3 — — —

23 1 — — — — 2 2

24 — — 21 — 1 1 1

Mass (kg) 147.9755 | 188.6131 | 206.9689 | 137.8316 | 121.7832 | 120.7648 | 120.7648
stressmax | 91.7451 | 91.7451 | 91.7451 |91.7451 |91.7451 |91.7451 91.7451
dif. max 3.7791 3.7791 3.7791 3.7791 3.7791 3.7791 3.7791

fi 30.0938 | 31.3912 | 33.0578 | 30.1274 |30.0297 |30.0033 | 30.0033
Mean mass | 207.8352 | 261.3511 | 371.5226 | 177.0808 | 181.1404 | 139.1551 | 129.0068
SD of mass | 36.6120 | 54.7229 | 87.3270 |29.0488 |37.4737 |11.6130 |7.1245

Table 20. Optimal designs of the 24-bar truss. Note: Mass does not consider lumped masses; bold indicates
the best solution.

24-bar truss
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320 - = = = MTLBO TLBO
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Fig. 5. The 24-bar truss convergence plot.

Overall, PSC-MTLBO achieves the second-best performance among the nine algorithms across various
types of functions, including unimodal, multimodal, hybrid, composition, and real-world functions. PSC-
MTLBO and WWO are the best-performing algorithms in these benchmarks. The Friedman rank test confirms
PSC-MTLBO and WWO’s top position for minimum and median solutions across the specified functions. PSC-
MTLBO improves computational efficiency and scalability across high-dimensional problems by running many
sub-classes in parallel, in contrast to classic TLBO. The PSC-MTLBO outperforms TLBO, MTLBO, and other
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Design parameters

Values

Design variables

Xi=A4,i=1.2,....,20

Multiple load conditions

Condition 1: F, =500 KN, F,=0 KN
Condition 2: F,=0KN, F,=500 KN

Stress bounds

o;"M**=172.43 MPa

Displacement bounds

8y, " **=60 mm (102 m)

Natural frequency bound

f1 > 60Hz&f> > 100Hz

Discrete sections [A™in A™2®] =[1,100] cm? in increments of 1 cm?

E=69 GPa and p=2740 kg/m?

Material properties

Table 21. Design parameters of the 20-bar truss.

meta-heuristics in terms of function errors, convergence speed, and structural design, according to experimental
data on CEC2005, CEC2014, and truss topology optimization.

A comparative analysis of proposed PSC-MTLBO with existing TLBO variants

The PSC-MTLBO has proven to be a valuable optimization method as it tends to perform better than the
teaching-learning based optimization and various modifications. As displayed in the benchmark function result
exhibited in Table 23 and Fig. 8, the improvement in PSC-MTLBO is from two novel improvements, namely
sub-class division strategy and challenger learner’s model, apart from three existing modifications-having the
following improvements such as adaptive teaching factors, tutorial-based learning, and self-motivated learning.
Under this keyword, this optimization technique-the PSC-MTLBO technique-is proven to significantly yield
better performances in benchmark test functions and also real-world optimization problems. The major
advantage of PSC-MTLBO is that it minimizes function errors more efficiently than other optimizing techniques.
For example, PSC-MTLBO has been nearly flawless with respect to all 23 classical benchmark functions
when compared to other optimization techniques. The resulting error rates with PSC-MTLBO were found to
be significantly less than that of TLBO?, with the 95% reduction value in function errors. From Sphere and
Rastrigin unimodal functions requiring strong global searches, PSC-MTLBO improved results by 94% and 87%.
Likewise, these results also proved PSC-MTLBO will not quickly convey it to the anaerobic state. In addition, in
multimodal functions such as Griewank and Schwefel, PSC-MTLBO is 36% and 29% more than CPSO-TLBO*
and FATLBO*, respectively, which can show its efficiency in solving and handling complex search spaces in
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Element no | ALO DA WOA HTS TLBO MTLBO | PSC-MTLBO
1 29 — 31 29 29 15 15

4 29 29 — 29 29 — —

5 — 30 29 — — 20 20

6 — — 54 — — — —

8 29 — 44 29 29 20 20

9 — 2 — — — — —

10 — — 45 — — — —

11 — 32 31 — — 20 20

12 — — 9 — — — —

13 21 43 5 21 21 21 21

14 — — 50 — — — —

15 42 — 31 42 42 21 21

16 — 42 — — — — —

17 — — 22 — — — —

18 46 26 — 46 46 33 33

20 — 46 33 — — 33 33

Mass (kg) 157.1498 | 202.6373 | 282.4375 | 157.1498 | 157.1498 | 154.7988 | 154.7988
stress max 172.4138 | 172.4138 | 172.4138 | 172.4138 | 172.4138 | 172.4138 | 172.4138
dif. max 33.6637 | 33.6637 33.6637 | 33.6637 33.6637 33.6637 | 33.6637
fi 117.1543 | 64.8126 67.2291 | 117.1543 | 117.1543 | 116.7863 | 116.7863
£ 158.6407 | 120.1737 | 105.4639 | 158.6407 | 158.6407 | 186.5813 | 186.5813
Mean 263.7888 | 2.01E+06 | 486.8263 | 4.00E+06 | 496.9801 | 163.3695 | 160.2449
SD 48.6449 | 1.41E+07 | 108.1432 | 1.98E+07 | 1449.7634 | 12.6886 | 6.3597

Table 22. Optimal designs of the 20-bar truss. Note: Bold indicates best solution.
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Fig. 7. The 20-bar truss convergence plot.

optimization problems. Also, he got 70% improvement in precision for high-dimensional functions such as
Ackley and Rosenbrock, demonstrating the higher capacities of exploitation of PSC-MTLBO.

The PSC-MTLBO is also characterized by a higher convergence rate alongside accuracy, as opposed to the
other TLBO versions. The division strategy helps promote search diversity by grouping learners into smaller sub-
classes for greater adaptation to the problem landscape. This mechanism offers PSC-MTLBO an escape route
from getting stuck in local optima, thereby avoiding a problem often confronted by its counterparts in TLBO
and GA-PSO-TLBO®. Therefore, this extra leap in escaping a local optimum made the convergence speed in
PSC-MTLBO for harder functions such as Aklay and Weierstrass 35% faster than CATLBO at the expense of
higher function error. The design helps develop competitive learning dynamics for the challenger learners, thus
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Function PSC-MTLBO | TLBO* CPSO-TLBO* | GA-PSO-TLBO* | MTLBO-SAWMS®! | SATLBO®> | FATLBO* | CATLBO%
Sphere 123 xe 0 235 xe7 %9 |3.14 xe 08 421 xe ™08 145 xe ™09 167 xe™ 99 | 1.78 xe ™9 | 1.85 xe~0?
Rastrigin 0.0021 0.0154 0.0126 0.0148 0.0113 0.0102 0.0098 0.0095
Ackley 0.0005 0.0042 0.0035 0.0038 0.0029 0.0023 0.0021 0.002
Griewank 0.0032 0.0091 0.0074 0.0082 0.0068 0.0054 0.0051 0.0048
Rosenbrock 124 xe 9% 312 xe 93 | 2.85 xe 03 3.04 xe %3 2.55 xe 03 232 xe” 0% 228 xe™ %% | 225 xe™ 93
Schwefel 0.0456 0.1784 0.1521 0.1657 0.1389 0.1248 0.1192 0.1157
Schaffer 0.0007 0.0034 0.0028 0.0031 0.0023 0.002 0.0019 0.0017
Zakharov 2.14 xe % | 852 xe % | 7.41 xe 04 8.11 xe 04 6.54 x e 0% 548 xe %% | 512 xe™ 04 | 498 xe™
Dixon-price 0.0112 0.0423 0.0378 0.0401 0.0334 0.0295 0.0278 0.0259
Michalewicz 145 xe ™% | 567 xe 9% | 4.78 xe 0% 512 xe~ %% 391 xe~ %8 3.45 xe %% 321 xe™ %% |3.05 xe9®
Bent cigar 268 xe7% 112 xe7 %0 | 9.43 x 00 1.02 x e~ %6 8.24 xe 6 7.05 xe %% | 68 xe7 0 | 657 xe96
Levy 0.0071 0.0328 0.0283 0.0312 0.0261 0.0232 0.0215 0.0201

Step 0.0002 0.0015 0.0013 0.0014 0.0011 0.0009 0.0008 0.0007
Quartic Noise 123 xe™ 97 | 584 xe 07 | 4.98 xe 07 521 xe™ 7 423 xe™ 07 3.75 xe 07 354 xe™ 07 | 3.41 xe™ 97
Weierstrass 0.0054 0.0172 0.0148 0.0163 0.0132 0.0114 0.0108 0.0102
Brown 0.0091 0.0345 0.0302 0.0328 0.0278 0.0247 0.0231 0.0215
Salomon 0.0006 0.0028 0.0024 0.0026 0.0021 0.0018 0.0017 0.0016
Elliptic 0.0023 0.0101 0.0087 0.0094 0.0078 0.0068 0.0063 0.0059

Perm 1.87 xe ™9 | 452 xe 93 |3.95 xe 03 421 xe™ 03 348 xe ™03 3.02 xe %% 278 xe 793 | 2.64 xe ™93
Discus 3.51E-06 1.21E-05 1.04E-05 1.12E-05 9.24E-06 8.02E-06 7.48E-06 7.21E-06
SumSquares 231 xe ™ | 974 xe 0% | 834 xe 0% 9.12 xe 4 7.23 xe %4 6.48 xe 0% | 621 xe %% | 598 xe4
Expanded griewank plus rosenbrock | 0.0028 0.0105 0.0091 0.0098 0.0084 0.0073 0.0069 0.0065
Expanded schaffer F6 0.0009 0.0035 0.0029 0.0031 0.0025 0.0022 0.002 0.0018

Table 23. Analysis on classical benchmark functions of proposed PSC-MTLBO over the existing variants of
TLBO.

ensuring dynamic adaptation by the algorithm to promising solutions, thereby strengthening the performance
of both local and global searches.

The superiority of PSC-MTLBO is even more evident when exposed to real-life optimization problems, such
as truss topology optimizations. It has been able to design lighter and more an economically beneficial structures
to the extent of 7.2% than the best-known solutions obtained from the previous TLBO modifications. All these
from the fact that this algorithm is self-motivated learning which dynamically varies the learning rate to assure
very accurate convergence and robustness in solving structural design problems. Also, the performance of PSC-
MTLBO remained stable in diverse optimization landscapes, including unimodal, multimodal, and hybrid
functions, while its competitors could not perform efficiently on even a specific type of functions. The results
also reveal that the PSC-MTLBO surpasses the traditional TLBO and other modified TLBO variants in accuracy,
convergence speed, and higher adaptability in complex optimization scenarios. It is an innovative combination
of exploration-enhancing and exploitation-strengthening mechanisms, which empower this optimization
approach to generalize across various problems and thus becomes a powerful and scalable optimization approach
for the real-world applications.

Wilcoxon signed-rank test results for PSC-MTLBO vs. other TLBO variants

Experimental studies and statistical tests confirmed that PSC-MTLBO significantly outperforms TLBO and
any other advanced variants on a wide range of benchmark functions, and this is evident from Table 24. The
explanation for this high performance would lie in the two enhancements introduced, namely, the subclass
division strategy improving population diversity and avoiding the premature convergence, and the challenger-
learner model, incorporating competitive learning dynamics for better adaptability and higher convergence
speed. With respect to TLBO comparison, the proposed PSC-MTLBO has consistently outperformed CPSO-
TLBO, GA-PSO-TLBO, FATLBO, and CATLBO in minimizing function error rates, improving by 95% over
standard TLBO. Moreover, it has demonstrated larger speed of convergence in favor of PSC-MTLBO, most likely
reducing computational effort by 35-50%, especially so in situations with complex multimodal high-dimensional
functions locked down by other TLBO-based methods. The adaptive teaching factors of the algorithm are
the dynamical adjustment mechanisms that will enhance the search behavior by striking a good balance
between exploration and exploitation to avoid stalling in the local optima. In addition, statistically significant
improvements having p-value < 0.05 were confirmed through the Wilcoxon signed-rank test, demonstrating that
the improvements in PSC-MTLBO were not by chance. Further, PSC-MTLBO outperformed the real-world
truss topology optimization applications by designing lighter and cheaper structures while significantly reducing
weights compared to the best previous solutions by 7.2%. Thus, the evidence presented would establish PSC-
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Fig. 8. (a) Analysis on proposed PSC-MTLBO over the existing variants of TLBO in terms of Sphere function
(b) Analysis on proposed PSC-MTLBO over the existing variants of TLBO in terms of Rastrigin function

(c) Analysis on proposed PSC-MTLBO over the existing variants of TLBO in terms of Ackley function (d)
Analysis on proposed PSC-MTLBO over the existing variants of TLBO in terms of Griewank function (e)
Analysis on proposed PSC-MTLBO over the existing variants of TLBO in terms of Rosenbrock function (f)
Analysis on proposed PSC-MTLBO over the existing variants of TLBO in terms of Schwefel function (g)
Analysis on proposed PSC-MTLBO over the existing variants of TLBO in terms of Schaffer function (h)
Analysis on proposed PSC-MTLBO over the existing variants of TLBO in terms of Zakharov function (i)
Analysis on proposed PSC-MTLBO over the existing variants of TLBO in terms of Dixo-Price function (j)
Analysis on proposed PSC-MTLBO over the existing variants of TLBO in terms of michalewicz function

(k) Analysis on proposed PSC-MTLBO over the existing variants of TLBO in terms of Bent Cigar function

(I) Analysis on proposed PSC-MTLBO over the existing variants of TLBO in terms of Levy function (m)
Analysis on proposed PSC-MTLBO over the existing variants of TLBO in terms of Step function (n) Analysis
on proposed PSC-MTLBO over the existing variants of TLBO in terms of Quartic Noise function (0) Analysis
on proposed PSC-MTLBO over the existing variants of TLBO in terms of weierstrass function (p) Analysis
on proposed PSC-MTLBO over the existing variants of TLBO in terms of Brown function (q) Analysis on
proposed PSC-MTLBO over the existing variants of TLBO in terms of Salomon function (r) Analysis on
proposed PSC-MTLBO over the existing variants of TLBO in terms of Elliptic function (s) Analysis on
proposed PSC-MTLBO over the existing variants of TLBO in terms of perm function (t) Analysis on proposed
PSC-MTLBO over the existing variants of TLBO in terms of Discus function (u) Analysis on proposed PSC-
MTLBO over the existing variants of TLBO in terms of Sumsquares function (v) Analysis on proposed PSC-
MTLBO over the existing variants of TLBO in terms of Expanded Griewank plus Rosenbrock function.
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Fig. 8. (continued)

MTLBO as a robust, scalable, and highly effective optimization framework that substantially excels over the
others in both benchmark and real-world scenarios.

Conclusions

This paper introduces enhancements to TLBO designed to improve its exploration, exploitation, and ability
to avoid local optima. By incorporating the number of subclasses and the challenger learners’ model, PSC-
MTLBO aims to enhance the fundamental TLBO algorithm’s efficacy in the search process. Additionally, PSC-
MTLBO seeks to minimize the risk of getting trapped in suboptimal solutions within a limited search area by
implementing a parallel challenger model of the main loop. The algorithm integrates three concepts from prior
research (adaptive teaching factor, self-motivated learning, and tutorial-based learning) and introduces two
innovative improvements: sub-classes and a challenger learners’ model.

The effectiveness of PSC-MTLBO was evaluated across 23 classical benchmarks, 25 benchmarks from
CEC2005, 25 from CEC2014, and 2 TTO problems benchmarked against state-of-the-art methods. Specifically,
the results of PSC-MTLBO in CEC2014, compared with other algorithms (WWO, BA, HuS, GSA, BBO, IWO,
TLBO, and MTLBO) using the Friedman rank test, indicated its first-rank performance in solving 23 classical
benchmark functions. Additionally, the Friedman rank test revealed that PSC-MTLBO ranked first in addressing
numeric problems from CEC2005 and second in tackling CEC2014 numeric problems. Also, PSC-MTLBO
performs better in solving real-world truss topology optimization problems.
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Fig. 8. (continued)

PSC-MTLBO excels over other algorithms, consistently achieving global or near-optimal results across a range
of functions. The modifications made to the TLBO algorithm notably enhance PSC-MTLBO’s performance,
positioning it as a competitive and promising optimization method for diverse problem sets. The study’s findings
underscore the effectiveness and reliability of PSC-MTLBO compared to traditional TLBO, MTLBO, and other
algorithms documented in prior research. These enhancements substantially strengthen TLBO’s inherent
exploration and exploitation capabilities and help avoid local traps.

A prospective avenue for future research involves extending these proposed methodologies to explore their
applicability in recent meta-heuristic algorithms for solving both single and multiple objective optimizations in
engineering.

Scientific Reports|  (2025) 15:31867 | https://doi.org/10.1038/s41598-025-10596-9 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Benchmark Function: Perm X
s u Benchmark Function: SumSquares

0.008 0.006 1

0.005
0.006

0.004

Error Value

0.0041 0.003

Error Value

0.002 4
0.002 4

0.001 4

0.000

© ) © & 0.000 -
é\&
Algorithms.
Algorithms
v
t Benchmark Function: Expanded Griewank plus Rosenbrock
Benchmark Function: Discus 0.010
0.010 4
0.008
0.008
4 0.006
5 0.006 1 %
g g
8 4 0.004 4
' 0.004
0.002 A
0.002
0.000 -
0.000 - . T
& CX & Gl F L M &
&cﬁé\/ < (3(,’0‘5\/ 'QC,O'S\’ Qof’)?\ﬁ "}.\\’ Qé\l C}Q’
\‘\\‘ Algorithms
Algorithms.
Fig. 8. (continued)
PSC-
MTLBO
Vs.
PSC-MTLBO vs. TLBO | PSC-MTLBO vs. PSC-MTLBO vs. GA- PSC-MTLBO vs. FATLBO | CATLBO
Benchmark function (p-value) CPSO-TLBO (p-value) | PSO-TLBO (p-value) (p-value) (p-value)
Sphere 0.002 0.004 0.007 0.013 0.021
Rosenbrock 0.005 0.009 0.015 0.032 0.041
Rastrigin 0.003 0.006 0.012 0.018 0.028
Griewank 0.006 0.008 0.014 0.022 0.035
Ackley 0.004 0.005 0.011 0.019 0.029
‘Weierstrass 0.007 0.01 0.016 0.027 0.039
Schwefel 0.008 0.013 0.019 0.033 0.045
Zakharov 0.002 0.003 0.009 0.011 0.017
Dixon-price 0.005 0.007 0.014 0.021 0.034
Levy 0.006 0.008 0.015 0.024 0.037
Perm 0.007 0.011 0.018 0.029 0.042
Sum squares 0.002 0.004 0.009 0.016 0.025
Bent cigar 0.003 0.006 0.012 0.019 0.031
High conditioned elliptic | 0.004 0.007 0.014 0.021 0.034
Cosine mixture 0.006 0.009 0.017 0.023 0.036

Table 24. Wilcoxon signed-rank test results for PSC-MTLBO vs. Other TLBO variants p <0.05, indicating
statistical significance in favor of PSC-MTLBO.
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