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Neural Network has been used in approximation of dead zone nonlinearity when modeling the 
manipulator control systems. However the existed method fail to minimize the possible input 
saturation effect and the NN mapping accuracy also be degraded, which leads to degrading in tracking 
precise and accuracy. To establish an accurate control model of the tea picking robot, an adaptive 
compensator of m-RBF (modified radial basis function neural network) and adaptive law were designed 
aimed at the nonlinearity units and dead zone. The closed-loop tracking error of the proposed control 
system is eventually going to be stable and bounded. A simulation was carried out with Simulink, 
which show that m-RBF provides a good approximation to characteristic of Dead zone nonlinearity, 
and that the control scheme based on m-RBF had a excellent and stable tracking accuracy. The tea 
picking experiment with six-axis manipulator verifies the effectiveness of the proposed algorithm, in 
which the proposed method got a higher score of 95.3, near two times that of traditional PID control 
methods. It can be drown that the m-RBF has a faster learning rate and can avoid local minima; the 
control scheme based on m-RBF has a excellent performance on control accuracy, robustness and self-
adaption, which is especially appropriate for real-time control, like tea picking robot.

Keywords  Dead zone nonlinearity, RBF neural network, Manipulator, Tracking, Control, Tea harvesting

Tea, the Chinese national drink, is the carrier of Chinese culture and an important cash crop in China with an 
annual output value of more than 150 billion yuan; among them, the output value of famous tea accounts for 
more than 50%1. Because of the strict requirements on the appearance of famous tea, it still needs a lot of manual 
labor to pick it. Due to the shortage of agricultural labor force, the cost of picking high-quality tea has exceeded 
60% of the production cost2. However, due to the strong seasonal nature of tea, it will cause huge economic 
losses (due to the decline in quality) when not picked: the development of tea industry is severely restricted. The 
realization of famous tea picking machine replacement is imminent.

Both domestic and foreign tea picking machinery adopt the integral picking principle of “reciprocating 
cutting”, which has no selectivity and the buds and leaves are seriously damaged, so it is not applicable for picking 
famous tea (high quality tea). Due to the unique Chinese characteristics of famous tea, only a small number of 
studies on tea picking technology have been carried out abroad. Based on feature extraction and object detection, 
Vu et al.3 studied the automatic counting method of tea shoots based on machine vision and realized regional 
detection of tea leaves. Thangavel et al.4 adopted key frame extraction method to identify tea leaves and realized 
leaf region detection. Karunasena et al.5 used machine learning and image processing techniques to identify tea 
bud and leaf. Jain et al.6 designed a picking robot based on double R manipulator, which was equipped with small 
scissors at the end to cut tea shoot. Combined with the Internet of Things technology, the scheduling control 
technology of the picking robot was studied. Motokura et al.7 conducted a preliminary study on the pose and 
trajectory planning of the end-effector of tea picking robot. Due to less research, there is no mature and available 
intelligent tea picking technology abroad.
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The research on the picking technology of famous tea mainly focuses on the picking robot technology based 
on computer vision. In terms of tea bud visual recognition, picture-processed-based methods have been well 
investigated, such as Yang et al.8, Jin et al.9, Wang et al.10 and Qi et al.11. These methods have poor generalization 
ability for they are relied heavily on artificial target’s features that vary from different tea trees, ripeness and 
weather conditions. To kill the problem, deep learning began to be applied to tea bud identification, such as 
Lv et al.12 adopted Alex-Net CNN (Convolutional Neural Network), Yang et al.13,14, Li et al.15 and Gong et al.16 
adopted YOLO (you look only once), Chen et al.17 adopted deep CNN to identify the tea bud target. Their In-
field experiment showed a picking success rate of 65%. Due to the diverse tea varieties, interleaved and dense 
distribution and complex background, the problem of accurate identification and positioning of tea buds has 
not been effectively solved.

Refers to picking robot ontology, Chen18 carried out the research and design of the parallel mechanism and 
end-effector of tea picking robot, and developed the prototype. Wei19 and Sun20 have also carried out researches 
on tender shoot identification, picking point determination, parallel mechanism, bionic picking finger, robot 
ontology, intelligent control, etc., and achieved a series of breakthrough results. However, both the picking 
efficiency and quality of the robot are still relatively low. In the transmission system of picking robot, the main 
factors affecting the control performance of the system are the existence of a wide range of nonlinearities in 
the process of power transmission, such as backlash, dead zone, friction and saturation, which become the 
main factors affecting the control accuracy21. In most cases, these nonlinear phenomena are unknown and time 
varying, and can have a great impact on the system. As one of the main nonlinear characteristics, dead zone 
nonlinear has always been one of the main research objects in the field of high precision transmission control. 
Dead zones have a great impact on the control system, the most common of which is to reduce the accuracy of 
the static output and make the dynamic output appear “flat top”22. Limit cycles or system instability may also 
result because the system does not respond within the dead zone. Consequently, it may cause the Tea-picking-
manipulator’s shaking and inaccuracy of tracking target, leading to damage to tea leaves and the fail of picking. 
Therefore, the compensation of dead zone becomes an important subject of high precision control system.

The mathematical description of a dead zone is a static nonlinear function used to describe the insensitivity 
of a system to small signals23. When the signal enters the dead zone, there will be considerable loss of signal 
information, which will cause the limit cycle and tracking error of the system. From a feedback perspective, dead 
zones represent a “loss of information”. Like many other discontinuous nonlinear phenomena, the main cause of 
dead zone is friction. Due to the non-differentiable nonlinearity of the dead zone, it is very difficult to compensate 
the dead zone, which greatly increases the complexity of the drive system control24. It is of great theoretical 
significance and engineering value to study the dead zone nonlinearity in mechanical and electromechanical 
transmission systems. However, the control problem of robot with unmeasurable constrained states and other 
unknown nonlinearities is not properly addressed.

In early years, various control methods have been designed to handle deadzone, which enhanced the 
performance of control systems, such as backstepping control, model predictive control, variable structure 
control, etc.25. However, These methods work on the condition that some parameters of deadzone functions 
are known. In practice, these parameters are always hard to measure, especially when considering the effect 
of time. Deadzone function is inherently nonlinear. Wang et al.26 focus on the adaptive control of nonlinear 
dynamic systems with an unknown deadzone. The fuzzy logic control methods have been employed generally 
to approximate the nonlinear systems. Tong et al.27 investigated the problem of the adaptive fuzzy decentralized 
output-feedback control for a category of switched nonlinear strict-feedback large-scale systems. Pei et al.28 
proposed a robust deadzone compensation method against parameter variations based on kalman filter and 
neural networks. Because the neural network can approximate any nonlinear continuous function with any 
precision, it has the ability of self-adaptation and self-learning for complex uncertain problems. Lewis et al.29 
studied the neural network control of the dead zone link in the robot actuator, and adopted network to carry 
out adaptive compensation for the dead zone in the control system, which is a classic research achievement in 
neural network control. Zhou et al.30 designed a NN(neural network) controller for the robotic manipulators 
subject to the dead zone. The NN approximation approach is employed to approximate the intermediate control 
signals with unknown nonlinear functions, reduced the number of estimated parameters. Lu et al.31 used RBF to 
generate several networks to replace the BP network in the original compensator, and designed the RBF(Radial 
Basis Function) network adaptive robust control with dead zone compensation, which could not only greatly 
reduce the system parameters, but also make the network initialization more clear and definite. Bensidhoum 
et al.32 used RBF neural network to approximate the unknown nonlinear functions in contrl system of robot 
manipulators with unknown input dead-zone. The clustering algorithm is used to determine the center of radial 
basis function in RBF neural network, but how to determine the appropriate number of clusters has not been 
well solved, which degrads the RBF mapping accuracy. Also, only the proportional action is used in the control 
scheme to avoid the measurement noise, which fails to minimize the possible input saturation effect (the input 
exceeds its limit), leading to degrading in tracking precise and accuracy.

To adress this problem in tea picking robot, this paper propose an control skeme based on modified RBF to 
approximate the deadzone of tea picking manupulator. The main work and contributions are as follow:

	(1)	 Proposed a modified Radial Basis Function (m-RBF) neural network to compensate the dead zone in tea 
picking robot control system, in which a new clustering algorithm and clustering automatic termination 
criterion are introduced to improve RBF and the mapping accuracy.

	(2)	 Construct the control system with m-RBF compensator, and design the adaptive law of neural network 
compensator. Also, Introduce the mathematical concepts of GL (General Linear) matrix and GL multipli-
cation operator to prove the uniformly bounded stability of n joint robot system strictly.
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	(3)	 The control system with m-RBF compensator is simulated with Matlab, showing the superiority of the con-
trol scheme based on m-RBF compensation. And the tea picking experiment verifies the effectiveness of the 
control system, the tracking becoming rapid and smooth with less breakdown of chattering and being stuck.

The rest of this article is organized as follows. In Section "Tea picking manipulator model", tea picking manipulator 
model is presented. The adaptive control based on m-RBF neural network and its convergence analysis are given 
in Section "Model". To show the effectiveness of the proposed control scheme, an simulation example and the 
picking experiment are conducted in Section "Simulation and experiment". Finally, conclusions and Discussion 
are drawn in Section "Conclusion and discussion".

Tea picking manipulator model
Here, we write the dynamic equation of the N-joint manipulator as:

	 M (q) q̈ + V̈m (q, q̇) q̇ + G (q) = τ � (1)

where Type of q(t) ∈ Rn for joint angular displacement quantity, M(q) ∈ Rn as the inertia matrix, v(q, q̇) ∈ Rn 
as centrifugal force and Coriolis force, G(q) ∈ Rn as gravity, τ ∈ Rn for control of torque.

The mathematical expression of the dead zone is a static nonlinear function that describes the insensitivity 
of the system to small signals, as shown in Fig. 1. In most closed-loop systems, the dead zone has a bad effect on 
both transient and steady-state performance. The signal entering the dead zone is accompanied by information 
loss, which easily leads to the limit cycle and large tracking error.

Generally speaking, the dead zone phenomenon in the motion control system can be expressed as:

	
τ = D (u) =

{
g (u) < 0 u ≤ d−

0 d− < u < d+
h (u) > 0 u ≥ d+

� (2)

where u is the input signal, h and g are two smooth nonlinear functions, and τ is the output of the dead zone.
The description of formula (2) covers various possible situations in the dead zone phenomenon. h(u),g(u),d+ 

and d- are all unknown. Suppose h(u) and g(u) are monotonically invertible increasing functions on the definition 
interval, so there is an inverse D-(w) with a dead zone:

	
D−1 (w) =

{
g− (w) < 0 u < 0

0 u = 0
h− (w) > 0 u > 0

� (3)

Then we have

	 D(D−1 (w)) = w� (4)

In order to compensate the negative effects of the unknown dead zone, the neural network compensator is put 
in front of the control input to compensate the nonlinear link of the dead zone.

The structure of robot moment arm control system is shown in Fig. 2. The control objective is to expect the 
output w of the controller to be the same as the output τ of the actuator. Therefore, RBF neural network can be 
used to compensate. In Fig. 2, w is the ideal control input, u is the actual control input of the robot after dead 
zone compensation, and τ is the control signal after dead zone compensation.

Fig. 1.  Characters of dead zone nonlinearity.
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Model
This section will setup the neural network model to establish the compensator model for the dead zone. Also, the 
control system stability will be analyzed.

GL matrix and GL multiplication operator
Define symbol “{·}” as GL matrix and “·” as its multiplication operator. I0 as an integer set, θij , ξij ∈ Rn

ij , where 
nij ∈ I0, i = 1, . . . , n, j = 1, . . . , n. For function approximation, θij  can be regarded as a weight vector and 
ξij  can be regarded as a Gaussian basis function vector. The GL vector {θk} and its transpose, {θk}T , are defined 
as follows:

	 {θk} = {θk1θk2 . . . θkn}� (5)

	 {θk}T =
{

θk1
T θk2

T . . . θkn
T

}
� (6)

The GL Matrix {θk} and its transpose {θk}T  are defined as follows:

{θ} =





{θ1}
{θ2}

...
{θn}




,
 
{θ}T =




{θ1}T

{θ2}T

...
{θn}T




 

For a given GL matrix, {ξ} =





ξ11 ξ12 · · · ξ1n

ξ21 ξ22 . . . ξ2n

...
... . . .

...
ξn1 ξn2 . . . ξnn





=





{ξ1}
{ξ2}

...
{ξn}





,
GL Multiplication of {θ}T  and {ξ}  is defined as an n by n matrix:

	

[{θ}T · {ξ}] =




θT
11ξ11 θT

12ξ12 · · · θT
1nξ1n

θT
21 ξ21 θT

22ξ22 . . . θT
2nξ2n

...
... . . .

...
θT

n1 ξn1 θT
n2ξn2 . . . θT

nnξnn


� (7)

Let Γk = ΓT
k = [γk1γk2 . . . γkn], γk2 ∈ Rm×nj , m =

∑n

j=1 nj , Then the GL multiplication of a square 
matrix and a GL vector is defined as

	 Γk · {ξk} = {Γk} · {ξk} = {γk1ξk1γk2ξk2 . . . γknξkn} ∈ Rn×m� (8)

In the mixed calculation of matrix and GL matrix with respect to GL multiplication operator, the GL multiplication 
is computed first. For example: {A}·{B}C, first calculate {A}·{B}, and then multiply the result with C. For further 
information about GL matrix and operator, please refer to the work of Ge33.

Neural network model
RBF neural network
The neural network can approximate any nonlinear continuous function with any precision and has adaptive and 
self-learning ability for complex uncertain problems. A Radial Basis Function (RBF) neural network is a three-
layer feed-forward network with a single hidden layer. The function of RBF network is a Gaussian basis function, 
and its value is non-zero in the finite range of input space, so RBF network is a local approximation neural 
network. The mapping from the input layer to the output layer is nonlinear, while the mapping from the hidden 
layer space to the output layer space is linear. Due to its local approximation property, it can greatly accelerate 
the learning speed and avoid the local minimum problem, which is suitable for the application requirements of 

Fig. 2.  Control system based on neural network compensation.
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real-time control. The neural network control scheme composed of RBF network can effectively improve the 
control precision, robustness and adaptability of the system.

FCM (Fuzzy C-Means) clustering algorithm is often used to determine the center of radial basis function 
in RBF neural network, but how to determine the appropriate number of clusters has not been well solved. In 
order to obtain reasonable central parameters of radial basis function, a new clustering algorithm and clustering 
automatic termination criterion are introduced here to improve RBF and improve the mapping accuracy.

m-RBF neural network
Here, the RBF neural network is improved by two stages: (1) the central parameter of radial basis function is 
learned by using the Reduced Clustering algorithm34, and the number of RBF basis functions is determined by 
applying the self-terminating clustering criterion; (2) The output weight is adjusted by gradient descent method. 
The self-terminating clustering criterion in the first stage is that: If the ratio between the current maximum 
density value and the initial maximum density value is less than some very small given value, the clustering is 
terminated. That is, when the current cluster center contains very few data points, you can ignore the cluster 
center and end the cluster.

The specific learning steps are as follows:
Step 1: the density index of each data is calculated according to formula (9) and saved in the set A. The data 

point with the highest density index is selected as the first clustering center.

	
Di =

∑p

j=1
exp

[
−∥xi − xj∥2

(γa
/
2)2

]
� (9)

where γa  define the neighborhood radius of each data.  xi, xj  denote the i th and j th date of the N-dimensional 
data space.

Step 2: The m th cluster center is determined, the density index of each data is modified by formula (10), and 
the highest density index is searched.

	
Di = Di − Dcm

∑p

j=1
exp

[
−∥xi − xj∥2

(γb
/
2)2

]
� (10)

where γb  define a neighborhood with a significantly smaller density index. Generally,  γb > γa, which avoid 
cluster centers that are very close together.

Step 3: Substitute the highest density index Dmax into the criterion. If the criteria are met, the criteria are 
terminated and go to Step 4. If the criterion is not met, the point xcm  is accepted as the m-th cluster center, and 
it is kept in the set A; updated: Dmax = Dcm , m = m + 1; then go to the second step.

Step 4: end of cluster.
Apparently, a total of m-1 clustering centers were identified. After the clustering center is determined, the 

width parameter can be determined by taking the nearest neighbor average distance to the neighboring points 
of each cluster center. By these steps we have the m-RBF.

Dead zone compensator design with m-RBF
The adaptive neural network compensator consists of two m-RBF neural networks, one m-RBF is used to 
estimate the nonlinear link in the actuator, and the other m-RBF is used to compensate the dead zone of the 
feedforward channel of the system. The basic structure of the neural network compensator is shown in Fig. 3.

where u is as follow:

	 u = w + ŵNN (w)� (11)

The inverse of the dead-zone link can be expressed in the following equivalent form:

	 D−1 (w) = w + wNN � (12)

Fig. 3.  m-RBF adaptive neural network compensator.
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where wNN  can be wrote as follow,

	
wNN =

{
g−1 (w) − w w < 0

0 w = 0
h−1 (w) − w w > 0

� (13)

According to Universal approximation of m-RBF neural network, we have,

	 D (u) = {W }T · {σ (u)} + ε (u)� (14)

	 wNN = {Wi}T · {σi (u)} + εi (u)� (15)

Where ε (u) and εi (u) is the modeling error of neural network, W  and W i is the ideal weight, σ and σi is the 
output of the radial basis function.

Let Ŵ  and Ŵ i refer to ideal estimation of RBF weights. Refered to Wang’s work35, we can estimate the 
corresponding links through two RBF neural networks:

	 D̂ (u) = {Ŵ}
T

· {σ (u)}� (16)

	 ŵNN = {Ŵi}
T

· {σi (u)}� (17)

Define W̃ = W − Ŵ , W̃i = Wi − Ŵi as the estimation error of RBF weights.
It can be seen from Fig. 2 that the purpose of the design of the control system is to make the output τ of 

the controller and the robot input w after the dead zone tend to be as consistent as possible. The mathematical 
relationship between the two and the corresponding proof are given below.

In Fig. 2, given the m-RBF neural network compensator ŵNN , the mathematical relation between the control 
input w and the control output τ in the dead zone is as follows:

	
τ = w −

[{
Ŵ

}T
·
{
σ

′
(u)

}]
·
[{

W̃i

}T
· {σi (w)}

]
+

[{
W̃

}T
·
{
σ

′
(u)

}]
·
[{

Ŵi

}T
· {σi (w)}

]
+ d(t)� (18)

The non-matching item of the model is:

	
d (t) = −

[{
W̃

}T
·
{
σ

′
(u)

}]
·
[
{Wi}T · {σi (w)}

]
− b (t) + ε(u)� (19)

	
b (t) =

{
W̃

}T
·
{[

σ
′
(

w +
{

Ŵi

}T
· {σi (w)}

)]
· [εi (w)]

}
+ {W}T ·

{
R

(
W̃i, w

)}
+ ε(w + wNN)� (20)

The proof of mathematical relationship between w and τ
According to Eqs. (2), (11) and (14), the dead zone output of the kth joint in the N-joint robot can be written:

	 τk = D (uk) = WT
k · σ (uk) + ε (uk) = WT

k · σ (wk + ŵNNk) + ε (wk + ŵNNk)� (21)

From Eq. (4) and (12), yields

	 wk = D
(
D−1(wk

)
= D (wk + wNNk)� (22)

By substituting Eqs. (21) and (15) into Eqs. (22), we have:

	 wk = W T
k · σ (wk + wNNk) + ε (wk + wNNk)

	 = WT
k · σ

(
wk + Wik

T · σi (wk) + εi (wk)
)

+ ε (wk + wNNk)

	
= WT

k · σ
(

wk + ŴT
ik · σi (wk) + W̃T

ik · σi (wk) + εi (wk)
)

+ ε (wk + wNNk)

Let x = wk + Ŵ
T

ik · σi (wk) + W̃
T

ik · σi (wk) + εi (wk)

Then x0 = wk + Ŵ
T

ik · σi (wk)

And x − x = W̃
T

ik · σi (wk) + εi (wk)
Let f (x) = σ (x), According to the first order Taylor expansion formula, yields

	
R (ξ) = R

(
W̃ ik, wk

)
= 1

2!σ
′′

(ξ0)
(

W̃
T

ik · σi (wk) + εi (wk)
)2

� (23)

	 wk = W T
k (σ (x0) + σ

′
(x0) (x − x0) + R(ξ)) + ε (wk + wNNk)
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	 = W T
k σ (x0) + W T

k σ
′
(x0) (x − x0) + W T

k R(ξ) + ε (wk + wNNk)

	= W T
k · σ

(
wk + Ŵ

T

ik · σi (wk)
)

+ W T
k · σ

′
(

wk + Ŵ
T

ik · σi (wk)
)

(W̃ ik

T
· σi (wk) + εi (wk)) + W T

k R(ξ) + ε (wk + wNNk)

By substituting b(t) from Eq. (20) into the above equation, yields

	
wk = W T

k · σ
(

wk + Ŵ
T

ik · σi (wk)
)

+ W T
k · σ

′
(

wk + Ŵ
T

ik · σi (wk)
)

W̃
T

ik · σi (wk) + bk(t)� (24)

By combining Eqs. (11) and (17), Eq. (24) can be written as:

	 −W̃ k

T
· σ

′
(uk) W ik

T σi (wk) − bk (t) + ε (uk) = W T
k · σ (uk) + ε (uk) + Ŵ

T

k · σ
′
(uk) W̃

T

ikσi (wk) − W̃
T

k · σ
′
(uk) Ŵ

T

ikσi (wk) − wk� (25)                                  

By combining Eqs. (19) and (21), the above equation can be written as:

	 dk (t) = τ k + Ŵ
T

k · σ
′
(uk) W̃

T

ikσi (wk) − W̃
T

k · σ
′
(uk) Ŵ

T

ikσi (wk) − wk

Namely, we have:

	 τ k = wk − Ŵ
T

k · σ
′
(uk) W̃

T

ikσi (wk) + W̃
T

k · σ
′
(uk) Ŵ

T

ikσi (wk) + dk (t)� (26)

Then, it is proved.
Lemma2: The norm of model non-match term d(t) is bounded, and its upper bound is,

	 ∥d (t) ∥ ≤ a1∥W̃ ∥F + a2∥W̃ i∥
2
F + a3∥W̃ i∥F + a4� (27)

where a1, a2, a3, a5 is a constant that can be computed.
This can be proved as follow:
From the definition of  d (t) in Eq. (19), we easily know that

	 ∥d (t) ∥ ≤ ∥W̃ ∥F ∥σ
′
(·) ∥∥W i∥F ∥σi (·) ∥ + ∥b (t) ∥ + ∥ε (u) ∥ ≤ ∥W̃ ∥F a1 + ∥b (t) ∥ + ϵN � (28)

where a1 = ∥σ̇ (·) ∥W iM ∥σi (·) ∥
From the definition of  b (t) in Eq. (20), and Eq. (23), we know that,

	

∥b (t) ∥ ≤ W M ∥σ̇ (·) ∥εNi + W M
1
2∥σ̈ (·) ∥∥W̃ ∥

2
F ∥σi (·) ∥2

+ W M ∥σ̈ (·) ∥W̃ i∥σi (·) ∥εNi + W M
1
2∥σ̈ (·) ∥εNi

+ εN = a2∥W̃ ∥
2
F + a3∥W̃ i∥F + a4

� (29)

where a2 = W M
1
2 ∥σ̈ (·) ∥∥σi (·) ∥2, a3 = W M ∥σ̈ (·) ∥∥σi (·) ∥εNi,

	
a4 = W M ∥σ̇ (·) ∥εNi + W M

1
2∥σ̈ (·) ∥εNi + εN

From Eq. (28) and (29), Lemma2 was approved.
The adaptive law of neural network compensator is designed as follows:

	

{
˙̂

W k = −Sσ
′
(uk) W ik

T σi (wk) rk − K1S∥r∥Ŵ k
˙̂

W ik = T σi (wk) rkW k
T σ

′
(uk) − K1T ∥r∥Ŵ ik − K2T ∥r∥∥Ŵ i∥F Ŵ ik

� (30)

where, S = ST,T = T T is a positive definite constant symmetric matrix, K1, K2 > 0. Ŵk  and Ŵik  is the kth 
group weight vector in the n group weight vector of the compensator (1 ≤ k ≤ n).

System stability analysis
Given that the ideal trajectory is qd(t) ∈ Rn, the tracking error is:

	 e (t) = qd (t) − q(t)� (31)

Define the error function as:

	 r = ė − Λe� (32)

where Λ = ΛT >0.
Define q̇r = r + q̇, then q̈r = r + q̈, q̇r = q̇d + Λe, q̈r = q̈d + Λė
According to the system dynamic Eqs. (1), (6) and (7), there is
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	 Mṙ = M (ė − Λe) = −V mr − τ + f � (33)

where f = Mq̈r + V mq̇r + G, f represents model information.
Take the ideal control signal as:

	 w = f̂ + Krr − v� (34)

where f̂  refers to the estimation of f, and the error is f̃ = f̂ − f , ∥f̂∥ ≤ fM (x), v is a robust term used to 
overcome modeling uncertainties.

The robust control law is:

	 v (t) = −fM (x)sgn(r)� (35)

where sgn(·) is a sign function.
By substituting the control law (18) and Eq. (34) into Eq. (33), we have:

	
Mṙ = −V mr − Kvr +

[{
Ŵ

}T

·
{

σ
′
(u)

}]
·
[{

W̃ i

}T

· {σi (w)}
]

−
[{

W̃
}T

·
{

σ
′
(u)

}]
·
[{

Ŵ i

}T

· {σi (w)}
]

− d (t) + f − f̂ + v� (36)

Given the robotic system (1), it is acceptable to ignore the friction terms and disturbance terms36. Assuming that 
the neural network has a bounded ideal weight, ∥W∥F ≤ WM, ∥Wi∥F ≤ WiM, select the controller Eq. (34) 
and the neural network compensator Eq. (17). Taking the adaptive law of neural network as Eq. (30), the closed-
loop tracking control error of the control system is globly uniformly ultimately bounded stable, and the tracking 
error decreases with the increase of the gain Kv.

Simulation and experiment
Simulation model
The mathematical model of the double-joint tea picking mechanical arm is as Eqs. (37)–(40):

	 M(q)q̈ + Vm (q, q̇) q̇ + G (q) = τ � (37)

	
D (q) =

[
p1 + p2 + 2p3cosq2 p2 + p3cosq2

p2 + p3cosq2 p2

]
� (38)

	
C (q, q̇) =

[ −p3q̇2sinq2 −p3(q̇1 + q̇2)sinq2
−p3q̇1sinq2 0

]
� (39)

	
G (q) =

[
p4cosq1 + p5cos(q1 + q2)

p5cos(q1 + q2)
]

� (40)

The actual parameters used in the simulation are:

	 p = [p1, p2, p3, p4, p5] = [3.5,0.66,0.93,3.04,0.9]

It is reasonable to assume that the initial states of the robot are all at the zero position, and the parts outside the dead 
zone are linear functions37. The dead zone parameter is d+ = 10, d− = −10, h (u) = u − d+, g (u) = u + d−. 

The expected trajectory is: qd (t) =
[ 1.5sin(0.3πt)

cos(0.3πt)
]

. The parameters of the neural network controller are 

set to Λ = ΛT = diag [5.0],KV = 20, Kr = 0, S =
[ 400 0

0 400
]

, T =
[ 400 0

0 400
]

, The central 

value c of the m-RBF neural network is the value uniformly distributed within the input value range of the 

RBF network. b = 1 c1 = c2 =
[ −50 −28 −15 0 15 28 50

−50 −28 −15 0 15 28 50
]

, The initial value of each 

element in the weight of m-RBF neural network is 20. The simulink simulation model of the system is shown 
in Fig. 4. The simulation is conducted on an experimental computer, the parameters of which is as follow: CPU 
Intel(R) Core(TM) i7-4790, @3.60 GHz, number of cores: 8, memory: 4 GB.

Simulation result
Tracking performance
Simulation results are shown in Figs. 5, 6 and 7. It is illustrated in Fig. 5 that the tracking performance of the 
control model is rather exact. The red line is the expected trajectory, while the blue ones denote the tracking 
trajectory. Both in the position tracking of link 1 and link 2, our control model could track the target within 1 
second and copy the expected trajectory with nearly no bias once the expected trajectory is tracked.

Control input analysis
The control input of the control system is shown in Fig. 6. The ideal control input without consideration of the 
dead zone is shown in Fig. 6a, in which situation it is assumed that the links are deal ones that has no dead zone. 
Therefore its control input is with rather less fluctuation, especially for link 2.

However, the impact of the dead zone shouldn’t be neglected, because it has a sever side effect on the tracking 
performance of the manipulator, such as impairing tracking speed and accuracy. In this work, the dead zone is 
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well modeled with m-RBF, the compensation for the dead zone is integrated into the control input. As shown 
in Fig. 6b, both control input for joint 1 and joint 2 become more fluctuated due to the introduction of the 
dead zone model. Even so, the variation range is still be confined between ±50 for joint 1 and ±30 for joint 2. 
Compared with ideal control input variation range ([− 20, 40] for link 1, [− 10,5] for link 2), The variation range 
increments is still tolerable and physically achievable.

Dead zone estimation
As shown in Fig. 1, we know that the characters of dead zone nonlinearity can be estimated by equation 
(2). When the manipulator is running at a high speed, the nonlinearity of dead zone could be shown with a 
trapezoidal wave shown in Fig. 7 with red line. From the figure, it can be seen that our m-RBF model coule 
model the characotoristics of the nonlinearity of dead zone perfectly. Because the m-RBF is training in an online 
manner, the Net needs 1~2 seconds to converse to stable state when running for the first time. Although, there 
is small overshoot for link 1 when it steps in each dead zone, but the model could convers quickly to the target. 
As a whole, the proposed model could estimate the dead zone well.

Fig. 5.  Position tracking. L1 denotes Link 1, L2 denotes Link2.

 

Fig. 4.  Simulink simulation model of the system.
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Severe situation tracking performance
In order to simulate the actual picking process as much as possible, we set two more jumping target trajectories: 
a sine wave of higher frequency (see in Fig. 8), and a compound curve of sine wave and square wave as Eq. (41), 
see in Fig. 9.

	 f (x) = 2sin (0.2πx) + 8square(0.2πx)� (41)

where square(·) is a MATLab built-in function that produces a square wave.
As shown in Fig. 8, the target trajectory of higher frequency sine wave simulates the situation of high-speed 

continuous turning motion. And our mehtod could tracking this kind of motion precisely within about 1s, except 
for a slight error at the turning point. As shown in Fig. 9, the target trajectory composed of a sine wave and a 
square wave simulates the situations of sudden start, emergency stop and reverse return. As is well known, it is 
relatively difficult to track step signals. The simulation result indicates that the proposed method could handle 
the tracking of these motions well. This “jumping” motion could also be tracked within 1s. The simulation of 
severe situation indicates that the proposed control method is suitable for the robot application of tea picking.

Fig. 6.  Control input.
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Experiment
In order to verify the effectiveness of the proposed algorithm, an experiment on tea picking is conducted using 
the robot test platform. The platform mainly consists of Vision system, Manipulator, Picking mechanism, 
Computer control center, see in Fig. 10. Some tea tree branches are picked and kept in a bucket with some water 
in it, which analogies the tea tree canopy. The vision system detects the tender tea shoots and provides their 
three-dimensional coordinate information to robot control system as the target location. The optimal running 
path is planned and calculated according to the target points by control system. Then the manipulator will be 
controlled to pick tea shoot along the running path.

In our previous experiments, generally, the arm would be chattering or get stuck when it encountered a 
dead zone. When the proposed algorithm is applied to the robot test platform, the running of the arm becomes 
smoother. To illustrate our algorithm’s effectiveness, two sets of comparative experiments are conducted: one 
group used the traditional control method, and the other group added the death compensation control method 
proposed in this paper. Each group includes 100 times picking test, tracking one picking point in each test. The 
breakdown get chattering or stuck) are recorded and a score is given for each control mode, as shown in Table 1.

The initial score for each control mode is 100, and a penalty is given for each failure. The penalty is determined 
by the kind of the breakdown, − 0.3 for chattering and − 0.7 for being stuck. In one test, multiple chattering may 
occur, but only once is recorded to avoid a negative general score.

From Table 1, we know that it is very prone to be breakdown under the traditional control mode, while 
our control method based on dead zone estimation using RBF could improve this defect significantly, with a 

Fig. 8.  Tracking of a sine wave of higher frequency.

 

Fig. 7.  Dead zone and its estimation.
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Fig. 10.  Robot platform and experiment.

 

Fig. 9.  Tracking a compound curve of sine wave and square wave.

 

Control mode

Breakdown 
times

P SCh St

Traditional method 51 27  − 42.3 57.7

The proposed method 9 2  − 4.7 95.3

Table 1.  Comparative experiment result. Ch and St denote the breakdown of chattering and being stuck 
respectively; P is penalty, S is general score of different control mode.
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high score of 95.3. That is to say, the proposed method for the estimation of manipulator’s dead zone and the 
compensation of its control is effective.

Conclusion and discussion
As one of the main nonlinear characteristics, dead zone nonlinearity has an important effect on the performance 
of power transmission system. In this study, m-RBF neural network adaptive compensator and adaptive control 
law were designed for the nonlinear link and dead zone characteristics of feed-forward channel of tea picking 
robot system. Through the stability analysis of the system, it can be seen that by selecting the controller, neural 
network compensator and neural network adaptive law designed in this paper, the closed-loop tracking error of 
the control system is always stable and bounded eventually, and the tracking error decreases with the increase 
of the gain. Compared with other works, Zhou30, He25, and Bensidhoum32, our method has globally uniformly 
ultimately bounded stability, which outperforms their semi-globally uniformly ultimately bounded, semi-
globally uniformly bounded and asymptotically stable respectively.

To visually demonstrate the performance of the control system, taking the two joints manipulator as an 
example, the system simulation model is established in MATLAB/Simulink. The simulation results show that the 
m-RBF neural network has a good approximation performance for the nonlinear system, and can approximate 
the dead zone nonlinear characteristics well. The control system based on the neural network model can realize 
the stable tracking control of a manipulator better, and has a strong ability to restrain the load disturbance.

Finally, the proposed algorithm was applied to a six-axis manipulator to carry out tea picking experiments. 
Compared with the traditional PID control methods (Proportional, Integral, Differential control), the proposed 
method got a higher score of 95.3 in the comprehensive evaluation, and could effectively deal with the problems 
caused by the dead zone of the manipulator, making the operation of the manipulator more smooth and efficient.

Because of the local approximation property of m-RBF neural network, the learning speed is fast and the 
local minimum problem can be avoided, which is especially suitable for the application requirements of real-
time control. Therefore, the neural network control scheme of the tea picking manipulator composed of m-RBF 
network has good control precision, robustness and adaptability. As shown in section "Simulation result", it still 
takes about 1 s to adjust before tracking stably, which is not good for real-time tracking applications. Therefore, 
it is necessary to further study the dead zone compensation algorithm and network structure in the future to 
improve the compensation and tracking performance.

Data availability
Data is provided within the manuscript or supplementary information files, further inquiries can be directed to 
the corresponding author.
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