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In high energy density physics (HEDP) and inertial confinement fusion (ICF), predictive modeling is 
complicated by uncertainty in parameters that characterize various aspects of the modeled system, 
such as those characterizing material properties, equation of state (EOS), opacities, and initial 
conditions. Typically, however, these parameters are not directly observable. What is observed instead 
is a time sequence of radiographic projections using X-rays. In this work, we define a set of sparse 
hydrodynamic features derived from the outgoing shock profile and outer material edge, which can be 
obtained from radiographic measurements, to directly infer such parameters. Our machine learning 
(ML)-based methodology involves a pipeline of two architectures, a radiograph-to-features network 
(R2FNet) and a features-to-parameters network (F2PNet), that are trained independently and later 
combined to approximate a posterior distribution for the parameters from radiographs. We show that 
the machine learning architectures are able to accurately infer initial conditions and EOS parameters, 
and that the estimated parameters can be used in a hydrodynamics code to obtain density fields, 
shocks, and material interfaces that satisfy thermodynamic and hydrodynamic consistency. Finally, we 
demonstrate that features resulting from an unknown EOS model can be successfully mapped onto 
parameters of a chosen analytical EOS model, implying that network predictions are learning physics, 
with a degree of invariance to the underlying choice of EOS model. To the best of our knowledge, our 
framework is the first demonstration of recovering both thermodynamic and hydrodynamic consistent 
density fields from noisy radiographs.

Inferring physical parameters from radiographic data
Simulation plays a major role in the experimental design and analysis of radiation hydrodynamic behavior in 
high energy density physics (HEDP) and inertial confinement fusion (ICF), e.g.1–6, as well as in the discovery of 
material properties of objects made to undergo strong deformations in material science and shock physics7–9. 
Improving the predictive skill of these simulations is likely to be key in ensuring continued progress in the design 
of robust burning ICF capsules10,11. However, in many of these applications predictive modeling is complicated 
by the inherent uncertainty in parameters used to model material properties, equation of state (EOS), opacities, 
and constitutive relationships, as well as complex physics associated with the initial conditions, e.g., the laser 
drive in ICF experiments12–17. Furthermore, understanding uncertainties in the initial conditions as well as 
the role of measurement uncertainty are both crucial in improving the predictive behavior of simulations. 
Consequently, dynamic experimentation plays a crucial role in calibrating models to improve simulations of 
hydrodynamic behavior and the discovery of material properties.

Historically to investigate material properties such as EOS and constitutive relationships, e.g., material 
strength in shock physics and material science, an impulse-response approach is used wherein the velocity trace 
response of the material specimen to an impulse is measured using velocity interferometry18–20. Indeed, the 
development of laser interferometry enabled the time-resolved measurement of the velocity from a reflecting 
surface18. This allowed for the measurement of the free surface and window interface velocities in dynamic 
compression experiments21. These measurements have yielded valuable data on compressive behavior and 
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strength of materials during both shock compression and release21–25. Characterization of Rayleigh-Taylor (RT) 
and Richtmyer-Meshkov (RM) instabilities, e.g., in terms of perturbation growth rates, are also widely used to 
examine constitutive relationships in shock physics, and to quantify material strength in materials undergoing 
extreme deformation26–37. Furthermore, these investigations enable examinations of asymmetry in geometric 
perturbations due to, e.g., manufacturing, as well as velocity perturbations, i.e drive asymmetries, to both 
understand and design control strategies to minimize the resulting hydrodynamic instabilities that degrade ICF 
performance17,38–42.

To examine RT and RM instabilities in extreme temperature and pressure conditions in a laboratory setting, 
spherical convergent geometries are necessary. These extreme conditions play a fundamental role in the design 
of robust burning ICF capsules. Fig. 1 presents a time-history of an evolving instability in which an outward 
going shock interacts with a perturbed surface which gives rise to a RM instability. In this setting radiographic 
measurements serve as the primary means to identify key features such as peaks and troughs and to quantify 
empirical growth rates, which then serve as reference data to validate theoretical and computational models. 
Indeed, experimental facilities now provide ultrafast proton43, neutron44, and x-ray45 imaging capabilities, 
typically in the form of radiographic projections to characterize RMI behavior37,46–48,48–51. While experimental 
RMI growth rates have been previously obtained in both planar and cylindrical geometries 52–58, validation of 
growth rates in spherical convergent geometries in which a reflected shock impacts a perturbed surface has not 
yet been achieved. This is in part due to the impact of noise/scatter in the radiographic images. The presence 
of scatter and noise observed in a typical radiograph, as demonstrated in Figure 2, does not enable an accurate 
determination of the peak and troughs.

Consequently, characterization of the initial conditions responsible for the instability as well as material 
properties characterizing the growth rates demands new techniques to solve this inverse problem. One such 
approach to resolve this difficulty has recently been proposed59, which utilizes the robust features of the outgoing 
shock to characterize the growth rates of the instability via a density reconstruction of the radiographic images. 
The success of this methodology is founded in the fact that the outgoing shock encodes sufficient information 
to enable machine learning techniques to learn a mapping between a sequence of outgoing shocks and the 
corresponding density fields. In this work we propose to utilize the outgoing shock as well as outer material edge 
as robust features to enable parameter estimation and estimation of the initial conditions. Using the recovered 

Fig. 2.  Sample (r, z) projection of the density (1st column), zoomed-in view of the Richtmyer-Meshkov 
interface (2nd column), synthetic radiograph (3rd columns), and a zoomed-in view of the radiograph (4th 
columns) labeled with the RMI interface (left half) and Canny edge labels (right half).

 

Fig. 1.  Example plots of the density evolution (a) and the various RMI profiles representing each inner surface 
perturbation profile at a fixed time frame n = 40( b). The images are 150x150 pixels representing the domain [
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parameters in a hydrodynamic solver we then recover thermodynamically and hydrodynamically consistent 
density fields.

A machine learning (ML)-based inverse mapping based on shock and outer edge features
Here we develop a framework to construct machine-learning-based inverse mappings directly from experimental 
radiographic images to the underlying physical parameters and initial perturbations in ICF settings systems. 
Extraction of the parameters and initial perturbations enable subsequent use in a hydrodynamics solver to 
obtain density fields, shocks, and material interfaces that satisfy hydrodynamic and thermodynamic consistency 
to numerical accuracy. We assume a governing physical model given by the compressible Euler equations, 
dropping higher-order effects of radiation for ease of testing and development, analogous to recent work60, 
and we assume unknown initial conditions and material properties for the governing Euler equations. As 
such, we build upon previous work that demonstrates the ability to learn parameters and density fields from a 
sequence of radiographic features for diagnosing asymmetries in the drive of ICF capsules by utilizing an inert 
gas as a surrogate for the D-T fuel to enable extraction of the outgoing shock 47,61,62. We note that recent work 
at the National Ignition Facility has been performed using a silicon dopant   63. Furthermore, by subsequent 
design optimization to minimize asymmetries, improved neutron yields can be realized. Our specific problem 
description is one in which an ICF-like shell is imploded with an initially perturbed surface as depicted in Fig. 
3. Upon collapse, the generation of a shock forms on axis and subsequently rebounds, interacting with the 
perturbed surface of the shell and initiates a RM instability. We posit that the outer material edge, outgoing 
shock, and their evolution encode sufficient information from the instability to identify the underlying simplified 
Mie-Grüneisenn EOS parameters and structure of the initial shell perturbation and velocity. Moreover, the 
shock and edge profiles are some of the few robust and identifiable features in dynamic radiographic images of 
HEDP experiments, which in general are subject to noise and scattering effects, and correspond to a projected 
areal mass rather than a primary hydrodynamic variable such as density. Thus broadly, we aim to calibrate 
material models and initial conditions to be consistent with the outgoing shock and edge profile, a problem of 
data-assimilation64. There are many approaches to data assimilation, and here we review some of the prominent 
techniques, before concluding with our specific machine-learning-based approach.

Variational data-assimilation minimizes a cost function comparing a forward model/simulation with 
experimental data64. Although the field of data assimilation often uses emulators or surrogate models for forward 
evolution, when considering the full “high-order” forward model, variational data assimilation is a subclass 
of the broader mathematical fields of optimal control (unknown parameters/models) and inverse problems 
(unknown initial state) based on variational principles65. When the governing equations are dynamic partial 
differential equations (PDEs), each of these are PDE-constrained optimization problems. Indeed for problems 
related to ICF, we believe it is critical to incorporate a high-order representation of the physics in a forward 
model, rather than working exclusively with some form of surrogate. As mentioned previously, shock interface 
and evolution provide some of the most robust and predictive information available, and surrogate or machine 
learning models that can accurately capture and track nonlinearly evolving and interacting shocks, let alone the 
formation of instabilities, remains a largely open question, e.g., see66.

PDE-constrained optimization is indeed a rigorous approach to inverse and optimal control problems, but is 
also very challenging computationally in terms of cost and memory67. Each gradient descent iteration requires a 
full forward and adjoint solution of the underlying PDE, in addition to storing a full physical solution to linearize 
about at every time point simulated, in order to compute a gradient in the adjoint pass; additional difficulties 
arise in maintaining geometric structure68. This has led to significant recent interest in machine-learning 
based approaches to solving inverse and optimal control problems in computational physics. Perhaps the most 
popular are so-called physics informed neural networks (PINNs)69, where the differentials of the underlying 
PDE are evaluated directly within a neural network via automatic differentiation. Then in training the PINN 
model, the forward and adjoint pass of classical gradient descent can be evaluated relatively cheaply purely 
based on automatic differentiation capabilities inherent to NNs. PINNs and many variations thereof have shown 
significant success in computational physics, particularly for optimal control and inverse problems, where the 

Fig. 3.  (a) Example double shell capsule specification based on the 1.06 MJ yield design from Ref. 77. (b) 3D 
mock-up of a shell with a perturbation on the interior surface. (c) Projection of the shell onto (r, z) coordinates. 
The inner radius is parameterized by the angle, u between the white dotted line and the r axis. (d) Plot of the 20 
separate profiles for radius of the perturbed inner surface verses angle u.
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computational cost and required coding infrastructure are significantly less than a traditional adjoint-based 
optimization70.

The emergence of machine learning has has brought about increased attention to data-driven approaches 
in ICF, high energy density, and plasma physics research. Indeed, machine learning has been used to examine 
performance and sensitivity of ICF implosions 71. Furthermore, Bayesian methods 72–74 have been used with 
relatively simple physics models to infer parameters in implosion experiments, such as laser-driven opacity and 
equation-of state from experiments. For an introduction and review of current work, we recommend the review 
paper by Knapp and Lewis 75.

However, there is an additional major hurdle to overcome in calibrating models based on experimental 
radiographic data obtained from dynamic imaging experiments. That is, these experiments typically do not 
provide direct data on primary physical variables. Instead, the observations are images formed via both the 
primary signal as well as the scattered radiation signal along with the noise of the radiographic system and 
characteristics of the detection system. Indeed, extraction of the primary state variable, i.e. density, of the time-
series of 2d noisy radiographic projections continues to be a challenge47,59,76. Consequently, the computation 
of gradients based on radiographs, or extracted features and material interfaces as used here, necessary for 
PDE-constrained optimization or PINNs-like ML models immediately precludes the direct application of these 
methods.

Consequently, in this work we develop machine learning architectures that directly take in a low-dimensional 
time-series of radiographic images, extract the outgoing shock and outer material edge profiles, and estimate the 
corresponding EOS parameters as well as initial shell conditions. An additional benefit of this approach is that 
the estimated parameters can then be plugged back into a hydrodynamics code to yield physically admissible 
density field reconstructions of the radiographic images. Such physical consistency is lacking in virtually all other 
reconstruction techniques currently used. The generation of data is discussed in “Methods” and the machine 
learning (ML)-based parameter estimation pipeline is introduced in “Parameter estimation machine learning 
pipeline”. Using numerical simulations, we then demonstrate in “Results” that our ML architecture is able to 
successfully recover EOS material parameters, initial shell profiles, and velocity to reproduce the observed shock 
and edge features, demonstrating that the time series of shock profiles does indeed encode sufficient information 
to infer these parameters with high accuracy. These parameters are then demonstrated to yield accurate and 
physically admissible feature and density reconstructions by evaluating the forward hydrodynamics code using 
predicted parameters. Moreover, in numerical simulation of HEDP, EOS is typically represented via underlying 
model assumptions or tabulated data models. We demonstrate that an expansive parameter model is sufficient 
to represent unknown models, in the sense that we can use an ML architecture trained on an underlying EOS 
model, M1, and output parameters of M1 for a time-series of shock profiles generated with a different underlying 
EOS model, M2, that lead to a consistent time-series of shock profiles as those originally generated based on M2. 
In this sense, our ML model is learning structure from the underlying physics, above a specific choice of EOS 
parameterization needed for numerical simulation.

Methods
Generation of density time series
As a representative problem of a double shell ICF capsule implosion, we study shock propagation in a time-
dependent pseudo-3D density profile, created by the implosion of a perturbed spherical metallic shell into a 
medium of gas. We utilize air in lieu of D-T in order to enable examination of the out-going shock which 
would otherwise be obscured by the burning plasma once the hot spot is formed. We rely on the effects of a 
non-spherical perturbation and variation in initial velocity to provide distinct behavior in the late-time shock 
evolution. We assume azimuthal symmetry, therefore the density at any time can be described in 2D cylindrical 
coordinates (r, z), but the solution remains 3-dimensional via the symmetry assumption. Additionally, we focus 
on the Mie-Grüneisen (MG) EOS model. We then generate a large set of data for variations in the inner shell 
perturbation, initial shell velocity, and EOS parameters, where each data sample contains a time series of the 
resulting hydrodynamic density field. Simulations are performed on a 440 × 440 uniform Cartesian grid on 
a computational domain given by the quarter-plane [0, L] × [0, L], where L = 341 µm. The uniform grid cell 
size is ∆r = ∆z = L

440 . The metallic shell is made of Tantalum and its density is initially uniform at a value of 
16.65 g/cc.

The shell perturbations are specified by adding harmonic perturbations to the inner surface of a 
spherical Tantalum shell, which can be described as the set of coordinates (rin(u), zin(u)) satisfying 
rin(u)2 + zin(u)2 =

(
Rin +

∑8
k=1 Fk cos(2ku)

)2
, where u ∈ [0, π/2], Rin = 248 µm, Fk , k = 1, . . . , 8, 

are coefficients of the perturbation corresponding to the kth cosine harmonic. The outer surface of the shell is a 
sphere with radius Rout = 310 µm. There are 20 different inner surface perturbation profiles considered in our 
dataset. The corresponding coefficients are recorded in Table 4. Figure 3 presents an initial perturbation given to 
the interior shell. As an initial condition, the shell is given a uniform implosion velocity, vimpl, in the direction 
of the origin to initiate an implosion. We include 4 choices of implosion velocity in our dataset.

The MG EOS 78 can be parameterized in analytical form as

	
p (χ, T ) =

ρ0c2
sχ

(
1 − 1

2 Γ0χ
)

(1 − s1χ)2 + Γ0ρ0cV (T − T0),� (1)

where χ = 1 − ρ0
ρ , ρ0 and T0 are the reference density and temperature, respectively, cs is the speed of sound, 

Γ0 is the Grüneisen parameter at the reference state, s1 is the slope of the linear shock Hugoniot curve, and cV  
is the specific heat capacity at constant volume. Out of these parameters, we keep the reference density ρ0 fixed 
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at 16.65 g/cc and the reference temperature T0 fixed at 0.0253 eV, leaving EOS parameters {cs, s1, Γ0, cV } as 
unknown.

Table 1 presents the EOS parameter values we sample in generating our training data set.
Altogether, the dataset realizes every unique parameter combination in a 6-dimensional parameter cube with 

14, 400 total simulations. Each hydrodynamic simulation is comprised of density field snapshots at later times 
when the instability is present. We label these times as n = 0, 1, . . . , 40. An example of a density time series 
is shown in Fig. 1a. Once the shock propagating through the gas converges to the axis, a reflected shock from 
the axis then propagates outward and interacts with the perturbed inner Tantalum edge, creating a RMI. The 
topology of this interior evolves as depicted in Fig. 1b. The expanding shock proceeds to propagate into the non-
constant dynamic density background. We chose frames corresponding to the time instants at n = 25, 30, 35, 40 
to train the network in our studies.

Generation of synthetic radiographs
Synthetic radiographs are produced at each time step using the imaging model described in  47. This model 
involves first obtaining the areal mass for the gas and metal using the cone beam projection provided by the 
ASTRA Toolbox  79. The final transmission includes contamination from several noise terms, which contains 
correlated blur, scatter, and a Poisson noise field. Fig. 2 shows an example of a density field at time index 40 and 
a synthetic radiograph.

Identification of shock and edge features
One of the primary aspects of the dynamics is the evolution of the inner air-metal interface, i.e., the growth of 
the instability. This is because the passage of the incoming and outgoing shocks through this interface renders it 
unstable to the RMI. Considering temporally evolving simulations, we are interested in times when the instability 
on this interface has permitted the growth of perturbations to the extent that the inner air-metal interface displays 
significant asymmetry. As such, we assume that the interface as identified by a feature extraction procedure is 
not robust due to sensitivities with respect to the chosen imaging plane. This is in contrast to the shock and outer 
edge features that we assume are robust. Nevertheless, because of the shock’s passage across the unstable inner 
air-metal interface, we expect the stably evolving shock to be imprinted with a set of perturbations that can be 
reliably identified in a noisy radiograph 47.

Shock and edge features are extracted at each time for each sequence of density fields. Our feature extraction 
algorithm consists of two stages: (i) using the maximal gradient to detect computational cells where the 
features are present; and (ii) subpixel feature extraction. For subpixel feature detection, we use the partial-
area algorithm 80, generalized to quadratic density functions assumed on both sides of the feature. Specifically, 
we examine the neighborhood of every pixel where the feature is present, assuming that the density on both 
sides of the discontinuity may be described by a function which is quadratic in both variables. Following the 
original algorithm 80, we then fit for the shape of the feature with the constraint that the mass along the stripes 
in the neighborhood of the feature matches the integrated density. The result is a parametric representation of 
the shock and edge as a function of polar angle 59. We compressed these shock and outer edge features into a 
low-dimensional representation in terms of cosine harmonic coefficients, r(i)(θ) =

∑N(i)

j=0 F
(i)
j cos(2jθ), for 

i = shock, edge. We found that N (shock) = 8 and N (edge) = 5 can represent the shock and edge features with 
sufficient accuracy across the dataset.

Parameter estimation machine learning pipeline
Our ML-based parameter estimation pipeline is composed of two architectures, a radiograph-to-features 
network (R2FNet) and a features-to-parameters (F2PNet) network, described respectively in “Radiograph-to-
features network (R2FNet)” and“Features-to-parameters network (F2PNet)”. R2FNet and F2PNet are trained 
separately and later combined for testing. F2PNet also consists of a forward model, which is a surrogate for 
the parameters-to-features mapping. In “Results”, we evaluate the model’s ability to recover parameters from 
radiographs through examining self consistency with respect to features produced by both the surrogate and 
true forward model. We consider a time sequence of n ∈ {25, 30, 35, 40}, which corresponds to times where 
the outgoing shock is fully formed in the metal and the RMI has entered a linear growth phase. The dataset 
consisting of triplets of radiographs, features, and parameters is randomly partitioned into training, validation, 
and testing sets corresponding to 80%, 10%, and 10% of the data, respectively.

Options 1 2 3 4 5

Γ0 1.6 1.7 1.76 1.568 1.472

s1 1.22 1.464 1.342

cs( m/s) 339000 372900 305100 355000

cV (erg g−1 eV−1) 1.6 × 1010 1.76 × 1010 1.44 × 1010

Table 1.  Matrix of parameter values used to develop the simulated dataset. All combinations of above 
parameters are used to simulate our data.

 

Scientific Reports |        (2025) 15:25915 5| https://doi.org/10.1038/s41598-025-10869-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Results
Model performance on testing set
After training R2PNet and F2PNet, parameter estimations were performed on each data point in the testing set. 
R2PNet is used to predict shock and edge features for each radiograph. These predicted features are then inputted 
into the decoder of F2PNet for 25 different realizations of the generator to produce a distribution of parameter 
estimates. The feature and parameter predictions are illustrated in Fig. 4. The horizontal axes correspond to 
ground truth values and the vertical axes correspond to the predictions. In the case of the parameter predictions, 
violin plots are shown on the vertical axis corresponding to the distribution of network predictions. Correlation 
coefficients are shown in each of the plots.

As seen by the plots, R2FNet is able to predict the edge and the lower order harmonics of the shock (e.g. F0 
through F4) with high correlation, while correlation is degraded for higher order harmonics of the shock (e.g. 
F1 through F8). Despite this, F2PNet is able to predict all parameters except for Γ0 and cv  with high correlation. 
This demonstrates that Γ0 and cv  are likely insensitive parameters for late-time shock and edge features and 

Fig. 4.  Prediction performance of the parameter estimation pipeline on the testing set. (a) Scatter plots 
depicting the agreement between the scaled features predicted using R2FNet on the test set of noisy 
radiographs (vertical axis) and the corresponding scaled ground truth features (horizontal) axis in the testing 
set. (b) Line plots depicting the agreement between the scaled parameters predicted using F2PNet on the 
features predicted from R2FNet (violin plots representing the data range and distribution) and scaled ground 
truth parameters (diagonal lines) in the testing set. The correlation coefficients are shown in their respective 
plots.
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the rest of the parameters can be predicted with reasonable accuracy. The violin plots show that the range of 
estimates can be highly variable, however the distributions seem to be closely centered around the diagonal line 
denoting ground truth. Note that F0, F5, and F7 are omitted since there is no variance in these parameters in 
the dataset.

We now evaluate the capability of the trained forward model along with the self-consistency of the network. 
Feature predictions are obtained by inputting the parameter estimates from the decoder on the testing set into 
the forward model. Figure 5 shows histograms of the L2 and L∞ errors for the shock and edge curves resulting 
from the feature predictions. The majority of the reconstructions are accurate to within one pixel of error. 
Figure 5 shows example feature reconstructions corresponding to the best, median, and worst L2 errors for both 
the shock and edge.

Model sensitivity studies
We now consider the effect of the training set size on predictive capability. Models are trained with various 
training set sizes ranging from 10 to 70%. After training, correlation coefficients are computed for each 
parameter and shown in Table 2. Monotonic improvement is generally observed across all parameters with cv  
as an exception. It is clear that there is significant degradation in performance when the sample size is too small. 
Additionally, we observe that the degradation is dependent on the parameter. We remark that, relative to other 
parameters, F2, F4, and F8, are learned with reasonable skill with the smallest training set; for harmonics, this 
makes sense given that F2, F4, and F8 are more densely sampled compared to other parameters (see Fig. 4). 
Note that even at 30% of the available training data, the correlation coefficients for many of the parameters do 

fNd F1 F2 F3 F4 F6 F8 vimpl Γ0 s1 cs cv

10% 0.575 0.954 0.607 0.900 0.595 0.880 0.536 0.007 0.604 0.631 -0.009

30% 0.866 0.976 0.893 0.956 0.903 0.972 0.914 0.011 0.942 0.899 -0.016

50% 0.924 0.996 0.938 0.966 0.927 0.987 0.940 0.076 0.974 0.941 0.000

70% 0.950 0.978 0.961 0.972 0.953 0.995 0.973 0.252 0.988 0.976 -0.023

Table 2.  Correlation coefficients of parameter predictions evaluated on the testing set for a model trained 
using different data-set fractions (fNd ).

 

Fig. 5.  Errors of reconstructed shock and edge features reconstructed using the forward model on parameters 
estimates from the decoder on the testing set. The top row corresponds to shock features and the bottom row 
corresponds to edge features. The first two columns show histograms of the L2 and L∞ errors, respectively, 
and the last three columns show examples of reconstructed shock and edge features (dotted blue line) 
representing the extreme cases of the distributions superimposed over the ground truth feature (black line) and 
an error bar of ±1 pixels (gray region).
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not drop significantly. These insights are important for our future work on 3D problems that are not assumed to 
be symmetric, since the data generation is significantly more computationally expensive.

In Fig. 6c, we consider a study of comparing a baseline trained network to a network trained only using the 0th 
harmonic of the shock feature (F (s)

0 ). Despite the significant decrease in the feature dimension, vimpl and many 
of the EOS parameters, including s1, and cs, can be recovered accurately. In contrast, poor accuracy is achieved 
in prediction of initial perturbation harmonic coefficients, which is intuitive given the geometric relation of 
initial perturbation and perturbations to the outgoing shock profile. It is also instructive to examine the temporal 
evolution of the magnitude of the harmonics, as seen for an example trajectory in Fig. 6a,b. Although the 0th 
harmonic of the shock is growing, there is no apparent growth trend in the higher harmonics of the shock. 
Therefore, the relative information content provided by the higher order harmonics diminishes in time.

Next we consider a series of models trained on all but one profile and tested on the leftover profile. The results 
of this study are summarized in Fig. 7b. Despite being omitted from training, parameter estimation of profiles 
9, 10, and 19 can be performed with reasonable skill. However, profile 20 suffers from inaccuracies. As can be 
seen by Fig. 7a, in examining the zeroth and first shock harmonics of all the profiles as a point cloud in high 
dimensional space, certain clusters emerge. Correspondingly, we observe that profiles 9, 10, 19 are clustered 
closely to other data while profile 20 forms it’s own cluster, offering an explanation for the degraded performance. 
The clusters are highly dependent the coefficients chosen in Table 4.

We now consider the sensitivity of the parameter estimation with respect to the time frames considered for 
the features. In this study, three separate networks are trained using different time frames of the input features, 
either {25, 26, 27, 28}, {30, 31, 32, 33}, or {35, 36, 37, 38}, and are compared to the baseline network using 
the frames {25, 30, 35, 40}. As seen in Table 3, accuracy of the parameter estimates generally degrades when 

Fig. 7.  (a) Distribution of initial perturbation profiles in the dataset as a function of the 0th and 1st shock 
harmonics at n = 25. (b) Correlation coefficients of initial velocity and EOS parameter predictions evaluated 
on profiles that were omitted from the training set.

 

Fig. 6.  (a) Line plot illustrating the dynamics of the 0th order harmonic coefficients of the shock, F (s)
0 , and 

edge, F (e)
1  for a selected example in the dataset. (b) Corresponding line plot illustrating the dynamics of the 

next three higher order harmonic coefficients of the shock and edge. (c) Correlation coefficients of parameter 
predictions evaluated on the testing set for a model trained using the entire set of shock and edge features 
compared to a model trained only using the 0th harmonic of the shock.
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pushing the observable features to a later time. Over time, the ratios between the 0th harmonic and higher order 
harmonics of the shock grow in magnitude, so it is likely the network has a tougher time distinguishing between 
features at later times. Despite this, using features spanning a larger time interval proves to be the most successful 
in parameter estimation.

Combining parameter estimation with hydrodynamic simulation
In this section we demonstrate the utility of combining our parameter estimation model with a hydrodynamic 
solver. Since our model provides a two-way mapping between shock and edge features and parameters, the 
learned forward model is limited in that it cannot provide additional information on state variables (e.g. density) 
and other characteristics of the solution (e.g. RMI topology) that can be obtained from a full hydrodynamics 
solve. We explore the feasibility of recovering the density, shock and edge features, and the RMI topology using 
estimated parameters in a hydrodynamics solver. We also utilize this section to explore the scenario of model 
mismatch by relating shock and edge features arising from different EOS models (e.g. Tillotson and Sesame) to 
parameters of a Mie-Grünieson model.

In our first study, we consider three sets of features for which we generate ensembles (N = 25) of predictions 
for each case by sampling the generator latent space. Each set of estimated parameters for each ensemble is then 
used as input into the hydrodynamic solver and the outputs are compared to that of the ground truth. Figure 8 
compares the ground truth density field with the densities corresponding to the estimated parameters for the 
lowest, median, and highest root mean squared error (RMSE) for each case as well as the distribution of RMSE 
over each ensemble along with the standard deviation of the density fields. For each ensemble, the complex RMI 
surface is shown to be recovered with reasonable qualitative accuracy and additionally the ensembles RMSEs are 
acceptably low and bounded. The standard deviation of the density fields have noticeable peaks near the shocks 
and RMI. Figure 9 compares the extracted shock and edge features for the same three ensembles. The the L2 
errors for the edge feature are all captured accurately to within 0.5 pixels, the shock errors are larger and bounded 
by 1.5 pixels for each ensemble. Furthermore, Fig. 10 shows a qualitative and quantitative comparison between 

Fig. 8.  Comparison between three ground truth density fields and ensembles of density fields obtained 
through using estimated parameters in a hydrodynamics code. For each ensemble along the rows, this plot 
shows the ground truth density field, density fields corresponding to the lowest, median, and highest, RMSE, 
histogram of RMSEs, and standard deviation of density field. Each density field displays four quadrants 
corresponding to times n = 25, 30, 35, 40.

 

Frames F1 F2 F3 F4 F6 F8 vimpl Γ0 s1 cs cv

{25, 30, 35, 40} 0.967 0.995 0.990 0.991 0.988 0.984 0.995 0.037 0.993 0.987 -0.015

{25, 26, 27, 28} 0.948 0.973 0.980 0.990 0.965 0.977 0.981 0.079 0.967 0.981 0.037

{30, 31, 32, 33} 0.921 0.992 0.965 0.988 0.947 0.977 0.955 0.044 0.927 0.971 -0.004

{35, 36, 37, 38} 0.890 0.992 0.941 0.987 0.939 0.978 0.921 0.044 0.854 0.938 0.055

Table 3.  Correlation coefficients of EOS parameter and initial condition parameter predictions using different 
sets of time frames.
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the peak and trough points of the RMI for ensemble A. For this case, the peaks, troughs, and the growth of their 
distance are all captured accurately.

Next we explore the impact of model mismatch for our parameter estimation problem. In our study, we chose 
to use Mie-Grüneison (MG) as a guiding EOS model for our parameter estimation network. However there will 
always be model mismatch and uncertainty when comparing to experimental data or with simulations utilizing 
alternative models. In order to study the effect of model mismatch, we generate two sets of density time series 
using different EOS models—one using the Tillotson (TLN) EOS model 81 and one using the Sesame (SES) EOS 
model 82. For each series, we extract features corresponding to the time frames {25, 30, 35, 40} and input them 

Fig. 10.  Example using estimated parameters of ensemble A in Fig. 8 to predict peak-to-trough evolution 
of the RMI. Left: evolution of the maximum RMI peak-to-trough radial distance for the ground truth and 
estimated parameters. Each density field displays four quadrants corresponding to time steps 25, 30, 35, 40. 
Middle and right: density fields and identified peak and trough points of the RMI (white markers) for the 
ground truth field and field obtained using estimated parameters.

 

Fig. 9.  Comparison between three ground truth features (black lines) and ensembles of features (blue lines) 
obtained through using estimated parameters in a hydrodynamics code. For each ensemble along the rows, this 
plot shows the comparison of the shock features, histogram of shock L2 errors, comparison of edge features, 
and histogram of edge L2 errors. Each feature comparison plot displays four quadrants corresponding to times 
n = 25, 30, 35, 40.
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into our network to predict corresponding MG parameters and initial conditions. Figure 11 shows comparisons 
between the ground truth density field and shock and edge features for both the TLN EOS and SES EOS and 
the corresponding reconstructed density fields and and shock and edge features reconstructed using estimated 
parameters for the MG EOS model. For the TLN EOS, both the density field and shock and edge features are 
reconstructed to a reasonable accuracy. However, while the material interface edge is captured accurately for 
the SES EOS, large errors are present for the density field and shock. For both the TLN and SES EOS, the 
RMI topology predicted using the MG EOS is qualitatively similar to the ground truth RMI topology. Errors 
in feature and density consistency due to model mismatch arise from two modalities. First, the guiding EOS 
model on which parameter estimates are based on must be sufficiently expansive to approximate the unknown 
EOS model. Second, the features produced by the unknown EOS model must be adequately represented in the 
training data used to optimize the ML model. It is not surprising that our model is able to able to perform better 
on simulations produced using the TLN EOS. The MG and TLN EOS models are both globally described by 
a single equation, while the SES is a tabular model that interpolates multiple local models in different areas of 
the thermodynamic phase space. Additionally, the features for the simulation using the SES model are outliers 
compared to the features used in training.

Discussion
In this paper, we demonstrate a new machine learning (ML)-based approach for recovering initial conditions and 
material parameters in ICF capsule implosions that utilizes hydrodynamic features, such as the outgoing shock 
profile and outer material edge, that are robustly identifiable in a noisy radiograph. We propose that our method 
can be used an experimental diagnostic to determine asymmetries in the drive that arise from the Ritchmeyer-
Meshkov instability. This experiment can be performed by using an inert gas in lieu of D-T inside of the capsule 
or by inclusion of a suitable dopant to enable self-generated radiation to be imaged. Our ML approach involves 
a pipeline consisting of a radiographs-to-features network (R2FNet) and a features-to-parameters network 
(F2PNet). These networks can be trained independently and later combined during the testing stage. F2PNet 
also contains a surrogate model for the forward hydrodynamic mapping between parameters-to-features.

Our model problem consists of hydrodynamic simulations of an implosion of a nearly-spherical metallic 
shell. In our dataset, various equation of state (EOS) parameters and initial conditions on the surface and 
initial velocity are varied to produce multiple realizations of density field time series. For each simulation, we 
generated a time series of synthetic radiographs and extracted shock and edge features in the form of cosine 
harmonic coefficients. Through our results, we demonstrated that our approach is capable of recovering the 
EOS and initial condition parameters with reasonable accuracy. We also show that the parameter estimates 
can be successfully used in a surrogate model for the forward problem to accurately estimate the shock and 
edge features. Additionally, we show that the estimated parameters can be used in a (full-order) hydrodynamic 
solver to produce thermodynamically and hydrodynamically consistent density fields with acceptable quantitative 
accuracy in terms of RMSE and errors in peak-to-trough distance of the RMI surface. To the best of our 

Fig. 11.  Comparison between density fields and shock and edge features produced using the (a) Tillotson 
EOS and (b) Sesame EOS and the corresponding density fields and shock and edge features reconstructed 
using estimated parameters for the Mie-Grüneison EOS model. Predicted shock and edge features are denoted 
by dotted blue lines and the ground truth features are denoted by black lines with a surrounding gray region 
depicting an error bar of ±1 pixels.
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knowledge, our framework is the first to recover thermodynamically and hydrodynamically consistent density 
reconstruction from noisy radiographs.

We also investigated the ability of the model to estimate parameters when the reference simulation is 
generated with a different EOS model. Our findings imply that a sufficiently expansive parameter model is 
capable of representing unknown models. We note that there are other forms of model mismatch that manifest in 
experimental data, such as radiographic noise and scatter. While the application of our approach to experimental 
data is the subject of our future work, we previously demonstrated in 59 that our method of using the shock 
and edge to reconstruct density fields was robust in the presence of out-of-distribution noise and scatter. More 
recently, a comprehensive investigation was performed to examine the impact of out-of-distribution noise and 
scatter  76. The results again confirmed that the sparse features are robust and consequently accurate density 
fields can be obtained from the dynamic sequence of these features with significant out-of-distribution scatter 
and noise.

Since the F2PNet is generative, it is a useful tool in the uncertainty analysis of predicted parameters. Inspired 
by the conditional variational autoencoder (cVAE), the F2PNet architecture contains a decoder which applies 
a nonlinear transformation to features and a sample of multi-dimensional Gaussian noise to obtain a predicted 
distribution for the parameters. While the decoder is capable of producing multi-modal distributions, we largely 
observe that F2PNet trained on the dataset considered in this paper predicts uni-modal distributions for the 
parameters. Typically, the characteristics of the predicted parameter distribution depend on the weighting of 
the KL divergence loss term and dimensionality of the noise in the latent space. However in our investigations, 
we observed insensitivity with respect to the choice of these meta parameters and we therefore speculate that 
the observed uni-modal predictions are due to the data providing sufficient information content to closely 
identify the sensitive hydrodynamic parameters. Our speculation is also supported by our past work 47, where 
we investigated recovering the density field in the vicinity of the Richtmeyer-Meshkov instability from the same 
hydrodynamic features dataset considered in this paper using a generative cVAE-based vision transformer. In 
this work, we observed that sampling the latent space of the generative network for a given feature produced a 
distribution of quantitatively close density fields with topologically similar Richtmeyer-Meshkov instabilities.

Data availibility
The datasets analyzed during the current study are available from the corresponding author on reasonable re-
quest.

A Cosine coefficients for inner surface perturbation profile
The coefficients of the cosine harmonic series of the initial inner surface perturbation profile is scaled according 
to Fi = RinF̄i/8, for i = 0, . . . , 8, where F̄0 = 8, F̄5 = F̄7 = 0, and the rest of the coefficients are provided 
by Table 4.

profile F̄1 F̄2 F̄3 F̄4 F̄6 F̄8

1 0 0 0 0 0 0.08

2 0 0 0 0.08 0 0

3 0 0.08 0 0 0 0

4 0 0 0 0 0 0.075

5 0 0 0 0.075 0 0

6 0 0.075 0 0 0 0

7 0 0.0075 0 0 0.0025 0.065

8 0.0075 0 0.0025 0.065 0 0

9 0.005 0.0657 0 0 0 0

10 0 0 0 0 0 0.06

11 0 0 0 0.06 0 0

12 0 0.06 0 0 0 0

13 0 0 0 0 0 0.055

14 0 0 0 0.055 0 0

15 0 0.055 0 0 0 0

16 0 0.0075 0 0 0.0025 0.045

17 0.0075 0 0.0025 0.045 0 0

18 0.0051 0.0457 0 0 0 0

19 0 0 0 0.04 0 0

20 0 0.04 0 0 0 0

Table 4.  Scaled cosine coefficients for the initial shell profile used for each profile.
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B Radiograph-to-features network (R2FNet)
The radiograph-to-features network (R2FNet) is illustrated in Fig. 12 and is built entirely from convolutions and 
fully connected linear layers. The first component of the architecture is a convolutional encoder which com-
presses the series of radiographs from their large ambient dimension to a much smaller latent dimension. The 
downsampling blocks used in this architecture are identical to the residual blocks used in 83, and are very similar 
to those found in BigGAN 84. The network input consists of the four radiographs stacked together so that each 
timestep is represented by one input channel. The first downsampling block then increases the channel dimen-
sion to 64. Each further downsampling block adds an additional 64 channels, and all the downsampling blocks 
reduce the spatial dimensions by a factor of 2. In the downsampling blocks, the first 3×3 convolution increases 
the number of channels. Both networks use 7 downsampling blocks. The outputs of the encoder are then flat-
tened into a vector. Subsequently, there are 3 linear layers - the first of which reduces the dimension by a factor 
of 16, the second maintains this dimension, and the final layer outputs the parameter predictions.
Because the cosine harmonic coefficients of the features of interest have very different absolute scales, they are 
normalized before being used as targets for training the network. We apply z-score normalization to each coef-
ficient by subtracting its population mean and dividing by its population standard deviation. The loss function 
used for training is a combination of the mean squared error of the predicted (normalized) coefficients and the 
mean squared error of the radius of the shock and radius of the edge, sampled on a grid of 500 equally spaced 
angles θ ∈ [0, π/2). The R2FNet is optimized using Adam 85, with a learning rate of 10−5, and a batch size of 
8 using eight NVIDIA GeForce RTX 2080 Ti GPUs. The R2FNet achieved its minimum validation loss after 
approximately 8 h.

C Features-to-parameters network (F2PNet)
Our features-to-parameters network (F2PNet) combines ideas from the conditional variational autoencoder 
(cVAE) 86–88 and the transformer 89, for estimating initial condition (IC) and EOS parameters based on observed 
outgoing shock and outer edge features. The F2PNet architecture is summarized by Fig. 13. F2PNet consists of a 
forward model, which is a surrogate model for the hydrodynamics operator mapping parameters to features, and 
a generative parameter estimator, which represents the decoder of a cVAE. For all network inputs and outputs, 
each EOS parameter and IC parameter are linearly scaled to lie in the range [0, 1] and each shock feature is scaled 
according to its corresponding mean and standard deviation in the training set.
Consider parameters, p ∈ RNp , late-time shock and edge features at Nt times, f ∈ RNf ×Nt , and generator 
features, g ∈ RNg×Nt . The forward model, F , represents a surrogate forward model, predicting late-time 
shock and edge features from parameters. The first layer is a fully-connected feedforward neural network 
which outputs data that is reshaped into RNf ×Nt . A transformer network, based on89, is then applied to obtain 
late-time shock and edge features. The generator draws vectors g ∈ RNf ·Nt  from the probability distribution 
N (µ, Σ), where µ ∈ RNf ·Nt  and Σ ∈ R(Ng·Nt)×(Ng·Nt) are learned parameters. The decoder, D , performs 
the parameter estimation task given the late-time shock and edge features and randomly generated features. 
The first layer is a transformer network which outputs data in a shape RNt×(Nf +Ng). After reshaping, a ful-
ly-connected feedforward neural network is then applied to obtain the parameters.
The model architecture weights are trained using a loss of the form 
L = Ldecoder + Lforward + Lconsistency + LKL, where

Radiograph-to-Features Network (R2FNet)

Instance Norm Sum

Swish + 2x2 AvgPool + 3x3 Conv + Swish + 3x3 Conv

1x1 Conv + 2x2 AvgPool

Fig. 12.  Diagram depicting the radiograph-to-features network (R2FNet). The input is a sequence of noisy 
radiographs and the output is a corresponding sequence of predicted shock and edge features.
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Ldecoder = 1

Nd

Nd∑
i=1

∥D(fi; gi) − pi∥2, Lforward = 1
Nd

Nd∑
i=1

L2(F (pi), fi)2, Lconsistency = α

Nd

Nd∑
i=1

L2(F (D(fi; gi)), fi),

and LKL = DKL (N (µ, Σ) ∥ N (0, I)). Ldecoder represents the mean squared error between the decoder’s 
prediction of parameters and the ground truth, Lforward represents the squared L2 error between the shock 
and edge curves defined by the forward model’s prediction of feature coefficients and that of the ground truth, 
Lconsistency represents a self-consistency loss using the same error metric as Lforward, but instead using the 
shock and edge curves reconstructed by applying the forward model to the decoder’s parameter estimates of 
the ground truth features, and LKL is the KL divergence between the generator probability distribution and a 
standard Gaussian distribution. The combination of Ldecoder and LKL represents the traditional VAE loss 86 
while the addition of Lforward and Lconsistency encourages accuracy and consistency of the forward model. In 
our study, we first pre-train the architecture without the self-consistency term (α = 0) to obtain a reasonable 
initial set of weights for the encoder and decoder, then later perform a second round of training using all of the 
terms (α = 1).
In summary, F2PNet combines the strengths of the transformer and conditional variational autoencoder to es-
timate parameters from temporal sequences of shock and edge features. The transformer provides the ability to 
capture long range temporal dependencies. Results are presented for an architecture that uses two transformer 
blocks in the encoder and decoder, each with 8 heads, H = 8, a latent dimension of k = 64, and a feedforward 
neural network with inner dimension 2048 and tanh activation functions. The feedforward neural networks in 
the encoder and decoder each have two layers with a hidden dimension of 200.
In our study, we also investigated the use of different network architectures, including networks without 
attention mechanisms. We discovered that applying attention greatly improves the prediction accuracy of the 
parameters and therefore we chose to make this a key component of F2PNet. Additionally, we investigated a 
probabilistic neural network, which models the posterior as a multivariate Gaussian distribution. However, 
since the posterior is generally a complex probability distribution, we decided to pursue a VAE-based architec-
ture, which is capable of representing non-Gaussian distributions.
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