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Monin–Obukhov similarity functions are key components in all numerical models of atmospheric 
flows, yet their exact functional forms remain a matter of debate. Existing formulations, typically 
derived through empirical curve fitting, often result in inconsistencies and physically questionable 
behaviour, particularly under stable and very stable conditions. This paper bridges the well-established 
Monin–Obukhov Similarity Theory (MOST) with the more recent Energy and Flux Budget (EFB) second-
order closure to analytically derive the functional forms of all MOST similarity functions under stable 
conditions. In addition, it identifies and formalises a set of constrain relationships that characterise 
the physical connection among the universal functions, highlighting their interdependences. Our 
results aim to advance the theoretical understanding of the stable surface layer and offer a pathway 
toward more physically grounded turbulence parameterizations, with implications for improving the 
performance of numerical weather prediction, air quality, ocean, and climate models.

List of symbols
Ai	� Share of the TKE components (i = x, y, z)
Ci	� EFB closure numerical constants (i = 0, 1, 2, F, P, r, τ )
CV 2 	� Structure function parameters for velocity
CT 2 	� Structure function parameters for temperature
E	� Total turbulent energy
Ei	� Longitudinal (i = x), transverse (i = y) and vertical (i = z) components of Ek
Eint	� Inter-component energy exchange TKE
Ek	� Turbulent kinetic energy (TKE)
Ep	� Turbulent potential energy (TPE)
Eθ 	� Potential temperature fluctuation energy
ℑi	� EFB universal functions (i = Ri, RiE , RiEx, RiEy, RiEz, Rif , P rT , wθ, τ, τx, τy, τz

)
g	� Acceleration due to gravity
k	� Von Kármán constant
L	� Obukhov length scale
tT 	� Turbulence time scale
u′, v′, w′	� Wind velocity fluctuation components
u∗	� Friction velocity
U , V , W 	� Mean wind velocity components
u′w′, v′w′	� Reynold stress components
w′θ′	� Kinematic heat flux
P rT 	� Turbulent Prandtl Number
Qzz 	� Inter-component energy exchange term
Ri	� Richardson Number
RiE 	� Energy Richardson Number
RiEx, RiEy 	� Longitudinal and transverse Energy Richardson Number
Rif 	� Flux Richardson Number
R∞	� Asymptotic limit of Rif
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T∗	� Temperature scale
β	� Buoyancy parameter
θ′	� Potential temperature fluctuation
Θ	� Mean potential temperature
εK , εθ 	� Dissipation rates for Ek and Eθ

ζ	� Stability parameter
σi	� Wind component standard deviations (i = u, v, w)
τ 	� Friction velocity squared
Φm, Φh	� Universal function for wind and temperature gradients
Φuu, Φvv, Φww 	� Universal functions for the standard deviation of wind velocity
Φθθ 	� Universal function for the standard deviation of potential temperature
Φεk , ΦC

V 2 , ΦC
T 2 	� Universal function for εK , CV 2 , and CT 2

Similarity functions are crucial components of the Monin-Obukhov similarity theory (MOST)1, which is 
widely used in all numerical weather prediction (NWP), ocean, air pollution and climate models to parametrise 
the turbulent energy exchange between the atmosphere and the underlying surface2,3. Based on dimensional 
analysis, MOST was originally developed for flat and horizontally homogeneous terrain, considering a steady 
state surface layer (SL) unaffected by nonturbulent motions (paradigmatic conditions) and subsidence. Under 
both neutral and convective atmospheric conditions, vertical fluxes of momentum, sensible heat and passive 
scalars can be considered as quasi-constant with height (see, e.g4). , while an alternative scaling approach has 
been developed to include stable conditions (local similarity5,6), where vertical turbulent fluxes depend on 
height. Since local similarity is formally identical to MOST, except for considering turbulent fluxes at a specific 
height, the result presented in this paper applies to both approaches.

Under paradigmatic conditions, a single length scale L(  the Obukhov length) is enough to characterise all 
the surface-atmosphere turbulent exchanges, so that any relevant variable x, nondimensionalized with respect 
to a proper turbulent scaling variable x*, is expressed as a universal function Φx (ζ) of the scaling parameter 
ζ = z/L, where z is the height above the surface7. The functional forms of Φx (ζ) are not provided by MOST 
and have to be determined experimentally, usually through curve fitting. Especially under stable and very stable 
conditions, when mechanical turbulence tends to be suppressed by a strong thermal stratification, measurements 
are often perturbated by nonturbulent motions such as internal gravity waves, Kelvin-Helmholtz shear instability, 
low-level jets, meso and sub-meso motions8–11. In addition, the possible presence of self-correlations, which 
may seriously affect the regression analysis, is often neglected12,13. Such difficulties in performing accurate 
measurements under stable conditions may explain why the main formulations proposed in literature are not 
fully consistent with what we know of the stable SL phenomenology14.

A completely different scheme to describe and forecast the SL state consists in applying an appropriate closure 
to the fluid mechanics Eqs.6,7, an approach widely used in NWP and air quality models, most of which use one 
of the many available versions or extension of the famous Mellor-Yamada closure15,16. Also in this case, while a 
40-year effort has led to an accurate and reliable description of the SL under convective conditions, stable cases 
have been difficult to address since the beginning17. Although this difficulty has been known for a long time, 
only in the last decades the availability of data from Arctic and Antarctic research stations, acquired under high 
and persistent stability conditions, has seriously questioned the reliability of the turbulence closure techniques 
implemented so far, leading to the need of new schemes, including recent machine learning-based approaches 
applied to fluid dynamics problems (e.g18–22). In particular, in the last 15 years Zilitinkevich and colleagues 
developed and refined the Energy and Flux Budget (EFB) second order closure, capable of addressing a number 
of stable and very stable SL characteristics, including the presence of a minimum in the sensible heat flux23–29, 
the inter-component exchange of turbulent kinetic energy between vertical and horizontal components30, the 
exchange of turbulent potential and kinetic energy30, as well as the existence of a critical value for the Flux 
Richardson Number Rif  but not for the Richardson Number Ri30,31. According to the detailed analysis reported 
in Li et al.32, the second order EFB closure currently provides the most realistic fluid-dynamic representation of 
the SL under stable and strongly stable conditions.

To the best of our knowledge, little effort has been made to harmonise MOST with the governing equations 
for turbulent flow, if not limited to Mellor Yamada closure33,34. Nevertheless, despite the critical limitation 
represented by the absence of a convincing and generally accepted description of its universal functions, MOST 
apparent simplicity led to its widespread use in practically all numerical models of atmospheric flows. Focusing 
on stable and very stable conditions, this paper demonstrates how the functional form of MOST universal 
functions are intrinsically contained in the EFB closure theory; thus, once one adopts the EFB approach, MOST 
universal functions and all the possible relationships between them are fixed.

Theoretical framework
Energy and flux budget closure
Fluid mechanics equations allow to model the spatio-temporal evolution of a physical system such as the stable 
SL. Assuming the variables describing its state (the three wind speed components, the potential temperature, 
etc.) are stochastic and by applying the Reynolds decomposition to them, a SL model is capable of reconstructing 
the spatial and temporal evolution of the mean wind components (U, V, W), mean potential temperature (Θ), 
and relevant statistical moments - particularly the second-order ones, represented by the variance-covariance 
matrix of the Cartesian components of motion and the vector of turbulent heat fluxes6,7,35. The main issue in 
practically implementing such a fluid-dynamic model lies in its closure, i.e., in the fact that the description of 
turbulence is not closed and simplified or somehow semi-empirical relationships are needed to express higher-
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order moments15. The following discussion will focus only on stable conditions and on the second order EFB 
closure.

The model examined by Zilitinkevich and colleagues36–38 is a typical fluid dynamic model which includes 
a set of partial differential equations describing the mean fields of U, V, W and Θ. The stable SL is assumed to 
be hydrostatic (zero divergence), the Boussinesq approximation holds, and water vapor influence is indirectly 
accounted for by using the virtual potential temperature. Furthermore, in a hydrostatic model with horizontal 
dimensions larger than the vertical, subsidence  W can be neglected, and the mean-field equations only contain 
three second-order moments to be determined, namely the Reynold stress components u′w′ and v′w′, along 
with the kinematic heat flux w′θ′39. The corresponding prognostic equations incorporate third-order moments 
and dissipation rates parametrizations.

Specifically, the third-order moments representing the vertical fluxes of u′w′ and v′w′ are parametrized 
as the composition of a term proportional to ∂u′

iw
′/∂z and a term of the form Ez · ∂Ui/∂z, where Ez  is the 

vertical component of the turbulent kinetic energy (TKE) Ek, while the parametrization of the vertical flux of 
w′θ′ involves the sum of a term proportional to ∂w′θ′/∂z. Following Kolmogorov40,41, the dissipation rates 
are parameterized by assuming a proportional relationship between the moments themselves and a turbulent 
dissipation time scale, which is the same approach used in the Mellor-Yamada closure.

The TKE equation contains both ∂U/∂z and ∂V/∂z, as well as a third-order term describing the flux of 
EK  and a dissipative term. The term related to shear-produced turbulence reflects the fact that EK  is primarily 
generated in the direction of the mean wind, i.e., directly feeding Ex which subsequently transfers energy to the 
other components Ey  and Ez . Traditionally, the redistribution of energy among these different components is 
parametrized by the return-to-isotropy hypothesis42, which assumes the transfer of turbulent energy from the 
richest to the poorest components. Since this hypothesis fails under very stable conditions, when turbulence 
tends to become two-dimensional, the EFB replace it with a novel mechanism to cope better with experimental 
evidences36.

The closure also provides a prognostic equation for the turbulent potential energy (TPE) 
Ep = 0.5 · β · σ2

θ/ (∂Θ/∂z), where β = g/Θ043, which increases as TKE decreases due to the buoyancy 
sink. The equation contains both a third-order moment, assumed as proportional to ∂Ep/∂z, and a dissipation 
term proportional to TKE. The EFB closure is further extended by a prognostic relationship for the turbulent 
dissipation time scale and a set of diagnostic relations, derived from the steady-state version of the equations 
assuming horizontally homogeneous conditions, that describe the interplay between TKE components and the 
energy exchange between TKE and TPE. It is worth noting that EFB incorporates a set of numerical constants 
denoted as C0, C1, C2, CF, CP, Cr and Cτ whose numerical values (0.125, 0.5, 0.72, 0.25, 0.86, 1.5 and 0.2, 
respectively), although tentatively determined through meteorological observations, laboratory experiments, 
DNS and large eddy simulations38, still require definitive validation.

The closure is designed for a stable SL characterized by horizontal homogeneity and stationarity, which 
represents the paradigmatic scenario. As with MOST, the EFB closure has limitation when applied over 
heterogeneous terrain and in the presence of complex orography, where these assumptions are violated. Under 
paradigmatic conditions, the reference system is oriented such that the only non-zero mean component of the 
mean motion is U, directed along the x-axis, and the only non-zero component of the Reynolds stress is u′w′
6,44–47. As a result, all partial derivatives with respect to the x and y coordinates vanish, along with the total 
temporal derivative in the equations of the mean motion and the total temporal derivative in other equations. 
Finally, neglecting the divergence of third-order moments leads to the following set of diagnostic equations (see 
Kleeorin et al.38 for further details and a rigorous derivation).

	
0 = −τ

∂U

∂z
+ βFz − EK

tT
� (1a)

	
0 = −Fz

∂Θ
∂z

− Eθ

CptT
� (1b)

	
0 = −2Ez

∂Θ
∂z

+ 2CθβEθ − Fz

CF tT
� (1c)

	
0 = −2Ez

∂U

∂z
− τ

Cτ tT
� (1d)

	
0 = βFz + 1

2Qzz − EK

3tT
� (1e)

where τ = u′w′, Fz = w′θ′, Eθ = 0.5 σ2
θ , tT  is the turbulence time scale and the inter-component energy 

exchange term Qzz  which is given by:

	
Qzz = −2 (1 + Cr)

3tT
(3Ez − 3EK + 2Eint)� (1f)

With

	
Eint = EK + Rif

R∞

(
Cr

1 + Cr

)
[C0EK − (1 + C0) Ez]� (1g)
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where R∞ = 0.25 is the flux Richardson number upper limit attainable in the steady-state regime of turbulence. 
Finally, the additional constant Cθ  is defined as

	
Cθ = Cr (1 − 2C0) · (1 − R∞) − 3R∞

[1 + (Cp − 1) R∞] [3 + Cr (1 − 2C0)] � (1h)

The steady-state model considered above leads to universal relationships among Ri, Rif , the turbulent Prandtl 
Number P rT , the ratio of turbulent kinetic energy to turbulent potential energy (Ek/EP ), as well as the 
normalized vertical fluxes of momentum and heat. These relationships hold true as long as nonturbulent motions 
(internal gravity waves, Kelvin-Helmholtz shear instability, low-level jets, meso and sub-meso motions) are 
not considered, meaning that specific techniques48,49 or more recent numerical approaches including machine 
learning applied to nonlinear systems50, should be implemented to filter out nonturbulent contaminations when 
analysing experimental data to validate the model. In the following, we will refer to the steady-state EFB closure 
as the Zi2013 model37.

Monin–Obukhov similarity theory and universal functions
Unlike EFB, MOST is based on dimensional analysis (Buckingham π theorem) applied to a SL in paradigmatic 
condition, where the turbulent state at height z is entirely determined by the buoyancy parameter β, the 
mechanical forcing represented by the friction velocity u∗ =

√
−u′w′ and the thermal forcing described by the 

kinematic heat flux w′θ′, all combined in the single scaling parameter:

	
ζ = z

L
= −kzg

Θr

w′θ′

u3
∗

= kzg

Θr

T∗

u2
∗

� (2)

where T∗ = −w′θ′/u∗ is the temperature scale and k the von Kármán constant. As a result, all the atmospheric 
parameters relevant to characterise the SL turbulence are expressed, when considered in their nondimensionalized 
form, as universal similarity functions of ζ45:

	
kz

u∗

∂U

∂z
= Φm (ζ) kz

T∗

∂Θ
∂z

= Φh (ζ)� (3a)

	
σu

u∗
= Φuu (ζ) σv

u∗
= Φvv (ζ) σw

u∗
= Φww (ζ)� (3b)

	
σθ

|T∗| = Φθθ (ζ) � (3c)

	
CV 2 z2/3

u2
∗

= ΦC2
V

(ζ) CT 2 z2/3

T 2
∗

= ΦC2
T

(ζ)� (3d)

	
kzεK

u3
∗

= ΦεK (ζ) kzεθ

u∗T 2
∗

= Φεθ (ζ)� (3e)

where σu, σv,  and are the wind components standard deviations, CV 2  and CT 2  the structure function 
parameters for velocity and temperature, and εK  and εθ  the dissipation rates for .Ek. and Eθ . Since 
CV 2 = 4α1εK

2/3 ∼= 2.2εK
2/3 and CT 2 = 4β1εθε

−1/3
K

∼= 3.2εθε
−1/3
K ( where α1 = 0.55 and β1 = 0.8 are 

Kolmogorov and Corrsin constants, respectively), equations (3d) can be expressed as

	
CV 2 z2/3

u2
∗

= ΦC
V 2 (ζ) = 4 · (ΦεK (ζ))2/3� (3f)

	
CT 2 z2/3

T 2
∗

= ΦC
T 2 (ζ) = 3.2 · k−2/3 · Φh (ζ) · (ΦεK (ζ))−1/3� (3g)

While MOST introduces several universal functions Φx (ζ), it does not define their exact analytical form. 
Furthermore, since MOST does not explicitly state the interdependence between variables as fluid-dynamic 
relationships do, it implicitly assumes that such interdependencies are intrinsic to the universal functions 
themselves that is, their mutual dependence arises not from separate empirical fitting, but from the underlying 
physical consistency of the system they represent.

MOST universal functions
In principle, Φx (ζ) could be determined through curve fitting of experimental data, assuming they are not 
perturbated by nonturbulent motions or self-correlations, which are particularly critical in stable and very 
stable conditions8–13. In addition, MOST requires universal functions to be congruent with all the similarity 
relationships in which they are included; that is, they should not be determined independently of each other, 
disregarding any potential physical constraints or interrelations among them. While it is not feasible to establish 
a priori definitions of Φx (ζ), dimensional analysis provides criteria for determining their asymptotic behaviours 
in both the adiabatic (ζ → 0) and the high stability (ζ → ∞) limit, when w′θ′ or z can be neglected).
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The functional forms proposed in the exiting literature for the universal function under stable and very stable 
conditions frequently exhibit conflicting characteristics, potentially indicating that they may have been derived 
without taking adequate measures to avoid the adverse impact of nonturbulent motions and self-correlations. 
These two factors contribute to turbulent inflation and to the detection of spurious correlations, respectively.

Universal functions for wind and temperature gradients
Universal functions for wind and temperature gradients in equations (3a) have recently been discussed in 
Casasanta et al.14, who reviewed the four main formulations proposed in the literature so far and assessed how 
they affect the theoretical behaviour of w′θ′ and T∗ under stable and very stable conditions. None of them 
turned out to be completely consistent with the existing literature, while two of them produced highly unreliable 
expressions for both w′θ′ and T∗. The four formulations are summarised in Table 1, which also reports the values 
of the respective numerical constants obtained through curve fitting. Dimensional analysis suggests that both 
Φm (ζ) and Φh (ζ) tend towards a constant value as ζ → 0, and are linear when ζ → ∞. While the Businger-
Dyer equations satisfy both these conditions, it is straightforward to verify that Beljaars-Holtslag’s Φh (ζ), as 
well as CASES-99 and SHEBA formulations does not show the expected asymptotic behaviour when ζ → ∞.

Universal functions for the standard deviation of wind velocity
According to dimensional analysis, for the Universal Functions Φuu (ζ), Φvv (ζ), and Φww (ζ), the adiabatic 
limit should be a constant, just as the high stability limit should also be a constant. Naturally, these two asymptotic 
values can correspond to different numbers. Although data from a common 3D sonic anemometer could 
provide information for their characterization, the literature reports only a limited number of experimental 
campaigns with different data processing approaches in which all three universal functions were simultaneously 
determined under stable conditions. It is worth noting that the averaging time is crucial to filter out nonturbulent 
perturbations: excessively long averaging times can result in formulations that lack reliability. For instance, Mahrt 
et al.25, (their Figure 2) observed a continuously increasing trend in Φvv (ζ) with stability when using a 5-minute 
averaging time, which tended to a constant value when a shorter timeframe (100 s) was used. Analysing data 
from experimental campaigns carried out in rural and flat terrains, Andreas et al.55 identified the relationship 
Φαα (ζ) = a (1 + bζ)( with a = 2.55 when αα = uu, vv and a = 1.20 for αα = ww), which clearly does not 
tend towards a constant as ζ → ∞. A similar incontinency arise in the equation Φαα (ζ) = a + b · ζc proposed 
by Pahlow et al.56, where a = 2.3, 2.0, 1.1 and b = 4.3, 4.0, 0.9 for αα = uu, vv, ww, respectively, and 
c = 0.6 in all cases. The same issue occurs in the equation Φαα (ζ) = a(1 + bζ)1/3 suggested in both Al-Jiboori 
et al.57 and Quan and Hu58, who used data acquired in urban and complex terrains In the latter two papers, 
the equation remains the same, but the values of the coefficients differ. Specifically, for αα = uu, vv, ww, 
the coefficients are a = 1.76, 1.60, 1.22 and b = 2.39, 1.96, 1.05 in the former, while in the latter they are 
a = 1.96, 1.80, 1.42 and b = 2.07, 1.78, 0.54. The difference between the various formulations becomes 
particularly evident at high stabilities, and it may be attributable to a range of factors, including the different 
averaging times used by various authors, variations in data processing techniques, the sensitivity of methods 
(whether linear or not) to outliers and the impact of self-correlation.

As a final remark, it is worth to highlight that existing literature supports the notion that Φεθ (ζ)—which 
indicates the universal function for the rate of temperature variance dissipation coincides with Φh (ζ). Using Eq. 
(3g), it is straightforward to derive an expression for ΦC2

T
(ζ).

Universal function for the standard deviation of potential temperature
In this case as well, dimensional analysis suggests that the adiabatic limit for the universal function Φθθ (ζ), 
representing the standard deviation of potential temperature, is a constant. Similarly, its behaviour under high-
stability conditions is also characterized by a constant—again, these two constants may not necessarily 
have identical values. When considering stable conditions exclusively, proposals for functional forms of 
Φθθ (ζ) are limited and show substantial discrepancies among them. Kaimal and Finnigan45 proposed 
the equation Φθθ (ζ) = 2.0 · (1 + 0.5 · ζ)−1, Andreas et al.55 recommended using a constant value 
Φθθ (ζ) = 3.2, Pahlow et al.56 presented the expressions Φθθ (ζ) = 2.0 · (1 + 0.5 · ζ)−1, and Quan and Hu58 

Formulation Φm (ζ) Φh (ζ) References

Businger-Dyer 1 + βmζ α−1
h

(1 + βhζ). 51

Beljaars–Holtslag
1 + aζ + bζ · [1 + c − dζ] ··exp (−dζ) 1 + aζ ·

[
1 + 2

3 aζ
]1/2 + bζ·· [1 + c − dζ] · exp (−dζ) 52

CASES-99 1 + e

(
ζ+ζf

(
1+ζf

) 1−f
f

ζ+(1+ζf )1/f

)
1 + g

(
ζ+ζh

(
1+ζh

) 1−h
h

ζ+(1+ζh)1/h

)
53

SHEBA 1 + amζ

(1+bmζ)2/3 P r0
(

1 + ahζ

1+bhζ

)
54

Table 1.  Universal functions for wind and temperature gradients as proposed in the literature, with βm = 5.3, 
βh = 8.0, α−1

h = 0.95, a = 1.0, b = 0.67, c = 5.0, d = 0.35, e = 6.1, f = 2.5, g = 5.3, h = 1.1, 
am = ah = 5, bm = 0.3, bh = 0.4 and P r0 = 0.98.
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formulated Φθθ (ζ) = 30.0 · ζ−1/3. As it is evident from Fig. 1, under very stable conditions the discrepancies 
between the expressions proposed by the various authors spans at least two orders of magnitude.

Universal function for the turbulent kinetic energy dissipation rate
Following dimensional analysis, Φεk (ζ) is expected to approach a constant value under adiabatic conditions, 
while it should increase linearly with ζ  under high stability conditions. Existing literature generally supports 
the functional form Φεk (ζ) = a · (1 + b · ζ), which shows the expected asymptotic behaviour. Variations 
emerge in the values attributed to the parameters a and b. Kaimal and Finnigan45 propose a = 1.0 and b = 5.0, 
Högström59 suggests a = 1.24 and b = 3.8, Pahlow et al.56 report a = 0.6 and b = 8.2, while Hartogensis and 
De Bruin60 find a = 0.8 and b = 3.1. In addition, considering Φεk (ζ) and using Eq. (3f), it is straightforward 
to derive the expression corresponding to the universal function ΦC

V 2 (ζ) .

Linking the EFB closure to MOST
Section “Linking the EFB closure to MOST” begins with a review of the steady-state Energy and Flux Budget 
(EFB) closure framework (Sect. 4.1–4.5) to establish the theoretical foundations, and concludes in Sect. 4.6 with 
the analytic derivation of all Monin-Obukhov similarity functions from the Zi2013 model.

The Zi2013 model37 is the result of applying the prognostic relations introduced by Zi201337 to a stable, 
stationary, and horizontally homogeneous surface layer, with non-turbulent motions disregarded. Thus, refers 
to the very same physical environment as MOST. Section 4.1 to 4.5 provide a structured summary of the steady-
state closure equations of Zi201337, with explicit references to the corresponding equation numbers from their 
original work to ensure traceability. These sections serve as a theoretical basis for the subsequent developments. 
The novel contribution of the present study begins in Sect. 4.6, where the functional forms of all the universal 
functions introduced in section “MOST universal functions” are analytically derived from the Zi2013 model37. 
This approach eliminates the need to infer these forms empirically from experimental data. In other words, 
as long as the Zi201337 model remains applicable, the functional forms of the MOST universal functions are 
inherently determined. While Zilitinkevich and colleagues use a somewhat unconventional definition of the 
stability parameter ζ , wherein the von Karman constant (k) is omitted, in the following discussion the more 
conventional definition of stability (Eq. 2, which incorporates k) is adopted.

Stability parameters
In addition to ζ, an alternative parameter that depends only on external forcings, rather than internal ones like 
T∗ and u∗ at the specific height considered, is the Gradient Richardson Number Ri, which is defined as follows:

	
Ri = g

Θr

∂Θ̄
∂z(

∂U
∂z

)2 � (4a)

Unlike ζ , Ri depends exclusively on external forcings such as the gradients of the average potential temperature 
and of the mean wind speed, which are not directly measurable and has to be estimated based on two (or 
more) Θ and U measurements. While ζ is approximately proportional to the ratio between the height z and 
the characteristic length scale of the turbulent vortexes in the SL61, Ri instead depends on the ratio between 
convective and mechanical forcings expressed as external variables that not directly associated with turbulence. 
Considering both point of views, it is possible to introduce a third stability parameter incorporating both 
external and internal forcings, the Flux Richardson Number Rif :

Fig. 1.  Evolution of the four Φθθ (ζ) presented in section “Universal function for the standard deviation of 
potential temperature” as a function of the stability parameter ζ ; discrepancies exceed two orders of magnitude 
at high stability.
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Rif = g

Θr

w′θ′

u′w′ ∂U
∂z

� (4b)

In this case, stability is characterised in terms of energy, since under stable paradigmatic conditions Rif  is 
linked to the turbulent kinetic energy balance31. Differently from Ri, Rif  is expected to reach an asymptotic 
value between 0.2 and 0.25 for ζ → ∞, as confirmed by a number of both experimental and modelling 
studies17,18,30,62–65. Following this approach, more recently Zilitinkevich et al.66 proposed the Energy Richardson 
Number RiE , which is defined as the ratio between turbulent potential and kinetic energy:

	
RiE = EP

EK
= β2

∂θ
∂z

σ2
θ

(σ2
u + σ2

v + σ2
w) � (4c)

From the previous equation it is clear that RiE  cannot be defined under strictly neutral conditions, where 
∂θ/∂z → 0, while it is expected to approach an asymptotic value of 0.155 under highly stable conditions66. 
In addition, RiE  is particularly valuable within the EFB framework, as in this particular closure turbulence 
is sustained by velocity shear regardless of stratification, and any alteration in EK  is compensated by a 
corresponding adjustment in EP  to ensure the conservation of total energy.

Flux Richardson number and MOST universal functions for wind gradients
The functional form of the universal function for wind gradients is provided in Zi2013, and it is presented here 
for the sake of completeness. Considering the existence of an asymptotic value (R∞) for Rif  and the EK  budget 
under paradigmatic condition, the product kz/u∗ ∂U/∂z converges to 1 under neutrally stratified conditions, 
essentially recovering the well-known wall law. Conversely, in highly stable conditions this product is expected 
to vary linearly as R−1

∞ . A straightforward interpolation between these two results leads to the following 
expression, which is formally identical to MOST Eq. (3a):

	
∂U

∂z
= u∗

kz
·
(
1 + R−1

∞ ζ
)

� (5)

Where

	 1 + R−1
∞ ζ = Φm (ζ)� (6)

Even though an interpolation is not the only possible choice, it leads to a familiar result. Assuming R∞ = 0.2
66 (their Figure 4) and R−1

∞ = 5 the previous equation coincides with the Businger-Dyer formulation reported 
in Table 1. The Businger-Dyer equation, initially derived from curve fitting under weak to moderate stability 
conditions, is now extended to encompass all stable conditions and is directly linked to Zi2013 closure37. 
Also, this result highlights the crucial role of the asymptotic value for Rif , which, as demonstrated in the next 
subsections, acts as a fundamental constant.

As shown in Zi201337, combining Eq. (5) with (4b) yields to the following universal function for Rif

	
Rif ≡Rif (ζ) = ζ

1 + R−1
∞ ζ

= ζ

Φm (ζ) � (7)

which is fully consistent with MOST (see, e.g14. , Eq. 6) but specifies a fixed analytical form for Φm (ζ). Figure 2 
illustrates the Rif  behaviour as a function of ζ  for the four different Φm (ζ) formulations provided in Table 1. As 
anticipated, only the Businger-Dyer expression successfully replicates the expected Rif  behaviour, in contrast to 
the other three formulations, which either diverge or converge to a value higher than expected.

Gradient Richardson number and MOST universal functions for temperature gradients
As for the other MOST universal functions, linear relation the universal function for the Gradient Richardson 
Number is described in Zi201337 (their Eq. 82), which incorporates a number of constants, including R−1

∞ :

	

Ri ≡Ri (ζ) = Cτ ζ

CF

(
1 + R−1

∞ ζ
)

[
1 + α1ζ + α2ζ2

1 + xζ

]
Cτ = 0.20,

CF = 0.25, α1 = 0.18, α2 = 0.16, α2 = 1.42
� (8)

where the parameters α1, α2 and α3 are defined by Zi2013 Eq. 83 to 8537. According to the previous equation, 
Ri increases monotonically with ζ  without reaching any asymptotic value; thus, it depends solely on the mean 
flow state and its growth is unrestricted by internal turbulence.

On the other hand, combining MOST Equations (3a) and (4a) with (8) and solving for Φh (ζ)  yields the 
expression:

	
Φh (ζ) =Ri (ζ) (Φm (ζ))2

ζ
= ζ

Ri (ζ)
2
Rif

(ζ) � (9)
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Substituting Eq.  (8) into (9) allows to retrieve a formulation for Φh (ζ) whose analytical form is already 
determined and has not to be inferred from experimental data:

	
Φh (ζ) = Cτ

CF

(
1 + R−1

∞ ζ
) [

1 + α1ζ + α2ζ2

1 + α3ζ

]
� (10)

It is worth emphasizing that while Φh (ζ) follows a linear dependence on ζ , the formulation for Φh (ζ) derived 
from it depends on ζ  quadratically. From a practical point of view, to avoid any possible self-correlation it is 
recommended to determine all the variables in the following order: R∞, Φm, ℑRi and finally Φh typically, 
universal functions are obtained independently of each other, neglecting any possible relation between them, 
but Eq. (9) clearly shows that Φh (ζ) and Φm (ζ) are interconnected. The resulting formulations are valid at any 
level of stability and fully congruent with each other. They also account for the existence of a minimum in w′θ′ 
and T∗14, as well as for a finite asymptotic value for Rif  and an unlimited but linear growth of Ri with ζ.

In addition, Zi201337 also retrieve the following formulation for the Prandtl turbulent Number:

	
P rT (ζ) = Cτ

CF
·
[

1 + α1ζ + α2ζ2

1 + α3ζ

]
� (11)

When neutrality is approached as defined in Zi2013 (Eq. 57)37, P rT (0) = Cτ /CF = 0.8. This value is lower 
than typically estimated from experimental data (e.g67), which is close to 0.95. At high stability, instead, P rT (ζ) 
increases linearly with ζ.

Universal functions for the inter-component exchange of turbulent kinetic energy
As discussed in Zi2013, the stable SL is characterised by a continuous exchange of TKE among different 
components, which clearly conflict with the assumption of Rotta’s return to isotropy42. Furthermore, while this 
energy exchange occurs between TKE vertical and horizontal components, there is an additional exchange of 
energy between Ek  and EP

18,38.
The Zi2013 model37 allows for the determination of the shares between different components of turbulent 

kinetic energy, namely, Ax = Ex/EK , Ay = Ey/EK , Az = Ez/EK , and describes their behaviour as a 
function of the stability parameter ζ( Zi2013 Eq. 50 subsequent36). When ζ → 0 and neutrality is approached, 
the longitudinal component of EK  is greater than the transverse one, which in turn is greater than the vertical 
component (Ax = 0.5 > Ay = 0.3 > Az = 0.2). Conversely, as stability increases and ζ → ∞, most of the 
turbulent kinetic energy is distributed equally between the two horizontal components (Ax

∼= Ay = 0.49), 
while the vertical component decreases significantly but does not vanish (Az = 0.03), in agreement with Zi2023 
(Eq. 80).

The universal function obtained in Zi201337 for Az  as a function of ζ  is expressed by the following equation:

	
Az (ζ) =

R∞Cr + ζ ·
[
Cr (1 − 2C0) − 3R∞(R∞+ζ)

R∞+(1−R∞)·ζ

]

3R∞ (1 + Cr) + ζ · [3 + Cr (1 − 2C0)]
� (12a)

In the previous equation, once again, the persistence of turbulence even under extreme stability is signified by 
the parameter R∞, while Cr = 1.5 and C0 = 1.25 are associated with the parametrization of EK  exchanges 

Fig. 2.  Evolution of Rif  as a function of ζ  for the four Φm (ζ) formulations reported in Table 1; only the 
Businger–Dyer formulation converges to the expected value.
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between different components, contradicting Rotta’s return to isotropy hypothesis. Under adiabatic conditions, 
Az (ζ) reaches a constant value determined by Cr,

	
Az (0) = Cr

3 · (1 + Cr) ,� (12b)

while its asymptotic value is given by the following relationship:

	
Az (∞) =

Cr (1 − 2C0) − 3
(
R−1

∞ − 1
)−1

3 + Cr (1 − 2C0)
� (12c)

In addition, the universal functions for longitudinal and transverse shares, which depend on Rif  although the 
dependence on ζ  can always be determined using Eq. (7) are as follows (see Zi2013, Eq. 50a–50c):

	

Ax (Rif ) = 1
(1 + Cr) (1 − Rif (ζ)) +

(
1 − C1 − C2

Rif (ζ)
R∞

)
· Az (0) ·

[
1 + Rif (ζ)

R∞
[Co − (1 + C0) · Az (ζ)]

] � (13)

	
Ay (Rif ) =

(
1 + C1 + C2

Rif

R∞

)
· Az (0) ·

[
1 + Rif

R∞
[Co − (1 + C0) · Az (ζ)]

]
� (14)

Nevertheless, it is worth noticing that the three components Ax, Ay  and Az  cannot be considered as independent 
of each other, as they have to satisfy the obvious constrain Ax + Ay + Az = 1.

Universal functions for normalized vertical fluxes
Under paradigmatic conditions, turbulence within the SL is driven only by vertical fluxes of momentum and 
sensible heat. For the vertical flux of momentum, the37 model provides a relationship expressed as a function of 
both Rif  and ζ :

	

(
τ

EK

)2
= 2Cτ · Az (ζ)

(1 − Rif (ζ)) = 2Cτ · Az (ζ) · 1 + R−1
∞ ζ

1 +
(
R−1

∞ − 1
)

· ζ
≡τ (ζ)� (15)

where τ = u2
*. Given the known behaviour of Rif  as a function of ζ  and the expression for Az (ζ) from 

Eq. (12a), the previous relation defines τ as a universal function of ζ , with its analytical form fully determined. 
For typical values of the constants Cτ , Cr, C0 and R∞, the normalised vertical flux ranges between 0.08 (at 
ζ = 0) and 0.016 (for ζ → ∞).

From Eq. (15), it is straightforward to derive the normalized fluxes with respect to Ex, Ey  and Ez :

	

τ

Ex
= (ℑτ (ζ))1/2

Ax (ζ) =
√

2Cτ · (Az (ζ))1/2

Ax (ζ) ·

(
1 + R−1

∞ ζ

1 +
(
R−1

∞ − 1
)

· ζ

)1/2

≡ ℑτx (ζ)� (15a)

	

τ

Ey
= (ℑτ (ζ))1/2

Ay (ζ) =
√

2Cτ · (Az (ζ))1/2

Ay (ζ) ·

(
1 + R−1

∞ ζ

1 +
(
R−1

∞ − 1
)

· ζ

)1/2

≡ ℑτy (ζ)� (15b)

	

τ

Ez
= (ℑτ (ζ))1/2

Az (ζ) =
√

2Cτ · (Az (ζ))−1/2 ·

(
1 + R−1

∞ ζ

1 +
(
R−1

∞ − 1
)

· ζ

)1/2

≡ ℑτz (ζ)� (15c)

The behaviour of the three normalized fluxes as a function of ζ  is illustrated in Fig. 3 (left panel). With increasing 
stability, both ℑτx (ζ) and ℑτy (ζ) decrease towards the asymptotic value of 0.26, while τz (ζ) increases up to 
4.20, reflecting the distribution of kinetic energy discussed in the previous subsection.

Similarly, Zi201337 determines an expression for the dimensionless turbulent flux of potential temperature,

	
w′θ′2

EKEθ
= 2Cτ

Cp
· Az (ζ)

P rT (ζ) ,� (16a)

which can be readily rearranged to derive the normalized vertical flux of potential temperature expressed as a 
universal function of ζ :

	
w′θ′2

EzEθ
= 2Cτ

Cp · P rT (ζ)≡wθ (ζ)� (16b)

The behaviour of wθ (ζ) is shown in Fig. 3 (right panel). At neutrality, wθ (0) = 2Cτ / (CpP rT (0)) = 0.58, 
while it decreases linearly as ζ increases under highly stable conditions.
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Universal functions for standard deviations of potential temperature and wind components
Universal functions for the standard deviations of both potential temperature (σθ) and wind components 
(σu, σv, σw) can be derived from normalised vertical fluxes. Recalling MOST Eq. (3b) and inverting Equations 
(15), where τ = u2

∗ and E∝ = 0.5 σ2
∝( ∝= u, v, w), yields

	
Φuu (ζ) = σu

u∗
=

√
2

ℑτx (ζ) =
√

2Ax (ζ)

[
1 +

(
R−1

∞ − 1
)

· ζ

2Cτ · Az (ζ) ·
(
1 + R−1

∞ ζ
)

]1/4

� (17a)

	
Φvv (ζ) = σv

u∗
=

√
2

ℑτy (ζ) =
√

2Ay (ζ)

[
1 +

(
R−1

∞ − 1
)

· ζ

2Cτ · Az (ζ) ·
(
1 + R−1

∞ ζ
)

]1/4

� (17b)

	
Φww (ζ) = σw

u∗
=

√
2

ℑτz (ζ) =
√

2

[
Az (ζ)
2Cτ

·
1 +

(
R−1

∞ − 1
)

· ζ

1 + R−1
∞ ζ

]1/4

� (17c)

These equations provide expressions for the standard deviations of wind components normalised by u*, in 
terms of ζ  and the universal functions Ax (ζ), Ay (ζ) and Az (ζ). Their behaviour as a function of stability 
is represented in Fig. 4 (left panel). According to the inter-component exchange of TKE described in Sect. 4.4, 
as stability increases, both Φuu (ζ) and Φvv (ζ) reach asymptotic values close to each other (2.90 and 2.62, 
respectively), tending towards horizontal isotropy, while Φww (ζ) decreases. Under adiabatic conditions 

Fig. 4.  Behaviour of the universal functions for standard deviations (left panel) and potential temperature 
(right panel) as a function of ζ; according to the intercomponent exchange of TKE, wind standard deviations 
tend towards horizontal isotropy as stability increases.

 

Fig. 3.  Behaviour of the three normalized vertical fluxes of momentum (left panel) and potential temperature 
(right panel) as a function of ζ ; the contrasting trend of τ/Ez  compared to both τ/Ex and τ/Ey  reflects the 
TKE exchange among components.
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(ζ = 0), the vertical component depends solely on the two constants Cτ  and Cr , while in the expressions for the 
horizontal components, C1 is also included:

	

(
σw

u∗

)
0

=
(

2A0
z

Cτ

)1/4

=
(

2
3 · Cr

Cτ (1 + Cr)

)1/4

� (18a)

	

(
σv

u∗

)
0

= (1 + C1)1/2 ·
(

σw

u∗

)
0

� (18b)

	

(
σu

u∗

)
0

=
( 3

Cr
+ 1 − C1

)1/2(
σw

u∗

)
0

� (18c)

In addition, Eqs. (17a–17c) are linked together by Eq. (15), which serves as a constrain:

	 Φ2
uu (ζ) + Φ2

vv (ζ) + Φ2
ww (ζ) = 2 · ℑ−1/2

τ (ζ)� (18d)

Similarly, the universal function for the standard deviation of potential temperature can be obtained by 
substituting the expressions for EK  and Eθ  into Eq. (16b), and using Eq. (17c):

	

σθ

T∗
=

√
2 ℑτz (ζ)

ℑwθ (ζ)
� (19a)

Recalling MOST Eq. (3c), the previous expression directly yields:

	
Φθθ (ζ) = σθ

T∗
=

√
2CpP rT (ζ)

(2Cτ Az (ζ))
1
4

(
1 + R−1

∞ ζ[
1 +

(
R−1

∞ − 1
)]

ζ

) 1
4

� (19b)

As shown in the right panel of Fig. 4, Φθθ  gradually increases with stability, and only when ζ > 1 its growth 
becomes significant. Also in this case, Φθθ (ζ) cannot be considered independent from the other universal 
function, as it is linked to Φww (ζ) though the following constrain relationship:

	 Φww (ζ) · Φθθ (ζ) = 2ℑ−1/2
wθ (ζ)� (20)

Relationships between the energy Richardson number and universal functions
The ratio between the turbulent potential and kinetic energy, RiE = Ep

EK , plays a crucial role in the EFB closure, 
and it can be expressed as a function of just the stability level:

	
RiE = Ep

EK
= Cp

ζ

1 +
(
R−1

∞ − 1
)

ζ
≡RiE (ζ)� (21a)

Here, the numerical constant Cp expressed the difference between Ep and EK  dissipation rates, while R∞ 
remains once again a key parameter. Similarly to Rif , RiE  reaches an asymptotic value between 0.14 and 0.15 
for ζ → ∞66:

	
RiE∞ = Cp

R−1
∞ − 1

� (21b)

When considering only the vertical component of TKE, Eq. (21a) becomes:

	
RiEz (ζ) = Ep

Ez
= RiE (ζ)

Az (ζ) ≡RiEz (ζ)� (22a)

Replacing the definitions of both Ep and Ez  in the previous expression, and using MOST Eqs. (3a), (3b) and 
(3c), leads to:

	
ℑRiEz (ζ) = ζ

Φ2
θθ (ζ)

Φh (ζ) · Φ2
ww (ζ)

� (22b)

The previous relationship represents an additional constrain, establishing a link between RiEz (ζ)and the 
stability parameter ζ , as well as three other MOST universal functions whose functional forms are defined by 
Eqs. (19a), (20) and (10).

Similarly, when examining the horizontal components of TKE, Eq. (21a) gives:

	
RiEx (ζ) = RiE (ζ)

Ax (ζ) ≡ ℑRiEx (ζ)� (23a)
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RiEy (ζ) = RiE (ζ)

Ay (ζ) ≡ ℑRiEy (ζ)� (23b)

As a result, the mechanism of energy exchange among the three TKE components, as well as between the 
potential and kinetic turbulent energy, modulated by the vertical mean gradient of potential temperature within 
MOST framework, is reflected here in Eqs. (21a) and (23a, 23b).

For the sake of completeness, it is worth mentioning here that the total turbulent energy, E, is defined by the 
standard deviations of potential temperature and wind components, as well as the vertical gradient of the mean 
temperature:

	
E = 1

2

[(
σ2

u + σ2
u + σ2

u

)
+ β2 σ2

θ

∂Θ/∂z

]
� (24)

Following Zi2013, the ratio between Ep and E is also a universal function of ζ :

	
Ep

E
= CpR∞ζ

R∞ + [1 + R∞ (Cp − 1)] · ζ
≡ ℑE (ζ)� (25)

Universal functions for dissipation rates and structure parameters
According to Zilitinkevich at al.66, the ratio between the dissipation rate for EK( εK) and the friction velocity, is 
expressed by the following nondimensional relationship:

	

kzεK

u3
∗

= 1 − Rif

1 − Rif

R∞

=
[
1 +

(
R−1

∞ − 1
)

· ζ
]

� (26)

Straightforward comparison between the previous equation and MOST Eq. (3e) yields:

	 Φεk (ζ) =
[
1 +

(
R−1

∞ − 1
)

· ζ
]

� (26a)

which is a linear function of the stability parameter ζ.
Furthermore, using MOST Eq. (3f) with the previous, the universal function for CV 2  is expressed as:

	 ΦC
V 2 (ζ) = 4 ·

(
1 +

(
R−1

∞ − 1
)

· ζ
)2/3� (27)

The behaviour of both ΦεK (ζ) and ΦC
V 2 (ζ) as a function of ζ  is illustrated in Fig. 5.

In addition, using Eq. (7), these two universal functions can also be expressed as a function of ℑRif (ζ):

	
ΦεK (ζ) =

(
1 − ℑRif (ζ)

)
· ζ

ℑRif (ζ) � (28a)

Fig. 5.  Evolution of ΦεK  and ΦC
V 2  as a function of ζ ; linear and two-thirds-power scalings support the 

functional forms proposed in previous literature.
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ΦC

V 2 (ζ) = 4 ·
[(

1 − ℑRif (ζ)
)

· ζ

ℑRif (ζ)

]2/3

� (28b)

Regarding the universal function for Φεθ (ζ), its functional form coincides with Φh (ζ) and does not need to 
be determined separately, as demonstrated in Kaimal and Finnigan45. Such a result is the direct consequence 
of assuming a paradigmatic SL, where most of the temperature standard deviation produced is destroyed by 
molecular dissipation. Also in this case, the universal function for C2

T  can be readily obtained from MOST 
Eq. (3 g), while both Φεθ (ζ) and ΦC

T 2 (ζ) can be expressed as a function of ℑRi (ζ) though Eq. (7):

	 Φεθ (ζ) = ζ · ℑRi (ζ) ·
(
ℑRif (ζ)

)−2� (29a)

	
ΦC

T 2 (ζ) = 3.2k−2/3 · ℑRi (ζ)
ℑRif

2 (ζ)
·
(

ζ2ℑRif (ζ)
1 − ℑRif (ζ)

)1/3

� (29b)

Discussion
As discussed in Sect. 3, MOST similarity relationships (3) describe the behaviour of the main SL parameters 
as a function only of the stability parameter ζ . These relationships are derived through dimensional analysis 
and depend on ten universal functions, namely Φm, Φh, Φuu, Φvv, Φww, Φθθ, ΦC

V 2 , ΦC
T 2 , ΦεK , Φεθ , 

whose functional forms are not intrinsically determined and must be experimentally inferred, typically through 
curve fitting. So far, this approach has presented several issues. First, often experimental campaigns do not 
explicitly consider non-turbulent motions, that can significantly influence turbulence measurements. Second, 
the formulations obtained through curve fitting typically do not account for self-correlation, which may result 
spurious correlations (see, e.g12). Third, these formulations are generally obtained independently of one another, 
neglecting potential physical constrain relationship among them. As a results, a set of generally accepted 
formulations has yet to be established. This is especially evident under stable and very stable conditions, where 
existing formulations proposed in literature often fail to align with both theoretical and experimental results. For 
instance, as discussed in Casasanta et al.14 the four main formulations suggested to date51,52,54,68 are not capable 
of reproducing the theoretical behaviour of the kinematic heat flux and the temperature scale.

On the other hand, the EFB closure involves a total of 15 universal functions ℑRif (ζ), ℑRi (ζ), Ax (ζ), 
Ay (ζ) , Az (ζ), ℑτ (ζ), ℑwθ (ζ), ℑτx (ζ), ℑτy (ζ), ℑτz (ζ), P rT (ζ), ℑRiEx (ζ) , ℑRiEy (ζ), ℑRiEz (ζ) 
and ℑE (ζ) each defined by a predetermined analytical form, with only numerical coefficients left to be 
determined. While a definitive validation of their values is still required, it is worth noting that all the constants 
have already been estimated through both experimental and modelling studies and are generally considered 
reasonably reliable38. As detailed in section “Linking the EFB closure to MOST”, since the physical SL under 
consideration remains unchanged, the MOST universal functions can be expressed in terms of the EFB closure 
functions, thus uniquely identifying their analytical forms.

Focusing on stable and very stable conditions, we demonstrated how the functional forms of MOST universal 
functions are intrinsically contained in the EFB closure theory; thus, once one adopts the EFB approach, MOST 
universal functions and all the possible relationships between them are fixed. A summary of the ten MOST 
functions expressed as a function of one or more EFB functions is reported below.

	
Φm (ζ) = ζ

ℑRif (ζ) � (7)

	
Φh (ζ) = ζ

ℑRi (ζ)
ℑ2

Rif
(ζ) � (9)

	
Φuu (ζ) =

√
2

ℑτx (ζ)
� (17a)

	
Φvv (ζ) =

√
2

ℑτy (ζ)
� (17b)

	
Φww (ζ) =

√
2

ℑτz (ζ)
� (17c)

	
Φθθ (ζ) =

√
2 ℑτz (ζ)

ℑwθ (ζ)
� (19a)

	
ΦεK (ζ) =

(
1 − ℑRif (ζ)

)
· ζ

ℑRif (ζ) � (28a)

	
ΦC

V 2 (ζ) = 4 ·
[(

1 − ℑRif (ζ)
)

· ζ

ℑRif (ζ)

]2/3

� (28b)
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	 Φεθ (ζ) = ζ · ℑRi (ζ) ·
(
ℑRif (ζ)

)−2� (29a)

	
ΦCT2 (ζ) = 3.2k−2/3 · ℑRi (ζ)

ℑRif
2 (ζ)

·
(

ζ2ℑRif (ζ)
1 − ℑRif (ζ)

)1/3

� (29b)

In addition, the connection between MOST and EFB closure functions allowed to establish the three new 
constrain relationships (18d), (20) and (22b), which link MOST universal functions to one another. More 
generally, as previously stated in literature (e.g14), the existence of these relationships indicates that the universal 
functions cannot be considered independently, thus reflecting the fact that MOST requires universal functions 
to be congruent with all the similarity relationship in which they are included. This interdependence among 
universal functions is consistent with Dias69, which demonstrates that the nondimensionalization of the fluid-
dynamic equations for second-order moments, under the assumption of stationarity, surface uniformity and 
homogeneity, leads to a new set of algebraic equations depending solely on the stability parameter ζ and the 
MOST universal functions. To the best of our knowledge, Dias69 remains the only study explicitly addressing 
this topic.

The proposed functional forms were derived analytically and still require validation38, either through a 
specifically designed field campaign or a thorough analysis of datasets already available in the literature, see e.g., 
Mauritsen T, Svensson G18, which includes observations of stably stratified turbulence from six different studies. 
From an experimental perspective, a campaign aiming at validating these universal functions should meet a 
number of requirements, starting with the selection of an experimental site as close as possible to paradigmatic 
conditions, and a careful determination of uncertainties (which are almost always neglected in experimental 
studies), since turbulent fluxes under very stable conditions are so reduced that they could be significantly 
influenced by the characteristics of the instruments used for their determination70. On this point, for instance, 
relatively recent datasets from Arctic and Antarctic campaigns, where high levels of stability are reached and 
the terrain is mostly flat and homogeneous, might provide a valuable opportunity to investigate the stable and 
very stable SL under paradigmatic conditions70–73. Furthermore, the physical processes that are not considered 
by either MOST or EFB closure, but are expected to significantly affect the stable SL, should be carefully 
addressed to separate turbulent fluctuations from non-turbulent motions with larger timescales, such as internal 
gravity waves, Kelvin-Helmholtz shear instability, low-level jets, sub-meso motions49,74,75. Disentangling non-
turbulent motions from turbulence requires a data analysis focused on the spectral gap that separates small-
scale turbulence from mesoscale and sub-mesoscale motions. Following this approach, Howell and Sun74 
implemented a multiresolution decomposition technique to identify a turbulence cutoff time associated with the 
spectral gap. Their results were further extended by Vickers and Mahrt76,77, who introduced a variable averaging 
time ranging from 20 min under strongly unstable to 30 s under strongly stable conditions. Nevertheless, it is 
important to emphasise that the development of an automatic procedure to extract the turbulent component 
from a generic micrometeorological signal is still an open issue.

Special attention should be paid to the possible presence of self-correlation, which is known to affect regression 
analysis and lead to unreliable results12,13. This aspect is often underestimated and, apart from the technique 
presented in Klipp and Mahrt12 and Anderson78, there are no operational strategies to assess its influence. In this 
respect, it is useful to mention that Anderson78 presented a method to avoid self-correlation when determining 
PrT as a function of Ri: regression coefficients between key measurable variables are first established, and then 
both PrT and Ri are reconstructed using these relationships. The technique relies on the analysis of variance to 
derive both the regression and the associated error, which is used to determine the range of stability over which 
the technique holds.

Beyond these practical considerations, some theoretical limitations of the proposed framework should 
also be acknowledged. The present derivations rely on the assumption of idealised surface layer conditions, 
specifically, horizontal homogeneity, stationarity, and the predominance of turbulence over other motions. 
While such assumptions are fundamental to the MOST and EFB closures, they are not always satisfied in real 
atmospheric flows, particularly under very stable stratification or over heterogeneous terrain.

Recent studies79,80 have shown that non-turbulent motions can significantly affect the structure and energy 
budget of the stable boundary layer. These processes may interfere with turbulence parameterisations and 
invalidate traditional similarity relationships.

As a result, future developments of the present framework could include the incorporation of such processes 
through numerical modelling or hybrid approaches. Observational campaigns targeting complex environments 
and using high-frequency data may also offer valuable insight into the limits of applicability of the derived 
universal functions. In addition to experimental campaigns, the implementation of the EFB model in high-
resolution numerical simulations could help test the stability and robustness of the derived similarity functions. 
Similar hybrid approaches have recently been used to investigate the dynamics of complex physical systems in 
other domains (e.g81).Such simulations would allow a direct comparison between theoretical predictions and 
model-resolved turbulent quantities under idealised or realistic boundary-layer conditions.

Conclusions
This work demonstrates that the Energy and Flux Budget (EFB) closure framework can be used to derive 
definitive functional forms for all Monin-Obukhov similarity functions in the stable and very stable surface 
layer. By analytically linking EFB equations to the MOST framework, we provide a physically grounded and 
internally consistent set of similarity relationships that do not rely on empirical fitting. In addition to identifying 
the analytical structure of the universal functions, we establish several new constraint relationships that 
highlight the interdependence among these functions, an aspect often neglected in conventional analyses. These 
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theoretical developments contribute to a more robust understanding of turbulence in stably stratified boundary 
layers.

As a next step, the proposed similarity functions should be validated against comprehensive observational 
datasets and implemented within operational numerical models to assess their performance in realistic 
boundary-layer simulations.

Data availability
All data analysed during this study are included in this published article.

Received: 14 December 2024; Accepted: 7 July 2025

References
	 1.	 Monin, A. & Obukhov, A. M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. 

Sci. USSR  1954, 163–187 (1954).
	 2.	 Edwards, J. M., Beljaars, A. C. M., Holtslag, A. A. M. & Lock, A. P. Representation of Boundary-Layer processes in numerical 

weather prediction and climate models. Boundary-Layer Meteorol. 177, 511–539. https://doi.org/10.1007/s10546-020-00530-z 
(2020).

	 3.	 Falasca, S. et al. Sensitivity of near-surface meteorology to PBL schemes in WRF simulations in a port-industrial area with complex 
terrain. Atmos. Res. 264, 105824. https://doi.org/10.1016/j.atmosres.2021.105824 (2021).

	 4.	 Tennekes, H. Similarity relations, scaling laws and spectral dynamics. Atmos. Turbul. Air Pollut. Model A  1981, 37–68.  ​h​t​t​p​s​:​/​/​d​o​
i​.​o​r​g​/​1​0​.​1​0​0​7​/​9​7​8​-​9​4​-​0​1​0​-​9​1​1​2​-​1​_​2​​​​ (1982).

	 5.	 Nieuwstadt, F. T. M. The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci. 41, 2202–2216.  (1984).
	 6.	 Sorbjan, Z. Structure of the Atmospheric Boundary Layer 317 (Wiley, 1989).
	 7.	 Stull, R. B. An Introduction To Boundary Layer Meteorology (Springer Netherlands, 1988).
	 8.	 Nappo, C. J. An Introduction to Atmospheric Gravity Waves  276 (Wiley, 2002).
	 9.	 Basu, S. et al. An inconvenient truth about using sensible heat flux as a surface boundary condition in models under stably stratified 

regimes. Acta Geophys. 56, 88–99. https://doi.org/10.2478/S11600-007-0038-Y (2008).
	10.	 Mortarini, L. et al. Low-frequency processes and turbulence structure in a perturbed boundary layer. Q. J. R Meteorol. Soc. 139, 

1059–1072. https://doi.org/10.1002/QJ.2015 (2013).
	11.	 Mortarini, L. et al. Characterization of wind meandering in Low-Wind-Speed conditions. Boundary-Layer Meteorol. 161, 165–182. 

https://doi.org/10.1007/S10546-016-0165-6 (2016).
	12.	 Klipp, C. L. & Mahrt, L. Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Q. J. R Meteorol. 

Soc. 130, 2087–2103. https://doi.org/10.1256/QJ.03.161 (2004).
	13.	 Grachev, A. A. et al. Stable Boundary-Layer scaling regimes: the Sheba data. Boundary-Layer Meteorol. 116, 201–235. ​h​t​t​p​s​:​/​/​d​o​i​.​

o​r​g​/​1​0​.​1​0​0​7​/​s​1​0​5​4​6​-​0​0​4​-​2​7​2​9​-​0​​​​ (2005).
	14.	 Casasanta, G., Sozzi, R., Petenko, I. & Argentini, S. Flux–Profile relationships in the stable boundary Layer—a critical discussion. 

Atmos. (Basel). 12, 1197. https://doi.org/10.3390/atmos12091197 (2021).
	15.	 Mellor, G. L. & Yamada, T. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 31, 1791–1806 

(1974).
	16.	 Mellor, G. L. & Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 20, 851–875. 

https://doi.org/10.1029/RG020I004P00851 (1982).
	17.	 Yamada, T. The critical Richardson number and the ratio of the eddy transport coefficients obtained from a turbulence closure 

model. J. Atmos. Sci. 32, 926–933 (1975).
	18.	 Mauritsen, T. & Svensson, G. Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson 

numbers. J. Atmos. Sci. 64, 645–655. https://doi.org/10.1175/JAS3856.1 (2007).
	19.	 Canuto, V. M., Cheng, Y., Howard, A. M. & Esau, I. N. Stably stratified flows: a model with no Ri(cr). J. Atmos. Sci. 65, 2437–2447. 

https://doi.org/10.1175/2007JAS2470.1 (2008).
	20.	 Sukoriansky, S. & Galperin, B. Anisotropic turbulence and internal waves in stably stratified flows (QNSE theory). Phys. Scr. T. 

https://doi.org/10.1088/0031-8949/2008/T132/014036 (2008). T132:.
	21.	 L’vov, V. S., Procaccia, I. & Rudenko, O. Energy conservation and second-order statistics in stably stratified turbulent boundary 

layers. Environ. Fluid Mech. 9, 267–295. https://doi.org/10.1007/S10652-008-9117-0 (2009).
	22.	 Khan, M. P., Chang, C-Y., Raja, M. A. Z. & Shoaib, M. Novel machine learning investigation for Buongiorno fluidic model with 

sutterby nanomaterial. Tribol. Int. 191, 110009. https://doi.org/10.1016/j.triboint.2024.110009 (2024).
	23.	 de Bruin, H. A. R. Analytic solutions of the equations governing the temperature fluctuation method. Boundary-Layer Meteorol. 

68, 427–432. https://doi.org/10.1007/BF00706800 (1994).
	24.	 Malhi, Y. S. The significance of the dual solutions for heat fluxes measured by the temperature fluctuation method in stable 

conditions. Boundary-Layer Meteorol. 74, 389–396. https://doi.org/10.1007/BF00712379 (1995).
	25.	 Mahrt, L. et al. Nocturnal boundary-layer regimes. Boundary-Layer Meteorol. 88, 255–278. https://doi.org/10.1023/A:1001171313493 

(1998).
	26.	 Mahrt, L. The influence of nonstationarity on the turbulent flux-gradient relationship for stable stratification. Boundary-Layer 

Meteorol. 125, 245–264. https://doi.org/10.1007/S10546-007-9154-0 (2007).
	27.	 Luhar, A. K. & Rayner, K. N. Methods to estimate surface fluxes of momentum and heat from routine weather observations for 

dispersion applications under stable stratification. Boundary-Layer Meteorol. 132, 437–454. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​S​1​0​5​4​6​-​0​0​9​-​9​
4​0​9​-​Z​​​​ (2009).

	28.	 Wang, J. & Bras, R. L. An extremum solution of the Monin-Obukhov similarity equations. J. Atmos. Sci. 67, 485–499. ​h​t​t​p​s​:​/​/​d​o​i​.​o​
r​g​/​1​0​.​1​1​7​5​/​2​0​0​9​J​A​S​3​1​1​7​.​1​​​​ (2010).

	29.	 van de Wiel, B. J. H. et al. Comments on an extremum solution of the monin-obukhov similarity equations. J. Atmos. Sci. 68, 
1405–1408. https://doi.org/10.1175/2010JAS3680.1 (2011).

	30.	 Mauritsen, T. et al. A total turbulent energy closure model for neutrally and stably stratified atmospheric boundary layers. J. Atmos. 
Sci. 64, 4113–4126. https://doi.org/10.1175/2007JAS2294.1 (2007).

	31.	 Zilitinkevich, S. S. et al. On the velocity gradient in stably stratified sheared flows. Part 1: asymptotic analysis and applications. 
Boundary-Layer Meteorol. 135, 505–511. https://doi.org/10.1007/S10546-010-9488-X (2010).

	32.	 Li, D., Katul, G. & Zilitinkevich, S. S. Closure schemes for stably stratified atmospheric flows without turbulence cutoff. J. Atmos. 
Sci. 73, 4817–4832. https://doi.org/10.1175/JAS-D-16-0101.1 (2016).

	33.	 Lobocki, L. Mellor-Yamada simplified second-order closure models: analysis and application of the generalized von Karman local 
similarity hypothesis. Boundary-Layer Meteorol. 59, 83–109. https://doi.org/10.1007/BF00120688 (1992).

	34.	 Lobocki, L. A procedure for the derivation of surface-layer bulk relationships from simplified second-order closure models. J. Appl. 
Meteorol. 32, 126–138 (1993).

Scientific Reports |        (2025) 15:25632 15| https://doi.org/10.1038/s41598-025-10815-3

www.nature.com/scientificreports/

https://doi.org/10.1007/s10546-020-00530-z
https://doi.org/10.1016/j.atmosres.2021.105824
https://doi.org/10.1007/978-94-010-9112-1_2
https://doi.org/10.1007/978-94-010-9112-1_2
https://doi.org/10.2478/S11600-007-0038-Y
https://doi.org/10.1002/QJ.2015
https://doi.org/10.1007/S10546-016-0165-6
https://doi.org/10.1256/QJ.03.161
https://doi.org/10.1007/s10546-004-2729-0
https://doi.org/10.1007/s10546-004-2729-0
https://doi.org/10.3390/atmos12091197
https://doi.org/10.1029/RG020I004P00851
https://doi.org/10.1175/JAS3856.1
https://doi.org/10.1175/2007JAS2470.1
https://doi.org/10.1088/0031-8949/2008/T132/014036
https://doi.org/10.1007/S10652-008-9117-0
https://doi.org/10.1016/j.triboint.2024.110009
https://doi.org/10.1007/BF00706800
https://doi.org/10.1007/BF00712379
https://doi.org/10.1023/A:1001171313493
https://doi.org/10.1007/S10546-007-9154-0
https://doi.org/10.1007/S10546-009-9409-Z
https://doi.org/10.1007/S10546-009-9409-Z
https://doi.org/10.1175/2009JAS3117.1
https://doi.org/10.1175/2009JAS3117.1
https://doi.org/10.1175/2010JAS3680.1
https://doi.org/10.1175/2007JAS2294.1
https://doi.org/10.1007/S10546-010-9488-X
https://doi.org/10.1175/JAS-D-16-0101.1
https://doi.org/10.1007/BF00120688
http://www.nature.com/scientificreports


	35.	 Tampieri, F. Turbulence and dispersion in the planetary boundary layer.   https://doi.org/10.1007/978-3-319-43604-3 (2017).
	36.	 Zilitinkevich, S. S., Elperin, T., Kleeorin, N. & Rogachevskii, I. Energy- and flux-budget (EFB) turbulence closure model for stably 

stratified flows. Part I: Steady-state, homogeneous regimes. Boundary-Layer Meteorol. 125, 167–191. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​S​1​0​5​
4​6​-​0​0​7​-​9​1​8​9​-​2​​​​ (2007a).

	37.	 Zilitinkevich, S. S. et al. A hierarchy of Energy- and Flux-Budget (EFB) turbulence closure models for Stably-Stratified geophysical 
flows. Boundary-Layer Meteorol. 146, 341–373. https://doi.org/10.1007/s10546-012-9768-8 (2013).

	38.	 Kleeorin, N., Rogachevskii, I. & Zilitinkevich, S. Energy and flux budget closure theory for passive scalar in stably stratified 
turbulence. Phys. Fluids. 33, 1–15. https://doi.org/10.1063/5.0052786 (2021).

	39.	 Pielke, R. A. Mesoscale Meteorological Modeling  693 (2001).
	40.	 Kolmogorov, A. N. Equations of turbulent motion in an incompressible fluid. Proc. USSR Acad. Sci. 30, 299–303 (1941).
	41.	 Kolmogorov, A. N. Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk. SSSR. 32, 16 (1941).
	42.	 Rotta, J. Statistische theorie nichthomogener turbulenz. Z. Für Phys. 129, 547–572. https://doi.org/10.1007/BF01330059 (1951).
	43.	 Schumann, U. & Gerz, T. Turbulent mixing in stably stratified shear flows. J. Appl. Meteorol. 34, 33–48. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​7​5​/​1​5​

2​0​-​0​4​5​0​-​3​4​.​1​.​3​3​​​​ (1995).
	44.	 McMillen, R. T. An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorol. 43, 

231–245. https://doi.org/10.1007/BF00128405 (1988).
	45.	 Kaimal, J. C. & Finnigan, J. J. Atmospheric boundary layer flows. Atmos. Bound Layer Flows.  ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​9​3​/​O​S​O​/​9​7​8​0​1​

9​5​0​6​2​3​9​7​.​0​0​1​.​0​0​0​1​​​​ (1994).
	46.	 Lee, X., Massman, W. & Law, B. (eds) Handbook of Micrometeorology (Springer Netherlands, 2005).
	47.	 Aubinet, M., Vesala, T. & Papale, D. (eds) Eddy Covariance (Springer Netherlands, 2012).
	48.	 Vickers, D. & Mahrt, L. Evaluating formulations of stable boundary layer height. J. Appl. Meteorol. 43, 1736–1749. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​

1​0​.​1​1​7​5​/​J​A​M​2​1​6​0​.​1​​​​ (2004).
	49.	 Cheng, Y., Parlange, M. B. & Brutsaert, W. Pathology of Monin-Obukhov similarity in the stable boundary layer. J. Geophys. Res. D 

Atmos. 110, 1–10. https://doi.org/10.1029/2004JD004923 (2005).
	50.	 Asma, K., Raja, M. A. Z., Chang, C-Y., Raja, M. J. A. A. & Shoaib, M. Machine learning-driven exogenous neural architecture for 

nonlinear fractional cybersecurity awareness model in mobile malware propagation. Chaos Solitons Fractals. 179, 115852. ​h​t​t​p​s​:​/​/​
d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​c​h​a​o​s​.​2​0​2​4​.​1​1​5​8​5​2​​​​ (2024).

	51.	 Dyer, A. J. A review of flux-profile relationships. Boundary-Layer Meteorol. 7, 363–372. https://doi.org/10.1007/BF00240838 
(1974).

	52.	 Beljaars, A. C. M. & Holtslag, A. A. M. Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteorol. 30, 
327–341 (1991).

	53.	 Poulos, G. S. et al. CASES-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull. Am. Meteorol. Soc. 83, 
555–581 (2002).

	54.	 Gryanik, V. M., Lüpkes, C., Grachev, A. & Sidorenko, D. New modified and extended stability functions for the stable boundary 
layer based on SHEBA and parametrizations of bulk transfer coefficients for climate models. J. Atmos. Sci. 77, 2687–2716. ​h​t​t​p​s​:​/​/​
d​o​i​.​o​r​g​/​1​0​.​1​1​7​5​/​J​A​S​-​D​-​1​9​-​0​2​5​5​.​1​​​​ (2020).

	55.	 Andreas, E. L. et al. Statistics of Surface-Layer turbulence over terrain with Metre-Scale heterogeneity. Boundary-Layer Meteorol. 
86, 379–408. https://doi.org/10.1023/A:1000609131683 (1998).

	56.	 Pahlow, M., Parlange, M. B. & Porté-Agel, F. On Monin-Obukhov similarity in the stable atmospheric boundary layer. Boundary-
Layer Meteorol. 99, 225–248. https://doi.org/10.1023/A:1018909000098 (2001).

	57.	 Al-Jiboori, M. H., Xu, Y. & Qian, Y. Local similarity relationships in the urban boundary layer. Boundary-Layer Meteorol. 102, 
63–82. https://doi.org/10.1023/A:1012745322728 (2002).

	58.	 Quan, L. & Hu, F. Relationship between turbulent flux and variance in the urban canopy. Meteorol. Atmos. Phys. 104, 29–36. 
https://doi.org/10.1007/S00703-008-0012-5 (2009).

	59.	 Högström, U. et al. Turbulent exchange above a pine forest, I: fluxes and gradients. Boundary-Layer Meteorol. 49, 197–217. ​h​t​t​p​s​:​/​
/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​B​F​0​0​1​1​6​4​1​1​​​​ (1989).

	60.	 Hartogensis, O. K. & De Bruin, H. A. R. Monin-Obukhov similarity functions of the structure parameter of temperature and 
turbulent kinetic energy dissipation rate in the stable boundary layer. Boundary-Layer Meteorol. 116, 253–276. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​
1​0​0​7​/​S​1​0​5​4​6​-​0​0​4​-​2​8​1​7​-​1​​​​ (2005).

	61.	 Arya, S. P. Finite-Difference errors in Estimation of gradients in the atmospheric surface layer. J. Appl. Meteorol. 30, 251–253 
(1991).

	62.	 Zilitinkevich, S. S., Elperin, T., Kleeorin, N. & Rogachevskii, I. Energy- and flux-budget (EFB) turbulence closure model for stably 
stratified flows. Part I: steady-state, homogeneous regimes. Boundary-Layer Meteorol. 125, 167–191. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​s​1​0​5​
4​6​-​0​0​7​-​9​1​8​9​-​2​​​​ (2007b).

	63.	 Zilitinkevich, S. S. et al. Turbulence energetics in stably stratified geophysical flows: strong and weak mixing regimes. Q. J. R 
Meteorol. Soc. 134, 793–799. https://doi.org/10.1002/QJ.264 (2008).

	64.	 Zilitinkevich, S. S. et al. Energy- and flux-budget turbulence closure model for stably stratified flows. Part II: the role of internal 
gravity waves. Boundary-Layer Meteorol. 133, 139–164. https://doi.org/10.1007/S10546-009-9424-0 (2009).

	65.	 Venayagamoorthy, S. K. & Stretch, D. D. On the turbulent Prandtl number in homogeneous stably stratified turbulence. J. Fluid 
Mech. 644, 359–369. https://doi.org/10.1017/S002211200999293X (2010).

	66.	 Zilitinkevich, S. et al. Dissipation rate of turbulent kinetic energy in stably stratified sheared flows. Atmos. Chem. Phys. 19, 2489–
2496. https://doi.org/10.5194/acp-19-2489-2019 (2019).

	67.	 Högström, U. Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Bound.-Layer 
Meteorol. 42, 55–78. https://doi.org/10.1007/BF00119875 (1988).

	68.	 Chenge, Y. & Brutsaert, W. Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. 
Bound. -Layer Meteorol. 114, 519–538 (2005).

	69.	 Dias, N. L. The structure of temperature and humidity turbulent fluctuations in the stable Surface layer. PhD Thesis, Cornell 
University (1994).

	70.	 Grachev, A. A. et al. Turbulent measurements in the stable atmospheric boundary layer during SHEBA: ten years after. Acta 
Geophys. 56, 142–166. https://doi.org/10.2478/S11600-007-0048-9 (2008).

	71.	 Casasanta, G., Pietroni, I., Petenko, I. & Argentini, S. Observed and modelled convective Mixing-Layer height at dome C, 
Antarctica. Bound.-Layer Meteorol. 151, 523. https://doi.org/10.1007/s10546-014-9907-5 (2014).

	72.	 Petenko, I. et al. Observations of optically active turbulence in the planetary boundary layer by Sodar at the Concordia astronomical 
observatory, dome C, Antarctica. Astron. Astrophys. 2014,  568. https://doi.org/10.1051/0004-6361/201323299   (2014).

	73.	 Vignon, E. et al. Momentum- and Heat-Flux parametrization at dome C, antarctica: a sensitivity study. Boundary-Layer Meteorol. 
https://doi.org/10.1007/s10546-016-0192-3 (2016).

	74.	 Howell, J. F. & Sun, J. Surface-Layer fluxes in stable conditions. Boundary-Layer Meteorol. 90, 495–520. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​2​3​/​A​:​
1​0​0​1​7​8​8​5​1​5​3​5​5​​​​ (1999).

	75.	 Mahrt, L., Moore, E., Vickers, D. & Jensen, N. O. Dependence of turbulent and mesoscale velocity variances on scale and stability. 
J. Appl. Meteorol. 40, 628–641  (2001).

	76.	 Vickers, D. & Mahrt, L. A solution for flux contamination by mesoscale motions with very weak turbulence. Boundary-Layer 
Meteorol. 118, 431–447. https://doi.org/10.1007/s10546-005-9003-y (2006).

Scientific Reports |        (2025) 15:25632 16| https://doi.org/10.1038/s41598-025-10815-3

www.nature.com/scientificreports/

https://doi.org/10.1007/978-3-319-43604-3
https://doi.org/10.1007/S10546-007-9189-2
https://doi.org/10.1007/S10546-007-9189-2
https://doi.org/10.1007/s10546-012-9768-8
https://doi.org/10.1063/5.0052786
https://doi.org/10.1007/BF01330059
https://doi.org/10.1175/1520-0450-34.1.33
https://doi.org/10.1175/1520-0450-34.1.33
https://doi.org/10.1007/BF00128405
https://doi.org/10.1093/OSO/9780195062397.001.0001
https://doi.org/10.1093/OSO/9780195062397.001.0001
https://doi.org/10.1175/JAM2160.1
https://doi.org/10.1175/JAM2160.1
https://doi.org/10.1029/2004JD004923
https://doi.org/10.1016/j.chaos.2024.115852
https://doi.org/10.1016/j.chaos.2024.115852
https://doi.org/10.1007/BF00240838
https://doi.org/10.1175/JAS-D-19-0255.1
https://doi.org/10.1175/JAS-D-19-0255.1
https://doi.org/10.1023/A:1000609131683
https://doi.org/10.1023/A:1018909000098
https://doi.org/10.1023/A:1012745322728
https://doi.org/10.1007/S00703-008-0012-5
https://doi.org/10.1007/BF00116411
https://doi.org/10.1007/BF00116411
https://doi.org/10.1007/S10546-004-2817-1
https://doi.org/10.1007/S10546-004-2817-1
https://doi.org/10.1007/s10546-007-9189-2
https://doi.org/10.1007/s10546-007-9189-2
https://doi.org/10.1002/QJ.264
https://doi.org/10.1007/S10546-009-9424-0
https://doi.org/10.1017/S002211200999293X
https://doi.org/10.5194/acp-19-2489-2019
https://doi.org/10.1007/BF00119875
https://doi.org/10.2478/S11600-007-0048-9
https://doi.org/10.1007/s10546-014-9907-5
https://doi.org/10.1051/0004-6361/201323299
https://doi.org/10.1007/s10546-016-0192-3
https://doi.org/10.1023/A:1001788515355
https://doi.org/10.1023/A:1001788515355
https://doi.org/10.1007/s10546-005-9003-y
http://www.nature.com/scientificreports


	77.	 Vickers, D. & Mahrt, L. The cospectral gap and turbulent flux calculation -. J. Atmos. Ocean. Tech. 20, 660–672 (2003).
	78.	 Anderson, P. S. Measurement of Prandtl number as a function of Richardson number avoiding self-correlation. Bound. Layer 

Meteorol. 131, 345–362.  https://doi.org/10.1007/S10546-009-9376-4  (2009).
	79.	 Stiperski, I. & Rotach, M. W. On the measurement of turbulence over complex mountainous terrain. Boundary-Layer Meteorol. 

159, 97–121. https://doi.org/10.1007/s10546-015-0103-z (2016).
	80.	 Stiperski, I. & Calaf, M. Generalizing Monin–Obukhov similarity theory for complex atmospheric turbulence. Phys. Rev. Lett. 130, 

124001. https://doi.org/10.1103/PhysRevLett.130.124001 (2023).
	81.	 Anwar, T. et al. Stochastic neural supervised dynamics of cholera disease under the effects of quarantine and brownian noise. Eur. 

Phys. J. Plus. 140, 257. https://doi.org/10.1140/epjp/s13360-024-05965-8 (2025).

Author contributions
G. C. and R. S. wrote the main manuscript text and M. C. prepared Figs. 1, 2, 3, 4 and 5. A. C., I. P. and S. A. 
collaborated to the preparation of the draft. All authors collaborated to interpretation of results, wrote, read, 
commented, and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:25632 17| https://doi.org/10.1038/s41598-025-10815-3

www.nature.com/scientificreports/

https://doi.org/10.1007/S10546-009-9376-4
https://doi.org/10.1007/s10546-015-0103-z
https://doi.org/10.1103/PhysRevLett.130.124001
https://doi.org/10.1140/epjp/s13360-024-05965-8
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Towards definitive functional forms for Monin–Obukhov similarity functions in stable and very stable surface layers
	﻿Theoretical framework
	﻿Energy and flux budget closure
	﻿Monin–Obukhov similarity theory and universal functions

	﻿﻿MOST universal functions
	﻿Universal functions for wind and temperature gradients
	﻿Universal functions for the standard deviation of wind velocity
	﻿﻿Universal function for the standard deviation of potential temperature
	﻿Universal function for the turbulent kinetic energy dissipation rate

	﻿﻿Linking the EFB closure to MOST
	﻿Stability parameters
	﻿Flux Richardson number and MOST universal functions for wind gradients
	﻿Gradient Richardson number and MOST universal functions for temperature gradients
	﻿Universal functions for the inter-component exchange of turbulent kinetic energy
	﻿Universal functions for normalized vertical fluxes
	﻿Universal functions for standard deviations of potential temperature and wind components
	﻿Relationships between the energy Richardson number and universal functions
	﻿Universal functions for dissipation rates and structure parameters

	﻿Discussion
	﻿Conclusions
	﻿References


