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Machine learning-based
construction of a programmed
cell death-related model reveals
prognosis and immune infiltration
In pancreatic adenocarcinoma
patients

Bing Wang'?, Zhida Long?, Xun Zou?, Zhengang Sun? & Yuanchu Xiao***

Pancreatic adenocarcinoma (PAAD) is a highly lethal malignancy with limited effective prognostic
biomarkers. In this study, 1,034 samples from TCGA-PAAD, GSE62452, GSE28735, GSE183795, and
ICGC cohorts were systematically integrated to identify key programmed cell death-related genes
(PCDRGs) associated with patient prognosis. Differential expression analysis and Univariate Cox
regression analysis identified 17 candidate PCD-related genes significantly associated with overall
survival. Using a comprehensive machine learning framework involving 117 algorithmic combinations
under a Leave-one-out cross-validation (LOOCV) strategy, we identified the StepCox[both] + Ridge

as the best algorithms composition to construct a prognostic model based on six PCDRGs, ITGA3,
CDCP1, ILIRAP, CLU, PBK, and PLAU. The model was validated to have robust predictive performance.
Risk scores were significantly correlated with clinical features, immune microenvironment
characteristics, and chemotherapeutic sensitivity. High-risk patients exhibited worse prognosis and
immunosuppressive infiltration patterns. Furthermore, consensus clustering identified two PAAD
molecular subtypes with distinct PCDRGs expression patterns and survival outcomes. A nomogram
integrating risk score and clinical variables exhibited strong prognostic accuracy for 1-, 3-, and 5-year
survival prediction. In summary, we established and validated a PCD-related prognostic signature that
effectively stratifies PAAD patients by clinical outcome, immune contexture, and therapeutic response,
providing novel insights for personalized management strategies.

Keywords Pancreatic adenocarcinoma, Programmed cell death, Machine learning, Prognosis, Immune
infiltration

Pancreatic adenocarcinoma (PAAD), recognized as the third leading cause of cancer-related mortality worldwide,
demonstrates a clinical prognosis that is closely linked to its pathological subtypes'. Among these, pancreatic
ductal adenocarcinoma (PDAC) accounts for over 90% of diagnosed cases, constituting the predominant
histological subtype of the disease?. Notably, PAAD exhibits a 5-year overall survival (OS) rate of approximately
10%, markedly lower than that of other common solid malignancies®. Furthermore, the global incidence and
mortality rates of PAAD have shown a progressive annual increase, positioning this malignancy as a substantial
public health threat. According to data released by the Global Cancer Observatory (GLOBOCAN) 2020,
worldwide PAAD cases reached 495,773 newly diagnosed patients, with 466,003 reported deaths*. Compared to
2018 epidemiological data (458,918 new cases and 432,242 deaths), the incidence and mortality rates exhibited
a marked increase of 8.03% and 7.81%, respectively, over the past two years®. This growth rate is significantly
higher than that of most solid tumors. Smoking, alcohol consumption, obesity, type 2 diabetes mellitus, and
trace element exposure are the main risk factors for the development of PAAD*S. With the global prevalence
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of metabolic diseases and the exacerbation of an aging population, the disease burden of PAAD is expected to
continue to increase over the next decade, especially in developing countries undergoing rapid socioeconomic
transformation.

PAAD, due to its anatomically retroperitoneal location and insidious early symptoms, resulting in
approximately 80-85% of patients being in the advanced stage at the time of initial diagnosis®. The clinical
diagnosis currently predominantly depends on the detection of the serum biomarker Carbohydrate Antigen
19-9 (CA19-9); however, this modality exhibits substantial limitations in early-stage screening, with sensitivity
and specificity ranges of 79-81% and 82-90%, respectively®’. Although surgical resection of the primary tumor
remains the sole curative intervention for PAAD detected at a very early stages, only 15-20% of patients have
the opportunity to undergo such surgery, and the recurrence rate within 2 years after surgery is as high as
80%?3. For patients with advanced PAAD, surgical intervention is unfeasible in most cases due to metastatic
dissemination, leaving systemic chemotherapy regimens as the primary therapeutic modality. Phase III
clinical trials have confirmed that the median OS time for the FOLFIRINOX regimen and the combination
of gemcitabine and albumin-bound paclitaxel are 11.1 months and 8.5 months, respectively! but the highly
fibrotic tumor microenvironment and multiple drug resistance mechanisms significantly diminish the efficacy
of the drugs’. It is worth noting that among patients with KRAS - mutated cancers, the incidence of PAAD is the
highest, reaching 73.51%, but the therapeutic targets for its conversion treatment have not yet been achieved!®.
Therefore, the identification of novel therapeutic targets and chemotherapeutic drugs is of great significance for
the treatment of PAAD and the extension of prognosis.

Programmed cell death (PCD) is an active cell demise process that is precisely regulated by genes. It plays
a crucial role in maintaining tissue homeostasis, eliminating abnormal cells, and responding to pathological
stimuli. Based on distinct molecular mechanisms and morphological characteristics, PCD can be classified into
21 subtypes, including necroptosis, pyroptosis, ferroptosis, entotic cell death, parthanatos, lysosome-dependent
cell death, autophagy, alkaliptosis and oxeiptosis'! apoptosis, paraptosis'? cuproptosis, disulfidptosis'® Entosis,
methuosis, necrosis, NETosis, mitoptosis'* Immunogenic cell death'> Anoikis'® and PANoptosis!”. In recent years,
studies have revealed that dysregulated PCD is not only a core mechanism in the occurrence and development
of cancer, but also closely related to tumor drug resistance and microenvironment remodeling. For instance,
cancer cells often evade apoptosis by upregulating anti-apoptotic proteins (e.g., BCL-2), downregulating pro-
apoptotic proteins, or inducing mutations in death receptors and downstream signaling components, leading
to uncontrolled cellular proliferation and therapeutic resistance'®. Under hypoxia and nutrient deprivation
stress conditions, autophagy contributes to the survival of tumor cells'®. Furthermore, cuproptosis is considered
to be associated with multiple cancer related signaling pathways, such as receptor tyrosine kinase (RTK), the
phosphoinositide — 3 - kinase (PI3K) - AKT signaling pathway, and mitogen - activated protein kinase (MAPK)
signaling pathway. These pathways not only promote tumor growth, migration, and proliferation, but also affect
autophagy and metabolic pathways, thereby enhancing the survival and proliferation of cancer cells?. Therefore,
elucidating the roles of PCD in PAAD holds significant clinical significance.

In this study, we employed a machine learning-based comprehensive algorithm and utilized various
bioinformatics methods to screen for PCD-related prognostic signatures in PAAD, constructed a PCD-related
prognostic model and revealed its clinicopathological correlations and immune microenvironment regulatory
mechanisms. First, we integrated the transcriptome data of PAAD from the TCGA-PAAD, GSE62452, GSE28735,
GSE183795, and ICGC cohorts. Through differential expression analysis and univariate Cox regression analysis,
we identified 17 differentially expressed PCD genes that were significantly associated with patient survival,
which were considered as potential prognostic genes. Subsequently, using the StepCox[both] + Ridge algorithm,
we screening programmed cell death-related genes (PCDRGs) associated with PAAD prognosis and developed
a nomogram for predicting the survival rate of PAAD patients. In addition, we also assessed the immune
infiltration status of PAAD patients through bioinformatics analysis and predicted potential therapeutic targets.
The PCD-related prognostic model demonstrated significant predictive accuracy for patient survival, while
the integrated molecular signatures provide novel insights for personalized therapeutic strategies and drug
repositioning of PAAD patients.

Results

Screening and identification of PCD related prognostic candidate genes in PAAD

To minimize batch effects across cohorts, batch effect correction was performed for the GSE183795, GSE62452,
and GSE28735 cohorts, which were subsequently integrated into a combined GSE-merged cohort (Supplementary
Fig. 1 A, B). Differential expression analysis identified 1,393 Differentially expressed genes (DEGs) in the TCGA-
PAAD cohort and 900 DEGs in the GSE-merged cohort, resulting in a total of 2,129 unique DEGs. Among
them, the TCGA-PAAD cohort contains 551 upregulated genes and 842 downregulated genes; whereas the
GSE-merged cohort contains 583 upregulated genes and 317 downregulated genes, respectively (Fig. 1A, B).
Through Venn plot analysis, 334 PCD-related DEGs shared between the TCGA-PAAD and GSE-merged cohorts
were identified (Fig. 1C, Supplementary Table 1). Based on these genes, univariate Cox regression analysis was
performed, resulting in the identification of 96 genes in the TCGA-PAAD cohort, 108 genes in the GSE-merged
cohort and 73 genes in the ICGC cohort that were both differentially expressed and significantly associated with
OS (P<0.05). The 17 overlapping DEGs associated with OS across the three cohorts were considered potential
prognostic candidate genes for PAAD (Supplementary Fig. 1C, Supplementary Table 2). The 17 candidate
genes’ univariate Cox analysis in the GSE-merged, TCGA-PAAD and ICGC cohorts were shown in Fig. 1D,
Supplementary Fig. 1D and E, respectively. Subsequently, protein-protein interaction (PPI) network analysis was
conducted to explore the interactions among the 17 prognostic candidate genes. Among them, FNI exhibited
the highest degree of connectivity with other genes (Fig. 1E). Heatmap revealed that CLU was downregulated
in tumor samples from the GSE-merged cohort, while the remaining 16 genes were upregulated (Fig. 1G).
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Fig. 1. Identification of prognostic candidate genes associated with 21 types of programmed cell death (PCD).
(A, B) The volcano plots of differentially expressed genes (DEGs) in the TCGA-PAAD (A) and GSE-merged
(B) cohorts. (C) Venn plot showing the overlapping between DEGs from the TCGA-PAAD and GSE-merged
cohorts and the PCD-related genes. (D) Univariate Cox regression analysis of 17 prognostic candidate genes in
the GSE-merged cohort. (E) Protein-protein interaction (PPI) network of 17 prognostic candidate genes. (F)
Copy number variation (CNV) analysis of the 17 candidate genes. (G) Heatmap of expression levels of the 17
candidate genes in tumor and normal tissues from the GSE-merged cohort. (H-I) Gene Ontology (GO) (H)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) (I) pathway enrichment analysis of the 17 candidate
genes.

In addition, copy number variation (CNV) analysis demonstrated frequent genomic alterations among these
genes. Specifically, ITGA3 showed the most prominent CNV gain, whereas LAMC2, PLAU, SLC2A1, and CDH3
exhibited significant CNV loss (Fig. 1F).

Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway
enrichment analysis

GO and KEGG enrichment analyses of the PCD-related prognostic candidate genes revealed their involvement
in multiple cellular signaling pathways, metabolic processes, and cancer-related pathways. GO enrichment
indicated that these genes were primarily associated with biological processes (BP) such as regulation of
transforming growth factor beta production, cellular components (CC) such as the basement membrane, and
molecular functions (MF) such as extracellular matrix structural constituent (Fig. 1H). KEGG pathway analysis
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further highlighted significant enrichment in pathways including ECM-receptor interaction, PI3K- Akt signaling
pathway, Central carbon metabolism in cancer, and HIF-1 signaling pathway (Fig. 1I).

Construction of a PCD related prognostic model using machine learning

We employed an integrated machine learning-based approach to develop a prognostic model using the
expression profiles of 17 prognostic candidate genes. A total of 117 predictive models were fitted under a Leave-
one-out cross-validation (LOOCYV) framework, and the Harrell’s concordance index (C-index) was calculated
for each model. Among them, the StepCox[both] + Ridge combination achieved the highest average C-index of
0.64 (Fig. 2A). Prior studies using RNA-based signatures have reported C-index ranging from 0.61-0.712!-%,
suggesting that our model performs within an expected and acceptable range. Using this optimal algorithm, six
PCDRGs, ITGA3, CDCPI, ILIRAP, CLU, PBK, and PLAU, were selected (Supplementary Table 3). A Circos plot
was generated to visualize the chromosomal locations of these PCDRGs (Fig. 2B).

Subsequently, individual risk scores were calculated for each patient using the established risk score
formula, and patients were stratified into high- and low-risk groups based on the median risk score. To explore
the biological processes significantly enriched in each risk group, Gene Set Variation Analysis (GSVA) was
performed. Results indicated that in the GSE-merged cohort, notable pathway enrichment differences were
observed between the high- and low-risk groups. High risk samples were mainly enriched in cancer-related
signaling pathways, including DNA repair, Wnt/B-catenin signaling, MYC targets V1, KRAS signaling dn, and
Hedgehog signaling, while low risk samples were enriched in TNF-a Signaling via NF-«xB, Angiogenesis, KRAS
signaling up and Apoptosis, suggesting distinct underlying biological mechanisms between the two groups
(Fig. 2C). In the TCGA-PAAD cohort, high risk samples showed enrichment in the Reactive oxygen species
pathway, Oxidative phosphorylation and Inflammatory response, whereas low risk samples were primarily
enriched in the p53 pathway and Wnt/B-catenin signaling (Supplementary Fig. 2 A).

Further analysis revealed significant differences in the expression levels of PCDRGs between normal and
tumor tissues in the GSE-merged cohort. CLU was significantly downregulated in tumor samples, whereas the
other five genes, ITGA3, CDCP1, ILIRAP, PBK, and PLAU, were significantly upregulated (P<0.001) (Fig. 2D).
Pearson correlation analysis showed a negative correlation between CLU and the other five genes, while ITGA3,
CDCP1, ILIRAP, PBK, and PLAU exhibited positive correlations with each other (Fig. 2E). Kaplan-Meier
survival analysis of the six PCDRGs in the TCGA-PAAD cohort revealed that patients with low CLU expression
had poorer prognosis, while high expression of the remaining five genes was associated with worse prognosis
(Fig. 2F-K). These results are consistent with their differential expression patterns in tumor samples. In addition,
we analyzed the mutational landscape of patients in different risk groups. The high-risk group exhibited a
markedly higher mutation frequency (95.12%) compared to the low-risk group (64.86%) (Fig. 2L, M). Notably,
mutations in TGFBR2, ATM, and CHD6 were more frequent in the low-risk group, whereas RIMS2, TPO, and
TNXB mutations were more prevalent in the high-risk group.

Evaluation of the clinical relevance of the PCDRGs prediction model

We validated the predictive performance of the risk model across five independent cohorts, TCGA-PAAD,
GSE183795, GSE28735, GSE62452, and ICGC, and further explored the relationship between the risk score
and clinical characteristics. As shown in Fig. 3A, patients in the high-risk group exhibited shorter OS time
and poorer prognoses compared to those in the low-risk group across all cohorts. This finding was further
supported by Kaplan-Meier survival analysis, which consistently demonstrated significantly shorter OS time in
the high-risk group across all five cohorts (Fig. 3B). Principal component analysis (PCA) also revealed distinct
distributions between high- and low-risk patients in each cohort (Fig. 3C).

Violin plots showed that in the TCGA-PAAD, GSE183795, and ICGC cohorts, risk scores were significantly
higher in dead patients compared to those who were alive (P<0.05). Although no statistically significant
differences were observed in the remaining two cohorts, dead patients still exhibited higher risk scores (Fig. 3D).
Additionally, in the TCGA-PAAD cohort, the risk score was significantly associated with clinical staging. Patients
with T3 + T4 tumors had significantly higher risk scores than those with T1+ T2 tumors, and patients at Stage IT
had higher scores compared to those at Stage I (P <0.05). However, no significant differences in risk scores were
observed across N and M stages (Fig. 3E-H).

Unsupervised consensus clustering analysis of prognostic PCDRGs

Unsupervised consensus clustering was performed to stratify PAAD patients and identify subgroups with
distinct molecular characteristics. The optimal number of clusters was determined to be k=2, and thus, patients
in the TCGA-PAAD cohort were divided into two clusters (Fig. 4A, B). Subsequent Kaplan-Meier survival
analysis revealed that patients in cluster C2 had significantly worse survival outcomes compared to those in
cluster C1 (P=0.01) (Fig. 4C). Moreover, a heatmap integrating clinical features and PCDRGs expression levels
demonstrated marked differences in gene expression between the two clusters. Most patients in cluster C1 were
characterized by early-stage disease and lower risk scores, whereas those in cluster C2 were predominantly in
advanced stages and had higher risk scores (Fig. 4D).

Establishment and assessment of the nomogram survival model

Univariate and multivariate Cox regression analyses were performed to evaluate the associations between OS
and the risk score, along with clinicopathological characteristics in the TCGA-PAAD cohort (Fig. 4E, F). The
results indicated that grade, T stage, N stage, tumor position, and risk score were all independent prognostic
factors. Based on these variables, a nomogram was constructed to predict the 1-, 3-, and 5-year OS probabilities
of PAAD patients (Fig. 4G). Calibration curves demonstrated good concordance between the predicted and
observed survival rates at 1-, 3-, and 5-years (Fig. 4H). Kaplan-Meier survival analysis revealed that patients in
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Fig. 2. Integrated machine learning-based development and validation of a predictive model associated with
21 types of PCD. (A) Harrell’s concordance index (C-index) values of 117 algorithmic combinations were
calculated to identify the optimal predictive model and algorithm. (B) Circos plot showing the chromosomal
locations of the PCD-related genes (PCDRGs). (C) Gene Set Variation Analysis (GSVA) analysis revealed
differences in enriched pathways between high- and low-risk groups in the GSE-merged cohort. (D) Boxplots
showing expression differences of PCDRGs between normal and tumor tissues in the GSE-merged cohort. (E)
Pearson correlation analysis among the PCDRGs. (F-K) Kaplan-Meier survival analyses of the six PCDRGs in
the TCGA-PAAD cohort. (L-M) Waterfall plot showing the somatic mutation landscape of low-risk (L) and
high-risk samples (M) in the TCGA-PAAD cohort. **: P<0.01; ***: P<0.001.
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Fig. 3. Validation of the prognostic model and association between risk score and clinical characteristics. (A)
Survival status of high- and low-risk patients across TCGA-PAAD, GSE183795, GSE28735, GSE62452, and
ICGC cohorts. (B) Kaplan-Meier survival curves comparing high- and low-risk groups in the five cohorts.
(C) PCA illustrating the distribution of high- and low-risk patients across the five cohorts. (D) Violin plots
showing the distribution of risk scores between alive and dead patients in the five cohorts. (E-H) Violin plots
comparing risk scores across different clinical subgroups in the TCGA-PAAD cohort: T (E), N (F), M (G), and
Stage (H).
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Fig. 4. Unsupervised clustering and construction of a nomogram model in the TCGA-PAAD cohort. (A)
Unsupervised consensus clustering divided patients into two clusters. (B) The optimal number of clusters
was determined to be k=2. (C) Kaplan-Meier survival analysis comparing patients in clusters C1 and C2.
(D) Heatmap showing the distribution of PCDRGs expression levels and clinicopathological characteristics
across clusters. (E) Univariate Cox regression analysis of risk score and clinicopathological characteristics
in the TCGA-PAAD cohort. (F) Multivariate Cox regression analysis of the same variables. (G) Nomogram
constructed to predict 1-, 3-, and 5-year overall survival (OS) rate in PAAD patients. (H) Calibration curves
evaluating the predictive accuracy of the nomogram. (I) Kaplan-Meier survival curves for patients stratified
by nomogram scores. (J) Receiver operating characteristic (ROC) curves assessing the predictive performance
of the nomogram for clinicopathological features. (K) ROC curves evaluating the predictive accuracy of the
nomogram for 1-, 3-, and 5-year OS.

the high nomogram score group had significantly worse prognosis (Fig. 4I). Receiver operating characteristic
(ROC) curve analysis demonstrated the robust predictive performance of the model. The area under the ROC
curve (AUC) for the risk score was 0.727, followed by grade (AUC=0.656), stage (AUC=0.679), T stage
(AUC=0.633), N stage (AUC=0.752), state (AUC =0.992), and cluster (AUC=0.650). The AUCs for predicting
1-, 3-, and 5-year OS rate were 0.753, 0.776, and 0.727, respectively (Fig. 4], K).

Immune landscape and its correlation with PCDRGs in PAAD patients

CIBERSORT analysis revealed that high-risk patients exhibited higher proportions of Macrophages M0 and
Macrophages M2, whereas low-risk patients had higher proportions of T cells CD4 naive, B cells naive, and
T cells CD8 (Fig. 5A). A heatmap of correlation analysis showed that PLAU was positively correlated with
Macrophages M0, Macrophages M2 and Neutrophils, but negatively correlated with B cells naive, Monocytes,
NK cells activated, T cells CD4 memory resting and T cells CD8. In contrast, CLU was positively correlated with
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Fig. 5. Immune microenvironment analysis based on the risk score. (A) Boxplots showing differences in the
relative proportions of 22 immune cell subtypes between high- and low-risk groups. (B) Heatmap illustrating
correlations between PCDRGs and 22 immune cell populations. (C-J) Scatter plots displaying the correlations
between PCDRGs expression levels and immune cell abundance. (K) Violin plots comparing StromalScore,
ImmuneScore, and ESTIMATEScore between high- and low-risk groups. (L) Differences in TIDE scores
between the two risk groups. (M) Boxplots showing the expression differences of 21 immune checkpoint-
related genes between high- and low-risk groups. *: P<0.05; **: P<0.01; ***: P<0.001.

B cells naive, Monocytes, and T cells CD8, but negatively correlated with Macrophages MO (Fig. 5B). Significant
associations were observed between the expression levels of PCDRGs and the abundance of 22 immune cell
types. Specifically, CLU was negatively correlated with Macrophages M0, and PLAU was negatively correlated
with T cells CD4 memory resting cells in both high- and low-risk groups (Fig. 5C-J). Furthermore, we analyzed
the correlations between PCDRGs and tumor microenvironment (TME)-related gene sets and identified the top
21 TME-related gene sets with the strongest correlations. The results showed that PCDRGs were significantly
positively correlated with multiple TME-related gene sets (Supplementary Fig. 2B). ESTIMATE algorithm
analysis revealed that low-risk PAAD patients exhibited higher ImmuneScore and ESTIMATEScore, but
lower tumor immune dysfunction and exclusion (TIDE) scores compared to the high-risk group (Fig. 5K, L).
Moreover, immune checkpoint related genes, including BTN2A 1, CD40, CEACAM1, PDCD1LG2, and TNFSF9,
were highly expressed in the high-risk group (Fig. 5M).
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Fig. 6. Predictive value of PCD-based risk model for chemotherapeutic drug sensitivity. (A) Boxplots showing
differences in drug sensitivity between high- and low-risk groups across various chemotherapeutic agents. (B-
I) Comparison of IC50 values for individual drugs between the high- and low-risk groups.

Impact of PCDRGs on targeted therapy response in PAAD patients

To investigate the relationship between our prognostic model and drug sensitivity, we analyzed the half-maximal
inhibitory concentration (IC50) values of several chemotherapeutic agents in PAAD samples using the Genomics
of Drug Sensitivity in Cancer (GDSC) database. Boxplots illustrated the differences in IC50 values between the
high- and low-risk groups for each drug (Fig. 6A). Interestingly, the IC50 values of Cisplatin, Niraparib, Olaparib
and Oxaliplatin were significantly lower in the low-risk group (Fig. 6B-E), whereas the IC50 values of Afatinib,
Sapitinib, SCH772984, and ULK1_4989 were lower in the high-risk group (Fig. 6F-I).

Validation of the identified PCDRGs

To validate the expression of the identified six PCDRGs in PAAD, we performed quantitative real-time PCR
(qRT-PCR) on PAAD tissues and peritumoral PAAD tissues. The results showed that the mRNA expression levels
of ITGA3, CDCPI, ILIRAP, CLU, PBK, and PLAU were significantly upregulated in PAAD tissues compared to
peritumoral PAAD tissues (Supplementary Fig. 3A-F). Among them, the expression patterns of ITGA3, CDCPI,
ILIRAP, PBK, and PLAU were consistent with the bioinformatics results from the GSE-merged cohort. These
findings further confirmed the differential expression characteristics of these PCDRGs in PAAD and suggested
their potential roles in tumor development and progression.
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Discussion

PAAD is a highly lethal malignancy with a poor prognosis, primarily due to its asymptomatic nature in the
early stages and the fact that most patients are diagnosed at advanced stages, resulting in limited treatment
efficacy?®. The high mortality associated with PAAD is closely linked to its complex molecular mechanisms,
including changes in the tumor microenvironment, cellular heterogeneity, and resistance to therapeutic
interventions?*?°. In recent years, researchers have increasingly recognized the critical role of PCD in the
initiation and progression of PAAD. PCD is not only an essential process for maintaining homeostasis but
also serves as an escape mechanism for tumor cells under hostile conditions?. Various forms of PCD, such as
pyroptosis?’ cuproptosis®® and anoikis?® may all influence the growth, invasion, metastasis, and drug resistance
of PAAD cells. In this study, we propose and validate a prognostic model based on PCDRGs, which has high
clinical practical value. Our findings demonstrate that by integrating multiple large-scale cohorts, PCDRGs can
provide more accurate prognostic information for PAAD, offering a theoretical foundation for the development
of personalized treatment strategies.

In this study, we systematically evaluated the expression profiles and prognostic value of PCDRGs in PAAD by
integrating multiple publicly available transcriptomic cohorts. Using a machine learning algorithm combination
of StepCox[both] + Ridge, we identified six PCDRGs with potential prognostic significance: ITGA3, CDCPI,
ILIRAP, CLU, PBK, and PLAU. Based on these PCDRGs, we developed a stable and reliable risk scoring
model, which demonstrates strong prognostic value and suggests significant clinical application potential. It
is noteworthy that although FNI was identified as a central hub gene in the PPI network, it was not retained
in the StepCox modeling process. This result suggests that topological centrality in network analysis does not
always correspond to independent prognostic value in multivariate survival models. Nevertheless, FNI may
play a pivotal role in multiple cancer-related biological pathways, and its potential functional relevance remains
noteworthy. It should be considered a priority candidate for future functional and translational research.

Integrin a—3 (ITGA3) is a member of the integrin family, primarily regulating cell adhesion, migration, and
proliferation through interactions with the extracellular matrix®’. In PAAD, the high expression of ITGA3 is
closely associated with the invasiveness and migratory capacity of tumor cells*!. CUB domain-containing protein
1 (CDCP1) is an effective oncogene predominantly located on the cell surface. It lies at the crossroads of several
critical oncogenic and metastatic signaling pathways, including the PI3K/AKT, WNT, and RAS/ERK signal axes,
plays a crucial role in cancer cell survival, growth, metastasis, and therapeutic resistance®. Interleukin-1 receptor
accessory protein (ILLRAP) is a molecule involved in immune responses. It forms a receptor heterodimer with
interleukin-1 receptor type I (ILIR1), mediating interleukin-1 (IL-1) activation of NFkB, which regulates
inflammation and the tumor microenvironment, thus promoting tumor growth and metastasis®®. Clusterin
(CLU) is a secretory molecular chaperone with an important regulatory role in tumorigenesis. It modulates
survival pathways in cancer cells and cancer stem cells (CSCs), enhancing tumor growth, metastasis, epithelial-
mesenchymal transition (EMT), inflammation, and chemoresistance*!. PDZ-binding kinase (PBK) is a kinase
involved in cell cycle regulation and mitotic processes. Its overexpression allows tumor cells to bypass natural
surveillance mechanisms associated with the G2/M checkpoint and lead to tumor abnormalities and mitosis
by downregulating the tumor suppressor gene p53 and upregulating cyclin-dependent kinase inhibitor p21%.
Plasminogen activator urokinase (PLAU) is an enzyme involved in fibrinolysis. It promotes cancer cell migration
and invasion by degrading the extracellular matrix, releasing or activating various growth factors, and enhancing
tumor cell proliferation through the activation of signaling pathways such as JAK-STAT, ERK, and MAPK?®.

We further validated the prognostic model in high- and low-risk groups of patients from the TCGA-PAAD,
GSE183795, GSE28735, GSE62452, and ICGC cohorts, and explored the relationship between risk scores and
clinical features. The analysis revealed that patients in the high-risk group had significantly shorter survival
times compared to those in the low-risk group, and exhibited poorer prognosis across all cohorts. Kaplan-
Meier survival analysis further confirmed the prognostic value of the risk score. PCA demonstrated that the
risk score effectively distinguished between different prognostic groups, indicating its broad applicability across
various cohorts. Although the differences were not statistically significant in certain cohorts, the risk scores for
dead patients were generally higher than those for alive, further supporting the reliability of the risk score as a
prognostic tool. Notably, in the TCGA-PAAD cohort, the risk score was significantly associated with clinical
stage, suggesting that it is not only an independent prognostic marker but also reflects tumor progression and
invasiveness. Overall, this study highlights the potential clinical value of the model, especially its significance in
tumor progression and prognosis assessment.

This study found that patients in the high-risk group not only had poorer survival outcomes but also exhibited
distinctimmune-suppressive features in their tumor microenvironment. Inmune analysis revealed that the tumor
microenvironment of the high-risk group was predominantly composed of Macrophages M0 and Macrophages
M2, indicating an immunosuppressive state that may accelerate tumor progression and metastasis*’. In contrast,
the low-risk group exhibited a higher proportion of T cells CD4 naive, B cells naive, and T cells CD8, which play
a key role in mediating the resistance to pathogens and the killing of malignant tumor cells, showing diverse
immune regulatory functions®. These results suggest that immune microenvironment heterogeneity may
play a significant role in the differences in prognosis. Furthermore, the TIDE score of the high-risk group was
significantly higher than that of the low-risk group, indicating a higher likelihood of immune evasion and poorer
response to immunotherapy in the high-risk patients®. Additionally, the expression of immune checkpoint
genes such as PDCD1LG2, CD40, and TNFSF9 were elevated in the high-risk group, possibly correlating with
enhanced immune evasion capabilities*’. The immune microenvironment plays a crucial role in tumor initiation
and progression, with increasing attention being given to the study of tumor immune evasion mechanisms. The
immune-suppressive characteristics of high-risk patients may be linked to tumor immune evasion, providing
new insights into the potential application of immunotherapy strategies in PAAD.
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To investigate the relationship between our prognostic model and drug sensitivity, we utilized the GDSC
database to assess the IC50 values of several chemotherapeutic agents in PAAD samples. The results revealed
significant differences in drug sensitivity between the high- and low-risk groups of PAAD samples. Specifically,
Cisplatin, Niraparib, Olaparib, and Oxaliplatin exhibited lower IC50 values in the low-risk group, suggesting
enhanced sensitivity and potential therapeutic benefit in these patients. In contrast, drugs such as Afatinib,
Sapitinib, SCH772984, and ULK1_4989 showed better therapeutic effects in the high-risk group, indicating
their potential suitability for this subgroup. From a mechanistic perspective, the targets of these drugs may be
functionally and mechanistically linked to our model genes. Afatinib, Sapitinib, and SCH772984 significantly
downregulate CDCP1 expression by inhibiting the EGFR/MAPK/ERK and PI3K/AKT pathways*!~# since
CDCPI overexpression is highly dependent on the co-activation of MAPK/ERK and AKT signaling pathways*%.
PBK mediates resistance to PARP inhibitors like Olaparib via the TRIM37/NF-kB pathway*®. Moreover, platinum
agents such as Cisplatin and Oxaliplatin induce apoptosis by forming DNA adducts that block DNA synthesis
and repair’® which may lead to increased expression of the stress-response protein CLU". These mechanistic
links may account for the differential drug sensitivity observed between the risk subgroups and underscore the
biological relevance of our six-gene signature. Collectively, our findings not only validate the risk score as a
predictor of prognosis but also highlight its potential utility in guiding personalized therapeutic strategies for
patients with PAAD.

Although this study provides a robust prognostic model based on PCDRGs and validates its clinical
applicability in PAAD patients, there are still some limitations. First, while we integrated data from multiple
public cohorts, the heterogeneity of these cohorts may affect the generalizability of the model. Samples from
different data sources may differ in pathological features, treatment protocols, and experimental conditions,
which could lead to less satisfactory validation results in external cohorts. Second, this study relies on existing
gene expression data and lacks experimental validation from real clinical environments. Further validation,
particularly in clinical samples, is still insufficient. Therefore, future studies should confirm the reliability of the
model through prospective cohort studies or laboratory-based validation. Finally, although we employed various
machine learning algorithms for model construction and optimization through cross-validation, the practical
application of the model may still be limited by factors such as sample size, algorithm selection, and the diversity
of clinical features, potentially impacting its widespread applicability in real-world clinical settings.

In summary, we developed and validated a robust six-gene prognostic model for PAAD based on programmed
cell death related genes using integrated machine learning approaches. This model effectively predicts PAAD
patient prognosis and was closely associated with immune features and drug sensitivity. Our findings provide
a valuable tool for prognostic assessment and may help guide personalized therapeutic strategies in pancreatic
cancer.

Materials and methods

Transcriptomic data collection and preprocessing

In total, transcriptomic data from 1,034 samples were collected for this study. Among them, the TCGA-PAAD
cohort (4 normal and 179 tumor), along with associated clinicopathological information, was obtained from
The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) database. Additionally, three transcriptomic
cohorts were retrieved from the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) database,
including GSE62452 (61 normal and 69 tumor samples), GSE28735 (45 normal and 45 tumor samples), and
GSE183795 (105 normal and 139 tumor samples). Furthermore, the ICGC cohort, consisting of 387 tumor
samples, was obtained from the International Cancer Genome Consortium (ICGC, https://dcc.icgc.org/)
database. Expression data from the three independent GEO cohorts, GSE62452, GSE28735, and GSE183795,
were integrated, and batch effects were removed using the R package “sva”. Based on a 95% confidence interval,
the GSE-merged cohort comprising 190 normal samples and 251 tumor samples was constructed.

To construct a comprehensive PCD-related gene set, we collected genes associated with 21 distinct types
of PCD based on relevant review articles and manual curation. These included Apoptosis (n=576), Pyroptosis
(n=50), Ferroptosis (n=279), Autophagy (n=366), Necroptosis (n=101), Cuproptosis (n=>58), Parthanatos
(n=45), Entotic cell death (n=33), PANoptosis (n=32), Lysosome-dependent cell death (n=218), Alkaliptosis
(n=23), Oxeiptosis (n=23), NETosis (n=128), Immunogenic cell death (n=34), Anoikis (n=333), Paraptosis
(n=65), Methuosis (n=12), Entosis (n=26), Disulfidptosis (n=914), Necrosis (n=118), and Mitoptosis (n=29).
After removing duplicates, a total of 2,684 unique PCD-related genes were retained for downstream analysis. The
full list of genes is provided in Supplementary Table 4.

Screening of PCD related prognostic candidate genes and identification of variation levels

In this study, transcriptomic data from five independent cohorts, including TCGA-PAAD, GSE62452, GSE28735,
GSE183795, and ICGC, were systematically integrated. The original expression data were normalized using
log,(TPM + 1) transformation. Tumor samples with missing values or OS time less than 30 days were excluded
from subsequent analyses. DEGs were identified in the TCGA-PAAD using the R package “Wilcoxon” and
GSE-merged cohorts using the R package “limma’;, respectively. Genes with |log,FC| > 0.585 and P <0.05 were
considered statistically significant. A Venn plot was used to identify overlapping PCD-related DEGs between
the two cohorts. Subsequently, univariate Cox proportional risk regression analysis was performed on the
PCD-related DEGs in the TCGA-PAAD, GSE-merged and ICGC cohorts using the R package “survival”. Genes
significantly associated with OS (P<0.05) were selected, and 17 intersection genes of these cohorts were selected
as PCD-related prognostic candidates for downstream model construction. Notably, there was a lack of normal
samples in the ICGC cohort, therefore, differential expression analysis was not performed for this cohort in the
present study.
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PPI networks of the prognostic candidate genes were analyzed using the STRING database (https://string-db.
org/) and visualized with Cytoscape software (version 3.10). A heatmap was generated to illustrate the expression
differences of the prognostic candidate genes between normal and tumor samples in the GSE-merged cohort.
CNYV data and single nucleotide variant (SNV) mutation data for the TCGA-PAAD cohort were downloaded
from the website http://www.sxdyc.com/index. CNV alteration frequencies of the PCD-related prognostic
candidate genes were calculated; a frequency greater than 0.2 was defined as “Gain,” while less than 0.2 was
defined as “Loss” A double value lollipop plot was then generated using the R package “ggpubr” to visualize the
results. In addition, somatic mutation waterfall plots were generated separately for high- and low-risk groups
using the R package “maftools’, visualizing the distribution differences of the top 15 most frequently mutated
genes. Tumor mutation burden (TMB) scores were also calculated for each patient.

Functional and pathway enrichment analysis

Based on the candidate prognostic genes, GO and KEGG pathway enrichment analyses were performed using
the R package “clusterProfiler”. The significantly enriched pathways were identified using a threshold of P<0.05.
Additionally, Hallmark gene sets were downloaded from the Molecular Signatures Database (MSigDB, https
:/[www.gsea-msigdb.org/gsea/msigdb), and GSVA was performed using the R package “GSVA’. Normalized
Enrichment Score (t value) > 1 was used as a pathway significance screening criterion to identify highly enriched
pathways in the high- and low-risk groups, respectively.

Selection of PCDRGs based on machine learning algorithms

Integrated machine learning algorithm was employed to construct a PAAD prognostic model, and 10 machine
learning algorithms were integrated, including Stepwise Cox (StepCox), generalized boosted regression modeling
(GBM), random survival forest (RSF), CoxBoost, elastic network (Enet), partial least squares regression for
Cox (plsRcox), survival support vector machine (survival-SVM), supervised principal components (SuperPC),
Lasso, and Ridge regression. A total of 117 algorithmic combinations were generated. The 17 candidate genes
were selected for prognostic modeling. LOOCV was performed, using the ICGC cohort as the training set and
the other four cohorts as the validation sets. Prognostic models were constructed based on all 117 algorithmic
combinations. For each model, C-index was calculated, and the algorithm combination with the highest average
C-index across the validation cohorts was selected as the optimal prognostic model for identifying PCDRGs. The
chromosomal locations of the selected PCDRGs were obtained from the ENSEMBL database (https://asia.ensem
bl.org/index.html), and their genomic positions were visualized using the R package “RCircos”.

Expression and prognostic validation of PCDRGs

The Wilcoxon rank-sum test was used to evaluate the expression differences of PCDRGs between normal
and tumor samples in the GSE-merged cohort. Pearson correlation coefficients were calculated to assess the
correlations between the expression levels of PCDRGs. Furthermore, expression data of PCDRGs were extracted
from the TCGA cohort and integrated with clinical information. Patients were divided into high and low
expression groups based on the median expression value of each PCDRGs. Kaplan-Meier survival analysis was
then conducted using the R packages “survival” and “survminer” to compare OS time between groups, and
survival differences were assessed using the log-rank test.

Evaluation of the risk score as an independent prognostic factorin PAAD __

The risk score for each patient was calculated using the following formula: RiskScore = ) ;_, 8 X Ei, where
Pi represents the coefficient of the ith gene obtained from Ridge regression under the optimal regularization
parameter (Supplementary Table 5), and Ei denotes the expression level of the corresponding gene in each sample.
The index i ranges from 1 to 6, corresponding to the six selected PCDRGs. Based on the median risk score,
PAAD patients were divided into high-risk and low-risk groups. The relationships between risk score, survival
time, and clinical events were visualized using the “plot” function in R, and Kaplan-Meier survival analysis was
conducted to evaluate survival differences between the two groups. Additionally, PCA was performed using the
“prcomp” function to explore the distribution characteristics of high- and low-risk group samples on the overall
gene expression pattern.

To evaluate the stability and applicability of the risk scores across different cohorts, we collected survival
information of PAAD patients from five independent cohorts: TCGA-PAAD, GSE62452, GSE28735, GSE183795
and ICGC. Violin plots were generated to visualize the distribution differences in risk scores between the Alive
and Dead groups. Furthermore, based on clinical information from the TCGA-PAAD cohort, including T, N,
M and Stage staging, the associations between the risk score and clinical characteristics were further assessed.

Unsupervised consensus clustering analysis

Consensus clustering analysis was performed using the R package “ConsensusClusterPlus” based on the
expression profiles of PCDRGs. The cumulative distribution function (CDF) was calculated, and the CDF curve
was plotted to determine the optimal number of clusters based on the area change and K-value stability under
the CDF curve. Kaplan-Meier survival analysis was then conducted to assess survival differences among the
identified clusters. Additionally, clinical information of PAAD patients from the TCGA cohort was collected,
and a heatmap was generated to visually display the distribution of clinical characteristics and the expression
patterns of PCDRGs across different risk groups and clusters.

Establishment and assessment of the prognostic nomogram
A nomogram model was constructed based on PCDRGs and clinical information to predict the OS rate of
PAAD patients. First, clinical characteristics including age, gender, risk score, grade, N stage, T stage, and tumor

Scientific Reports |

(2025) 15:25156 | https://doi.org/10.1038/s41598-025-10847-9 nature portfolio


https://string-db.org/
https://string-db.org/
http://www.sxdyc.com/index
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://asia.ensembl.org/index.html
https://asia.ensembl.org/index.html
http://www.nature.com/scientificreports

www.nature.com/scientificreports/

position were collected from the TCGA-PAAD cohort. Univariate and multivariate Cox regression analyses
were performed to identify clinical features significantly associated with patient survival. Subsequently, a
nomogram prognostic model was developed based on the identified clinical variables and patient survival time.
The predictive accuracy of the model was evaluated using calibration curves and ROC analysis. Furthermore,
the “predict” function was used to calculate the nomogram score for each patient, and the patients were divided
into high Nomogram score group and low Nomogram score group according to the median score. Kaplan-Meier
survival analysis was performed to compare OS time between the two groups.

Assessment of the tumor immune microenvironment

The relative proportions of immune cell populations in each patient were estimated using the CIBERSORT
algorithm. Differences in immune cell composition between high- and low-risk groups were assessed using
the Mann-Whitney U test. In addition, Pearson correlation analysis was performed to construct a heatmap
illustrating the correlations between PCDRGs and 22 types of immune cells or tumor microenvironment-
related gene sets, aiming to reveal potential interactions. Furthermore, linear regression models were built using
the “Im” function, with the expression levels of individual PCDRGs as independent variables and the relative
abundance of immune cells as dependent variables, to explore the relationship between gene expression and
immune cell infiltration. In addition, StromalScore, ImmuneScore, and ESTIMATEScore were calculated for
each patient using the ESTIMATE algorithm. The “estimate” function was used to obtain TME scores, and
Wilcoxon rank-sum tests were applied to compare the distribution of TME scores between high- and low-risk
groups. TIDE scores were obtained from the TIDE database (http://tide.dfciharvard.edu/) to assess immune
evasion potential, and violin plots were used to visualize differences in TIDE scores between the two risk groups.
Furthermore, based on previously published studies*® a panel of immune checkpoint-related genes was selected,
and the Mann-Whitney U test was used to evaluate the differences in their expression levels between high- and
low-risk groups.

Drug sensitivity prediction

The IC50 of each anticancer drug was estimated for all samples based on data from the GDSC database (http
:/[www.cancerrxgene.org/). Drug sensitivity prediction was performed using the R package “oncoPredict” to
evaluate the potential responses of high- and low-risk patients to various therapeutic agents. Differences in drug
sensitivity between the two risk groups were assessed using the Wilcoxon rank-sum test, and violin plots were
generated with the “ggplot2” package to visualize the results.

RNA extraction and qRT-PCR

A total of 18 pairs of PAAD tissues and matched peritumoral PAAD tissues obtained through surgical resection
were included in this study. All samples were from PAAD patients who underwent surgical treatment in the
Department of Hepatobiliary Pancreatic and Splentic Surgery of the Jingzhou Hospital Affiliated to Yangtze
University from 2023 to 2024. All patients provided written informed consent form prior to surgery. This study
has been approved by the Medical Ethics Committee of Jingzhou Hospital Affiliated to Yangtze University, and
the ethics approval number is 2025-159-01.

Total RNA was extracted from each sample using TRIzol™ Reagent (Life Technologies, USA). The
concentration and purity of RNA were measured using a NanoDrop 2000 spectrophotometer (Thermo Fisher
Scientific, USA). Total RNA was reverse transcribed into cDNA using the SweScript All-in-One RT SuperMix
for qPCR kit (Servicebio Technology Co., Ltd., China). qRT-PCR was performed using the 2x Universal Blue
SYBR Green qPCR Master Mix (Servicebio Technology Co., Ltd., China) on a QuantStudio™ 5 Real-Time PCR
System (Applied Biosystems, USA). Gene expression levels were normalized to GAPDH and calculated using the
2A-AACt method. The primer sequences of PCDRGs are listed in Supplementary Table 6.

Statistical analysis

All statistical analyses were performed using R software (version 4.4.1). Differences in gene expression levels
from qRT-PCR were analyzed using SPSS (version 26.0). Graphs were generated using GraphPad Prism (version
10.1.2). All statistical tests were two-sided, and a P<0.05 was considered statistically significant. The normality
of the data distribution was assessed using the Shapiro-Wilk test. For data with a normal distribution, Student’s
t-test or one-way analysis of variance (ANOVA) was used for comparisons between two or more groups. For
non-normally distributed data, the Wilcoxon rank-sum test or Mann-Whitney U test was applied for two-
group or multi-group comparisons, respectively. Survival analysis was performed using Kaplan-Meier survival
curves, and the log-rank test was applied to evaluate differences in OS time between high- and low-risk groups.
In addition, univariate and multivariate Cox proportional hazards regression models were used to assess the
independent prognostic value of clinical features and the risk score. Hazard ratios (HRs) and their corresponding
95% confidence intervals (Cls) were calculated.

Data availability

The TCGA-PAAD cohort, along with associated clinicopathological information, is publicly available in the
TCGA (https://portal.gdc.cancer.gov/) database. The three transcriptomic cohorts, including GSE62452,
GSE28735, and GSE183795, are retrieved from the GEO (http://www.ncbi.nlm.nih.gov/geo/) database. The
ICGC cohort is obtained from the ICGC (https://dcc.icgc.org/) database.
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