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Pancreatic adenocarcinoma (PAAD) is a highly lethal malignancy with limited effective prognostic 
biomarkers. In this study, 1,034 samples from TCGA-PAAD, GSE62452, GSE28735, GSE183795, and 
ICGC cohorts were systematically integrated to identify key programmed cell death-related genes 
(PCDRGs) associated with patient prognosis. Differential expression analysis and Univariate Cox 
regression analysis identified 17 candidate PCD-related genes significantly associated with overall 
survival. Using a comprehensive machine learning framework involving 117 algorithmic combinations 
under a Leave-one-out cross-validation (LOOCV) strategy, we identified the StepCox[both] + Ridge 
as the best algorithms composition to construct a prognostic model based on six PCDRGs, ITGA3, 
CDCP1, IL1RAP, CLU, PBK, and PLAU. The model was validated to have robust predictive performance. 
Risk scores were significantly correlated with clinical features, immune microenvironment 
characteristics, and chemotherapeutic sensitivity. High-risk patients exhibited worse prognosis and 
immunosuppressive infiltration patterns. Furthermore, consensus clustering identified two PAAD 
molecular subtypes with distinct PCDRGs expression patterns and survival outcomes. A nomogram 
integrating risk score and clinical variables exhibited strong prognostic accuracy for 1-, 3-, and 5-year 
survival prediction. In summary, we established and validated a PCD-related prognostic signature that 
effectively stratifies PAAD patients by clinical outcome, immune contexture, and therapeutic response, 
providing novel insights for personalized management strategies.
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Pancreatic adenocarcinoma (PAAD), recognized as the third leading cause of cancer-related mortality worldwide, 
demonstrates a clinical prognosis that is closely linked to its pathological subtypes1. Among these, pancreatic 
ductal adenocarcinoma (PDAC) accounts for over 90% of diagnosed cases, constituting the predominant 
histological subtype of the disease2. Notably, PAAD exhibits a 5-year overall survival (OS) rate of approximately 
10%, markedly lower than that of other common solid malignancies3. Furthermore, the global incidence and 
mortality rates of PAAD have shown a progressive annual increase, positioning this malignancy as a substantial 
public health threat. According to data released by the Global Cancer Observatory (GLOBOCAN) 2020, 
worldwide PAAD cases reached 495,773 newly diagnosed patients, with 466,003 reported deaths4. Compared to 
2018 epidemiological data (458,918 new cases and 432,242 deaths), the incidence and mortality rates exhibited 
a marked increase of 8.03% and 7.81%, respectively, over the past two years5. This growth rate is significantly 
higher than that of most solid tumors. Smoking, alcohol consumption, obesity, type 2 diabetes mellitus, and 
trace element exposure are the main risk factors for the development of PAAD4,6. With the global prevalence 
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of metabolic diseases and the exacerbation of an aging population, the disease burden of PAAD is expected to 
continue to increase over the next decade, especially in developing countries undergoing rapid socioeconomic 
transformation.

PAAD, due to its anatomically retroperitoneal location and insidious early symptoms, resulting in 
approximately 80–85% of patients being in the advanced stage at the time of initial diagnosis2. The clinical 
diagnosis currently predominantly depends on the detection of the serum biomarker Carbohydrate Antigen 
19 − 9 (CA19-9); however, this modality exhibits substantial limitations in early-stage screening, with sensitivity 
and specificity ranges of 79-81% and 82–90%, respectively6,7. Although surgical resection of the primary tumor 
remains the sole curative intervention for PAAD detected at a very early stages, only 15-20% of patients have 
the opportunity to undergo such surgery, and the recurrence rate within 2 years after surgery is as high as 
80%8. For patients with advanced PAAD, surgical intervention is unfeasible in most cases due to metastatic 
dissemination, leaving systemic chemotherapy regimens as the primary therapeutic modality. Phase III 
clinical trials have confirmed that the median OS time for the FOLFIRINOX regimen and the combination 
of gemcitabine and albumin-bound paclitaxel are 11.1 months and 8.5 months, respectively1 but the highly 
fibrotic tumor microenvironment and multiple drug resistance mechanisms significantly diminish the efficacy 
of the drugs9. It is worth noting that among patients with KRAS - mutated cancers, the incidence of PAAD is the 
highest, reaching 73.51%, but the therapeutic targets for its conversion treatment have not yet been achieved10. 
Therefore, the identification of novel therapeutic targets and chemotherapeutic drugs is of great significance for 
the treatment of PAAD and the extension of prognosis.

Programmed cell death (PCD) is an active cell demise process that is precisely regulated by genes. It plays 
a crucial role in maintaining tissue homeostasis, eliminating abnormal cells, and responding to pathological 
stimuli. Based on distinct molecular mechanisms and morphological characteristics, PCD can be classified into 
21 subtypes, including necroptosis, pyroptosis, ferroptosis, entotic cell death, parthanatos, lysosome-dependent 
cell death, autophagy, alkaliptosis and oxeiptosis11 apoptosis, paraptosis12 cuproptosis, disulfidptosis13 Entosis, 
methuosis, necrosis, NETosis, mitoptosis14 Immunogenic cell death15 Anoikis16 and PANoptosis17. In recent years, 
studies have revealed that dysregulated PCD is not only a core mechanism in the occurrence and development 
of cancer, but also closely related to tumor drug resistance and microenvironment remodeling. For instance, 
cancer cells often evade apoptosis by upregulating anti-apoptotic proteins (e.g., BCL-2), downregulating pro-
apoptotic proteins, or inducing mutations in death receptors and downstream signaling components, leading 
to uncontrolled cellular proliferation and therapeutic resistance18. Under hypoxia and nutrient deprivation 
stress conditions, autophagy contributes to the survival of tumor cells19. Furthermore, cuproptosis is considered 
to be associated with multiple cancer related signaling pathways, such as receptor tyrosine kinase (RTK), the 
phosphoinositide − 3 - kinase (PI3K) - AKT signaling pathway, and mitogen - activated protein kinase (MAPK) 
signaling pathway. These pathways not only promote tumor growth, migration, and proliferation, but also affect 
autophagy and metabolic pathways, thereby enhancing the survival and proliferation of cancer cells20. Therefore, 
elucidating the roles of PCD in PAAD holds significant clinical significance.

In this study, we employed a machine learning-based comprehensive algorithm and utilized various 
bioinformatics methods to screen for PCD-related prognostic signatures in PAAD, constructed a PCD-related 
prognostic model and revealed its clinicopathological correlations and immune microenvironment regulatory 
mechanisms. First, we integrated the transcriptome data of PAAD from the TCGA-PAAD, GSE62452, GSE28735, 
GSE183795, and ICGC cohorts. Through differential expression analysis and univariate Cox regression analysis, 
we identified 17 differentially expressed PCD genes that were significantly associated with patient survival, 
which were considered as potential prognostic genes. Subsequently, using the StepCox[both] + Ridge algorithm, 
we screening programmed cell death-related genes (PCDRGs) associated with PAAD prognosis and developed 
a nomogram for predicting the survival rate of PAAD patients. In addition, we also assessed the immune 
infiltration status of PAAD patients through bioinformatics analysis and predicted potential therapeutic targets. 
The PCD-related prognostic model demonstrated significant predictive accuracy for patient survival, while 
the integrated molecular signatures provide novel insights for personalized therapeutic strategies and drug 
repositioning of PAAD patients.

Results
Screening and identification of PCD related prognostic candidate genes in PAAD
To minimize batch effects across cohorts, batch effect correction was performed for the GSE183795, GSE62452, 
and GSE28735 cohorts, which were subsequently integrated into a combined GSE-merged cohort (Supplementary 
Fig. 1 A, B). Differential expression analysis identified 1,393 Differentially expressed genes (DEGs) in the TCGA-
PAAD cohort and 900 DEGs in the GSE-merged cohort, resulting in a total of 2,129 unique DEGs. Among 
them, the TCGA-PAAD cohort contains 551 upregulated genes and 842 downregulated genes; whereas the 
GSE-merged cohort contains 583 upregulated genes and 317 downregulated genes, respectively (Fig. 1A, B). 
Through Venn plot analysis, 334 PCD-related DEGs shared between the TCGA-PAAD and GSE-merged cohorts 
were identified (Fig. 1C, Supplementary Table 1). Based on these genes, univariate Cox regression analysis was 
performed, resulting in the identification of 96 genes in the TCGA-PAAD cohort, 108 genes in the GSE-merged 
cohort and 73 genes in the ICGC cohort that were both differentially expressed and significantly associated with 
OS (P < 0.05). The 17 overlapping DEGs associated with OS across the three cohorts were considered potential 
prognostic candidate genes for PAAD (Supplementary Fig. 1 C, Supplementary Table 2). The 17 candidate 
genes’ univariate Cox analysis in the GSE-merged, TCGA-PAAD and ICGC cohorts were shown in Fig. 1D, 
Supplementary Fig. 1D and E, respectively. Subsequently, protein-protein interaction (PPI) network analysis was 
conducted to explore the interactions among the 17 prognostic candidate genes. Among them, FN1 exhibited 
the highest degree of connectivity with other genes (Fig. 1E). Heatmap revealed that CLU was downregulated 
in tumor samples from the GSE-merged cohort, while the remaining 16 genes were upregulated (Fig.  1G). 
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In addition, copy number variation (CNV) analysis demonstrated frequent genomic alterations among these 
genes. Specifically, ITGA3 showed the most prominent CNV gain, whereas LAMC2, PLAU, SLC2A1, and CDH3 
exhibited significant CNV loss (Fig. 1F).

Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway 
enrichment analysis
GO and KEGG enrichment analyses of the PCD-related prognostic candidate genes revealed their involvement 
in multiple cellular signaling pathways, metabolic processes, and cancer-related pathways. GO enrichment 
indicated that these genes were primarily associated with biological processes (BP) such as regulation of 
transforming growth factor beta production, cellular components (CC) such as the basement membrane, and 
molecular functions (MF) such as extracellular matrix structural constituent (Fig. 1H). KEGG pathway analysis 

Fig. 1.  Identification of prognostic candidate genes associated with 21 types of programmed cell death (PCD). 
(A, B) The volcano plots of differentially expressed genes (DEGs) in the TCGA-PAAD (A) and GSE-merged 
(B) cohorts. (C) Venn plot showing the overlapping between DEGs from the TCGA-PAAD and GSE-merged 
cohorts and the PCD-related genes. (D) Univariate Cox regression analysis of 17 prognostic candidate genes in 
the GSE-merged cohort. (E) Protein-protein interaction (PPI) network of 17 prognostic candidate genes. (F) 
Copy number variation (CNV) analysis of the 17 candidate genes. (G) Heatmap of expression levels of the 17 
candidate genes in tumor and normal tissues from the GSE-merged cohort. (H-I) Gene Ontology (GO) (H) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) (I) pathway enrichment analysis of the 17 candidate 
genes.
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further highlighted significant enrichment in pathways including ECM-receptor interaction, PI3K-Akt signaling 
pathway, Central carbon metabolism in cancer, and HIF-1 signaling pathway (Fig. 1I).

Construction of a PCD related prognostic model using machine learning
We employed an integrated machine learning-based approach to develop a prognostic model using the 
expression profiles of 17 prognostic candidate genes. A total of 117 predictive models were fitted under a Leave-
one-out cross-validation (LOOCV) framework, and the Harrell’s concordance index (C-index) was calculated 
for each model. Among them, the StepCox[both] + Ridge combination achieved the highest average C-index of 
0.64 (Fig. 2A). Prior studies using RNA-based signatures have reported C-index ranging from 0.61-0.7121–23, 
suggesting that our model performs within an expected and acceptable range. Using this optimal algorithm, six 
PCDRGs, ITGA3, CDCP1, IL1RAP, CLU, PBK, and PLAU, were selected (Supplementary Table 3). A Circos plot 
was generated to visualize the chromosomal locations of these PCDRGs (Fig. 2B).

Subsequently, individual risk scores were calculated for each patient using the established risk score 
formula, and patients were stratified into high- and low-risk groups based on the median risk score. To explore 
the biological processes significantly enriched in each risk group, Gene Set Variation Analysis (GSVA) was 
performed. Results indicated that in the GSE-merged cohort, notable pathway enrichment differences were 
observed between the high- and low-risk groups. High risk samples were mainly enriched in cancer-related 
signaling pathways, including DNA repair, Wnt/β-catenin signaling, MYC targets V1, KRAS signaling dn, and 
Hedgehog signaling, while low risk samples were enriched in TNF-α Signaling via NF-κB, Angiogenesis, KRAS 
signaling up and Apoptosis, suggesting distinct underlying biological mechanisms between the two groups 
(Fig. 2C). In the TCGA-PAAD cohort, high risk samples showed enrichment in the Reactive oxygen species 
pathway, Oxidative phosphorylation and Inflammatory response, whereas low risk samples were primarily 
enriched in the p53 pathway and Wnt/β-catenin signaling (Supplementary Fig. 2 A).

Further analysis revealed significant differences in the expression levels of PCDRGs between normal and 
tumor tissues in the GSE-merged cohort. CLU was significantly downregulated in tumor samples, whereas the 
other five genes, ITGA3, CDCP1, IL1RAP, PBK, and PLAU, were significantly upregulated (P < 0.001) (Fig. 2D). 
Pearson correlation analysis showed a negative correlation between CLU and the other five genes, while ITGA3, 
CDCP1, IL1RAP, PBK, and PLAU exhibited positive correlations with each other (Fig.  2E). Kaplan-Meier 
survival analysis of the six PCDRGs in the TCGA-PAAD cohort revealed that patients with low CLU expression 
had poorer prognosis, while high expression of the remaining five genes was associated with worse prognosis 
(Fig. 2F-K). These results are consistent with their differential expression patterns in tumor samples. In addition, 
we analyzed the mutational landscape of patients in different risk groups. The high-risk group exhibited a 
markedly higher mutation frequency (95.12%) compared to the low-risk group (64.86%) (Fig. 2L, M). Notably, 
mutations in TGFBR2, ATM, and CHD6 were more frequent in the low-risk group, whereas RIMS2, TPO, and 
TNXB mutations were more prevalent in the high-risk group.

Evaluation of the clinical relevance of the PCDRGs prediction model
We validated the predictive performance of the risk model across five independent cohorts, TCGA-PAAD, 
GSE183795, GSE28735, GSE62452, and ICGC, and further explored the relationship between the risk score 
and clinical characteristics. As shown in Fig.  3A, patients in the high-risk group exhibited shorter OS time 
and poorer prognoses compared to those in the low-risk group across all cohorts. This finding was further 
supported by Kaplan-Meier survival analysis, which consistently demonstrated significantly shorter OS time in 
the high-risk group across all five cohorts (Fig. 3B). Principal component analysis (PCA) also revealed distinct 
distributions between high- and low-risk patients in each cohort (Fig. 3C).

Violin plots showed that in the TCGA-PAAD, GSE183795, and ICGC cohorts, risk scores were significantly 
higher in dead patients compared to those who were alive (P < 0.05). Although no statistically significant 
differences were observed in the remaining two cohorts, dead patients still exhibited higher risk scores (Fig. 3D). 
Additionally, in the TCGA-PAAD cohort, the risk score was significantly associated with clinical staging. Patients 
with T3 + T4 tumors had significantly higher risk scores than those with T1 + T2 tumors, and patients at Stage II 
had higher scores compared to those at Stage I (P < 0.05). However, no significant differences in risk scores were 
observed across N and M stages (Fig. 3E-H).

Unsupervised consensus clustering analysis of prognostic PCDRGs
Unsupervised consensus clustering was performed to stratify PAAD patients and identify subgroups with 
distinct molecular characteristics. The optimal number of clusters was determined to be k = 2, and thus, patients 
in the TCGA-PAAD cohort were divided into two clusters (Fig.  4A, B). Subsequent Kaplan-Meier survival 
analysis revealed that patients in cluster C2 had significantly worse survival outcomes compared to those in 
cluster C1 (P = 0.01) (Fig. 4C). Moreover, a heatmap integrating clinical features and PCDRGs expression levels 
demonstrated marked differences in gene expression between the two clusters. Most patients in cluster C1 were 
characterized by early-stage disease and lower risk scores, whereas those in cluster C2 were predominantly in 
advanced stages and had higher risk scores (Fig. 4D).

Establishment and assessment of the nomogram survival model
Univariate and multivariate Cox regression analyses were performed to evaluate the associations between OS 
and the risk score, along with clinicopathological characteristics in the TCGA-PAAD cohort (Fig. 4E, F). The 
results indicated that grade, T stage, N stage, tumor position, and risk score were all independent prognostic 
factors. Based on these variables, a nomogram was constructed to predict the 1-, 3-, and 5-year OS probabilities 
of PAAD patients (Fig.  4G). Calibration curves demonstrated good concordance between the predicted and 
observed survival rates at 1-, 3-, and 5-years (Fig. 4H). Kaplan-Meier survival analysis revealed that patients in 
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Fig. 2.  Integrated machine learning-based development and validation of a predictive model associated with 
21 types of PCD. (A) Harrell’s concordance index (C-index) values of 117 algorithmic combinations were 
calculated to identify the optimal predictive model and algorithm. (B) Circos plot showing the chromosomal 
locations of the PCD-related genes (PCDRGs). (C) Gene Set Variation Analysis (GSVA) analysis revealed 
differences in enriched pathways between high- and low-risk groups in the GSE-merged cohort. (D) Boxplots 
showing expression differences of PCDRGs between normal and tumor tissues in the GSE-merged cohort. (E) 
Pearson correlation analysis among the PCDRGs. (F-K) Kaplan-Meier survival analyses of the six PCDRGs in 
the TCGA-PAAD cohort. (L-M) Waterfall plot showing the somatic mutation landscape of low-risk (L) and 
high-risk samples (M) in the TCGA-PAAD cohort. **: P < 0.01; ***: P < 0.001.
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Fig. 3.  Validation of the prognostic model and association between risk score and clinical characteristics. (A) 
Survival status of high- and low-risk patients across TCGA-PAAD, GSE183795, GSE28735, GSE62452, and 
ICGC cohorts. (B) Kaplan-Meier survival curves comparing high- and low-risk groups in the five cohorts. 
(C) PCA illustrating the distribution of high- and low-risk patients across the five cohorts. (D) Violin plots 
showing the distribution of risk scores between alive and dead patients in the five cohorts. (E-H) Violin plots 
comparing risk scores across different clinical subgroups in the TCGA-PAAD cohort: T (E), N (F), M (G), and 
Stage (H).
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the high nomogram score group had significantly worse prognosis (Fig. 4I). Receiver operating characteristic 
(ROC) curve analysis demonstrated the robust predictive performance of the model. The area under the ROC 
curve (AUC) for the risk score was 0.727, followed by grade (AUC = 0.656), stage (AUC = 0.679), T stage 
(AUC = 0.633), N stage (AUC = 0.752), state (AUC = 0.992), and cluster (AUC = 0.650). The AUCs for predicting 
1-, 3-, and 5-year OS rate were 0.753, 0.776, and 0.727, respectively (Fig. 4J, K).

Immune landscape and its correlation with PCDRGs in PAAD patients
CIBERSORT analysis revealed that high-risk patients exhibited higher proportions of Macrophages M0 and 
Macrophages M2, whereas low-risk patients had higher proportions of T cells CD4 naïve, B cells naïve, and 
T cells CD8 (Fig.  5A). A heatmap of correlation analysis showed that PLAU was positively correlated with 
Macrophages M0, Macrophages M2 and Neutrophils, but negatively correlated with B cells naïve, Monocytes, 
NK cells activated, T cells CD4 memory resting and T cells CD8. In contrast, CLU was positively correlated with 

Fig. 4.  Unsupervised clustering and construction of a nomogram model in the TCGA-PAAD cohort. (A) 
Unsupervised consensus clustering divided patients into two clusters. (B) The optimal number of clusters 
was determined to be k = 2. (C) Kaplan-Meier survival analysis comparing patients in clusters C1 and C2. 
(D) Heatmap showing the distribution of PCDRGs expression levels and clinicopathological characteristics 
across clusters. (E) Univariate Cox regression analysis of risk score and clinicopathological characteristics 
in the TCGA-PAAD cohort. (F) Multivariate Cox regression analysis of the same variables. (G) Nomogram 
constructed to predict 1-, 3-, and 5-year overall survival (OS) rate in PAAD patients. (H) Calibration curves 
evaluating the predictive accuracy of the nomogram. (I) Kaplan-Meier survival curves for patients stratified 
by nomogram scores. (J) Receiver operating characteristic (ROC) curves assessing the predictive performance 
of the nomogram for clinicopathological features. (K) ROC curves evaluating the predictive accuracy of the 
nomogram for 1-, 3-, and 5-year OS.
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B cells naïve, Monocytes, and T cells CD8, but negatively correlated with Macrophages M0 (Fig. 5B). Significant 
associations were observed between the expression levels of PCDRGs and the abundance of 22 immune cell 
types. Specifically, CLU was negatively correlated with Macrophages M0, and PLAU was negatively correlated 
with T cells CD4 memory resting cells in both high- and low-risk groups (Fig. 5C-J). Furthermore, we analyzed 
the correlations between PCDRGs and tumor microenvironment (TME)-related gene sets and identified the top 
21 TME-related gene sets with the strongest correlations. The results showed that PCDRGs were significantly 
positively correlated with multiple TME-related gene sets (Supplementary Fig.  2B). ESTIMATE algorithm 
analysis revealed that low-risk PAAD patients exhibited higher ImmuneScore and ESTIMATEScore, but 
lower tumor immune dysfunction and exclusion (TIDE) scores compared to the high-risk group (Fig. 5K, L). 
Moreover, immune checkpoint related genes, including BTN2A1, CD40, CEACAM1, PDCD1LG2, and TNFSF9, 
were highly expressed in the high-risk group (Fig. 5M).

Fig. 5.  Immune microenvironment analysis based on the risk score. (A) Boxplots showing differences in the 
relative proportions of 22 immune cell subtypes between high- and low-risk groups. (B) Heatmap illustrating 
correlations between PCDRGs and 22 immune cell populations. (C-J) Scatter plots displaying the correlations 
between PCDRGs expression levels and immune cell abundance. (K) Violin plots comparing StromalScore, 
ImmuneScore, and ESTIMATEScore between high- and low-risk groups. (L) Differences in TIDE scores 
between the two risk groups. (M) Boxplots showing the expression differences of 21 immune checkpoint-
related genes between high- and low-risk groups. *: P < 0.05; **: P < 0.01; ***: P < 0.001.

 

Scientific Reports |        (2025) 15:25156 8| https://doi.org/10.1038/s41598-025-10847-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Impact of PCDRGs on targeted therapy response in PAAD patients
To investigate the relationship between our prognostic model and drug sensitivity, we analyzed the half-maximal 
inhibitory concentration (IC50) values of several chemotherapeutic agents in PAAD samples using the Genomics 
of Drug Sensitivity in Cancer (GDSC) database. Boxplots illustrated the differences in IC50 values between the 
high- and low-risk groups for each drug (Fig. 6A). Interestingly, the IC50 values of Cisplatin, Niraparib, Olaparib 
and Oxaliplatin were significantly lower in the low-risk group (Fig. 6B-E), whereas the IC50 values of Afatinib, 
Sapitinib, SCH772984, and ULK1_4989 were lower in the high-risk group (Fig. 6F-I).

Validation of the identified PCDRGs
To validate the expression of the identified six PCDRGs in PAAD, we performed quantitative real-time PCR 
(qRT-PCR) on PAAD tissues and peritumoral PAAD tissues. The results showed that the mRNA expression levels 
of ITGA3, CDCP1, IL1RAP, CLU, PBK, and PLAU were significantly upregulated in PAAD tissues compared to 
peritumoral PAAD tissues (Supplementary Fig. 3A-F). Among them, the expression patterns of ITGA3, CDCP1, 
IL1RAP, PBK, and PLAU were consistent with the bioinformatics results from the GSE-merged cohort. These 
findings further confirmed the differential expression characteristics of these PCDRGs in PAAD and suggested 
their potential roles in tumor development and progression.

Fig. 6.  Predictive value of PCD-based risk model for chemotherapeutic drug sensitivity. (A) Boxplots showing 
differences in drug sensitivity between high- and low-risk groups across various chemotherapeutic agents. (B-
I) Comparison of IC50 values for individual drugs between the high- and low-risk groups.

 

Scientific Reports |        (2025) 15:25156 9| https://doi.org/10.1038/s41598-025-10847-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Discussion
PAAD is a highly lethal malignancy with a poor prognosis, primarily due to its asymptomatic nature in the 
early stages and the fact that most patients are diagnosed at advanced stages, resulting in limited treatment 
efficacy23. The high mortality associated with PAAD is closely linked to its complex molecular mechanisms, 
including changes in the tumor microenvironment, cellular heterogeneity, and resistance to therapeutic 
interventions24,25. In recent years, researchers have increasingly recognized the critical role of PCD in the 
initiation and progression of PAAD. PCD is not only an essential process for maintaining homeostasis but 
also serves as an escape mechanism for tumor cells under hostile conditions26. Various forms of PCD, such as 
pyroptosis27 cuproptosis28 and anoikis29 may all influence the growth, invasion, metastasis, and drug resistance 
of PAAD cells. In this study, we propose and validate a prognostic model based on PCDRGs, which has high 
clinical practical value. Our findings demonstrate that by integrating multiple large-scale cohorts, PCDRGs can 
provide more accurate prognostic information for PAAD, offering a theoretical foundation for the development 
of personalized treatment strategies.

In this study, we systematically evaluated the expression profiles and prognostic value of PCDRGs in PAAD by 
integrating multiple publicly available transcriptomic cohorts. Using a machine learning algorithm combination 
of StepCox[both] + Ridge, we identified six PCDRGs with potential prognostic significance: ITGA3, CDCP1, 
IL1RAP, CLU, PBK, and PLAU. Based on these PCDRGs, we developed a stable and reliable risk scoring 
model, which demonstrates strong prognostic value and suggests significant clinical application potential. It 
is noteworthy that although FN1 was identified as a central hub gene in the PPI network, it was not retained 
in the StepCox modeling process. This result suggests that topological centrality in network analysis does not 
always correspond to independent prognostic value in multivariate survival models. Nevertheless, FN1 may 
play a pivotal role in multiple cancer-related biological pathways, and its potential functional relevance remains 
noteworthy. It should be considered a priority candidate for future functional and translational research.

Integrin α−3 (ITGA3) is a member of the integrin family, primarily regulating cell adhesion, migration, and 
proliferation through interactions with the extracellular matrix30. In PAAD, the high expression of ITGA3 is 
closely associated with the invasiveness and migratory capacity of tumor cells31. CUB domain-containing protein 
1 (CDCP1) is an effective oncogene predominantly located on the cell surface. It lies at the crossroads of several 
critical oncogenic and metastatic signaling pathways, including the PI3K/AKT, WNT, and RAS/ERK signal axes, 
plays a crucial role in cancer cell survival, growth, metastasis, and therapeutic resistance32. Interleukin-1 receptor 
accessory protein (IL1RAP) is a molecule involved in immune responses. It forms a receptor heterodimer with 
interleukin-1 receptor type I (IL1R1), mediating interleukin-1 (IL-1) activation of NFκB, which regulates 
inflammation and the tumor microenvironment, thus promoting tumor growth and metastasis33. Clusterin 
(CLU) is a secretory molecular chaperone with an important regulatory role in tumorigenesis. It modulates 
survival pathways in cancer cells and cancer stem cells (CSCs), enhancing tumor growth, metastasis, epithelial-
mesenchymal transition (EMT), inflammation, and chemoresistance34. PDZ-binding kinase (PBK) is a kinase 
involved in cell cycle regulation and mitotic processes. Its overexpression allows tumor cells to bypass natural 
surveillance mechanisms associated with the G2/M checkpoint and lead to tumor abnormalities and mitosis 
by downregulating the tumor suppressor gene p53 and upregulating cyclin-dependent kinase inhibitor p2135. 
Plasminogen activator urokinase (PLAU) is an enzyme involved in fibrinolysis. It promotes cancer cell migration 
and invasion by degrading the extracellular matrix, releasing or activating various growth factors, and enhancing 
tumor cell proliferation through the activation of signaling pathways such as JAK-STAT, ERK, and MAPK36.

We further validated the prognostic model in high- and low-risk groups of patients from the TCGA-PAAD, 
GSE183795, GSE28735, GSE62452, and ICGC cohorts, and explored the relationship between risk scores and 
clinical features. The analysis revealed that patients in the high-risk group had significantly shorter survival 
times compared to those in the low-risk group, and exhibited poorer prognosis across all cohorts. Kaplan-
Meier survival analysis further confirmed the prognostic value of the risk score. PCA demonstrated that the 
risk score effectively distinguished between different prognostic groups, indicating its broad applicability across 
various cohorts. Although the differences were not statistically significant in certain cohorts, the risk scores for 
dead patients were generally higher than those for alive, further supporting the reliability of the risk score as a 
prognostic tool. Notably, in the TCGA-PAAD cohort, the risk score was significantly associated with clinical 
stage, suggesting that it is not only an independent prognostic marker but also reflects tumor progression and 
invasiveness. Overall, this study highlights the potential clinical value of the model, especially its significance in 
tumor progression and prognosis assessment.

This study found that patients in the high-risk group not only had poorer survival outcomes but also exhibited 
distinct immune-suppressive features in their tumor microenvironment. Immune analysis revealed that the tumor 
microenvironment of the high-risk group was predominantly composed of Macrophages M0 and Macrophages 
M2, indicating an immunosuppressive state that may accelerate tumor progression and metastasis37. In contrast, 
the low-risk group exhibited a higher proportion of T cells CD4 naïve, B cells naïve, and T cells CD8, which play 
a key role in mediating the resistance to pathogens and the killing of malignant tumor cells, showing diverse 
immune regulatory functions38. These results suggest that immune microenvironment heterogeneity may 
play a significant role in the differences in prognosis. Furthermore, the TIDE score of the high-risk group was 
significantly higher than that of the low-risk group, indicating a higher likelihood of immune evasion and poorer 
response to immunotherapy in the high-risk patients39. Additionally, the expression of immune checkpoint 
genes such as PDCD1LG2, CD40, and TNFSF9 were elevated in the high-risk group, possibly correlating with 
enhanced immune evasion capabilities40. The immune microenvironment plays a crucial role in tumor initiation 
and progression, with increasing attention being given to the study of tumor immune evasion mechanisms. The 
immune-suppressive characteristics of high-risk patients may be linked to tumor immune evasion, providing 
new insights into the potential application of immunotherapy strategies in PAAD.

Scientific Reports |        (2025) 15:25156 10| https://doi.org/10.1038/s41598-025-10847-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


To investigate the relationship between our prognostic model and drug sensitivity, we utilized the GDSC 
database to assess the IC50 values of several chemotherapeutic agents in PAAD samples. The results revealed 
significant differences in drug sensitivity between the high- and low-risk groups of PAAD samples. Specifically, 
Cisplatin, Niraparib, Olaparib, and Oxaliplatin exhibited lower IC50 values in the low-risk group, suggesting 
enhanced sensitivity and potential therapeutic benefit in these patients. In contrast, drugs such as Afatinib, 
Sapitinib, SCH772984, and ULK1_4989 showed better therapeutic effects in the high-risk group, indicating 
their potential suitability for this subgroup. From a mechanistic perspective, the targets of these drugs may be 
functionally and mechanistically linked to our model genes. Afatinib, Sapitinib, and SCH772984 significantly 
downregulate CDCP1 expression by inhibiting the EGFR/MAPK/ERK and PI3K/AKT pathways41–43 since 
CDCP1 overexpression is highly dependent on the co‑activation of MAPK/ERK and AKT signaling pathways44. 
PBK mediates resistance to PARP inhibitors like Olaparib via the TRIM37/NF‑κB pathway45. Moreover, platinum 
agents such as Cisplatin and Oxaliplatin induce apoptosis by forming DNA adducts that block DNA synthesis 
and repair46 which may lead to increased expression of the stress‑response protein CLU47. These mechanistic 
links may account for the differential drug sensitivity observed between the risk subgroups and underscore the 
biological relevance of our six-gene signature. Collectively, our findings not only validate the risk score as a 
predictor of prognosis but also highlight its potential utility in guiding personalized therapeutic strategies for 
patients with PAAD.

Although this study provides a robust prognostic model based on PCDRGs and validates its clinical 
applicability in PAAD patients, there are still some limitations. First, while we integrated data from multiple 
public cohorts, the heterogeneity of these cohorts may affect the generalizability of the model. Samples from 
different data sources may differ in pathological features, treatment protocols, and experimental conditions, 
which could lead to less satisfactory validation results in external cohorts. Second, this study relies on existing 
gene expression data and lacks experimental validation from real clinical environments. Further validation, 
particularly in clinical samples, is still insufficient. Therefore, future studies should confirm the reliability of the 
model through prospective cohort studies or laboratory-based validation. Finally, although we employed various 
machine learning algorithms for model construction and optimization through cross-validation, the practical 
application of the model may still be limited by factors such as sample size, algorithm selection, and the diversity 
of clinical features, potentially impacting its widespread applicability in real-world clinical settings.

In summary, we developed and validated a robust six-gene prognostic model for PAAD based on programmed 
cell death related genes using integrated machine learning approaches. This model effectively predicts PAAD 
patient prognosis and was closely associated with immune features and drug sensitivity. Our findings provide 
a valuable tool for prognostic assessment and may help guide personalized therapeutic strategies in pancreatic 
cancer.

Materials and methods
Transcriptomic data collection and preprocessing
In total, transcriptomic data from 1,034 samples were collected for this study. Among them, the TCGA-PAAD 
cohort (4 normal and 179 tumor), along with associated clinicopathological information, was obtained from 
The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) database. Additionally, three transcriptomic 
cohorts were retrieved from the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) database, 
including GSE62452 (61 normal and 69 tumor samples), GSE28735 (45 normal and 45 tumor samples), and 
GSE183795 (105 normal and 139 tumor samples). Furthermore, the ICGC cohort, consisting of 387 tumor 
samples, was obtained from the International Cancer Genome Consortium (ICGC, https://dcc.icgc.org/) 
database. Expression data from the three independent GEO cohorts, GSE62452, GSE28735, and GSE183795, 
were integrated, and batch effects were removed using the R package “sva”. Based on a 95% confidence interval, 
the GSE-merged cohort comprising 190 normal samples and 251 tumor samples was constructed.

To construct a comprehensive PCD-related gene set, we collected genes associated with 21 distinct types 
of PCD based on relevant review articles and manual curation. These included Apoptosis (n = 576), Pyroptosis 
(n = 50), Ferroptosis (n = 279), Autophagy (n = 366), Necroptosis (n = 101), Cuproptosis (n = 58), Parthanatos 
(n = 45), Entotic cell death (n = 33), PANoptosis (n = 32), Lysosome-dependent cell death (n = 218), Alkaliptosis 
(n = 23), Oxeiptosis (n = 23), NETosis (n = 128), Immunogenic cell death (n = 34), Anoikis (n = 333), Paraptosis 
(n = 65), Methuosis (n = 12), Entosis (n = 26), Disulfidptosis (n = 914), Necrosis (n = 118), and Mitoptosis (n = 29). 
After removing duplicates, a total of 2,684 unique PCD-related genes were retained for downstream analysis. The 
full list of genes is provided in Supplementary Table 4.

Screening of PCD related prognostic candidate genes and identification of variation levels
In this study, transcriptomic data from five independent cohorts, including TCGA-PAAD, GSE62452, GSE28735, 
GSE183795, and ICGC, were systematically integrated. The original expression data were normalized using 
log2(TPM + 1) transformation. Tumor samples with missing values or OS time less than 30 days were excluded 
from subsequent analyses. DEGs were identified in the TCGA-PAAD using the R package “Wilcoxon” and 
GSE-merged cohorts using the R package “limma”, respectively. Genes with |log2FC| > 0.585 and P < 0.05 were 
considered statistically significant. A Venn plot was used to identify overlapping PCD-related DEGs between 
the two cohorts. Subsequently, univariate Cox proportional risk regression analysis was performed on the 
PCD-related DEGs in the TCGA-PAAD, GSE-merged and ICGC cohorts using the R package “survival”. Genes 
significantly associated with OS (P < 0.05) were selected, and 17 intersection genes of these cohorts were selected 
as PCD-related prognostic candidates for downstream model construction. Notably, there was a lack of normal 
samples in the ICGC cohort, therefore, differential expression analysis was not performed for this cohort in the 
present study.
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PPI networks of the prognostic candidate genes were analyzed using the STRING database ​(​​​h​t​t​p​s​:​/​/​s​t​r​i​n​g​-​d​b​.​
o​r​g​/​​​​​) and visualized with Cytoscape software (version 3.10). A heatmap was generated to illustrate the expression 
differences of the prognostic candidate genes between normal and tumor samples in the GSE-merged cohort. 
CNV data and single nucleotide variant (SNV) mutation data for the TCGA-PAAD cohort were downloaded 
from the website http://www.sxdyc.com/index. CNV alteration frequencies of the PCD-related prognostic 
candidate genes were calculated; a frequency greater than 0.2 was defined as “Gain,” while less than 0.2 was 
defined as “Loss.” A double value lollipop plot was then generated using the R package “ggpubr” to visualize the 
results. In addition, somatic mutation waterfall plots were generated separately for high- and low-risk groups 
using the R package “maftools”, visualizing the distribution differences of the top 15 most frequently mutated 
genes. Tumor mutation burden (TMB) scores were also calculated for each patient.

Functional and pathway enrichment analysis
Based on the candidate prognostic genes, GO and KEGG pathway enrichment analyses were performed using 
the R package “clusterProfiler”. The significantly enriched pathways were identified using a threshold of P < 0.05. 
Additionally, Hallmark gene sets were downloaded from the Molecular Signatures Database (MSigDB, ​h​t​t​p​s​
:​/​/​w​w​w​.​g​s​e​a​-​m​s​i​g​d​b​.​o​r​g​/​g​s​e​a​/​m​s​i​g​d​b​​​​​)​, and GSVA was performed using the R package “GSVA”. Normalized 
Enrichment Score (t value) > 1 was used as a pathway significance screening criterion to identify highly enriched 
pathways in the high- and low-risk groups, respectively.

Selection of PCDRGs based on machine learning algorithms
Integrated machine learning algorithm was employed to construct a PAAD prognostic model, and 10 machine 
learning algorithms were integrated, including Stepwise Cox (StepCox), generalized boosted regression modeling 
(GBM), random survival forest (RSF), CoxBoost, elastic network (Enet), partial least squares regression for 
Cox (plsRcox), survival support vector machine (survival-SVM), supervised principal components (SuperPC), 
Lasso, and Ridge regression. A total of 117 algorithmic combinations were generated. The 17 candidate genes 
were selected for prognostic modeling. LOOCV was performed, using the ICGC cohort as the training set and 
the other four cohorts as the validation sets. Prognostic models were constructed based on all 117 algorithmic 
combinations. For each model, C-index was calculated, and the algorithm combination with the highest average 
C-index across the validation cohorts was selected as the optimal prognostic model for identifying PCDRGs. The 
chromosomal locations of the selected PCDRGs were obtained from the ENSEMBL database ​(​​​h​t​t​p​s​:​/​/​a​s​i​a​.​e​n​s​e​m​
b​l​.​o​r​g​/​i​n​d​e​x​.​h​t​m​l​​​​​)​, and their genomic positions were visualized using the R package “RCircos”.

Expression and prognostic validation of PCDRGs
The Wilcoxon rank-sum test was used to evaluate the expression differences of PCDRGs between normal 
and tumor samples in the GSE-merged cohort. Pearson correlation coefficients were calculated to assess the 
correlations between the expression levels of PCDRGs. Furthermore, expression data of PCDRGs were extracted 
from the TCGA cohort and integrated with clinical information. Patients were divided into high and low 
expression groups based on the median expression value of each PCDRGs. Kaplan-Meier survival analysis was 
then conducted using the R packages “survival” and “survminer” to compare OS time between groups, and 
survival differences were assessed using the log-rank test.

Evaluation of the risk score as an independent prognostic factor in PAAD
The risk score for each patient was calculated using the following formula: RiskScore = 

∑ 6
i=1β i × Ei, where 

βi represents the coefficient of the ith gene obtained from Ridge regression under the optimal regularization 
parameter (Supplementary Table 5), and Ei denotes the expression level of the corresponding gene in each sample. 
The index i ranges from 1 to 6, corresponding to the six selected PCDRGs. Based on the median risk score, 
PAAD patients were divided into high-risk and low-risk groups. The relationships between risk score, survival 
time, and clinical events were visualized using the “plot” function in R, and Kaplan-Meier survival analysis was 
conducted to evaluate survival differences between the two groups. Additionally, PCA was performed using the 
“prcomp” function to explore the distribution characteristics of high- and low-risk group samples on the overall 
gene expression pattern.

To evaluate the stability and applicability of the risk scores across different cohorts, we collected survival 
information of PAAD patients from five independent cohorts: TCGA-PAAD, GSE62452, GSE28735, GSE183795 
and ICGC. Violin plots were generated to visualize the distribution differences in risk scores between the Alive 
and Dead groups. Furthermore, based on clinical information from the TCGA-PAAD cohort, including T, N, 
M and Stage staging, the associations between the risk score and clinical characteristics were further assessed.

Unsupervised consensus clustering analysis
Consensus clustering analysis was performed using the R package “ConsensusClusterPlus” based on the 
expression profiles of PCDRGs. The cumulative distribution function (CDF) was calculated, and the CDF curve 
was plotted to determine the optimal number of clusters based on the area change and K-value stability under 
the CDF curve. Kaplan-Meier survival analysis was then conducted to assess survival differences among the 
identified clusters. Additionally, clinical information of PAAD patients from the TCGA cohort was collected, 
and a heatmap was generated to visually display the distribution of clinical characteristics and the expression 
patterns of PCDRGs across different risk groups and clusters.

Establishment and assessment of the prognostic nomogram
A nomogram model was constructed based on PCDRGs and clinical information to predict the OS rate of 
PAAD patients. First, clinical characteristics including age, gender, risk score, grade, N stage, T stage, and tumor 

Scientific Reports |        (2025) 15:25156 12| https://doi.org/10.1038/s41598-025-10847-9

www.nature.com/scientificreports/

https://string-db.org/
https://string-db.org/
http://www.sxdyc.com/index
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://asia.ensembl.org/index.html
https://asia.ensembl.org/index.html
http://www.nature.com/scientificreports


position were collected from the TCGA-PAAD cohort. Univariate and multivariate Cox regression analyses 
were performed to identify clinical features significantly associated with patient survival. Subsequently, a 
nomogram prognostic model was developed based on the identified clinical variables and patient survival time. 
The predictive accuracy of the model was evaluated using calibration curves and ROC analysis. Furthermore, 
the “predict” function was used to calculate the nomogram score for each patient, and the patients were divided 
into high Nomogram score group and low Nomogram score group according to the median score. Kaplan-Meier 
survival analysis was performed to compare OS time between the two groups.

Assessment of the tumor immune microenvironment
The relative proportions of immune cell populations in each patient were estimated using the CIBERSORT 
algorithm. Differences in immune cell composition between high- and low-risk groups were assessed using 
the Mann-Whitney U test. In addition, Pearson correlation analysis was performed to construct a heatmap 
illustrating the correlations between PCDRGs and 22 types of immune cells or tumor microenvironment-
related gene sets, aiming to reveal potential interactions. Furthermore, linear regression models were built using 
the “lm” function, with the expression levels of individual PCDRGs as independent variables and the relative 
abundance of immune cells as dependent variables, to explore the relationship between gene expression and 
immune cell infiltration. In addition, StromalScore, ImmuneScore, and ESTIMATEScore were calculated for 
each patient using the ESTIMATE algorithm. The “estimate” function was used to obtain TME scores, and 
Wilcoxon rank-sum tests were applied to compare the distribution of TME scores between high- and low-risk 
groups. TIDE scores were obtained from the TIDE database (http://tide.dfci.harvard.edu/) to assess immune 
evasion potential, and violin plots were used to visualize differences in TIDE scores between the two risk groups. 
Furthermore, based on previously published studies48 a panel of immune checkpoint-related genes was selected, 
and the Mann-Whitney U test was used to evaluate the differences in their expression levels between high- and 
low-risk groups.

Drug sensitivity prediction
The IC50 of each anticancer drug was estimated for all samples based on data from the GDSC database ​(​​​h​t​t​p​
:​/​/​w​w​w​.​c​a​n​c​e​r​r​x​g​e​n​e​.​o​r​g​/​​​​​)​. Drug sensitivity prediction was performed using the R package “oncoPredict” to 
evaluate the potential responses of high- and low-risk patients to various therapeutic agents. Differences in drug 
sensitivity between the two risk groups were assessed using the Wilcoxon rank-sum test, and violin plots were 
generated with the “ggplot2” package to visualize the results.

RNA extraction and qRT-PCR
A total of 18 pairs of PAAD tissues and matched peritumoral PAAD tissues obtained through surgical resection 
were included in this study. All samples were from PAAD patients who underwent surgical treatment in the 
Department of Hepatobiliary Pancreatic and Splentic Surgery of the Jingzhou Hospital Affiliated to Yangtze 
University from 2023 to 2024. All patients provided written informed consent form prior to surgery. This study 
has been approved by the Medical Ethics Committee of Jingzhou Hospital Affiliated to Yangtze University, and 
the ethics approval number is 2025-159-01.

Total RNA was extracted from each sample using TRIzol™ Reagent (Life Technologies, USA). The 
concentration and purity of RNA were measured using a NanoDrop 2000 spectrophotometer (Thermo Fisher 
Scientific, USA). Total RNA was reverse transcribed into cDNA using the SweScript All-in-One RT SuperMix 
for qPCR kit (Servicebio Technology Co., Ltd., China). qRT-PCR was performed using the 2× Universal Blue 
SYBR Green qPCR Master Mix (Servicebio Technology Co., Ltd., China) on a QuantStudio™ 5 Real-Time PCR 
System (Applied Biosystems, USA). Gene expression levels were normalized to GAPDH and calculated using the 
2^-ΔΔCt method. The primer sequences of PCDRGs are listed in Supplementary Table 6.

Statistical analysis
All statistical analyses were performed using R software (version 4.4.1). Differences in gene expression levels 
from qRT-PCR were analyzed using SPSS (version 26.0). Graphs were generated using GraphPad Prism (version 
10.1.2). All statistical tests were two-sided, and a P < 0.05 was considered statistically significant. The normality 
of the data distribution was assessed using the Shapiro-Wilk test. For data with a normal distribution, Student’s 
t-test or one-way analysis of variance (ANOVA) was used for comparisons between two or more groups. For 
non-normally distributed data, the Wilcoxon rank-sum test or Mann-Whitney U test was applied for two-
group or multi-group comparisons, respectively. Survival analysis was performed using Kaplan-Meier survival 
curves, and the log-rank test was applied to evaluate differences in OS time between high- and low-risk groups. 
In addition, univariate and multivariate Cox proportional hazards regression models were used to assess the 
independent prognostic value of clinical features and the risk score. Hazard ratios (HRs) and their corresponding 
95% confidence intervals (CIs) were calculated.

Data availability
The TCGA-PAAD cohort, along with associated clinicopathological information, is publicly available in the 
TCGA (https://portal.gdc.cancer.gov/) database. The three transcriptomic cohorts, including GSE62452, 
GSE28735, and GSE183795, are retrieved from the GEO (http://www.ncbi.nlm.nih.gov/geo/) database. The 
ICGC cohort is obtained from the ICGC (https://dcc.icgc.org/) database.

Received: 29 April 2025; Accepted: 7 July 2025

Scientific Reports |        (2025) 15:25156 13| https://doi.org/10.1038/s41598-025-10847-9

www.nature.com/scientificreports/

http://tide.dfci.harvard.edu/
http://www.cancerrxgene.org/
http://www.cancerrxgene.org/
https://portal.gdc.cancer.gov
http://www.ncbi.nlm.nih.gov/geo
https://dcc.icgc.org
http://www.nature.com/scientificreports


References
	 1.	 Del Chiaro, M., Sugawara, T., Karam, S. D. & Messersmith, W. A. Advances in the management of pancreatic cancer. BMJ 383, 

e073995. https://doi.org/10.1136/bmj-2022-073995 (2023).
	 2.	 Zhou, X. et al. Transcriptomics and molecular Docking reveal the potential mechanism of Lycorine against pancreatic cancer. 

Phytomedicine 122, 155128. https://doi.org/10.1016/j.phymed.2023.155128 (2024).
	 3.	 Grossberg, A. J. et al. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. CA Cancer J. 

Clin. 70 (5), 375–403. https://doi.org/10.3322/caac.21626 (2020).
	 4.	 Cai, J. et al. Advances in the epidemiology of pancreatic cancer: trends, risk factors, screening, and prognosis. Cancer Lett. 520, 

1–11. https://doi.org/10.1016/j.canlet.2021.06.027 (2021).
	 5.	 Rawla, P., Sunkara, T. & Gaduputi, V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J. Oncol. 

10 (1), 10–27. https://doi.org/10.14740/wjon1166 (2019).
	 6.	 Vlavcheski, F., O’Neill, E. J., Gagacev, F. & Tsiani, E. Effects of Berberine against pancreatitis and pancreatic cancer. Molecules 27 

(23), 8630. https://doi.org/10.3390/molecules27238630 (2022).
	 7.	 Madadjim, R., An, T. & Cui, J. MicroRNAs in pancreatic cancer: advances in biomarker discovery and therapeutic implications. 

Int. J. Mol. Sci. 25 (7), 3914. https://doi.org/10.3390/ijms25073914 (2024).
	 8.	 Brozos-Vázquez, E. et al. Pancreatic cancer biomarkers: A pathway to advance in personalized treatment selection. Cancer Treat. 

Rev. 125, 102719. https://doi.org/10.1016/j.ctrv.2024.102719 (2024).
	 9.	 Chakkera, M., Foote, J. B., Farran, B. & Nagaraju, G. P. Breaking the stromal barrier in pancreatic cancer: advances and challenges. 

Biochim. Biophys. Acta Rev. Cancer. 1879 (1), 189065. https://doi.org/10.1016/j.bbcan.2023.189065 (2024).
	10.	 Wu, L. et al. Pan-cancer analysis to character the clinicopathological and genomic features of KRAS-mutated patients in China. J. 

Cancer Res. Clin. Oncol. 151 (2), 94. https://doi.org/10.1007/s00432-025-06118-9 (2025).
	11.	 Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P. & Kroemer, G. The molecular machinery of regulated cell death. Cell. Res. 29 

(5), 347–364. https://doi.org/10.1038/s41422-019-0164-5 (2019).
	12.	 Dai, X., Wang, D. & Zhang, J. Programmed cell death, redox imbalance, and cancer therapeutics. Apoptosis 26 (7–8), 385–414. 

https://doi.org/10.1007/s10495-021-01682-0 (2021).
	13.	 Wang, S. et al. Machine learning reveals diverse cell death patterns in lung adenocarcinoma prognosis and therapy. NPJ Precis 

Oncol. 8 (1), 49. https://doi.org/10.1038/s41698-024-00538-5 (2024).
	14.	 Park, W. et al. Diversity and complexity of cell death: a historical review. Exp. Mol. Med. 55 (8), 1573–1594. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​3​

8​/​s​1​2​2​7​6​-​0​2​3​-​0​1​0​7​8​-​x​​​​ (2023).
	15.	 Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. 

Immunol. 17 (2), 97–111. https://doi.org/10.1038/nri.2016.107 (2017).
	16.	 Tower, J. Programmed cell death in aging. Ageing Res. Rev. 23(Pt A), 90–100. https://doi.org/10.1016/j.arr.2015.04.002 (2015).
	17.	 Liu, J. et al. Programmed cell death tunes tumor immunity. Front. Immunol. 13, 847345. https://doi.org/10.3389/fimmu.2022.847345 

(2022).
	18.	 Carneiro, B. A. & El-Deiry, W. S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 17 (7), 395–417. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​

0​3​8​/​s​4​1​5​7​1​-​0​2​0​-​0​3​4​1​-​y​​​​ (2020).
	19.	 Su, Z., Yang, Z., Xu, Y., Chen, Y. & Yu, Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol. Cancer. 14, 48. ​h​t​t​p​s​:​/​/​d​o​

i​.​o​r​g​/​1​0​.​1​1​8​6​/​s​1​2​9​4​3​-​0​1​5​-​0​3​2​1​-​5​​​​ (2015).
	20.	 Xie, J., Yang, Y., Gao, Y. & He, J. Cuproptosis: mechanisms and links with cancers. Mol. Cancer. 22 (1), 46. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​1​8​6​

/​s​1​2​9​4​3​-​0​2​3​-​0​1​7​3​2​-​y​​​​ (2023).
	21.	 Ge, J. et al. Machine learning-based identification of biomarkers and drugs in immunologically cold and hot pancreatic 

adenocarcinomas. J. Transl Med. 22 (1), 775. https://doi.org/10.1186/s12967-024-05590-0 (2024).
	22.	 Zhu, W. et al. Integrated machine learning identifies epithelial cell marker genes for improving outcomes and immunotherapy in 

prostate cancer. J. Transl Med. 21 (1), 782. https://doi.org/10.1186/s12967-023-04633-2 (2023).
	23.	 Wang, K. et al. The ufmylation modification of ribosomal protein L10 in the development of pancreatic adenocarcinoma. Cell. 

Death Dis. 14 (6), 350. https://doi.org/10.1038/s41419-023-05877-y (2023).
	24.	 Hashimoto, A. & Hashimoto, S. Plasticity and tumor microenvironment in pancreatic cancer: genetic, metabolic, and immune 

perspectives. Cancers (Basel). 16 (23), 4094. https://doi.org/10.3390/cancers16234094 (2024).
	25.	 Jiang, S. et al. Macrophage-organoid co-culture model for identifying treatment strategies against macrophage-related gemcitabine 

resistance. J. Exp. Clin. Cancer Res. 42 (1), 199. https://doi.org/10.1186/s13046-023-02756-4 (2023).
	26.	 Wang, M., Yu, F., Zhang, Y. & Li, P. Programmed cell death in tumor immunity: mechanistic insights and clinical implications. 

Front. Immunol. 14, 1309635. https://doi.org/10.3389/fimmu.2023.1309635 (2023).
	27.	 Yan, C., Niu, Y., Li, F., Zhao, W. & Ma, L. System analysis based on the pyroptosis-related genes identifies GSDMC as a novel 

therapy target for pancreatic adenocarcinoma. J. Transl Med. 20 (1), 455. https://doi.org/10.1186/s12967-022-03632-z (2022).
	28.	 Chi, H. et al. Cuprotosis Programmed-Cell-Death-Related LncRNA signature predicts prognosis and immune landscape in PAAD 

patients. Cells 11 (21), 3436. https://doi.org/10.3390/cells11213436 (2022).
	29.	 Song, W., Hu, H., Yuan, Z. & Yao, H. A prognostic model for anoikis-related genes in pancreatic cancer. Sci. Rep. 14 (1), 15200. 

https://doi.org/10.1038/s41598-024-65981-7 (2024).
	30.	 Wang, R. Q. et al. ITGA3 participates in the pathogenesis of recurrent spontaneous abortion by downregulating ULK1-mediated 

autophagy to inhibiting trophoblast function. Am. J. Physiol. Cell. Physiol. https://doi.org/10.1152/ajpcell.00563.2024 (2024).
	31.	 Li, R. et al. ITGA3 promotes pancreatic cancer progression through HIF1α- and c-Myc-driven Glycolysis in a collagen I-dependent 

autocrine manner. Cancer Gene Ther. 32 (2), 240–253. https://doi.org/10.1038/s41417-024-00864-7 (2025).
	32.	 Khan, T., Kryza, T., Lyons, N. J., He, Y. & Hooper, J. D. The CDCP1 signaling hub: A target for Cancer detection and therapeutic 

intervention. Cancer Res. 81 (9), 2259–2269. https://doi.org/10.1158/0008-5472.Can-20-2978 (2021).
	33.	 Hansen, N. et al. Blocking IL1RAP on cancer-associated fibroblasts in pancreatic ductal adenocarcinoma suppresses IL-1-induced 

neutrophil recruitment. J. Immunother Cancer. 12 (12), e009523. https://doi.org/10.1136/jitc-2024-009523 (2024).
	34.	 Praharaj, P. P., Patra, S., Panigrahi, D. P., Patra, S. K. & Bhutia, S. K. Clusterin as modulator of carcinogenesis: A potential avenue for 

targeted cancer therapy. Biochim. Biophys. Acta Rev. Cancer. 1875 (2), 188500. https://doi.org/10.1016/j.bbcan.2020.188500 (2021).
	35.	 Han, Z., Li, L., Huang, Y., Zhao, H. & Luo, Y. PBK/TOPK: A therapeutic target worthy of attention. Cells 10 (2), 371. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​

g​/​1​0​.​3​3​9​0​/​c​e​l​l​s​1​0​0​2​0​3​7​1​​​​ (2021).
	36.	 Wang, H., Lu, L., Liang, X. & Chen, Y. Identification of prognostic genes in the pancreatic adenocarcinoma immune 

microenvironment by integrated bioinformatics analysis. Cancer Immunol. Immunother. 71 (7), 1757–1769. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​
0​7​/​s​0​0​2​6​2​-​0​2​1​-​0​3​1​1​0​-​3​​​​ (2022).

	37.	 Wang, Y. N. et al. Vinblastine resets tumor-associated macrophages toward M1 phenotype and promotes antitumor immune 
response. J. Immunother Cancer. 11 (8), e007253. https://doi.org/10.1136/jitc-2023-007253 (2023).

	38.	 Sun, L., Su, Y., Jiao, A., Wang, X. & Zhang, B. T cells in health and disease. Signal. Transduct. Target. Ther. 8 (1), 235. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​
g​/​1​0​.​1​0​3​8​/​s​4​1​3​9​2​-​0​2​3​-​0​1​4​7​1​-​y​​​​ (2023).

	39.	 Tian, Y. et al. Exploring the tumor microenvironment of breast cancer to develop a prognostic model and predict immunotherapy 
responses. Sci. Rep. 15 (1), 12569. https://doi.org/10.1038/s41598-025-97784-9 (2025).

	40.	 Guo, Y. et al. Novel immune checkpoint-related gene model to predict prognosis and treatment responsiveness in low-grade 
gliomas. Heliyon 9 (9), e20178. https://doi.org/10.1016/j.heliyon.2023.e20178 (2023).

Scientific Reports |        (2025) 15:25156 14| https://doi.org/10.1038/s41598-025-10847-9

www.nature.com/scientificreports/

https://doi.org/10.1136/bmj-2022-073995
https://doi.org/10.1016/j.phymed.2023.155128
https://doi.org/10.3322/caac.21626
https://doi.org/10.1016/j.canlet.2021.06.027
https://doi.org/10.14740/wjon1166
https://doi.org/10.3390/molecules27238630
https://doi.org/10.3390/ijms25073914
https://doi.org/10.1016/j.ctrv.2024.102719
https://doi.org/10.1016/j.bbcan.2023.189065
https://doi.org/10.1007/s00432-025-06118-9
https://doi.org/10.1038/s41422-019-0164-5
https://doi.org/10.1007/s10495-021-01682-0
https://doi.org/10.1038/s41698-024-00538-5
https://doi.org/10.1038/s12276-023-01078-x
https://doi.org/10.1038/s12276-023-01078-x
https://doi.org/10.1038/nri.2016.107
https://doi.org/10.1016/j.arr.2015.04.002
https://doi.org/10.3389/fimmu.2022.847345
https://doi.org/10.1038/s41571-020-0341-y
https://doi.org/10.1038/s41571-020-0341-y
https://doi.org/10.1186/s12943-015-0321-5
https://doi.org/10.1186/s12943-015-0321-5
https://doi.org/10.1186/s12943-023-01732-y
https://doi.org/10.1186/s12943-023-01732-y
https://doi.org/10.1186/s12967-024-05590-0
https://doi.org/10.1186/s12967-023-04633-2
https://doi.org/10.1038/s41419-023-05877-y
https://doi.org/10.3390/cancers16234094
https://doi.org/10.1186/s13046-023-02756-4
https://doi.org/10.3389/fimmu.2023.1309635
https://doi.org/10.1186/s12967-022-03632-z
https://doi.org/10.3390/cells11213436
https://doi.org/10.1038/s41598-024-65981-7
https://doi.org/10.1152/ajpcell.00563.2024
https://doi.org/10.1038/s41417-024-00864-7
https://doi.org/10.1158/0008-5472.Can-20-2978
https://doi.org/10.1136/jitc-2024-009523
https://doi.org/10.1016/j.bbcan.2020.188500
https://doi.org/10.3390/cells10020371
https://doi.org/10.3390/cells10020371
https://doi.org/10.1007/s00262-021-03110-3
https://doi.org/10.1007/s00262-021-03110-3
https://doi.org/10.1136/jitc-2023-007253
https://doi.org/10.1038/s41392-023-01471-y
https://doi.org/10.1038/s41392-023-01471-y
https://doi.org/10.1038/s41598-025-97784-9
https://doi.org/10.1016/j.heliyon.2023.e20178
http://www.nature.com/scientificreports


	41.	 Wang, Y. et al. Clinical efficacy and identification of factors confer resistance to Afatinib (tyrosine kinase inhibitor) in EGFR-
overexpressing esophageal squamous cell carcinoma. Signal. Transduct. Target. Ther. 9 (1), 153. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​3​8​/​s​4​1​3​9​2​-​0​2​
4​-​0​1​8​7​5​-​4​​​​ (2024).

	42.	 Pourjamal, N. et al. Comparison of trastuzumab emtansine, trastuzumab deruxtecan, and disitamab Vedotin in a multiresistant 
HER2-positive breast cancer lung metastasis model. Clin. Exp. Metastasis. 41 (2), 91–102. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​s​1​0​5​8​5​-​0​2​4​-​1​0​2​
7​8​-​2​​​​ (2024).

	43.	 Long, Y. et al. FOXD1-dependent RalA-ANXA2-Src complex promotes CTC formation in breast cancer. J. Exp. Clin. Cancer Res. 
41 (1), 301. https://doi.org/10.1186/s13046-022-02504-0 (2022).

	44.	 Saponaro, M. et al. CDCP1 expression is frequently increased in aggressive urothelial carcinoma and promotes urothelial tumor 
progression. Sci. Rep. 13 (1), 73. https://doi.org/10.1038/s41598-022-26579-z (2023).

	45.	 Ma, H. et al. PBK drives PARP inhibitor resistance through the TRIM37/NFκB axis in ovarian cancer. Exp. Mol. Med. 54 (7), 
999–1010. https://doi.org/10.1038/s12276-022-00809-w (2022).

	46.	 Mehmood, R. K. Review of cisplatin and oxaliplatin in current Immunogenic and monoclonal antibody treatments. Oncol. Rev. 8 
(2), 256. https://doi.org/10.4081/oncol.2014.256 (2014).

	47.	 Stein, T., Bitsina, C., Seiler, M., Schmugge, M. & Franzoso, F. D. Clusterin can mediate apoptosis-induced molecular mechanisms 
in immune thrombocytopenia. Blood Vessels Thromb. Hemost. 1 (3), 100012. https://doi.org/10.1016/j.bvth.2024.100012 (2024).

	48.	 Hu, F. F., Liu, C. J., Liu, L. L., Zhang, Q. & Guo, A. Y. Expression profile of immune checkpoint genes and their roles in predicting 
immunotherapy response. Brief. Bioinform. 22 (3), 1–12. https://doi.org/10.1093/bib/bbaa176 (2021).

Author contributions
The experiment was conceived and designed by Bing Wang and Zhida Long. Bing Wang, Zhida Long, Xun 
Zou and Zhengang Sun conducted experiments, performed result processing and statistical analysis. Bing Wang 
wrote the manuscript and Yuanchu Xiao reviewed it. All authors agree to be responsible for all aspects of the 
work and to ensure its completeness and accuracy.

Funding
The present study was supported by the Natural Science Foundation of Hubei Province (2022CFB346).

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​1​0​8​4​7​-​9​​​​​.​​

Correspondence and requests for materials should be addressed to Y.X.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:25156 15| https://doi.org/10.1038/s41598-025-10847-9

www.nature.com/scientificreports/

https://doi.org/10.1038/s41392-024-01875-4
https://doi.org/10.1038/s41392-024-01875-4
https://doi.org/10.1007/s10585-024-10278-2
https://doi.org/10.1007/s10585-024-10278-2
https://doi.org/10.1186/s13046-022-02504-0
https://doi.org/10.1038/s41598-022-26579-z
https://doi.org/10.1038/s12276-022-00809-w
https://doi.org/10.4081/oncol.2014.256
https://doi.org/10.1016/j.bvth.2024.100012
https://doi.org/10.1093/bib/bbaa176
https://doi.org/10.1038/s41598-025-10847-9
https://doi.org/10.1038/s41598-025-10847-9
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Machine learning-based construction of a programmed cell death-related model reveals prognosis and immune infiltration in pancreatic adenocarcinoma patients
	﻿Results
	﻿Screening and identification of PCD related prognostic candidate genes in PAAD
	﻿Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis
	﻿Construction of a PCD related prognostic model using machine learning
	﻿Evaluation of the clinical relevance of the PCDRGs prediction model
	﻿Unsupervised consensus clustering analysis of prognostic PCDRGs
	﻿Establishment and assessment of the nomogram survival model
	﻿Immune landscape and its correlation with PCDRGs in PAAD patients
	﻿Impact of PCDRGs on targeted therapy response in PAAD patients
	﻿Validation of the identified PCDRGs

	﻿Discussion
	﻿Materials and methods
	﻿Transcriptomic data collection and preprocessing
	﻿Screening of PCD related prognostic candidate genes and identification of variation levels
	﻿Functional and pathway enrichment analysis
	﻿Selection of PCDRGs based on machine learning algorithms
	﻿Expression and prognostic validation of PCDRGs
	﻿Evaluation of the risk score as an independent prognostic factor in PAAD
	﻿Unsupervised consensus clustering analysis
	﻿Establishment and assessment of the prognostic nomogram
	﻿Assessment of the tumor immune microenvironment
	﻿Drug sensitivity prediction
	﻿RNA extraction and qRT-PCR
	﻿Statistical analysis

	﻿References


