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Towards definitive functional forms
for Monin—Obukhov similarity
functions in stable and very stable
surface layers

G. Casasanta’, M. Conte!"”, R. Sozzi?, A. Cecilial, I. Petenko® & S. Argentini'

Monin—-Obukhov similarity functions are key components in all numerical models of atmospheric
flows, yet their exact functional forms remain a matter of debate. Existing formulations, typically
derived through empirical curve fitting, often result in inconsistencies and physically questionable
behaviour, particularly under stable and very stable conditions. This paper bridges the well-established
Monin-Obukhov Similarity Theory (MOST) with the more recent Energy and Flux Budget (EFB) second-
order closure to analytically derive the functional forms of all MOST similarity functions under stable
conditions. In addition, it identifies and formalises a set of constrain relationships that characterise
the physical connection among the universal functions, highlighting their interdependences. Our
results aim to advance the theoretical understanding of the stable surface layer and offer a pathway
toward more physically grounded turbulence parameterizations, with implications for improving the
performance of numerical weather prediction, air quality, ocean, and climate models.

List of symbols

A; Share of the TKE components (i = z, y, 2)

C; EFB closure numerical constants (¢ = 0,1, 2, F, P,r,T)

Cy2 Structure function parameters for velocity

Cr2 Structure function parameters for temperature

E Total turbulent energy

E; Longitudinal (¢ = z), transverse (¢ = y) and vertical (i = z) components of Eix

Eint Inter-component energy exchange TKE

Ex Turbulent kinetic energy (TKE)

E, Turbulent potential energy (TPE)

Ey Potential temperature fluctuation energy

3y EFB universal functions (¢ = Ri, Rig, Rig., Rigy, Rig., Rif, Prr,wl, 7,72, 7Yy, T2
)

g Acceleration due to gravity

k Von Karman constant

L Obukhov length scale

tr Turbulence time scale

u' v w' Wind velocity fluctuation components

U Friction velocity

U v.-w Mean wind velocity components

w'w’, v'w’ Reynold stress components

w'e’ Kinematic heat flux

Prp Turbulent Prandtl Number

Q:z Inter-component energy exchange term

Ri Richardson Number

Rig Energy Richardson Number

Rips, Ripy Longitudinal and transverse Energy Richardson Number

Riy Flux Richardson Number

Reo Asymptotic limit of Riy
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T, Temperature scale

B Buoyancy parameter

0 Potential temperature fluctuation

(¢} Mean potential temperature

€K> €0 Dissipation rates for Ey and Ey

4 Stability parameter

o Wind component standard deviations (¢ = u, v, w)

T Friction velocity squared

®,,., Pn Universal function for wind and temperature gradients

Doy, Do, P Universal functions for the standard deviation of wind velocity
Dyo Universal function for the standard deviation of potential temperature

P> CI)CVQ R <I>CT2 Universal function for e, Cy 2, and C'p2

Similarity functions are crucial components of the Monin-Obukhov similarity theory (MOST)!, which is
widely used in all numerical weather prediction (NWP), ocean, air pollution and climate models to parametrise
the turbulent energy exchange between the atmosphere and the underlying surface®*. Based on dimensional
analysis, MOST was originally developed for flat and horizontally homogeneous terrain, considering a steady
state surface layer (SL) unaffected by nonturbulent motions (paradigmatic conditions) and subsidence. Under
both neutral and convective atmospheric conditions, vertical fluxes of momentum, sensible heat and passive
scalars can be considered as quasi-constant with height (see, e.g*). , while an alternative scaling approach has
been developed to include stable conditions (local similarity™®), where vertical turbulent fluxes depend on
height. Since local similarity is formally identical to MOST, except for considering turbulent fluxes at a specific
height, the result presented in this paper applies to both approaches.

Under paradigmatic conditions, a single length scale L( the Obukhov length) is enough to characterise all
the surface-atmosphere turbulent exchanges, so that any relevant variable x, nondimensionalized with respect
to a proper turbulent scaling variable x=, is expressed as a universal function @, (¢) of the scaling parameter
¢ = z/L, where z is the height above the surface’. The functional forms of ®,, ({) are not provided by MOST
and have to be determined experimentally, usually through curve fitting. Especially under stable and very stable
conditions, when mechanical turbulence tends to be suppressed by a strong thermal stratification, measurements
are often perturbated by nonturbulent motions such as internal gravity waves, Kelvin-Helmholtz shear instability,
low-level jets, meso and sub-meso motions®~!!. In addition, the possible presence of self-correlations, which
may seriously affect the regression analysis, is often neglected'>!*. Such difficulties in performing accurate
measurements under stable conditions may explain why the main formulations proposed in literature are not
fully consistent with what we know of the stable SL phenomenology!*.

A completely different scheme to describe and forecast the SL state consists in applying an appropriate closure
to the fluid mechanics Egs.®”, an approach widely used in NWP and air quality models, most of which use one
of the many available versions or extension of the famous Mellor-Yamada closure!>!®, Also in this case, while a
40-year effort has led to an accurate and reliable description of the SL under convective conditions, stable cases
have been difficult to address since the beginning!”. Although this difficulty has been known for a long time,
only in the last decades the availability of data from Arctic and Antarctic research stations, acquired under high
and persistent stability conditions, has seriously questioned the reliability of the turbulence closure techniques
implemented so far, leading to the need of new schemes, including recent machine learning-based approaches
applied to fluid dynamics problems (e.g'®22). In particular, in the last 15 years Zilitinkevich and colleagues
developed and refined the Energy and Flux Budget (EFB) second order closure, capable of addressing a number
of stable and very stable SL characteristics, including the presence of a minimum in the sensible heat flux?3-2,
the inter-component exchange of turbulent kinetic energy between vertical and horizontal components®, the
exchange of turbulent potential and kinetic energy®, as well as the existence of a critical value for the Flux
Richardson Number Ri but not for the Richardson Number Ri***!. According to the detailed analysis reported
in Li et al.*2, the second order EFB closure currently provides the most realistic fluid-dynamic representation of
the SL under stable and strongly stable conditions.

To the best of our knowledge, little effort has been made to harmonise MOST with the governing equations
for turbulent flow, if not limited to Mellor Yamada closure®*4. Nevertheless, despite the critical limitation
represented by the absence of a convincing and generally accepted description of its universal functions, MOST
apparent simplicity led to its widespread use in practically all numerical models of atmospheric flows. Focusing
on stable and very stable conditions, this paper demonstrates how the functional form of MOST universal
functions are intrinsically contained in the EFB closure theory; thus, once one adopts the EFB approach, MOST
universal functions and all the possible relationships between them are fixed.

Theoretical framework

Energy and flux budget closure

Fluid mechanics equations allow to model the spatio-temporal evolution of a physical system such as the stable
SL. Assuming the variables describing its state (the three wind speed components, the potential temperature,
etc.) are stochastic and by applying the Reynolds decomposition to them, a SL model is capable of reconstructing
the spatial and temporal evolution of the mean wind components (U, V, W), mean potential temperature (©),
and relevant statistical moments - particularly the second-order ones, represented by the variance-covariance
matrix of the Cartesian components of motion and the vector of turbulent heat fluxes®”-°. The main issue in
practically implementing such a fluid-dynamic model lies in its closure, i.e., in the fact that the description of
turbulence is not closed and simplified or somehow semi-empirical relationships are needed to express higher-
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order moments!®. The following discussion will focus only on stable conditions and on the second order EFB
closure.

The model examined by Zilitinkevich and colleagues is a typical fluid dynamic model which includes
a set of partial differential equations describing the mean fields of U, V; W and ©. The stable SL is assumed to
be hydrostatic (zero divergence), the Boussinesq approximation holds, and water vapor influence is indirectly
accounted for by using the virtual potential temperature. Furthermore, in a hydrostatic model with horizontal
dimensions larger than the vertical, subsidence W can be neglected, and the mean-field equations only contain
three second-order moments to be determined, namely the Reynold stress components u/w’ and v’w’, along
with the kinematic heat flux w’6’*°. The corresponding prognostic equations incorporate third-order moments
and dissipation rates parametrizations. L L

Specifically, the third-order moments representing the vertical fluxes of u/w’ and v/w’ are parametrized
as the composition of a term proportional to du;w’/Jz and a term of the form E. - OU;/0z, where E. is the
vertical component of the turbulent kinetic energy (TKE) E\, while the parametrization of the vertical flux of
w6’ involves the sum of a term proportional to dw’6’/dz. Following Kolmogorov*®*!, the dissipation rates
are parameterized by assuming a proportional relationship between the moments themselves and a turbulent
dissipation time scale, which is the same approach used in the Mellor-Yamada closure.

The TKE equation contains both OU/Jz and 9V/9z, as well as a third-order term describing the flux of
Ek and a dissipative term. The term related to shear-produced turbulence reflects the fact that Fx is primarily
generated in the direction of the mean wind, i.e., directly feeding £, which subsequently transfers energy to the
other components E, and E.. Traditionally, the redistribution of energy among these different components is
parametrized by the return-to-isotropy hypothesis*2, which assumes the transfer of turbulent energy from the
richest to the poorest components. Since this hypothesis fails under very stable conditions, when turbulence
tends to become two-dimensional, the EFB replace it with a novel mechanism to cope better with experimental
evidences™.

The closure also provides a prognostic equation for the turbulent potential energy (TPE)
E,=05-8-05/(00©/0z), where 8 = g/®o*, which increases as TKE decreases due to the buoyancy
sink. The equation contains both a third-order moment, assumed as proportional to 0E, /9%, and a dissipation
term proportional to TKE. The EFB closure is further extended by a prognostic relationship for the turbulent
dissipation time scale and a set of diagnostic relations, derived from the steady-state version of the equations
assuming horizontally homogeneous conditions, that describe the interplay between TKE components and the
energy exchange between TKE and TPE. It is worth noting that EFB incorporates a set of numerical constants
denoted as CO, CI, C2, CF, CP, Cr and Ct whose numerical values (0.125, 0.5, 0.72, 0.25, 0.86, 1.5 and 0.2,
respectively), although tentatively determined through meteorological observations, laboratory experiments,
DNS and large eddy simulations®, still require definitive validation.

The closure is designed for a stable SL characterized by horizontal homogeneity and stationarity, which
represents the paradigmatic scenario. As with MOST, the EFB closure has limitation when applied over
heterogeneous terrain and in the presence of complex orography, where these assumptions are violated. Under
paradigmatic conditions, the reference system is oriented such that the only non-zero mean component of the
mean motion is U, directed along the x-axis, and the only non-zero component of the Reynolds stress is u’w’
644-17 Ag a result, all partial derivatives with respect to the x and y coordinates vanish, along with the total
temporal derivative in the equations of the mean motion and the total temporal derivative in other equations.
Finally, neglecting the divergence of third-order moments leads to the following set of diagnostic equations (see
Kleeorin et al.?® for further details and a rigorous derivation).

ou Ex

36-38

0= 77’5 + BF, — ? (1a)
0=- 2%7?7 CfﬁT (15)

0= —ZEZ%—? 1 2CyBEy — Cith (1¢)
0= _QEzaa% B CTTtT (1d)

0= B+ 3Qus — (1e)

where 7 = vw'w’, F, = w'0’, Eg = 0.5 Ug, tr is the turbulence time scale and the inter-component energy
exchange term (). which is given by:

Qo= —20HC) ap spe o) (1f)
3tr
With
. Riy C,
Eint = Ex + a (TCT) [COEK - (1 + CO) Ez] (1g)

Scientific Reports|  (2025) 15:25632 | https://doi.org/10.1038/s41598-025-10815-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

where Roc = 0.25 is the flux Richardson number upper limit attainable in the steady-state regime of turbulence.
Finally, the additional constant Cy is defined as

Cr(1-2Ch) - (1 — Rso) — 3R
[14 (Cp — 1) Ra] [3 4 Cy (1 — 2C0))

Co = (1h)

The steady-state model considered above leads to universal relationships among Ri, Riy, the turbulent Prandtl
Number Prr, the ratio of turbulent kinetic energy to turbulent potential energy (Ex/Ep), as well as the
normalized vertical fluxes of momentum and heat. These relationships hold true as long as nonturbulent motions
(internal gravity waves, Kelvin-Helmholtz shear instability, low-level jets, meso and sub-meso motions) are
not considered, meaning that specific techniques*®*® or more recent numerical approaches including machine
learning applied to nonlinear systems™’, should be implemented to filter out nonturbulent contaminations when
analysing experimental data to validate the model. In the following, we will refer to the steady-state EFB closure
as the Zi2013 model*”.

Monin-Obukhov similarity theory and universal functions

Unlike EFB, MOST is based on dimensional analysis (Buckingham mn theorem) applied to a SL in paradigmatic
condition, where the turbulent state at height z is entirely determined by the buoyancy parameter {3, the
mechanical forcing represented by the friction velocity u. = v/ —u/w’ and the thermal forcing described by the

kinematic heat flux w’é’, all combined in the single scaling parameter:

C_i__kzgw’e’_kzgg
L O, ud O, ul

)

where T, = —w’6’ /u.. is the temperature scale and k the von Kérmén constant. As a result, all the atmospheric
parameters relevant to characterise the SL turbulence are expressed, when considered in their nondimensionalized
form, as universal similarity functions of (*°:

e I+ A (32)
=B (Q) =) =R (0) (3b)
% = ®g9 () (30)

CVTZM G CTTifm =%c; (0) (3d)
e 0 e, (e

where 0., 0y, and are the wind components standard deviations, Cy2 and Cp2 the structure function
parameters for velocity and temperature, and ex and ¢ the dissjlspation rates for .Eyx. and Ejp. Since
Cy2 = daieg?/® 22262/ and Cp2 = 451696;(1/3 = 3.2896;(1/ ( where a; = 0.55 and 5 = 0.8 are

Kolmogorov and Corrsin constants, respectively), equations (3d) can be expressed as

Cv2 22/3

u?

=®c,, () =4 (B, (0)? 3f)

2/3
C(T;if? = q)CT2 (C) =32 k’72/3 : ‘I)h (C) : ({)SK (C))71/3 (3g)
While MOST introduces several universal functions ®x (&), it does not define their exact analytical form.
Furthermore, since MOST does not explicitly state the interdependence between variables as fluid-dynamic
relationships do, it implicitly assumes that such interdependencies are intrinsic to the universal functions
themselves that is, their mutual dependence arises not from separate empirical fitting, but from the underlying
physical consistency of the system they represent.

MOST universal functions

In principle, @, (¢) could be determined through curve fitting of experimental data, assuming they are not
perturbated by nonturbulent motions or self-correlations, which are particularly critical in stable and very
stable conditions®13. In addition, MOST requires universal functions to be congruent with all the similarity
relationships in which they are included; that is, they should not be determined independently of each other,
disregarding any potential physical constraints or interrelations among them. While it is not feasible to establish
a priori definitions of @, ({), dimensional analysis provides criteria for determining their asymptotic behaviours
in both the adiabatic ({ — 0) and the high stability (( — co) limit, when w’6’ or z can be neglected).
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The functional forms proposed in the exiting literature for the universal function under stable and very stable
conditions frequently exhibit conflicting characteristics, potentially indicating that they may have been derived
without taking adequate measures to avoid the adverse impact of nonturbulent motions and self-correlations.
These two factors contribute to turbulent inflation and to the detection of spurious correlations, respectively.

Universal functions for wind and temperature gradients

Universal functions for wind and temperature gradients in equations (3a) have recently been discussed in
Casasanta et al.'%, who reviewed the four main formulations proposed in the literature so far and assessed how
they affect the theoretical behaviour of w’6’ and T under stable and very stable conditions. None of them
turned out to be completely consistent with the existing literature, while two of them produced highly unreliable
expressions for both w6’ and T’ The four formulations are summarised in Table 1, which also reports the values
of the respective numerical constants obtained through curve fitting. Dimensional analysis suggests that both
®,, (¢) and ®4, (¢) tend towards a constant value as  — 0, and are linear when ¢ — co. While the Businger-
Dyer equations satisfy both these conditions, it is straightforward to verify that Beljaars-Holtslag’s ®4, (¢), as
well as CASES-99 and SHEBA formulations does not show the expected asymptotic behaviour when ¢ — oo.

Universal functions for the standard deviation of wind velocity
According to dimensional analysis, for the Universal Functions ® vy (), Puo (¢), and @ (€), the adiabatic
limit should be a constant, just as the high stability limit should also be a constant. Naturally, these two asymptotic
values can correspond to different numbers. Although data from a common 3D sonic anemometer could
provide information for their characterization, the literature reports only a limited number of experimental
campaigns with different data processing approaches in which all three universal functions were simultaneously
determined under stable conditions. It is worth noting that the averaging time is crucial to filter out nonturbulent
perturbations: excessively long averaging times can result in formulations that lack reliability. For instance, Mahrt
etal.?’, (their Figure 2) observed a continuously increasing trend in ®,, (¢) with stability when using a 5-minute
averaging time, which tended to a constant value when a shorter timeframe (100 s) was used. Analysing data
from experimental campaigns carried out in rural and flat terrains, Andreas et al.>® identified the relationship
Do (€) = a (1 4 b¢)(witha = 2.55 when aav = uu, vvanda = 1.20 for e = ww), which clearly does not
tend towards a constant as { — co. A similar incontinency arise in the equation ®oqo () = a + b - (¢ proposed
by Pahlow et al.*®, where a = 2.3, 2.0, 1.1 and b = 4.3, 4.0, 0.9 for cx = uu, vv, ww, respectively, and
c=0.6 in all cases. The same issue occurs in the equation ®no (¢) = a(1 + b¢)H? suggested in both Al-Jiboori
et al.’” and Quan and Hu®®, who used data acquired in urban and complex terrains In the latter two papers,
the equation remains the same, but the values of the coefficients differ. Specifically, for aa = vu, vv, ww,
the coefficients are ¢ = 1.76, 1.60, 1.22 and b = 2.39, 1.96, 1.05 in the former, while in the latter they are
a=1.96, 1.80, 1.42 and b = 2.07, 1.78, 0.54. The difference between the various formulations becomes
particularly evident at high stabilities, and it may be attributable to a range of factors, including the different
averaging times used by various authors, variations in data processing techniques, the sensitivity of methods
(whether linear or not) to outliers and the impact of self-correlation.

As a final remark, it is worth to highlight that existing literature supports the notion that ®.¢ ({)—which
indicates the universal function for the rate of temperature variance dissipation coincides with ®}, (¢). Using Eq.
(3g), it is straightforward to derive an expression for <I>C% ©).

Universal function for the standard deviation of potential temperature

In this case as well, dimensional analysis suggests that the adiabatic limit for the universal function ®g¢ (¢),
representing the standard deviation of potential temperature, is a constant. Similarly, its behaviour under high-
stability conditions is also characterized by a constant—again, these two constants may not necessarily
have identical values. When considering stable conditions exclusively, proposals for functional forms of
D9 (¢) are limited and show substantial discrepancies among them. Kaimal and Finnigan*® proposed
the equation ®gg (¢) =2.0-(1+0.5-¢)"", Andreas et al>® recommended using a constant value
®go (¢) = 3.2, Pahlow et al.* presented the expressions ®go (¢) = 2.0 - (1 + 0.5 -¢) ™", and Quan and Hu®

Formulation ®m (€) ®n (€) References

Businger-Dyer 1+ Bm¢

ay b (1+ Br). 51

Beljaars-Holtslag

1+aC+b¢-[1+c—dC]exp(—dC) 1+a(~[1+%a(]l/2+bc'~[1+c—dc]~exp(—dC) 5

1—

<+<f (1+<f) ff C+Ch (1+<h) 1;7}’/

CASES-99 1+e 1 53
cH(14chH)/S te ¢+ (1+ch) /R
am¢ ap ¢
SHEBA L+ 57 Pro (1+ 7<) 5

Table 1. Universal functions for wind and temperature gradients as proposed in the literature, with 8, = 5.3,
Brn=80,a;'=0.95a=1.0,b=067,c=50,d=035e=06.1,f=25¢g=53h=11,
am = ap = 5, by, = 0.3,b, = 0.4 and Pro = 0.98.
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formulated ®gp (¢) = 30.0- ¢ —1/3_ As it is evident from Fig. 1, under very stable conditions the discrepancies
between the expressions proposed by the various authors spans at least two orders of magnitude.

Universal function for the turbulent kinetic energy dissipation rate

Following dimensional analysis, ®.1 ({) is expected to approach a constant value under adiabatic conditions,
while it should increase linearly with ¢ under high stability conditions. Existing literature generally supports
the functional form ®.; ({) =a- (14 b (), which shows the expected asymptotic behaviour. Variations
emerge in the values attributed to the parameters a and b. Kaimal and Finnigan*® propose a = 1.0 and b = 5.0,
Hogstrom® suggests a = 1.24 and b = 3.8, Pahlow et al.>® report @ = 0.6 and b = 8.2, while Hartogensis and
De Bruin® find ¢ = 0.8 and b = 3.1. In addition, considering ®. (¢) and using Eq. (3f), it is straightforward
to derive the expression corresponding to the universal function ®c,, (¢)

Linking the EFB closure to MOST

Section “Linking the EFB closure to MOST” begins with a review of the steady-state Energy and Flux Budget
(EFB) closure framework (Sect. 4.1-4.5) to establish the theoretical foundations, and concludes in Sect. 4.6 with
the analytic derivation of all Monin-Obukhov similarity functions from the Zi2013 model.

The Zi2013 model®” is the result of applying the prognostic relations introduced by Zi2013” to a stable,
stationary, and horizontally homogeneous surface layer, with non-turbulent motions disregarded. Thus, refers
to the very same physical environment as MOST. Section 4.1 to 4.5 provide a structured summary of the steady-
state closure equations of Zi2013%, with explicit references to the corresponding equation numbers from their
original work to ensure traceability. These sections serve as a theoretical basis for the subsequent developments.
The novel contribution of the present study begins in Sect. 4.6, where the functional forms of all the universal
functions introduced in section “MOST universal functions” are analytically derived from the Zi2013 model*’.
This approach eliminates the need to infer these forms empirically from experimental data. In other words,
as long as the Zi2013%” model remains applicable, the functional forms of the MOST universal functions are
inherently determined. While Zilitinkevich and colleagues use a somewhat unconventional definition of the
stability parameter ¢, wherein the von Karman constant (k) is omitted, in the following discussion the more
conventional definition of stability (Eq. 2, which incorporates k) is adopted.

Stability parameters
In addition to {, an alternative parameter that depends only on external forcings, rather than internal ones like
T and u. at the specific height considered, is the Gradient Richardson Number Ri, which is defined as follows:

)
8

Rz‘:@%(a 7 (4a)

Unlike ¢, Ri depends exclusively on external forcings such as the gradients of the average potential temperature
and of the mean wind speed, which are not directly measurable and has to be estimated based on two (or
more) O and U measurements. While { is approximately proportional to the ratio between the height z and
the characteristic length scale of the turbulent vortexes in the SL°!, Ri instead depends on the ratio between
convective and mechanical forcings expressed as external variables that not directly associated with turbulence.
Considering both point of views, it is possible to introduce a third stability parameter incorporating both
external and internal forcings, the Flux Richardson Number Ri:

G

3
a0 — Kaimal and Finnigan (1994)
— Andreas et al. (1998)
102 — Phalow et al. (2001)
— Quan and Hu (2009)
10'F
<
h:
S
10°F
10F
10-2 1 1 1
102 10~ 10° 10° 102

¢

Fig. 1. Evolution of the four @44 () presented in section “Universal function for the standard deviation of
potential temperature” as a function of the stability parameter (; discrepancies exceed two orders of magnitude
at high stability.
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) g w'0’
Rij= 2 ——0\1w» (4b)
e'r uw'w B2

In this case, stability is characterised in terms of energy, since under stable paradigmatic conditions Riy is
linked to the turbulent kinetic energy balance®'. Differently from Ri, Riy is expected to reach an asymptotic
value between 0.2 and 0.25 for ( — oo, as confirmed by a number of both experimental and modelling
studies!”18:30:62-65 Following this approach, more recently Zilitinkevich et al.% proposed the Energy Richardson
Number Rig, which is defined as the ratio between turbulent potential and kinetic energy:

. Ep _ B o)
Rip=—=.___"9
T Bk T T (ot ot od) (9

From the previous equation it is clear that Rir cannot be defined under strictly neutral conditions, where
00/0z — 0, while it is expected to approach an asymptotic value of 0.155 under highly stable conditions®.
In addition, Rig is particularly valuable within the EFB framework, as in this particular closure turbulence
is sustained by velocity shear regardless of stratification, and any alteration in Ef is compensated by a
corresponding adjustment in E'p to ensure the conservation of total energy.

Flux Richardson number and MOST universal functions for wind gradients

The functional form of the universal function for wind gradients is provided in Zi2013, and it is presented here
for the sake of completeness. Considering the existence of an asymptotic value (R ) for Riy and the Ex budget
under paradigmatic condition, the product kz/u. OU/0z converges to 1 under neutrally stratified conditions,
essentially recovering the well-known wall law. Conversely, in highly stable conditions this product is expected
to vary linearly as R'. A straightforward interpolation between these two results leads to the following
expression, which is formally identical to MOST Eq. (3a):

Where
1+ R =2m (¢) (6)

Even though an interpolation is not the only possible choice, it leads to a familiar result. Assuming R = 0.2
% (their Figure 4) and R;' = 5 the previous equation coincides with the Businger-Dyer formulation reported
in Table 1. The Businger-Dyer equation, initially derived from curve fitting under weak to moderate stability
conditions, is now extended to encompass all stable conditions and is directly linked to Zi2013 closure®’.
Also, this result highlights the crucial role of the asymptotic value for Riy, which, as demonstrated in the next
subsections, acts as a fundamental constant.

As shown in Zi2013%, combining Eq. (5) with (4b) yields to the following universal function for Ri

_ ¢ __ ¢
14+ R3¢ Pm(C)

Rig=ri, (¢) )

which is fully consistent with MOST (see, e.g!%. , Eq. 6) but specifies a fixed analytical form for @, (¢). Figure 2
illustrates the R behaviour as a function of ¢ for the four different ®,,, (¢) formulations provided in Table 1. As
anticipated, only the Businger-Dyer expression successfully replicates the expected Riy behaviour, in contrast to
the other three formulations, which either diverge or converge to a value higher than expected.

Gradient Richardson number and MOST universal functions for temperature gradients
As for the other MOST universal functions, linear relation the universal function for the Gradient Richardson
Number is described in Zi20137 (their Eq. 82), which incorporates a number of constants, including RJ'":

C:C a1l + az(?
= — 1+
Cr (1+ Rx'C) 1+a¢
Cr =0.25, a; =0.18, as = 0.16, az = 1.42

Ri =ri () } C, = 0.20,

(8)

where the parameters a1, a2 and 3 are defined by Zi2013 Eq. 83 to 85%. According to the previous equation,
Ri increases monotonically with ¢ without reaching any asymptotic value; thus, it depends solely on the mean
flow state and its growth is unrestricted by internal turbulence.

On the other hand, combining MOST Equations (3a) and (4a) with (8) and solving for @5, () yields the
expression:

— (©)

C 2. Q) ©
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— CASES-99
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4

Fig. 2. Evolution of Ri; as a function of ¢ for the four ®,, (¢) formulations reported in Table 1; only the
Businger-Dyer formulation converges to the expected value.

Substituting Eq. (8) into (9) allows to retrieve a formulation for ®; (¢) whose analytical form is already
determined and has not to be inferred from experimental data:

o

 (¢) = Cr

(10)

(1+ R¢) {1 4 e Fa “241

1+ a3

It is worth emphasizing that while ®;, (¢) follows a linear dependence on ¢, the formulation for ®;, ({) derived
from it depends on ¢ quadratically. From a practical point of view, to avoid any possible self-correlation it is
recommended to determine all the variables in the following order: Roc, ®m, Sri and finally @, typically,
universal functions are obtained independently of each other, neglecting any possible relation between them,
but Eq. (9) clearly shows that @, ({) and ®,, ({) are interconnected. The resulting formulations are valid at any
level of stability and fully congruent with each other. They also account for the existence of a minimum in w’6’
and 7', as well as for a finite asymptotic value for Ri; and an unlimited but linear growth of Ri with (.
In addition, Zi2013% also retrieve the following formulation for the Prandtl turbulent Number:

C, arl + ach

Prr (¢) = [1 + (11)

- FF ' 14 asC

When neutrality is approached as defined in Zi2013 (Eq. 57)%7, Prr (0) = C;/CF = 0.8. This value is lower
than typically estimated from experimental data (e.g®’), which is close to 0.95. At high stability, instead, Prz (¢)
increases linearly with (.

Universal functions for the inter-component exchange of turbulent kinetic energy

As discussed in Zi2013, the stable SL is characterised by a continuous exchange of TKE among different
components, which clearly conflict with the assumption of Rotta’s return to isotropy*2. Furthermore, while this
energy exchange occurs between TKE vertical and horizontal components, there is an additional exchange of
energy between Fj, and Ep!8%,

The Zi2013 model®” allows for the determination of the shares between different components of turbulent
kinetic energy, namely, A, = E,/Ex, Ay = Ey/Ek, A; = E./FEk, and describes their behaviour as a
function of the stability parameter ¢( Zi2013 Eq. 50 subsequent®®). When ¢ — 0 and neutrality is approached,
the longitudinal component of Ek is greater than the transverse one, which in turn is greater than the vertical
component (A, = 0.5 > A, = 0.3 > A, = 0.2). Conversely, as stability increases and { — oo, most of the
turbulent kinetic energy is distributed equally between the two horizontal components (A, = A, = 0.49),
while the vertical component decreases significantly but does not vanish (4. = 0.03), in agreement with Zi2023
(Eq. 80).

The universal function obtained in Zi2013% for A as a function of ¢ is expressed by the following equation:

RooCy + ¢+ |Cr (1= 2C) — pite=feetd

3R 1+ Cr)+¢-[34Cr(1—2ChH)]

In the previous equation, once again, the persistence of turbulence even under extreme stability is signified by
the parameter R, while C;. = 1.5 and Cp = 1.25 are associated with the parametrization of Ex exchanges
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between different components, contradicting Rotta’s return to isotropy hypothesis. Under adiabatic conditions,
A (Q) reaches a constant value determined by C,

Cr
A:(0) = =~
O =303y (12b)
while its asymptotic value is given by the following relationship:
Cr(1—-2Co) —3(Rx —1)"
A (o) = S0 200 =3 ) (12¢)

3+ C, (1—2Co)

In addition, the universal functions for longitudinal and transverse shares, which depend on Ri; although the
dependence on ( can always be determined using Eq. (7) are as follows (see Zi2013, Eq. 50a-50c):

i) = 1 Riy (€)
As (Rig) = YA N CTG) + (1—01 —C’ziRoo ) - A (0)- "
{1 + B0, v o) a, <<>]]
Ay (Rig) = (14 Cut Gt ) - A0 [L+ 10— (1+.Co) - 42 ) (14)

Nevertheless, it is worth noticing that the three components A, A, and A. cannot be considered as independent
of each other, as they have to satisfy the obvious constrain A, + Ay + A, = 1.

Universal functions for normalized vertical fluxes

Under paradigmatic conditions, turbulence within the SL is driven only by vertical fluxes of momentum and
sensible heat. For the vertical flux of momentum, the’” model provides a relationship expressed as a function of
both Ris and ¢:

TV 20 A gy . AR
(52) - Tl =20 4.0 Ty © (15)

where 7 = u2. Given the known behaviour of Ris as a function of ¢ and the expression for A (¢) from
Eq. (12a), the previous relation defines , as a universal function of ¢, with its analytical form fully determined.
For typical values of the constants C, C,, Cy and R, the normalised vertical flux ranges between 0.08 (at
¢ = 0)and 0.016 (for { — o).

From Eq. (15), it is straightforward to derive the normalized fluxes with respect to £, E, and E.:

1/2

T (S (A2 1+ R3¢ . .

e R L w0 <1+(R;3—1)~C> =372 () (150)
1/2

A C 1 (9) Y 7o e € B () W S B0 ey _q

E, B 4 (Q) = V20- Ay (€) <1+(R0011) C) =Sy (¢) (15b)
1/2

T _ (S- (C))1/2 _ ) -1/2 H—m —g c

ETA V2C: - (A= (0)) <1+ (B 1) ~C> =Sr: (¢) (15¢)

The behaviour of the three normalized fluxes as a function of ( is illustrated in Fig. 3 (left panel). With increasing
stability, both S, (¢) and Sy (¢) decrease towards the asymptotic value of 0.26, while - ({) increases up to
4.20, reflecting the distribution of kinetic energy discussed in the previous subsection.

Similarly, Zi2013%” determines an expression for the dimensionless turbulent flux of potential temperature,

—
w20, A.(Q) (16a)

EKE@ Cp P?"T (C)7

which can be readily rearranged to derive the normalized vertical flux of potential temperature expressed as a
universal function of (:
w0’ _ 2C
E.Ey  Cp,-Prr(Q)

=00 (0) (16b)

The behaviour of .9 (¢) is shown in Fig. 3 (right panel). At neutrality, ..o (0) = 2C-/ (CpPrr (0)) = 0.58,
while it decreases linearly as { increases under highly stable conditions.
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Fig. 3. Behaviour of the three normalized vertical fluxes of momentum (left panel) and potential temperature
(right panel) as a function of ; the contrasting trend of 7/ E. compared to both 7/ E,, and 7/ E,, reflects the
TKE exchange among components.
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Fig. 4. Behaviour of the universal functions for standard deviations (left panel) and potential temperature
(right panel) as a function of {; according to the intercomponent exchange of TKE, wind standard deviations
tend towards horizontal isotropy as stability increases.

Universal functions for standard deviations of potential temperature and wind components
Universal functions for the standard deviations of both potential temperature (cp) and wind components
(Ou, Ov, Ow) can be derived from normalised vertical fluxes. Recalling MOST Eq. (3b) and inverting Equations
(15), where 7 = u2 and Ex = 0.5 02 ( x= u, v, w), yields

1/4
P ()= T =[5 —m = V240 201;(}%)1(_11);01()1 / (172)
L 1/4
P (=70 = 5 = V2A el 1Z(R) (11)5’;14)1 (17b)
. 1/4
f W] e

These equations provide expressions for the standard deviations of wind components normalised by ux, in
terms of ¢ and the universal functions A, ({), A, (¢) and A. ({). Their behaviour as a function of stability
is represented in Fig. 4 (left panel). According to the inter-component exchange of TKE described in Sect. 4.4,
as stability increases, both @, (¢) and @, ({) reach asymptotic values close to each other (2.90 and 2.62,
respectively), tending towards horizontal isotropy, while ®.., ({) decreases. Under adiabatic conditions
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(¢ = 0), the vertical component depends solely on the two constants Cr and C'-, while in the expressions for the
horizontal components, C is also included:

(aw) (242 1/4_ 2 Cr e (182)
ueJo \ C; “\3 C,(1+C)

(2) =a+on= (2 (18b)
() =2 1m0) (),

In addition, Egs. (17a-17¢) are linked together by Eq. (15), which serves as a constrain:
o () + 23, (O) + 2L () = 2-3717(0) (18d)

Similarly, the universal function for the standard deviation of potential temperature can be obtained by
substituting the expressions for Fx and Fy into Eq. (16b), and using Eq. (17¢):

@ _ %‘rz (C) 19
T* o 2 swe (C) ( a)

Recalling MOST Eq. (3¢), the previous expression directly yields:

1

oo \/m< 1+ R.'¢ )4 (19b)

MO aoas o \ [T (B2 D] €

As shown in the right panel of Fig. 4, ®g¢ gradually increases with stability, and only when ¢ > 1 its growth
becomes significant. Also in this case, ®gg (¢) cannot be considered independent from the other universal
function, as it is linked to @+ (¢) though the following constrain relationship:

D (€) - Boo (€) = 23,5 (€) (20)

Relationships between the energy Richardson number and,universal functions
The ratio between the turbulent potential and kinetic energy, {1*# = E,, plays a crucial role in the EFB closure,
and it can be expressed as a function of just the stability level:

o= o O
Rip = E; = Cp1+ (R;ol — 1)C—R1E ©) (21a)

Here, the numerical constant C}, expressed the difference between E, and Ex dissipation rates, while Roo
remains once again a key parameter. Similarly to Ris, Rig reaches an asymptotic value between 0.14 and 0.15
for ¢ — 00%:

) C
R’LE‘OO = ﬁp_l (21b)
When considering only the vertical component of TKE, Eq. (21a) becomes:
) E Ri
Rip. ()= 22 2 2O o) (20)

B, A.(¢) e

Replacing the definitions of both E, and E. in the previous expression, and using MOST Egs. (3a), (3b) and
(3¢), leads to:

(22b)

2
Ship. (€) = CgrattlS)

@ (¢) - Phow (€)

The previous relationship represents an additional constrain, establishing a link between gri,, ({)and the
stability parameter (, as well as three other MOST universal functions whose functional forms are defined by
Egs. (19a), (20) and (10).

Similarly, when examining the horizontal components of TKE, Eq. (21a) gives:

. Rig (¢)
R’LEw (C) = = SRi - C (233)
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Fig. 5. Evolution of ®., and ®¢,, asa function of (; linear and two-thirds-power scalings support the
functional forms proposed in previous literature.

Rig (¢)
Ay (€)

Rigy (¢) = = SRig, () (23b)

As a result, the mechanism of energy exchange among the three TKE components, as well as between the
potential and kinetic turbulent energy, modulated by the vertical mean gradient of potential temperature within
MOST framework, is reflected here in Egs. (21a) and (23a, 23b).

For the sake of completeness, it is worth mentioning here that the total turbulent energy, E, is defined by the
standard deviations of potential temperature and wind components, as well as the vertical gradient of the mean
temperature:

1 2 2 2 2 g%
E=_
2 (Uu"_gu"_au) +6 8@/82 (24)
Following Zi2013, the ratio between [, and E is also a universal function of ¢:
E CpRoo
= pfiecC =3z (Q) (25)

E  Reot[1+Re(Cp—1)]-C

Universal functions for dissipation rates and structure parameters
According to Zilitinkevich at al.%® the ratio between the dissipation rate for EF'x ( € k) and the friction velocity, is
expressed by the following nondimensional relationship:

k 1—Ri -
s IR (R 1) ] o)

ug 1- &
oo

Straightforward comparison between the previous equation and MOST Egq. (3e) yields:
O, (Q) = [1+ (R = 1) -] (262)

which is a linear function of the stability parameter (.
Furthermore, using MOST Egq. (3f) with the previous, the universal function for C' 2 is expressed as:
Bey, () =4-(1+ (RX —1)-¢)° (27)
The behaviour of both @, (¢) and ®c,, (¢) as a function of { is illustrated in Fig. 5.
In addition, using Eq. (7), these two universal functions can also be expressed as a function of Sri, (¢):

¢

SRif (C)

Dep (€)= (1= Sris (0)) - (28a)
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2/3

(I>CV2 (C) =4. (1 — %Rif (C)) . ﬁ (28b)
vf

Regarding the universal function for ®., (¢), its functional form coincides with ®, (¢) and does not need to
be determined separately, as demonstrated in Kaimal and Finnigan®. Such a result is the direct consequence
of assuming a paradigmatic SL, where most of the temperature standard deviation produced is destroyed by
molecular dissipation. Also in this case, the universal function for C3 can be readily obtained from MOST
Eq. (3 g), while both .4 (¢) and @, (¢) can be expressed as a function of Ir; (¢) though Eq. (7):

ey (€)= ¢ Sri (O) (Smiy () (292)
o~ 20 . 1/3
& _ q9-2/3. Sri(Q) ( ¢"Sriy (©) ) 20b

Discussion

As discussed in Sect. 3, MOST similarity relationships (3) describe the behaviour of the main SL parameters
as a function only of the stability parameter (. These relationships are derived through dimensional analysis
and depend on ten universal functions, namely ®,,, ®n, Puu, Pvv, Pww, Pos, Pc, ., ‘I’CTz s Py, Doy,
whose functional forms are not intrinsically determined and must be experimentally inferred, typically through
curve fitting. So far, this approach has presented several issues. First, often experimental campaigns do not
explicitly consider non-turbulent motions, that can significantly influence turbulence measurements. Second,
the formulations obtained through curve fitting typically do not account for self-correlation, which may result
spurious correlations (see, e.g'?). Third, these formulations are generally obtained independently of one another,
neglecting potential physical constrain relationship among them. As a results, a set of generally accepted
formulations has yet to be established. This is especially evident under stable and very stable conditions, where
existing formulations proposed in literature often fail to align with both theoretical and experimental results. For
instance, as discussed in Casasanta et al.! the four main formulations suggested to date’*>54%8 are not capable
of reproducing the theoretical behaviour of the kinematic heat flux and the temperature scale.

On the other hand, the EFB closure involves a total of 15 universal functions Sr; P (€), Sri (€), Az (€),
Ay (Q) s Az (Q), 87 (€), Swe (€)s Sra (€, Sy (€)s S72 (€)s Prr (€), Srig, (€) s Srig, (O Srip. (€)
and Sg () each defined by a predetermined analytical form, with only numerical coefficients left to be
determined. While a definitive validation of their values is still required, it is worth noting that all the constants
have already been estimated through both experimental and modelling studies and are generally considered
reasonably reliable®®. As detailed in section “Linking the EFB closure to MOST?, since the physical SL under
consideration remains unchanged, the MOST universal functions can be expressed in terms of the EFB closure
functions, thus uniquely identifying their analytical forms.

Focusing on stable and very stable conditions, we demonstrated how the functional forms of MOST universal
functions are intrinsically contained in the EFB closure theory; thus, once one adopts the EFB approach, MOST
universal functions and all the possible relationships between them are fixed. A summary of the ten MOST
functions expressed as a function of one or more EFB functions is reported below.

_ ¢
_ - Sri(¢)

Dy (€) = & (17b)

Sry (€)

_ Srz (€)
@99 (C) = 2 %wg (g) (193.)
CI)EK (C) - (1 — SRig (C)) : % (28a)

¢ 2/3

o =4 (1 =Sps e 28b
oy (O) [( mis () 50 C)} (28b)
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ey (O)=CSri (Q) - (Sriy Q) (299)
_ —23 Sri(Q) ( &Sry(0) 1 b
®c,, (¢) =32k S (O <1 S, (c)) (29b)

In addition, the connection between MOST and EFB closure functions allowed to establish the three new
constrain relationships (18d), (20) and (22b), which link MOST universal functions to one another. More
generally, as previously stated in literature (e.g'?), the existence of these relationships indicates that the universal
functions cannot be considered independently, thus reflecting the fact that MOST requires universal functions
to be congruent with all the similarity relationship in which they are included. This interdependence among
universal functions is consistent with Dias®, which demonstrates that the nondimensionalization of the fluid-
dynamic equations for second-order moments, under the assumption of stationarity, surface uniformity and
homogeneity, leads to a new set of algebraic equations depending solely on the stability parameter { and the
MOST universal functions. To the best of our knowledge, Dias® remains the only study explicitly addressing
this topic.

The proposed functional forms were derived analytically and still require validation®®, either through a
specifically designed field campaign or a thorough analysis of datasets already available in the literature, see e.g.,
Mauritsen T, Svensson G'8, which includes observations of stably stratified turbulence from six different studies.
From an experimental perspective, a campaign aiming at validating these universal functions should meet a
number of requirements, starting with the selection of an experimental site as close as possible to paradigmatic
conditions, and a careful determination of uncertainties (which are almost always neglected in experimental
studies), since turbulent fluxes under very stable conditions are so reduced that they could be significantly
influenced by the characteristics of the instruments used for their determination’’. On this point, for instance,
relatively recent datasets from Arctic and Antarctic campaigns, where high levels of stability are reached and
the terrain is mostly flat and homogeneous, might provide a valuable opportunity to investigate the stable and
very stable SL under paradigmatic conditions’®”>. Furthermore, the physical processes that are not considered
by either MOST or EFB closure, but are expected to significantly affect the stable SL, should be carefully
addressed to separate turbulent fluctuations from non-turbulent motions with larger timescales, such as internal
gravity waves, Kelvin-Helmholtz shear instability, low-level jets, sub-meso motions**’47>. Disentangling non-
turbulent motions from turbulence requires a data analysis focused on the spectral gap that separates small-
scale turbulence from mesoscale and sub-mesoscale motions. Following this approach, Howell and Sun”
implemented a multiresolution decomposition technique to identify a turbulence cutoff time associated with the
spectral gap. Their results were further extended by Vickers and Mahrt”®”7, who introduced a variable averaging
time ranging from 20 min under strongly unstable to 30 s under strongly stable conditions. Nevertheless, it is
important to emphasise that the development of an automatic procedure to extract the turbulent component
from a generic micrometeorological signal is still an open issue.

Special attention should be paid to the possible presence of self-correlation, which is known to affect regression
analysis and lead to unreliable results'>!*. This aspect is often underestimated and, apart from the technique
presented in Klipp and Mahrt!? and Anderson’8, there are no operational strategies to assess its influence. In this
respect, it is useful to mention that Anderson’® presented a method to avoid self-correlation when determining
Pry as a function of Ri: regression coefficients between key measurable variables are first established, and then
both Pr..and Ri are reconstructed using these relationships. The technique relies on the analysis of variance to
derive both the regression and the associated error, which is used to determine the range of stability over which
the technique holds.

Beyond these practical considerations, some theoretical limitations of the proposed framework should
also be acknowledged. The present derivations rely on the assumption of idealised surface layer conditions,
specifically, horizontal homogeneity, stationarity, and the predominance of turbulence over other motions.
While such assumptions are fundamental to the MOST and EFB closures, they are not always satisfied in real
atmospheric flows, particularly under very stable stratification or over heterogeneous terrain.

Recent studies”%" have shown that non-turbulent motions can significantly affect the structure and energy
budget of the stable boundary layer. These processes may interfere with turbulence parameterisations and
invalidate traditional similarity relationships.

As a result, future developments of the present framework could include the incorporation of such processes
through numerical modelling or hybrid approaches. Observational campaigns targeting complex environments
and using high-frequency data may also offer valuable insight into the limits of applicability of the derived
universal functions. In addition to experimental campaigns, the implementation of the EFB model in high-
resolution numerical simulations could help test the stability and robustness of the derived similarity functions.
Similar hybrid approaches have recently been used to investigate the dynamics of complex physical systems in
other domains (e.g®!).Such simulations would allow a direct comparison between theoretical predictions and
model-resolved turbulent quantities under idealised or realistic boundary-layer conditions.

Conclusions

This work demonstrates that the Energy and Flux Budget (EFB) closure framework can be used to derive
definitive functional forms for all Monin-Obukhov similarity functions in the stable and very stable surface
layer. By analytically linking EFB equations to the MOST framework, we provide a physically grounded and
internally consistent set of similarity relationships that do not rely on empirical fitting. In addition to identifying
the analytical structure of the universal functions, we establish several new constraint relationships that
highlight the interdependence among these functions, an aspect often neglected in conventional analyses. These
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theoretical developments contribute to a more robust understanding of turbulence in stably stratified boundary
layers.

As a next step, the proposed similarity functions should be validated against comprehensive observational

datasets and implemented within operational numerical models to assess their performance in realistic
boundary-layer simulations.
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