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Accurate information on urban tree species composition is critical for urban green space ecosystem 
management. However, achieving large-scale, high-precision species identification in complex 
metropolitan environments remains challenging. This study assessed the potential of medium-
resolution multi-temporal optical imagery combined with airborne LiDAR for tree species classification 
in large heterogeneous urban areas (> 5000 km²). The results indicate that precise large-scale 
identification of urban tree species distribution is feasible by integrating multi-seasonal Sentinel-2 
imagery with airborne LiDAR data based on a Random Forest hierarchical classification model. The 
overall classification accuracies for deciduous broadleaf species and evergreen broadleaf species were 
63.32% and 76.77%, respectively. Multi-temporal spectra were the primary explanatory variables, with 
spring bands significantly affecting the classification of deciduous broadleaf species. For evergreen 
broadleaf species, each season has its own dominant spectral information. Classifications combining 
data from three seasons outperformed single- or two-season combinations. The incorporation of 
LiDAR-derived metrics improved the classification results for most species, with accuracy increases of 
up to 18.75% point for deciduous broadleaf species. Overall, the results demonstrate the effectiveness 
of combining medium-resolution multi-temporal optical imagery with LiDAR data for urban tree 
species classification, laying a foundation for quantifying ecosystem services provided by urban trees 
through remote sensing.
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Urban trees play a crucial role in providing ecosystem services, including purifying the air, alleviating heat in 
cities, and improving the health and quality of life for humans1–3. Effective planning and allocation of urban trees 
is a nature-based solution for maximizing their benefits and contributing to sustainable urban development4,5. 
Timely and accurate identification of urban tree species composition and distribution is a crucial prerequisite for 
the planning and management of urban trees.

Accurately obtaining spatial information on urban tree distribution in highly heterogeneous and complex 
urban environments presents significant challenges. Ground surveys are the most accurate method for collecting 
urban tree species distribution data. However, this approach is often costly and only suitable for small-scale 
studies. Integrating ground surveys with remote sensing data is a promising approach for mapping urban tree 
species6. Compared to ground surveys, remote sensing technology provides observational data at various scales, 
enabling large-scale, high-precision, and automated classification of urban tree species7,8. Remote sensing-based 
species identification has been extensively studied in natural environments9–11. However, urban environments 
present additional challenges such as the complexity of land use, diversity of urban tree composition, fragmented 
spatial layout, and various human-induced pruning and management activities. Some recent studies have 
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already begun attempts in this direction. For example, six tree species were classified in the Grajaú neighborhood 
of Rio de Janeiro, Brazil, using a fusion of digital aerial imagery and LiDAR data12. In the Greater Chicago 
Area, 18 common tree species were classified using dense, multi-temporal, high-resolution optical imagery, 
achieving an overall classification accuracy of 60%13. In the Brussels-Capital Region, the five most common tree 
species were classified by integrating multi-temporal PlanetScope data with ultra-high-resolution aerial imagery, 
yielding an OA of 88%14. A decrease in classification accuracy was observed as the number of species categories 
increased13–15. Seven urban tree species within a 100 km² area of Tampa, Florida, were identified by combining 
multi-season high-resolution Pléiades imagery with airborne LiDAR data16. These studies highlight that optical 
imagery and LiDAR are the two primary data sources for urban tree species classification.

Optical imagery captures the biophysical characteristics of urban tree species, and its spectral, temporal, 
and spatial resolutions play critical roles in the accurate identification of urban tree species. Spectral differences 
among species reflect variations in leaf morphology and biochemical factors17. The visible band (VIS, 0.4–
0.7 μm) captures differences in the absorption of various plant pigments; the near-infrared radiation spectrum 
(NIR, 0.7–1.3 μm) reflects differences in internal cell structures of plants; and the shortwave infrared spectrum 
(SWIR, 1.3–2.5 μm) indicates variations in water content and other biochemical components of vegetation18. 
Previous studies have identified specific bands important for the classification of urban tree species. For example, 
the blue light band was identified as significant in the classification of conifer species19. In terms of temporal 
resolution, different tree species exhibit varying patterns of bud burst, leaf unfolding, and flowering throughout 
the year, which enhance the separability of tree species based on optical imagery captured at different times20–22. 
Imagery captured during the autumn senescence period provided the most valuable phenological information 
for tree species classification in Washington, D.C., using multi-temporal WorldView-3 imagery23. In terms 
of spatial resolution, it is generally believed that higher spatial resolution leads to improved accuracy in tree 
species classification24,25. However, there generally exists an inverse relationship between the spatial and 
temporal resolutions of remote sensing imagery, necessitating a comprehensive trade-off analysis for optimal 
application26,27. It was found that among the optical imagery with 4 m, 8 m, and 30 m spatial resolutions, the best 
tree species classification results were achieved with an 8 m pixel size28.

LiDAR data can capture the biophysical characteristics of urban tree species and serve as an effective 
complement to optical imagery29–31. LiDAR sensors emit thousands of laser pulses and record the time delay 
between pulse emission and return, creating a 3D point cloud of the imaged area. From the point-cloud 
data, various tree structure-related features can be derived, such as canopy height, crown width and shape, 
and leaf area index32. Many studies have investigated the benefits of combining optical imagery with LiDAR 
point-cloud data for identifying tree species and their compositions. For instance, combining LiDAR data with 
hyperspectral imagery notably improved the accuracy of identifying urban tree species33. Additionally, fusing 
optical and LiDAR data increased the average F1-score for classifying urban tree species in tropical regions by 
12.6% compared to using optical bands alone12. However, other studies have shown that including LiDAR point-
cloud data is not always beneficial. For example, canopy height information had little impact on classification 
accuracy28. Canopy height information may even cause confusion rather than improve species discrimination34. 
The reasons behind these phenomena or under which circumstances and for which tree species LiDAR data 
can effectively improve the classification accuracy, remain unclear. Therefore, additional studies are needed to 
investigate the potential of combining optical and LiDAR data for the classification of tree species and to assess 
the added value of the latter in improving tree species identification.

Another important but often overlooked factor is cost-effectiveness34.  In urban environments, unmanned 
aerial systems (UAS) have become a primary source of high-resolution imagery and LiDAR data with excellent 
temporal flexibility35. However, acquiring both ultra-high-resolution imagery and LiDAR data can be costly, 
and there are numerous restricted flight zones within urban areas. Therefore, many studies have focused on 
the classification and identification of tree species at the local scale within urban areas36–38. These studies aim 
to maximize the classification accuracy within a single site; however, their value is limited because the results 
are often not generalizable to other areas. For large-scale applications, the most competitive sensor systems are 
satellite-based, including medium and high spatial resolution systems (Landsat, Sentinel-2, and Rapid Eye)39. 
Therefore, exploring classification approaches for urban tree species based on satellite data, supplemented by 
airborne data, for the entire urban area holds significant research value and practical implications for creating 
large-scale, high-precision, and intelligent urban tree species identification.

The Sentinel-2 satellites offer a notable improvement in freely accessible multi-spectral remote sensing data, 
offering improved spatial and temporal resolutions. It is currently the satellite data with the highest spectral 
resolution among all freely available datasets with long-term time-series observation capabilities40. A 5-day 
revisit cycle and 10-m spatial resolution have been demonstrated to improve forest species mapping in natural 
environments41–44. However, their applicability in identifying urban tree species in highly heterogeneous 
metropolitan environments remains unclear.

Shanghai is one of the largest cities in China and benefits from a subtropical monsoon climate, unique 
geographical location, and diverse ecological environments, which provide favorable conditions for vegetation 
growth. However, human activities, such as urban expansion, transportation infrastructure development, and 
other industrial activities, have resulted in a complex internal vegetation structure and composition, presenting 
challenges for tree species identification and ecological research. This study uses Shanghai as a case study to 
explore how combining multi-season Sentinel imagery with airborne LiDAR data can enhance the mapping of 
dominant tree species and their distribution in highly heterogeneous urban spaces. Specifically, the following 
research questions are addressed:

(1) Can the 10-m resolution Sentinel-2 temporal data effectively identify tree species on a large scale within 
urban areas?

(2) Does using structural metrics from airborne LiDAR enhance tree species classification?
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Data and methods
Study area
The study area is mainland Shanghai (Fig.  1), covering the main urban area of Shanghai and surrounding 
terrestrial areas, excluding water bodies and Chongming Island. This region spans approximately 5,439 km2. 
This region experiences a humid subtropical climate characterized by four distinct seasons, annual precipitation 
of approximately 1,200 mm, and an average annual temperature of approximately 17.7  °C. These conditions 
provide a favorable environment for plant growth. The urban forests in the study area exhibit rich biodiversity 
and remarkable ecological functions. Remote sensing data indicates a tree cover of 26%, with a wide variety 
of species, including mainly native tree species, such as Cinnamomum camphora, Ginkgo biloba, Magnolia 
denudata, and Ulmus pumila, and exotic tree species, such as Koelreuteria paniculata, Platanus acerifolia, and 
Prunus serrulata.

Field operations & data collection
A two-month field survey was conducted by the research team in the summer of 2023, during which a total of 
7,493 tree species sample records were collected. The approach involved selecting 18 major green spaces, evenly 
spread across the area (Fig. 1). Locations of tree distributions and species information were recorded, excluding 
uncommon tree species with fewer than 100 samples. Finally, 19 dominant tree species were identified (Table 1). 
The sample size of these dominant tree species accounted for 90.86% of the total measured samples.

Remote sensing basic data and the determined experimental schemes
Spectral imagery and LiDAR data for urban tree species features
Urban tree species exhibit high heterogeneity due to their location in urban areas. The selection of appropriate 
vegetation features directly influences the quality of classification results, making it a crucial step in the process 
of classifying dominant tree species in urban environments. It is not sufficient to rely on field surveys alone to 
capture the features of urban trees on a large scale, and remote sensing data provide the basis for the acquisition 
of a large number of samples used to train and validate models in the process of intelligent identification of urban 
tree species. In this study, Sentinel-2 multispectral imagery fused with airborne LiDAR data was used to classify 
urban tree species based on basic data from field surveys. The Sentinel-2 data are obtained from the European 
Space Agency data-sharing website (https://dataspace.copernicus.eu/) and pre-processed using SNAP and ENVI 
software for resampling, band synthesis, mosaicing, cropping, cloud masking and missing value filling. Airborne 
LiDAR data were collected during the summer of 2021 using a Feima D200 unmanned aerial vehicle (UAV) 
platform (Feima Robotics Co., Ltd., Shenzhen, China) equipped with a RIEGL miniVUX-1UAV LiDAR scanner 
(RIEGL Laser Measurement Systems GmbH, Horn, Austria). Data were acquired at an altitude of 100 m above 
the ground over seven parks within the study area, with an average point density of 52 points/m². The LiDAR 
scanner was operated at a pulse repetition frequency of 100 kHz and a maximum scanning rate of 100 scans per 
second. The flight was conducted under clear windless conditions at a constant speed of 10 m/s.

Base feature set construction​
Features across spectral, temporal, and physical multiple dimensions were selected after comprehensive 
consideration of interspecies variations to construct the base feature set for tree species classification (Table 2).

Fig. 1.  Location and land use distribution of the study area.
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Spectral features characterize the distribution of reflectance/radiation intensity across different wavelengths, 
comprising: (1) spectral bands directly extracted from preprocessed Sentinel-2 data, and (2) spectral indices 
derived from band combinations to enhance feature discrimination. The spectral bands correspond to 10 bands 
(visible, red-edge, near-infrared, and short-wave infrared) in Sentinel-2 imagery. Based on established vegetation 
and tree species identification studies45–47 24 widely adopted spectral indices were selected as the spectral indices 
feature set.

Temporal features attempt to capture the differences in phenological changes of different trees through multi-
seasonal imagery and computation of different seasonal band combinations. Corresponding to the three growth 
stages of tree leaves, Sentinel-2 images were acquired for the three seasons of spring (May), summer (August) 
and autumn (October) of 2023 covering the study area (Table 3). Based on the extraction of 30 Sentinel-2 image 
bands for the three seasons, the seasonal trajectory difference index was calculated with the following formula16:

	 ST DIi = (|Summeri − Springi| + |Autumni − Summeri| + |Springi − Autumni|)/3� (1)

where i denotes the i-th band. Thus, the 12 bands corresponding to Sentinel-2 A yielded a total of 10 STDIs.
Physical features primarily characterize the vertical structure of trees. Based on LiDAR data collected 

from urban tree species in the study area park using the VUX-1UAV LiDAR scanner, LIDAR360 software 
(GreenValley International, California, USA) was used for preprocessing the LiDAR data. Subsequently, three 
canopy structure parameters—CH, CC, and LAI—were extracted from the preprocessed point cloud data. The 

Feature type Feature name

Spectral

Spectral bands Band2 (B2), Band3 (B3), Band4 (B4), Band5 (B5), Band6 (B6), Band7 (B7), Band8 (B8), Band8a (B8a), Band11 (B11), Band12 
(B12)

Spectral indices

Anthocyanin Reflectance Index (ARI), Green Chlorophyll Index (CIg), Red Edge Chlorophyll Index (CIre), Carotenoid 
Reflectance Index (CRI), Difference Vegetation Index (DVI), Enhanced Vegetation Index (EVI), Green Normalized Difference 
Vegetation Index (GNDVI), Inverted Red-Edge Chlorophyll Index (IRECI), Modified Chlorophyll Absorption Reflectance Index 
(MCARI), Modified Normalized Difference Vegetation Index (MNDVI), Modified Red Edge Normalized Difference Vegetation 
Index (MNDVIre), Modified Normalized Difference Water Index (MNDWI), Modified Soil-Adjusted Vegetation Index (MSAVI), 
MERIS Terrestrial Chlorophyll Index (MTCI), Normalized Difference Greenness Index(NDGI), Normalized Difference Infrared 
Index (NDII), Normalized Difference Vegetation Index (NDVI), Red Edge Normalized Difference Vegetation Index 1 (NDVIre1), 
Red Edge Normalized Difference Vegetation Index 2 (NDVIre2), Normalized Difference Water Index (NDWI), Ratio Vegetation 
Index (RVI), Red Edge Vegetation Index (RVIre), Red Edge Position Index (REPI), Soil-Adjusted Vegetation Index (SAVI)

Temporal

Spring

Seasonal trajectory difference index (STDI)Summer

Autumn

Physical LiDAR Canopy Height (CH), Canopy Closure (CC), Leaf Area Index (LAI)

Table 2.  Summary of classification features.

 

ID Forest type Species Symbola Sample size

1 Deciduous broadleaf forest Sapindus mukorossi SAMU6 330

2 Koelreuteria paniculata KOPA 316

3 Salix babylonica SABA 312

4 Ginkgo biloba GIBI2 312

5 Zelkova serrata ZESE80 308

6 Magnolia denudata MADE7 238

7 Platanus acerifolia PLAC 224

8 Prunus serrulata PRSE3 178

9 Triadica sebifera TRSE6 176

10 Liquidambar formosana LIFO 164

11 Prunus cerasifera PRCE2 150

12 Populus alba POAL7 133

13 Acer rubrum ACRU 122

14 Evergreen broadleaf forest Cinnamomum camphora CICA 1466

15 Osmanthus fragrans OSFR2 428

16 Ligustrum lucidum LILU2 197

17 Phyllostachys edulis PHED4 130

18 Deciduous coniferous forest Metasequoia glyptostroboides MEGL8 1231

19 Evergreen coniferous forest Pinus massoniana PIMA11 393

Table 1.  The 19 most frequently occurring species, were categorized by forest type and ranked according to 
sample size within each type. a  Symbol adopted from the USDA plants database.
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specific calculation method is as follows: First, the watershed segmentation algorithm is applied to the denoised 
and filtered LiDAR point cloud data for individual tree segmentation, obtaining parameters such as tree 
positions and canopy height. Canopy closure represents the proportion of the vertical projection of the forest 
canopy over the land area. In this study, within a 10 m×10 m statistical unit, the ratio of first-return vegetation 
points to the total first-return points is calculated. The leaf area index is the total leaf area per unit ground area 
and is an important parameter for characterizing the vegetation canopy structure. The study uses an algorithm 
that, within a 10 m×10 m statistical unit, constructs a 3D grid with 1.5 times the average point spacing of the 
point cloud, based on the average point spacing of the point cloud. The number of 3D grids in each layer and 
the number of grids containing LiDAR points are then counted. By calculating the frequency of LiDAR points 
in each layer and multiplying by a leaf inclination correction factor, the leaf area index for each layer is obtained. 
Finally, all layers’ leaf area index values are summed to obtain the total leaf area index for the entire statistical 
unit. Finally, combined with remote sensing data inversion algorithms, the CH, CC, and LAI—three LiDAR-
derived features—were generated for the entire study area, with a spatial resolution of 10 m.

Experimental schemes design
Based on the spectral, temporal, and physical features described above, seven experimental schemes were 
designed to determine the optimal feature combination for urban dominant tree species classification, with the 
goal of improving classification accuracy in the study area. Scheme 1 constructed a classification model using 
single-season spectral features (spring, summer, and autumn), each containing 10 spectral bands and 24 spectral 
indices. Scheme 2 employed temporal features, including all 30 spectral bands from three seasons (10 bands × 
3 seasons) and 10 seasonal trajectory difference indices. Scheme 3 focused on physical features, utilizing three 
LiDAR-derived metrics: CH, CC, and LAI. Subsequent schemes examined pairwise combinations: Scheme 4 
combined spectral and temporal features (112 features), Scheme 5 combined temporal and physical features (43 
features), and Scheme 6 combined spectral and physical features (105 features). Scheme 7 integrated all features, 
employing spectral, temporal, and physical features (115 features) for tree species identification modeling.

Feature selection​
The constructed base feature set contains a large number of features. To avoid issues such as insignificant features, 
multicollinearity, and feature redundancy, feature selection is necessary to identify the optimal feature subset for 
each experimental scheme. Considering the characteristics of the features, classification objectives, and data 
distribution properties in this study, the Kruskal-Wallis48 method was employed for feature significance testing, 
removing features with p > 0.05. Subsequently, multicollinearity analysis was performed on the remaining 
features. Pearson correlation coefficient matrix (|r|>0.8) and variance inflation factor (VIF > 10) were used to 
identify redundant features. Finally, combined with random forest feature importance evaluation, features with 
higher contributions to tree species classification (top 20% in importance) were prioritized for retention.

The mapping framework of urban tree species distribution and hierarchical classification 
model construction
The study employed a Random Forest algorithm to construct a multi-level classification system for mapping 
urban tree species distribution across metropolitan areas, achieving stepwise species identification (Fig. 2). In 
constructing the Random Forest classification model, the bagging method is first used to sample the original 
training set from the previous step, creating multiple training subsets. A base classifier is then trained for each 
subset. Finally, a voting method is used to combine the predictions of all base classifiers, and the class with the 
most votes is selected as the model’s final output. For accuracy validation, 20% of the total tree samples from 
field surveys were used as validation samples. Four accuracy evaluation metrics—Overall Accuracy (OA), F1-
score, Producer Accuracy (PA), and User Accuracy (UA)—were employed to assess the classification accuracy. 
The specific methodology for urban tree species identification using the multi-level Random Forest classification 
model is as follows:

•	 Level 1: Using 10 bands from single-season Sentinel-2 imagery to classify land use and land cover in the study 
area, the terrestrial area of Shanghai was categorized into five land types: forest, grassland, cropland, imper-
vious surface, and waterbody.

•	 Level 2: Within the forest areas identified in Level 1, three-season Sentinel-2 imagery (totaling 30 bands) was 
further employed to distinguish between evergreen broadleaf forest, evergreen coniferous forest, deciduous 
broadleaf forest, and deciduous coniferous forest.

•	 Level 3: By comparing the classification performance of seven experimental schemes, the optimal classifica-
tion scheme was determined to further identify specific urban tree species within each forest type.

Time Season Day of year Leaf growth status

15-May-2023 Spring 135 Leaf emergence

11-Aug-2023 Summer 223 Full leaf expansion

15-Oct-2023 Autumn 288 Leaf senescence

Table 3.  3 sets of Sentinel-2 data.
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Results
Urban tree species classification status from multiple schemes
The classification accuracies of the seven experimental schemes were compared to determine the optimal 
classification scheme for different forest type species. For evergreen coniferous forests and deciduous coniferous 
forests, their main species consist solely of Pinus massoniana and Metasequoia glyptostroboides, requiring no 
further classification. Therefore, the focus here is primarily on identifying dominant species within deciduous 
broadleaf forests (DBF) and evergreen broadleaf forests (EBF). Figure  3a,b respectively illustrate the feature 
selection processes corresponding to the seven experimental schemes for DBF and EBF species.

Based on the feature subsets selected for each experimental scheme, dominant species identification was 
conducted for both DBF and EBF, with the classification accuracies shown in Table 4. The results demonstrate 
significant differences in classification performance between DBF and EBF. For DBF species classification, Scheme 
7 (Spectral + Temporal + Physical) achieved the highest accuracy among all schemes (OA: 63.32%, F1-score: 0.63), 
showing a 29.65% point improvement in OA over the lowest-performing Scheme 3 (OA: 33.67%, F1-score: 0.34). 
Classification schemes combining multiple feature dimensions (Schemes 4–7) generally outperformed those 
using single-dimensional features (Schemes 1–3). For EBF species, Scheme 5 (Temporal + Physical) yielded the 
highest classification accuracy (OA: 76.77%, F1-score: 0.75). The two-dimensional feature combination schemes 
(Schemes 4–6) performed comparably to the three-dimensional combination (Scheme 7), with all achieving OA 
values above 75%. Based on these findings, Scheme 7 and Scheme 5 were selected for subsequent analysis of DBF 
and EBF species, respectively.

Mapping the distribution of urban dominant tree species
The resulting 2023 distribution of dominant tree species across Shanghai’s mainland area at 10 m resolution 
is shown in Fig. 4. In addition, four areas with high tree densities were randomly and uniformly selected for 
detailed inspection (Fig. 4, areas A, B, C, and D). These areas were zoomed in and compared with high-definition 
Google Map images for visual analysis. The obtained tree distribution maps demonstrated a high degree of 
consistency in spatial distribution with the Google Earth images.

The most widely distributed species in the study area are Cinnamomum camphora, Metasequoia 
glyptostroboides, and Salix babylonica, which together account for 57.56% of the total urban forest area in the 

Fig. 2.  The workflow of urban tree species classification. ECF Evergreen coniferous forest,  EBF Evergreen 
broadleaf forest,  DCF Deciduous coniferous forest,  DBF Deciduous broadleaf forest.
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Fig. 4.  Prediction of urban forest species: spatial distribution overview and localized focus area.

 

Experimental schemes

Deciduous 
broadleaf forest

Evergreen 
broadleaf forest

OA (%) F1-score OA (%) F1-score

Scheme 1 - Spring 45.23 0.45 68.01 0.67

Scheme 1 - Summer 48.41 0.48 72.73 0.71

Scheme 1 - Autumn 45.06 0.45 68.35 0.67

Scheme 2 58.96 0.59 76.43 0.75

Scheme 3 33.67 0.34 60.94 0.59

Scheme 4 60.97 0.61 76.43 0.75

Scheme 5 62.65 0.62 76.77 0.75

Scheme 6 62.14 0.62 75.76 0.74

Scheme 7 63.32 0.63 75.76 0.74

Table 4.  Comparison of classification accuracy for 7 experimental schemes. OA: overall accuracy.

 

Fig. 3.  The feature selection processes.
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study region. Cinnamomum camphora, a native species of Shanghai, holds an important role in the city’s greening 
efforts. Metasequoia glyptostroboides and Salix babylonica are predominantly found in areas with abundant water 
sources, such as riverbanks and lake shores. Other major tree species in Shanghai include Zelkova serrata, Ginkgo 
biloba, Sapindus mukorossi, Osmanthus fragrans, Prunus serrulata, Koelreuteria paniculata, Platanus acerifolia, 
and Ligustrum lucidum, collectively occupying 37.82% of the forested area in the study region. The distribution 
ranges of Acer rubrum, Magnolia denudata, Liquidambar formosana, Populus alba, Prunus cerasifera, Triadica 
sebifera, Phyllostachys edulis, and Pinus massoniana are relatively limited, covering less than 5% of the total forest 
area in the study region.

Classification accuracy of urban dominant tree species across forest types
The multi-layer classification model achieved overall accuracies of 89.36% for five land-use types and 72.89% 
for four forest-type classes, respectively. For the third-layer species-level classification, the accuracy of dominant 
tree species in DBF and EBF was further evaluated based on the optimal feature selection scheme. The results 
revealed significant differences in classification accuracy across different forest types. Table  5 presents the 
confusion matrix for the classification of DBF tree species, with an OA of 63.32% and a F1-score of 0.63. The 
PA ranged from 55.38% for Zelkova serrata (ZESE80) to 80.95% for Populus alba (POAL7). The highest PA 
was observed for Populus alba (POAL7) with a PA of over 80%, followed by Magnolia denudata (MADE7) 
and Ginkgo biloba (GIBI2), with PAs of 79.17% and 75.44%, respectively. The UA showed a broader range, 
with the highest UA being 75.47% for Salix babylonica (SABA) and 72.92% for Platanus acerifolia (PLAC). In 
addition, Magnolia denudata (MADE7) and Prunus serrulata (PRSE3) exhibited UAs that exceeded 70%. In 
contrast, the UAs for Triadica sebifera (TRSE6) and Acer rubrum (ACRU) were below 50%. Table 6 presents 
the classification results for four EBF tree species, with an OA of 76.77% and a F1-score of 0.75, indicating 
relatively good classification performance. The highest UA was observed for Cinnamomum camphora (CICA) 
at 95.07%, with a PA of 77.59%, representing the highest classification accuracy. The classification accuracies for 
Osmanthus fragrans (OSFR2) and Ligustrum lucidum (LILU2) were relatively high, with PAs of 77.27% and 70%, 
respectively, and UAs exceeding 60%. In contrast, Phyllostachys edulis (PHED4) showed a UA of only 19.05%, 
despite a PA of 80.00%, reflecting poor classification performance.

CICA OSFR2 LILU2 PHED4 Total UA (%)

CICA 135 7 0 0 142 95.07

OSFR2 27 68 4 1 100 68.00

LILU2 5 8 21 0 34 61.76

PHED4 7 5 5 4 21 19.05

Total 174 88 30 5 OA (%) = 76.77
F1-score = 0.75PA (%) 77.59 77.27 70.00 80.00

Table 6.  Random forest classification confusion matrix for four evergreen broadleaf species. The number of 
correctly classified samples is in bold.  PA producer’s accuracy,  UA user’s accuracy,  OA overall accuracy.

 

SAMU6 SABA ZESE80 GIBI2 KOPA MADE7 PRSE3 PLAC TRSE6 LIFO PRCE2 ACRU POAL7 Total UA (%)

SAMU6 46 6 2 1 2 0 7 0 0 2 1 2 0 69 66.67

SABA 4 42 2 1 3 1 1 1 0 0 0 0 0 53 75.47

ZESE80 4 2 36 3 3 1 2 1 1 2 0 0 1 56 64.29

GIBI2 6 6 1 43 2 2 2 7 0 1 0 0 1 71 60.56

KOPA 3 7 4 1 38 0 3 3 0 1 1 0 1 62 61.29

MADE7 1 4 3 1 3 38 1 0 1 0 1 0 0 53 71.7

PRSE3 2 0 5 0 2 2 31 2 0 0 0 0 0 44 70.45

PLAC 2 0 2 1 3 1 1 35 0 1 0 1 1 48 72.92

TRSE6 4 5 4 2 3 2 0 1 12 0 1 0 0 34 35.29

LIFO 0 1 2 1 2 1 0 2 1 18 0 2 0 30 60

PRCE2 4 1 1 0 1 0 2 0 1 0 15 0 0 25 60

ACRU 1 1 2 2 1 0 4 2 0 2 1 11 0 27 40.74

POAL7 1 0 1 1 0 0 1 3 0 0 1 0 17 25 68

Total 78 75 65 57 61 48 55 57 16 27 21 16 21 OA (%) = 63.32
F1-score = 0.63PA (%) 58.97 56 55.38 75.44 59.02 79.17 56.36 61.4 75 66.67 71.43 68.75 80.95

Table 5.  RF classification confusion matrix of 13 deciduous broadleaf species. The number of correctly 
classified samples is in bold.  PA producer’s accuracy,  UA user’s accuracy,  OA overall accuracy.
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Relative importance of predictors
To better understand the contribution of selected spectral, temporal, and physical features to the predictive 
performance of the tree species classification models for different forest types, the feature importance of the 
Random Forest classification models for DBF species and EBF species was calculated using the Mean Decrease 
Accuracy method (Fig. 5). For DBF species, the spectral band information in spring exhibits higher importance 
compared to summer and autumn, with key bands such as Band 3 (green) and Band 8 (near-infrared) in spring 
imagery. The importance of spectral bands across seasons follows a declining trend from spring to summer 
and further to autumn. Additionally, spectral indices play seasonally distinct roles: among spring indices, the 
MNDWI shows the highest importance, followed by the NDGI. In summer and autumn, the CRI and NDII 
are the most critical indices. Among LiDAR-derived physical metrics, CH demonstrates significantly greater 
importance than CC and LAI, highlighting its role as a key structural feature for identifying DBF species. In 
the classification of EBF species, dominant spectral information varies across seasons. For instance, the Band 
8 (near-infrared) and Band 11 (shortwave infrared) show high importance in spring, while the Band 6 (near-
infrared) and Band 2 (blue) serve as key spectral features in summer and autumn respectively. The STDI indices 
in bands 2 and 8, which incorporate multi-seasonal phenological information, also showed high importance. In 
addition, CH also played a significant role in the classification of broadleaf evergreen species, but it did not differ 
much from the performance of the other two structural features.

Discussion
Significance of observing time series data
Trees exhibit phenological changes, which vary across different species. Therefore, using multi-season imagery 
is generally more likely to improve the accuracy of urban tree species identification than using single-season 
images21,49,50. To deepen our insight into phenology-related spectral variations, the classification accuracy of 
DBF and EBF species was assessed by constructing classification models using features from different seasons 
and season combinations. (Fig. 6). It was observed that summer imagery is crucial for the classification of both 
DBF and EBF species, as its classification accuracy was higher than that of spring or autumn imagery alone. 
However, this is not a universal rule, as there is no consensus in the literature regarding the optimal season 
for tree classification21,51. This variation may be attributed to differences in geographic location, climate, and 
tree species selected for classification across different studies. For instance, in the study of 32 tree species in 
Luoyang, China, Liu et al.20 found that the tree flowering and leafing period (spring) was the optimal period for 
species identification, while Yang et al.52 found that the highest classification accuracy was achieved when using 
mid-summer imagery for tree species classification in the Great Lakes-St. Lawrence region of Central Ontario, 
Canada. Additionally, Fang et al.23 reported that autumn was the most important season for classifying 19 tree 
species in Washington, D.C.

Fig. 5.  Feature importance of the random forest classification model for DBF and EBF species.
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However, the classification accuracy remained relatively low when using data from a single season, 
such as spring, summer, or autumn, highlighting the limitations of using single-temporal data for species 
classification. The combination of two or three seasons significantly improved the classification accuracy of 
tree species. As shown in Fig. 6, when spectral features from two different seasons are combined, the summer-
autumn combination exhibits better classification performance for DBF species compared to other seasonal 
combinations. For EBF species, the spring-summer combined features achieve higher classification accuracy. 
The model incorporating spectral features from all three seasons—spring, summer, and autumn—achieved 
the highest classification accuracy for both DBF and EBF species. This finding is consistent with those of 
previous studies10,20,53 further emphasizing the importance of multi-temporal data in tree species classification. 
Therefore, it is recommended that greater emphasis be placed on the significance of time-series data in tree 
species classification in future research, particularly by considering local climatic characteristics and focusing 
on key phenological stages of different species across various regions, to fully explore the potential of time-series 
imagery for urban tree species classification.

Effectiveness of optical–LiDAR fusion
Although the Sentinel-2 time-series data used in this study provided valuable spectral information for urban 
tree classification, LiDAR data further complemented these datasets by offering physical information such as 
tree structure and shape. Previous studies have shown that the fusion of data from different sources typically 
yields better results for species classification54. As shown in Fig. 7, the addition of LiDAR data increased the 
classification accuracy for most DBF species. For example, the PA of Triadica sebifera (TRSE6) increased by 
18.75% points, Koelreuteria paniculate (KOPA) by 8.02% points, Sapindus mukorossi (SAMU6) by 6.15% points, 
Platanus acerifolia (PLAC) by 5.4% points, and Populus alba (POAL7) by 4.54% points. In terms of UA, Platanus 
acerifolia (PLAC) showed an improvement of 14.59% points, Koelreuteria paniculata (KOPA) by 9.68% points, 
Zelkova serrata (ZESE80) by 7.14% points, and Prunus serrulata (PRSE3) by 4.54% points. However, a small 
number of species exhibited minor decreases in classification accuracy, including Prunus cerasifera (PRCE2), 
Magnolia denudata (MADE7), and Ginkgo biloba (GIBI2). As typical small ornamental trees in Shanghai’s urban 
landscape, these species are often intentionally planted interspersed with other varieties to enhance visual appeal, 
resulting in crown mixing and partial occlusion with adjacent trees. Extracting accurate LiDAR structural 
information from such complex planting configurations proves challenging34,55 ultimately compromising 
classification accuracy.

In contrast, for EBF species, the inclusion of LiDAR data only marginally increased the classification accuracy. 
The PAs and UAs of Ligustrum lucidum (LILU2) increased by 7.68 and 5.88% points respectively, while the 
improvements for Cinnamomum camphora (CICA) and Osmanthus fragrans (OSFR2) in both PAs and UAs were 
less than 3% points each. The classification accuracy of Phyllostachys edulis (PHED4) remained at the original 
level. Overall, the integration of LiDAR data effectively enhanced the classification accuracy for specific tree 

Fig. 6.  Accuracies of random forest classification model (OA  overall accuracy) with various seasonal time-
series combinations.
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species. This finding is consistent with that of other studies on urban tree species identifying, highlighting the 
effectiveness of fusing optical and LiDAR data in improving the accuracy of urban tree classification.

Additionally, it is noteworthy that among the tree species studied, four pairs of species belong to the same 
family (i.e., Samanea saman (SAMU6) and Koelreuteria paniculata (KOPA), Prunus serrulata (PRSE3) and 
Prunus cerasifera (PRCE2), Salix babylonica (SABA) and Populus alba (POAL7), as well as Osmanthus fragrans 
(OSFR2) and Ligustrum lucidum (LILU2)). After incorporating LiDAR-derived features, the classification 
accuracy for Koelreuteria paniculata (KOPA), Samanea saman (SAMU6), Prunus serrulata (PRSE3), and 
Ligustrum lucidum (LILU2) significantly improved. This suggests that when tree species within the same family 
exhibit similar spectral characteristics, the integration of LiDAR data can effectively enhance the classification 
accuracy for DBF species.

Limitations and prospects
Accurately identifying urban tree species remains a challenging task. In this study, the effectiveness of combining 
multi-seasonal Sentinel-2 time-series imagery with limited LiDAR data was demonstrated for identifying 
dominant urban tree species, with overall accuracies of 63.32% and 76.77% achieved for DBF species and EBF 
species, respectively. It should be noted that the classification accuracy for DBF was found to be moderate (13.45% 
lower than EBF), which may be attributed to two factors: (1) the fine canopy structures of deciduous trees (e.g., 
leaf distribution, branch morphology) were not sufficiently captured by the 10-m resolution imagery, and (2) the 
DBF category was composed of a greater variety of tree species with an imbalanced sample distribution. While 
due to variations in tree species classifications and differences in the spatial, spectral, and temporal resolutions of 
the data, a direct comparison with previous research is not possible53,56. Nevertheless, the findings of this study 
demonstrate that the integration of 10-m resolution multi-temporal multispectral imagery (Sentinel-2) with 
limited airborne LiDAR data can be employed as a cost-effective approach for urban tree species distribution 
identification, particularly offering a scalable solution for large-scale urban tree species monitoring.

To improve the accuracy of tree species classification, future research should focus on two directions. First, 
incorporating dense time-series data should be considered. Our findings demonstrate the importance of multi-
temporal optical imagery in classifying urban tree species. However, this study used imagery from only three 
seasonal time points (spring, summer, and autumn), which limited the ability to capture the full spectrum of 
phenological variations in each species. For diverse urban trees, acquiring more frequent time-series images 
during periods of high phenological variability between species may significantly enhance classification results. 
Second, increasing the use of ground-based LiDAR data should be explored. Our study utilized data captured 
from an overhead perspective, which is widely used for the classification and mapping of tree species distributions 
on non-public lands53. However, this approach limits the accuracy of understory tree classification. As in this 
study, small landscape species such as Phyllostachys edulis (PHED4), Prunus cerasifera (PRCE2), etc., are often 
shaded by the canopy of nearby tall trees, leading to lower classification accuracy. Ground-based LiDAR data can 
potentially improve the identification accuracy for such species. However, the spatial coverage of ground-based 
data is typically limited and integrating data from different perspectives presents a significant challenge.

Fig. 7.  UAs and PAs accuracies for the classification of DBF and EBF tree species based on spectral features (a 
and d), combined spectral-LiDAR features (b and e), and the accuracy changes between the spectral model and 
the combined spectral-LiDAR model (c and f).
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Conclusion
This study investigated the potential of medium-resolution, multi-temporal, multi-spectral Sentinel-2 optical 
imagery combined with limited airborne LiDAR data for large-scale identifying of common urban tree species 
in highly heterogeneous urban environments. Using multi-spectral bands/indices from Sentinel-2 captured 
during spring, summer, and autumn, STDIs for each band, and LiDAR-derived CH, CC, and LAI metrics as 
independent variables, along with field survey data as dependent variables, a hierarchical classification approach 
with a random forest classifier was applied to classify common tree species. The key findings are summarized 
below:

•	 The identification of dominant tree species distribution across large urban areas using multi-seasonal Senti-
nel-2 imagery combined with airborne LiDAR data has proven feasible. For DBF species, the Spectral + Tem-
poral + Physical combination achieved the highest classification accuracy (OA: 63.32%, F1-score: 0.63), while 
the Temporal + Physical combination was identified as the optimal classification scheme for EBF species (OA: 
76.77%, F1-score: 0.75).

•	 The spring spectral bands were significantly more important for classifying deciduous broadleaf tree species 
than those from summer and autumn. For evergreen broadleaf tree species, wavelength information was 
more important than the timing of image acquisition. Different seasons exhibit distinct dominant spectral 
information (spring: shortwave infrared and near-infrared bands; summer: near-infrared band; autumn: blue 
band). Furthermore, the significance of temporal data was confirmed, as using features from multi-seasonal 
image combinations yielded significantly better results for tree species classification than using features from 
single- or two-season combinations.

•	 Although spectral information is important for classifying tree species, its utility is limited. The integration 
of LiDAR data effectively improved the classification results. This improvement was less pronounced for ev-
ergreen broadleaf tree species, but significantly enhanced the classification accuracy for deciduous broadleaf 
tree species, with improvements of up to 18.75% point. Notably, when tree species within the same family 
exhibit similar spectral characteristics, the integration of LiDAR data can effectively improve classification 
accuracy.

In summary, this study presents a method for classifying common urban tree species in the terrestrial areas of 
Shanghai by integrating multi-seasonal Sentinel-2 imagery and LiDAR data to build a hierarchical machine-
learning classification model. This approach is cost-effective, practical, and transferable, providing a viable 
solution for large-scale automated mapping of urban tree species distributions. This study offers valuable data 
support for urban forest management and scientific planning.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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