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Assessing the potential of multi-
seasonal Sentinel-2 satellite
Imagery combined with airborne
LiDAR for urban tree species
identification

Yunfang Jiang¥?3, Xianghua Li%23", Lixian Peng¥?, Chunjing Li*2 & Tao Song'+*

Accurate information on urban tree species composition is critical for urban green space ecosystem
management. However, achieving large-scale, high-precision species identification in complex
metropolitan environments remains challenging. This study assessed the potential of medium-
resolution multi-temporal optical imagery combined with airborne LiDAR for tree species classification
in large heterogeneous urban areas (> 5000 km?). The results indicate that precise large-scale
identification of urban tree species distribution is feasible by integrating multi-seasonal Sentinel-2
imagery with airborne LiDAR data based on a Random Forest hierarchical classification model. The
overall classification accuracies for deciduous broadleaf species and evergreen broadleaf species were
63.32% and 76.77%, respectively. Multi-temporal spectra were the primary explanatory variables, with
spring bands significantly affecting the classification of deciduous broadleaf species. For evergreen
broadleaf species, each season has its own dominant spectral information. Classifications combining
data from three seasons outperformed single- or two-season combinations. The incorporation of
LiDAR-derived metrics improved the classification results for most species, with accuracy increases of
up to 18.75% point for deciduous broadleaf species. Overall, the results demonstrate the effectiveness
of combining medium-resolution multi-temporal optical imagery with LiDAR data for urban tree
species classification, laying a foundation for quantifying ecosystem services provided by urban trees
through remote sensing.

Keywords Urban tree species identification, Sentinel-2, Time series, Airborne LiDAR, Random forest
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Urban trees play a crucial role in providing ecosystem services, including purifying the air, alleviating heat in
cities, and improving the health and quality of life for humans'-3. Effective planning and allocation of urban trees
is a nature-based solution for maximizing their benefits and contributing to sustainable urban development®°.
Timely and accurate identification of urban tree species composition and distribution is a crucial prerequisite for
the planning and management of urban trees.

Accurately obtaining spatial information on urban tree distribution in highly heterogeneous and complex
urban environments presents significant challenges. Ground surveys are the most accurate method for collecting
urban tree species distribution data. However, this approach is often costly and only suitable for small-scale
studies. Integrating ground surveys with remote sensing data is a promising approach for mapping urban tree
species®. Compared to ground surveys, remote sensing technology provides observational data at various scales,
enabling large-scale, high-precision, and automated classification of urban tree species”®. Remote sensing-based
species identification has been extensively studied in natural environments®~!!. However, urban environments
present additional challenges such as the complexity of land use, diversity of urban tree composition, fragmented
spatial layout, and various human-induced pruning and management activities. Some recent studies have
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already begun attempts in this direction. For example, six tree species were classified in the Grajau neighborhood
of Rio de Janeiro, Brazil, using a fusion of digital aerial imagery and LiDAR data!% In the Greater Chicago
Area, 18 common tree species were classified using dense, multi-temporal, high-resolution optical imagery,
achieving an overall classification accuracy of 60%'>. In the Brussels-Capital Region, the five most common tree
species were classified by integrating multi-temporal PlanetScope data with ultra-high-resolution aerial imagery,
yielding an OA of 88%'. A decrease in classification accuracy was observed as the number of species categories
increased!>~1°. Seven urban tree species within a 100 km?” area of Tampa, Florida, were identified by combining
multi-season high-resolution Pléiades imagery with airborne LiDAR data'®. These studies highlight that optical
imagery and LiDAR are the two primary data sources for urban tree species classification.

Optical imagery captures the biophysical characteristics of urban tree species, and its spectral, temporal,
and spatial resolutions play critical roles in the accurate identification of urban tree species. Spectral differences
among species reflect variations in leaf morphology and biochemical factors'’. The visible band (VIS, 0.4-
0.7 um) captures differences in the absorption of various plant pigments; the near-infrared radiation spectrum
(NIR, 0.7-1.3 um) reflects differences in internal cell structures of plants; and the shortwave infrared spectrum
(SWIR, 1.3-2.5 um) indicates variations in water content and other biochemical components of vegetation'®.
Previous studies have identified specific bands important for the classification of urban tree species. For example,
the blue light band was identified as significant in the classification of conifer species'®. In terms of temporal
resolution, different tree species exhibit varying patterns of bud burst, leaf unfolding, and flowering throughout
the year, which enhance the separability of tree species based on optical imagery captured at different times?*-22.
Imagery captured during the autumn senescence period provided the most valuable phenological information
for tree species classification in Washington, D.C., using multi-temporal WorldView-3 imagery®. In terms
of spatial resolution, it is generally believed that higher spatial resolution leads to improved accuracy in tree
species classification?»?>. However, there generally exists an inverse relationship between the spatial and
temporal resolutions of remote sensing imagery, necessitating a comprehensive trade-off analysis for optimal
application?®?’. It was found that among the optical imagery with 4 m, 8 m, and 30 m spatial resolutions, the best
tree species classification results were achieved with an 8 m pixel size?.

LiDAR data can capture the biophysical characteristics of urban tree species and serve as an effective
complement to optical imagery?®->!. LIDAR sensors emit thousands of laser pulses and record the time delay
between pulse emission and return, creating a 3D point cloud of the imaged area. From the point-cloud
data, various tree structure-related features can be derived, such as canopy height, crown width and shape,
and leaf area index®?. Many studies have investigated the benefits of combining optical imagery with LiDAR
point-cloud data for identifying tree species and their compositions. For instance, combining LiDAR data with
hyperspectral imagery notably improved the accuracy of identifying urban tree species®. Additionally, fusing
optical and LiDAR data increased the average F1-score for classifying urban tree species in tropical regions by
12.6% compared to using optical bands alone!%. However, other studies have shown that including LiDAR point-
cloud data is not always beneficial. For example, canopy height information had little impact on classification
accuracy®®. Canopy height information may even cause confusion rather than improve species discrimination™.
The reasons behind these phenomena or under which circumstances and for which tree species LIDAR data
can effectively improve the classification accuracy, remain unclear. Therefore, additional studies are needed to
investigate the potential of combining optical and LiDAR data for the classification of tree species and to assess
the added value of the latter in improving tree species identification.

Another important but often overlooked factor is cost-effectiveness®®. In urban environments, unmanned
aerial systems (UAS) have become a primary source of high-resolution imagery and LiDAR data with excellent
temporal flexibility*>. However, acquiring both ultra-high-resolution imagery and LiDAR data can be costly,
and there are numerous restricted flight zones within urban areas. Therefore, many studies have focused on
the classification and identification of tree species at the local scale within urban areas**-3. These studies aim
to maximize the classification accuracy within a single site; however, their value is limited because the results
are often not generalizable to other areas. For large-scale applications, the most competitive sensor systems are
satellite-based, including medium and high spatial resolution systems (Landsat, Sentinel-2, and Rapid Eye)®.
Therefore, exploring classification approaches for urban tree species based on satellite data, supplemented by
airborne data, for the entire urban area holds significant research value and practical implications for creating
large-scale, high-precision, and intelligent urban tree species identification.

The Sentinel-2 satellites offer a notable improvement in freely accessible multi-spectral remote sensing data,
offering improved spatial and temporal resolutions. It is currently the satellite data with the highest spectral
resolution among all freely available datasets with long-term time-series observation capabilities®’. A 5-day
revisit cycle and 10-m spatial resolution have been demonstrated to improve forest species mapping in natural
environments*'**. However, their applicability in identifying urban tree species in highly heterogeneous
metropolitan environments remains unclear.

Shanghai is one of the largest cities in China and benefits from a subtropical monsoon climate, unique
geographical location, and diverse ecological environments, which provide favorable conditions for vegetation
growth. However, human activities, such as urban expansion, transportation infrastructure development, and
other industrial activities, have resulted in a complex internal vegetation structure and composition, presenting
challenges for tree species identification and ecological research. This study uses Shanghai as a case study to
explore how combining multi-season Sentinel imagery with airborne LiDAR data can enhance the mapping of
dominant tree species and their distribution in highly heterogeneous urban spaces. Specifically, the following
research questions are addressed:

(1) Can the 10-m resolution Sentinel-2 temporal data effectively identify tree species on a large scale within
urban areas?

(2) Does using structural metrics from airborne LiDAR enhance tree species classification?
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Data and methods

Study area

The study area is mainland Shanghai (Fig. 1), covering the main urban area of Shanghai and surrounding
terrestrial areas, excluding water bodies and Chongming Island. This region spans approximately 5,439 km?.
This region experiences a humid subtropical climate characterized by four distinct seasons, annual precipitation
of approximately 1,200 mm, and an average annual temperature of approximately 17.7 °C. These conditions
provide a favorable environment for plant growth. The urban forests in the study area exhibit rich biodiversity
and remarkable ecological functions. Remote sensing data indicates a tree cover of 26%, with a wide variety
of species, including mainly native tree species, such as Cinnamomum camphora, Ginkgo biloba, Magnolia
denudata, and Ulmus pumila, and exotic tree species, such as Koelreuteria paniculata, Platanus acerifolia, and
Prunus serrulata.

Field operations & data collection

A two-month field survey was conducted by the research team in the summer of 2023, during which a total of
7,493 tree species sample records were collected. The approach involved selecting 18 major green spaces, evenly
spread across the area (Fig. 1). Locations of tree distributions and species information were recorded, excluding
uncommon tree species with fewer than 100 samples. Finally, 19 dominant tree species were identified (Table 1).
The sample size of these dominant tree species accounted for 90.86% of the total measured samples.

Remote sensing basic data and the determined experimental schemes

Spectral imagery and LiDAR data for urban tree species features

Urban tree species exhibit high heterogeneity due to their location in urban areas. The selection of appropriate
vegetation features directly influences the quality of classification results, making it a crucial step in the process
of classifying dominant tree species in urban environments. It is not sufficient to rely on field surveys alone to
capture the features of urban trees on a large scale, and remote sensing data provide the basis for the acquisition
of alarge number of samples used to train and validate models in the process of intelligent identification of urban
tree species. In this study, Sentinel-2 multispectral imagery fused with airborne LiDAR data was used to classify
urban tree species based on basic data from field surveys. The Sentinel-2 data are obtained from the European
Space Agency data-sharing website (https://dataspace.copernicus.eu/) and pre-processed using SNAP and ENVI
software for resampling, band synthesis, mosaicing, cropping, cloud masking and missing value filling. Airborne
LiDAR data were collected during the summer of 2021 using a Feima D200 unmanned aerial vehicle (UAV)
platform (Feima Robotics Co., Ltd., Shenzhen, China) equipped with a RIEGL miniVUX-1UAV LiDAR scanner
(RIEGL Laser Measurement Systems GmbH, Horn, Austria). Data were acquired at an altitude of 100 m above
the ground over seven parks within the study area, with an average point density of 52 points/m? The LiDAR
scanner was operated at a pulse repetition frequency of 100 kHz and a maximum scanning rate of 100 scans per
second. The flight was conducted under clear windless conditions at a constant speed of 10 m/s.

Base feature set construction
Features across spectral, temporal, and physical multiple dimensions were selected after comprehensive
consideration of interspecies variations to construct the base feature set for tree species classification (Table 2).
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Fig. 1. Location and land use distribution of the study area.
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ID | Forest type Species Symbol® | Sample size
1 | Deciduous broadleaf forest | Sapindus mukorossi SAMU6 | 330
2 Koelreuteria paniculata KOPA 316
3 Salix babylonica SABA 312
4 Ginkgo biloba GIBI2 312
5 Zelkova serrata ZESE80 308
6 Magnolia denudata MADE7 | 238
7 Platanus acerifolia PLAC 224
8 Prunus serrulata PRSE3 178
9 Triadica sebifera TRSE6 176
10 Liquidambar formosana LIFO 164
11 Prunus cerasifera PRCE2 150
12 Populus alba POAL7 133
13 Acer rubrum ACRU 122
14 | Evergreen broadleaf forest | Cinnamomum camphora CICA 1466
15 Osmanthus fragrans OSFR2 428
16 Ligustrum lucidum LILU2 197
17 Phyllostachys edulis PHED4 130
18 | Deciduous coniferous forest | Metasequoia glyptostroboides | MEGL8 | 1231
19 | Evergreen coniferous forest | Pinus massoniana PIMA11 | 393

Table 1. The 19 most frequently occurring species, were categorized by forest type and ranked according to
sample size within each type. * Symbol adopted from the USDA plants database.

Feature type

Feature name

Spectral bands

Band2 (B2), Band3 (B3), Band4 (B4), Band5 (B5), Band6 (B6), Band7 (B7), Band8 (B8), Band8a (B8a), Band11 (B11), Band12
(B12)

Spectral

Anthocyanin Reflectance Index (ARI), Green Chlorophyll Index (CIg), Red Edge Chlorophyll Index (Clre), Carotenoid
Reflectance Index (CRI), Difference Vegetation Index (DVI), Enhanced Vegetation Index (EVI), Green Normalized Difference
Vegetation Index (GNDVI), Inverted Red-Edge Chlorophyll Index (IRECI), Modified Chlorophyll Absorption Reflectance Index
(MCARI), Modified Normalized Difference Vegetation Index (MNDVTI), Modified Red Edge Normalized Difference Vegetation

Spectral indices | Index (MNDVIre), Modified Normalized Difference Water Index (MNDWTI), Modified Soil-Adjusted Vegetation Index (MSAVI),

MERIS Terrestrial Chlorophyll Index (MTCI), Normalized Difference Greenness Index(NDGI), Normalized Difference Infrared
Index (NDII), Normalized Difference Vegetation Index (NDVI), Red Edge Normalized Difference Vegetation Index 1 (NDVIrel),
Red Edge Normalized Difference Vegetation Index 2 (NDVIre2), Normalized Difference Water Index (NDWI), Ratio Vegetation
Index (RVI), Red Edge Vegetation Index (RVIre), Red Edge Position Index (REPI), Soil-Adjusted Vegetation Index (SAVI)

Spring

Temporal | Summer

Autumn

Seasonal trajectory difference index (STDI)

Physical | LiDAR

Canopy Height (CH), Canopy Closure (CC), Leaf Area Index (LAI)

Table 2. Summary of classification features.

Spectral features characterize the distribution of reflectance/radiation intensity across different wavelengths,
comprising: (1) spectral bands directly extracted from preprocessed Sentinel-2 data, and (2) spectral indices
derived from band combinations to enhance feature discrimination. The spectral bands correspond to 10 bands
(visible, red-edge, near-infrared, and short-wave infrared) in Sentinel-2 imagery. Based on established vegetation
and tree species identification studies**~*” 24 widely adopted spectral indices were selected as the spectral indices
feature set.

Temporal features attempt to capture the differences in phenological changes of different trees through multi-
seasonal imagery and computation of different seasonal band combinations. Corresponding to the three growth
stages of tree leaves, Sentinel-2 images were acquired for the three seasons of spring (May), summer (August)
and autumn (October) of 2023 covering the study area (Table 3). Based on the extraction of 30 Sentinel-2 image
bands for the three seasons, the seasonal trajectory difference index was calculated with the following formula'®:

STDI; = (|[Summer; — Spring;| + |Autumn; — Summer;| + |Spring; — Autumn;|)/3 (1)

where ¢ denotes the i-th band. Thus, the 12 bands corresponding to Sentinel-2 A yielded a total of 10 STDIs.
Physical features primarily characterize the vertical structure of trees. Based on LiDAR data collected
from urban tree species in the study area park using the VUX-1UAV LiDAR scanner, LIDAR360 software
(GreenValley International, California, USA) was used for preprocessing the LIDAR data. Subsequently, three
canopy structure parameters—CH, CC, and LAI—were extracted from the preprocessed point cloud data. The
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Time Season | Day of year | Leaf growth status
15-May-2023 | Spring | 135 Leaf emergence
11-Aug-2023 | Summer | 223 Full leaf expansion
15-Oct-2023 | Autumn | 288 Leaf senescence

Table 3. 3 sets of Sentinel-2 data.

specific calculation method is as follows: First, the watershed segmentation algorithm is applied to the denoised
and filtered LiDAR point cloud data for individual tree segmentation, obtaining parameters such as tree
positions and canopy height. Canopy closure represents the proportion of the vertical projection of the forest
canopy over the land area. In this study, within a 10 mx10 m statistical unit, the ratio of first-return vegetation
points to the total first-return points is calculated. The leaf area index is the total leaf area per unit ground area
and is an important parameter for characterizing the vegetation canopy structure. The study uses an algorithm
that, within a 10 mx10 m statistical unit, constructs a 3D grid with 1.5 times the average point spacing of the
point cloud, based on the average point spacing of the point cloud. The number of 3D grids in each layer and
the number of grids containing LiDAR points are then counted. By calculating the frequency of LiDAR points
in each layer and multiplying by a leaf inclination correction factor, the leaf area index for each layer is obtained.
Finally, all layers’ leaf area index values are summed to obtain the total leaf area index for the entire statistical
unit. Finally, combined with remote sensing data inversion algorithms, the CH, CC, and LAI—three LiDAR-
derived features—were generated for the entire study area, with a spatial resolution of 10 m.

Experimental schemes design

Based on the spectral, temporal, and physical features described above, seven experimental schemes were
designed to determine the optimal feature combination for urban dominant tree species classification, with the
goal of improving classification accuracy in the study area. Scheme 1 constructed a classification model using
single-season spectral features (spring, summer, and autumn), each containing 10 spectral bands and 24 spectral
indices. Scheme 2 employed temporal features, including all 30 spectral bands from three seasons (10 bands x
3 seasons) and 10 seasonal trajectory difference indices. Scheme 3 focused on physical features, utilizing three
LiDAR-derived metrics: CH, CC, and LAI. Subsequent schemes examined pairwise combinations: Scheme 4
combined spectral and temporal features (112 features), Scheme 5 combined temporal and physical features (43
features), and Scheme 6 combined spectral and physical features (105 features). Scheme 7 integrated all features,
employing spectral, temporal, and physical features (115 features) for tree species identification modeling.

Feature selection

The constructed base feature set contains a large number of features. To avoid issues such as insignificant features,
multicollinearity, and feature redundancy, feature selection is necessary to identify the optimal feature subset for
each experimental scheme. Considering the characteristics of the features, classification objectives, and data
distribution properties in this study, the Kruskal-Wallis*® method was employed for feature significance testing,
removing features with p>0.05. Subsequently, multicollinearity analysis was performed on the remaining
features. Pearson correlation coefficient matrix (|r|>0.8) and variance inflation factor (VIF>10) were used to
identify redundant features. Finally, combined with random forest feature importance evaluation, features with
higher contributions to tree species classification (top 20% in importance) were prioritized for retention.

The mapping framework of urban tree species distribution and hierarchical classification
model construction

The study employed a Random Forest algorithm to construct a multi-level classification system for mapping
urban tree species distribution across metropolitan areas, achieving stepwise species identification (Fig. 2). In
constructing the Random Forest classification model, the bagging method is first used to sample the original
training set from the previous step, creating multiple training subsets. A base classifier is then trained for each
subset. Finally, a voting method is used to combine the predictions of all base classifiers, and the class with the
most votes is selected as the model’s final output. For accuracy validation, 20% of the total tree samples from
field surveys were used as validation samples. Four accuracy evaluation metrics—Overall Accuracy (OA), F1-
score, Producer Accuracy (PA), and User Accuracy (UA)—were employed to assess the classification accuracy.
The specific methodology for urban tree species identification using the multi-level Random Forest classification
model is as follows:

o Level 1: Using 10 bands from single-season Sentinel-2 imagery to classify land use and land cover in the study
area, the terrestrial area of Shanghai was categorized into five land types: forest, grassland, cropland, imper-
vious surface, and waterbody.

o Level 2: Within the forest areas identified in Level 1, three-season Sentinel-2 imagery (totaling 30 bands) was
further employed to distinguish between evergreen broadleaf forest, evergreen coniferous forest, deciduous
broadleaf forest, and deciduous coniferous forest.

« Level 3: By comparing the classification performance of seven experimental schemes, the optimal classifica-
tion scheme was determined to further identify specific urban tree species within each forest type.
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Fig. 2. The workflow of urban tree species classification. ECF Evergreen coniferous forest, EBF Evergreen
broadleaf forest, DCF Deciduous coniferous forest, DBF Deciduous broadleaf forest.

Results

Urban tree species classification status from multiple schemes

The classification accuracies of the seven experimental schemes were compared to determine the optimal
classification scheme for different forest type species. For evergreen coniferous forests and deciduous coniferous
forests, their main species consist solely of Pinus massoniana and Metasequoia glyptostroboides, requiring no
further classification. Therefore, the focus here is primarily on identifying dominant species within deciduous
broadleaf forests (DBF) and evergreen broadleaf forests (EBF). Figure 3a,b respectively illustrate the feature
selection processes corresponding to the seven experimental schemes for DBF and EBF species.

Based on the feature subsets selected for each experimental scheme, dominant species identification was
conducted for both DBF and EBE, with the classification accuracies shown in Table 4. The results demonstrate
significant differences in classification performance between DBF and EBE For DBF species classification, Scheme
7 (Spectral + Temporal + Physical) achieved the highest accuracy among all schemes (OA: 63.32%, F1-score: 0.63),
showing a 29.65% point improvement in OA over the lowest-performing Scheme 3 (OA: 33.67%, F1-score: 0.34).
Classification schemes combining multiple feature dimensions (Schemes 4-7) generally outperformed those
using single-dimensional features (Schemes 1-3). For EBF species, Scheme 5 (Temporal + Physical) yielded the
highest classification accuracy (OA: 76.77%, F1-score: 0.75). The two-dimensional feature combination schemes
(Schemes 4-6) performed comparably to the three-dimensional combination (Scheme 7), with all achieving OA
values above 75%. Based on these findings, Scheme 7 and Scheme 5 were selected for subsequent analysis of DBF
and EBF species, respectively.

Mapping the distribution of urban dominant tree species
The resulting 2023 distribution of dominant tree species across Shanghai’s mainland area at 10 m resolution
is shown in Fig. 4. In addition, four areas with high tree densities were randomly and uniformly selected for
detailed inspection (Fig. 4, areas A, B, C, and D). These areas were zoomed in and compared with high-definition
Google Map images for visual analysis. The obtained tree distribution maps demonstrated a high degree of
consistency in spatial distribution with the Google Earth images.

The most widely distributed species in the study area are Cinnamomum camphora, Metasequoia
glyptostroboides, and Salix babylonica, which together account for 57.56% of the total urban forest area in the
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(a) DBF feature selection process
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Deciduous Evergreen
broadleaf forest broadleaf forest
Experimental schemes | OA (%) | F1-score | OA (%) | F1-score
Scheme 1 - Spring 45.23 0.45 68.01 0.67
Scheme 1 - Summer 48.41 0.48 72.73 0.71
Scheme 1 - Autumn 45.06 0.45 68.35 0.67
Scheme 2 58.96 0.59 76.43 0.75
Scheme 3 33.67 0.34 60.94 0.59
Scheme 4 60.97 0.61 76.43 0.75
Scheme 5 62.65 0.62 76.77 0.75
Scheme 6 62.14 0.62 75.76 0.74
Scheme 7 63.32 0.63 75.76 0.74
Table 4.
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Fig. 4. Prediction of urban forest species: spatial distribution overview and localized focus area.
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SAMU6 | SABA | ZESE80 | GIBI2 | KOPA | MADE7 | PRSE3 | PLAC | TRSE6 | LIFO | PRCE2 | ACRU | POAL7 | Total | UA (%)
SAMUG | 46 6 2 1 2 0 7 0 0 2 1 2 0 69 | 66.67
SABA |4 42 2 1 3 1 1 1 0 0 0 0 0 53 | 7547
ZESES0 | 4 2 36 3 3 1 2 1 1 2 0 0 1 56 | 6429
GIBI2 |6 6 1 43 2 2 2 7 0 1 0 0 1 71 | 60.56
KOPA |3 7 4 1 38 0 3 3 0 1 1 0 1 62 | 61.29
MADE7 | 1 4 3 1 3 38 1 0 1 0 1 0 0 53 | 717
PRSE3 |2 0 5 0 2 2 31 2 0 0 0 0 0 44 | 7045
PLAC |2 0 2 1 3 1 1 35 0 1 0 1 1 48 | 7292
TRSE6 |4 5 4 2 3 2 0 1 12 0 1 0 0 34 [3529
LIFO |0 1 2 1 2 1 0 2 1 18 |0 2 0 30 |60
PRCE2 |4 1 1 0 1 0 2 0 1 0 15 0 0 25 |60
ACRU |1 1 2 2 1 0 4 2 0 2 1 11 0 27 | 4074
POAL7 |1 0 1 1 0 0 1 3 0 0 1 0 17 25 |68
Total |78 75 65 57 61 48 55 57 16 27 |21 16 21 OA (%) =6332
PA (%) |5897 |56 5538 | 7544 |59.02 |79.17 5636 | 614 |75 66.67 | 7143 |68.75 |80.95 |Fl-score=0.63

Table 5. RF classification confusion matrix of 13 deciduous broadleaf species. The number of correctly
classified samples is in bold. PA producer’s accuracy, UA user’s accuracy, OA overall accuracy.

CICA | OSFR2 | LILU2 | PHED4 | Total | UA (%)
cicA [135 |7 0 0 142 | 95.07
OSFR2 |27 68 4 1 100 | 68.00
LILU2 |5 8 21 0 34 |61.76
PHED4 | 7 5 5 4 21 | 19.05
Total |174 |88 30 5 OA (%)=76.77
PA (%) | 7759 |77.27 |70.00 |80.00 |Fl-score=0.75

Table 6. Random forest classification confusion matrix for four evergreen broadleaf species. The number of
correctly classified samples is in bold. PA producer’s accuracy, UA user’s accuracy, OA overall accuracy.

study region. Cinnamomum camphora, a native species of Shanghai, holds an important role in the city’s greening
efforts. Metasequoia glyptostroboides and Salix babylonica are predominantly found in areas with abundant water
sources, such as riverbanks and lake shores. Other major tree species in Shanghai include Zelkova serrata, Ginkgo
biloba, Sapindus mukorossi, Osmanthus fragrans, Prunus serrulata, Koelreuteria paniculata, Platanus acerifolia,
and Ligustrum lucidum, collectively occupying 37.82% of the forested area in the study region. The distribution
ranges of Acer rubrum, Magnolia denudata, Liquidambar formosana, Populus alba, Prunus cerasifera, Triadica
sebifera, Phyllostachys edulis, and Pinus massoniana are relatively limited, covering less than 5% of the total forest
area in the study region.

Classification accuracy of urban dominant tree species across forest types

The multi-layer classification model achieved overall accuracies of 89.36% for five land-use types and 72.89%
for four forest-type classes, respectively. For the third-layer species-level classification, the accuracy of dominant
tree species in DBF and EBF was further evaluated based on the optimal feature selection scheme. The results
revealed significant differences in classification accuracy across different forest types. Table 5 presents the
confusion matrix for the classification of DBF tree species, with an OA of 63.32% and a F1-score of 0.63. The
PA ranged from 55.38% for Zelkova serrata (ZESE80) to 80.95% for Populus alba (POAL7). The highest PA
was observed for Populus alba (POAL7) with a PA of over 80%, followed by Magnolia denudata (MADE7)
and Ginkgo biloba (GIBI2), with PAs of 79.17% and 75.44%, respectively. The UA showed a broader range,
with the highest UA being 75.47% for Salix babylonica (SABA) and 72.92% for Platanus acerifolia (PLAC). In
addition, Magnolia denudata (MADE?7) and Prunus serrulata (PRSE3) exhibited UAs that exceeded 70%. In
contrast, the UAs for Triadica sebifera (TRSE6) and Acer rubrum (ACRU) were below 50%. Table 6 presents
the classification results for four EBF tree species, with an OA of 76.77% and a Fl1-score of 0.75, indicating
relatively good classification performance. The highest UA was observed for Cinnamomum camphora (CICA)
at 95.07%, with a PA of 77.59%, representing the highest classification accuracy. The classification accuracies for
Osmanthus fragrans (OSFR2) and Ligustrum lucidum (LILU2) were relatively high, with PAs of 77.27% and 70%,
respectively, and UAs exceeding 60%. In contrast, Phyllostachys edulis (PHED4) showed a UA of only 19.05%,
despite a PA of 80.00%, reflecting poor classification performance.
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Relative importance of predictors

To better understand the contribution of selected spectral, temporal, and physical features to the predictive
performance of the tree species classification models for different forest types, the feature importance of the
Random Forest classification models for DBF species and EBF species was calculated using the Mean Decrease
Accuracy method (Fig. 5). For DBF species, the spectral band information in spring exhibits higher importance
compared to summer and autumn, with key bands such as Band 3 (green) and Band 8 (near-infrared) in spring
imagery. The importance of spectral bands across seasons follows a declining trend from spring to summer
and further to autumn. Additionally, spectral indices play seasonally distinct roles: among spring indices, the
MNDWI shows the highest importance, followed by the NDGI. In summer and autumn, the CRI and NDII
are the most critical indices. Among LiDAR-derived physical metrics, CH demonstrates significantly greater
importance than CC and LAI, highlighting its role as a key structural feature for identifying DBF species. In
the classification of EBF species, dominant spectral information varies across seasons. For instance, the Band
8 (near-infrared) and Band 11 (shortwave infrared) show high importance in spring, while the Band 6 (near-
infrared) and Band 2 (blue) serve as key spectral features in summer and autumn respectively. The STDI indices
in bands 2 and 8, which incorporate multi-seasonal phenological information, also showed high importance. In
addition, CH also played a significant role in the classification of broadleaf evergreen species, but it did not differ
much from the performance of the other two structural features.

Discussion

Significance of observing time series data

Trees exhibit phenological changes, which vary across different species. Therefore, using multi-season imagery
is generally more likely to improve the accuracy of urban tree species identification than using single-season
images?!"**0. To deepen our insight into phenology-related spectral variations, the classification accuracy of
DBF and EBF species was assessed by constructing classification models using features from different seasons
and season combinations. (Fig. 6). It was observed that summer imagery is crucial for the classification of both
DBF and EBF species, as its classification accuracy was higher than that of spring or autumn imagery alone.
However, this is not a universal rule, as there is no consensus in the literature regarding the optimal season
for tree classification?"!. This variation may be attributed to differences in geographic location, climate, and
tree species selected for classification across different studies. For instance, in the study of 32 tree species in
Luoyang, China, Liu et al.?° found that the tree flowering and leafing period (spring) was the optimal period for
species identification, while Yang et al.>* found that the highest classification accuracy was achieved when using
mid-summer imagery for tree species classification in the Great Lakes-St. Lawrence region of Central Ontario,
Canada. Additionally, Fang et al.”® reported that autumn was the most important season for classifying 19 tree
species in Washington, D.C.
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Fig. 5. Feature importance of the random forest classification model for DBF and EBF species.
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Fig. 6. Accuracies of random forest classification model (OA overall accuracy) with various seasonal time-
series combinations.

However, the classification accuracy remained relatively low when using data from a single season,
such as spring, summer, or autumn, highlighting the limitations of using single-temporal data for species
classification. The combination of two or three seasons significantly improved the classification accuracy of
tree species. As shown in Fig. 6, when spectral features from two different seasons are combined, the summer-
autumn combination exhibits better classification performance for DBF species compared to other seasonal
combinations. For EBF species, the spring-summer combined features achieve higher classification accuracy.
The model incorporating spectral features from all three seasons—spring, summer, and autumn—achieved
the highest classification accuracy for both DBF and EBF species. This finding is consistent with those of
previous studies!®?** further emphasizing the importance of multi-temporal data in tree species classification.
Therefore, it is recommended that greater emphasis be placed on the significance of time-series data in tree
species classification in future research, particularly by considering local climatic characteristics and focusing
on key phenological stages of different species across various regions, to fully explore the potential of time-series
imagery for urban tree species classification.

Effectiveness of optical-LiDAR fusion

Although the Sentinel-2 time-series data used in this study provided valuable spectral information for urban
tree classification, LiDAR data further complemented these datasets by offering physical information such as
tree structure and shape. Previous studies have shown that the fusion of data from different sources typically
yields better results for species classification®. As shown in Fig. 7, the addition of LiDAR data increased the
classification accuracy for most DBF species. For example, the PA of Triadica sebifera (TRSE6) increased by
18.75% points, Koelreuteria paniculate (KOPA) by 8.02% points, Sapindus mukorossi (SAMU6) by 6.15% points,
Platanus acerifolia (PLAC) by 5.4% points, and Populus alba (POAL7) by 4.54% points. In terms of UA, Platanus
acerifolia (PLAC) showed an improvement of 14.59% points, Koelreuteria paniculata (KOPA) by 9.68% points,
Zelkova serrata (ZESE80) by 7.14% points, and Prunus serrulata (PRSE3) by 4.54% points. However, a small
number of species exhibited minor decreases in classification accuracy, including Prunus cerasifera (PRCE2),
Magnolia denudata (MADE7), and Ginkgo biloba (GIBI2). As typical small ornamental trees in Shanghai’s urban
landscape, these species are often intentionally planted interspersed with other varieties to enhance visual appeal,
resulting in crown mixing and partial occlusion with adjacent trees. Extracting accurate LiDAR structural
information from such complex planting configurations proves challenging***® ultimately compromising
classification accuracy.

In contrast, for EBF species, the inclusion of LIDAR data only marginally increased the classification accuracy.
The PAs and UAs of Ligustrum lucidum (LILU2) increased by 7.68 and 5.88% points respectively, while the
improvements for Cinnamomum camphora (CICA) and Osmanthus fragrans (OSFR2) in both PAs and UAs were
less than 3% points each. The classification accuracy of Phyllostachys edulis (PHED4) remained at the original
level. Overall, the integration of LiDAR data effectively enhanced the classification accuracy for specific tree
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Fig. 7. UAs and PAs accuracies for the classification of DBF and EBF tree species based on spectral features (a
and d), combined spectral-LiDAR features (b and e), and the accuracy changes between the spectral model and
the combined spectral-LiDAR model (c and f).

species. This finding is consistent with that of other studies on urban tree species identifying, highlighting the
effectiveness of fusing optical and LiDAR data in improving the accuracy of urban tree classification.

Additionally, it is noteworthy that among the tree species studied, four pairs of species belong to the same
family (i.e., Samanea saman (SAMUS6) and Koelreuteria paniculata (KOPA), Prunus serrulata (PRSE3) and
Prunus cerasifera (PRCE2), Salix babylonica (SABA) and Populus alba (POAL?7), as well as Osmanthus fragrans
(OSFR2) and Ligustrum lucidum (LILU2)). After incorporating LiDAR-derived features, the classification
accuracy for Koelreuteria paniculata (KOPA), Samanea saman (SAMUS), Prunus serrulata (PRSE3), and
Ligustrum lucidum (LILU2) significantly improved. This suggests that when tree species within the same family
exhibit similar spectral characteristics, the integration of LIDAR data can effectively enhance the classification
accuracy for DBF species.

Limitations and prospects

Accurately identifying urban tree species remains a challenging task. In this study, the effectiveness of combining
multi-seasonal Sentinel-2 time-series imagery with limited LiDAR data was demonstrated for identifying
dominant urban tree species, with overall accuracies of 63.32% and 76.77% achieved for DBF species and EBF
species, respectively. It should be noted that the classification accuracy for DBF was found to be moderate (13.45%
lower than EBF), which may be attributed to two factors: (1) the fine canopy structures of deciduous trees (e.g.,
leaf distribution, branch morphology) were not sufficiently captured by the 10-m resolution imagery, and (2) the
DBF category was composed of a greater variety of tree species with an imbalanced sample distribution. While
due to variations in tree species classifications and differences in the spatial, spectral, and temporal resolutions of
the data, a direct comparison with previous research is not possible>**. Nevertheless, the findings of this study
demonstrate that the integration of 10-m resolution multi-temporal multispectral imagery (Sentinel-2) with
limited airborne LiDAR data can be employed as a cost-effective approach for urban tree species distribution
identification, particularly offering a scalable solution for large-scale urban tree species monitoring.

To improve the accuracy of tree species classification, future research should focus on two directions. First,
incorporating dense time-series data should be considered. Our findings demonstrate the importance of multi-
temporal optical imagery in classifying urban tree species. However, this study used imagery from only three
seasonal time points (spring, summer, and autumn), which limited the ability to capture the full spectrum of
phenological variations in each species. For diverse urban trees, acquiring more frequent time-series images
during periods of high phenological variability between species may significantly enhance classification results.
Second, increasing the use of ground-based LiDAR data should be explored. Our study utilized data captured
from an overhead perspective, which is widely used for the classification and mapping of tree species distributions
on non-public lands>. However, this approach limits the accuracy of understory tree classification. As in this
study, small landscape species such as Phyllostachys edulis (PHED4), Prunus cerasifera (PRCE2), etc., are often
shaded by the canopy of nearby tall trees, leading to lower classification accuracy. Ground-based LiDAR data can
potentially improve the identification accuracy for such species. However, the spatial coverage of ground-based
data is typically limited and integrating data from different perspectives presents a significant challenge.
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Conclusion

This study investigated the potential of medium-resolution, multi-temporal, multi-spectral Sentinel-2 optical
imagery combined with limited airborne LiDAR data for large-scale identifying of common urban tree species
in highly heterogeneous urban environments. Using multi-spectral bands/indices from Sentinel-2 captured
during spring, summer, and autumn, STDIs for each band, and LiDAR-derived CH, CC, and LAI metrics as
independent variables, along with field survey data as dependent variables, a hierarchical classification approach
with a random forest classifier was applied to classify common tree species. The key findings are summarized
below:

« The identification of dominant tree species distribution across large urban areas using multi-seasonal Senti-
nel-2 imagery combined with airborne LiDAR data has proven feasible. For DBF species, the Spectral + Tem-
poral + Physical combination achieved the highest classification accuracy (OA: 63.32%, F1-score: 0.63), while
the Temporal + Physical combination was identified as the optimal classification scheme for EBF species (OA:
76.77%, F1-score: 0.75).

« The spring spectral bands were significantly more important for classifying deciduous broadleaf tree species
than those from summer and autumn. For evergreen broadleaf tree species, wavelength information was
more important than the timing of image acquisition. Different seasons exhibit distinct dominant spectral
information (spring: shortwave infrared and near-infrared bands; summer: near-infrared band; autumn: blue
band). Furthermore, the significance of temporal data was confirmed, as using features from multi-seasonal
image combinations yielded significantly better results for tree species classification than using features from
single- or two-season combinations.

« Although spectral information is important for classifying tree species, its utility is limited. The integration
of LiDAR data effectively improved the classification results. This improvement was less pronounced for ev-
ergreen broadleaf tree species, but significantly enhanced the classification accuracy for deciduous broadleaf
tree species, with improvements of up to 18.75% point. Notably, when tree species within the same family
exhibit similar spectral characteristics, the integration of LiDAR data can effectively improve classification
accuracy.

In summary, this study presents a method for classifying common urban tree species in the terrestrial areas of
Shanghai by integrating multi-seasonal Sentinel-2 imagery and LiDAR data to build a hierarchical machine-
learning classification model. This approach is cost-effective, practical, and transferable, providing a viable
solution for large-scale automated mapping of urban tree species distributions. This study offers valuable data
support for urban forest management and scientific planning.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon
reasonable request.
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