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During their breeding season, male leopard seals (Hydrurga leptonyx) spend hours perfecting their 
solo performance: singing unique sequences of stereotyped calls underwater to create their ‘song’. 
These song bouts are made up of discrete call types common across leopard seals within a region, 
which begs the question – what determines the individually unique patterns of these calls? Information 
entropy quantifies the amount of randomness in a sequence, providing insight into the statistical 
patterns governing a sequence. The songs produced by 26 different Eastern Antarctic leopard seals 
have less predictable temporal structure than humpback whale songs and dolphin whistle sequences. 
The estimated information entropy of the leopard seal songs is comparable to nursery rhymes but 
unsurprisingly, lower than contemporary, classical and baroque music. The greater structure of the 
leopard seal’s song improves the ability of distant listeners to accurately receive signals and identify 
singers, which is essential for this widely dispersed species. Future studies examining animal mating 
song would benefit from incorporating entropy analysis to question if information is conveyed through 
temporal structure alongside other acoustic variables.
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 Humans are far from the only animals to employ singing as a method of communication - animals sing for 
several purposes including territorial signalling, mate attraction or warning of predators1. While many bird 
species are known to produce complex and elaborate vocalisation bouts (hierarchically constructed of various 
‘notes’, ‘elements’, ‘syllables’, ‘phrases’ and ‘motifs’)2 comparatively few mammals have been observed to assemble 
various vocal units or discrete sounds into more complex sequences. Examples of those that do include the 
‘songs’ of rock hyraxes (Procavia capensis)3, free-tailed bats (Tadarida brasiliensis)4, gibbons (Hylobates)5,6, mice 
(Mus musculus)7 and humpback whales (Megaptera novaeangliae)8,9,  the alarm calls of orangutans (Pongo 
pygmaeus)10,  the ‘chuck’ calls of squirrel monkeys (Saimiri sciureus)11, the ‘codas’ of sperm whales (Physeter 
macrocephalus)12,13,  the whistle sequences of killer whales (Orcinus orca)14,15 and short-finned pilot whales 
(Globicephala macrorhynchus)16, and ‘bray’ sequences of bottlenose dolphins (Tursiops truncatus)17,18. We 
theorise that highly vocal pinnipeds (seals and sea lions) who produce sequential vocalisations may also be ideal 
candidates for information theory analysis, specifically the vociferous leopard seal.

Leopard seals are vocal during the mating season, with male leopard seals making sequences of loud 
stereotyped sounds underwater for the purposes of mate attraction and territorial signalling19–22. Vocal displays 
have been observed in phocid species when the oestrus females are inaccessible to males, and in the case of 
leopard seals this is due to the females remaining hauled out with their pups until weaning23. Leopard seal calling 
behaviour is common during December and January, which coincides with their breeding season24. Both male 
and female leopard seals in captivity have been shown to cease their calling behaviour with the drop in their 
reproductive hormones19 suggesting that the calling behaviour is an important component of mating behaviour 
in the leopard seal19.

Male leopard seals are solitary during spring/summer25–27. It is theorised that for male leopard seals, their 
sparse distribution amongst the pack ice and the shortness of their breeding season increases this calling 
behaviour, as they call for many hours each day throughout the breeding season to increase their chances of their 
calls being received28. Additionally, the use of vocal displays to advertise to potential mates or to communicate 
information about individual identity is much more energetically efficient than travelling wide distances for 
species with wide dispersal. As leopard seals are often widely and unpredictably dispersed29 long range acoustic 
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displays are necessary. As such, the leopard seals’ communicative ability benefits from the use of a small 
repertoire of stereotyped sounds which are easily recognisable despite degradation or propagation effects23,28. 
This consistency of calling behaviour and stereotypy of sound types within a population makes leopard seals an 
ideal candidate for information theory analysis to examine their song structure.

The male leopard seals will vocalise underwater, producing a sequence of sounds in a distinct pattern 
before returning to the surface to breathe, creating breaks of silence in their singing cycle19. While there is 
geographic variation in acoustic behaviour between populations of leopard seals20,30  the alphabet of sounds 
within a population remains consistent30. In the coastal region of the Davis Sea, Eastern Antarctica, leopards 
seals produce sequences of sounds, or ‘calling bouts’, made up of an alphabet of 5 distinct stereotyped calls 
(Fig. 1) which range in frequency from 50 Hz to 6 kHz, and between 0.5 and 8.1 s in duration19,20. The 5 call types 
are classified as high double trills (H), medium single trills (M), low descending trills (D), low double trills (L) 
and a hoot with a low single trill (O)20,31.

While the acoustic characteristics of the sounds themselves show very little variation between individuals, the 
order individual seals produce sounds within a sequence varies31. The lack of stereotypy in sequencing between 
individual leopard seals motivates the need for probabilistic techniques to understand this variation. To analyse 
the leopard seal vocalisations, we have recorded sequences produced by individual seals and converted them to 
a symbolic code (Fig. 2).

Many studies have made comparisons between marine mammal communication and human language 
structures, suggesting that marine mammal communication can have ‘language-like’ properties32,33. 
Borrowing concepts from human music theory can also prove to be a useful comparison to marine mammal 
communication9,12,34,35 as it does not assume any semantic meaning is contained within each individual sound. 
While a number of musical characteristics such as chord progressions, note duration or rhythmic elements could 
be compared to leopard seal songs (and analysed with information theory techniques)36 melodic contour (or the 
sequence of 12 notes that make up the melodic scale in Western music) is the most analogous to the symbolic 
code representing leopard seal vocal sequences.

Shannon’s ‘information entropy’ measures the uncertainty of a random variable37. In the context of 
communication, entropy is an upper bound on the amount of information contained within a sequence38 
(however entropy is not necessarily a measure of complexity of the sequence or source39). Information theory37 
provides insight into the structure of an information source (often referred to as ‘syntax’ or ‘grammar’ in 
communication) without assuming any knowledge of the meaning (or ‘semantics’) of the source output. A 
sequence with higher entropy is more random, or less predictable, than a sequence with lower entropy. If the true 
probability distribution of a vocalizing animal were known, the entropy could be computed directly. However, 
since these true distributions are not known, both parametric and nonparametric methods can estimate entropy. 
When comparing two entropy estimators for a source, the estimator whose model would better predict data 
from that source will result in the lower entropy estimate. Thus, the estimator with the lower entropy estimate is 
a better match for the structure of the source.

Our first parametric entropy estimator assumes that all calls in the sequence are independent and identically 
distributed (i.i.d.). This model is equivalent to flipping a weighted coin a certain number of times in a row – not 
all outcomes are equally likely, but each new flip is completely random. Knowing the previous symbol does not 
improve our ability to predict the next symbol.

The second parametric model is the first-order Markov model, which assumes that the choice of each sound 
depends only on the sound which comes directly before it. In the field of music, Markov chains have been 
investigated for their potential for generating compositions, evaluation of musical complexity and composer/
period identification40–46. Although he was far from the first, Wolfgang Amadeus Mozart was rumoured to have 
invented a game in which a pair of dice are used to select segments of pre-composed waltz-like music to create a 
new piece which sounded, to an untrained ear, like a waltz written by Mozart himself47,48. As a 1st order Markov 
model output assumes dependence on only the single preceding symbol, an nth order Markov model assumes 
that the output is dependent on the previous n symbols.

i.i.d. and Markov chain models are limited by underlying assumptions and cannot accurately capture the 
longer term dependencies in hierarchically structured sequences49. Many animal sequences are better represented 
by other non-Markovian processes49. Hence, we also applied the nonparametric sliding window match length 
(SWML) entropy estimator50–52. The SWML entropy estimator relates the entropy of a given output sequence to 
the average length of a matching string of units within a window of fixed size. The SWML estimator can highlight 
the presence of longer patterns in the sequence, i.e. structure that is more complex than relating one unit to its 
preceding unit.

If the temporal structure of the leopard seal calling bouts could be explained by an i.i.d., then we would 
expect the 1st order Markov entropy estimates not to be significantly lower than the i.i.d. estimates. Similarly, if 
the structure of the calling bouts could be explained by a 1st order Markov model, we would expect the SWML 
estimates not to be significantly lower than the Markov model estimates.

Do the songs of leopard seals have predictable sequence structure? And if so, how does this structure 
compare with that of other mammals? Here we examine the vocal sequences of 26 leopard seals and compare 
entropy estimates with those of other mammals including humpback whales, bottlenose dolphins and squirrel 
monkeys, and with simplistic representations of human music, to understand the similarities between vocal 
communication structure across taxa.

Results/Discussion
For all leopard seal calls analysed, the entropy estimates were lower than the theoretical maximum entropy for 
the size of the source alphabet, from which it can be inferred that the choice of sounds in the sequence is not 
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Fig. 1.  Waveforms and spectrograms of leopard seal underwater call types (2048 ppt, 90% overlap, Hanning 
window): (a) high double trills (H), (b) medium single trills (M), (c) low descending trills (D), (d) low double 
trills (L) and (e) a hoot with a low single trill (O).
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entirely random. For the 26 leopard seals analysed, the i.i.d., 1st order Markov and SWML entropy estimates 
ranged from 1.59 to 2.38, 0.72–1.43 and 0.63–1.38 bits respectively (Table 1; Fig. 3).

For all leopard seals, all 1st Order Markov estimates of the entropy ( Ĥ1) lie below the one-tailed 0.95 
confidence region of bootstrapped i.i.d. sequence entropy ( Ĥ0) for the hypothesis that Ĥ0 ≤ Ĥ1, which 
supports the conclusion that Ĥ1 < Ĥ0 with a significant of p < 0.05 (Fig. 3(a)). This implies that the leopard 
seal songs do have time structure, and that knowing the preceding sound in the sequence reduces uncertainty in 
predicting the next sound. This indicates that the i.i.d. model does not capture the structure of the leopard seal 
calling bouts.

The lack of a bias correction for the SWML entropy estimates limits the accuracy of these estimates. The 
SWML estimator is known to contain a positive bias which decreases with increasing window size53and thus we 
can assume that all SWML entropy estimates (including the 95% CI for the bootstrapped sequences in Fig. 3(b)) 
would be reduced when corrected for this bias. However, since we cannot account for this analytically, we only 
present a conservative estimate of significance. For 21 of the 26 leopard seals, ĤSW ML lies below the one-tailed 
0.95 confidence region for the hypothesis that Ĥ1 ≤ ĤSW ML, thus for these leopard seals we can reject the 
null hypothesis and infer that the structure of the calls is not fully described by a 1st order Markov model.

The only mammal species for which a SWML entropy estimate has been reported (alongside i.i.d. and 1 st 
order Markov estimates) are humpback whales, with entropy estimates of 0.19–0.7954,55. Mean 1st order Markov 
estimates have been reported for bottlenose dolphins (with both whistles at 1.15 bits17 and ‘bray’ calls at 1.5 
bits18) and squirrel monkeys at 1.23 bits11 which we have compared to the leopard seal entropy estimates (Fig. 4). 
Direct comparison between leopard seal entropy estimates and those of the bottlenose dolphins and squirrel 
monkeys is made challenging due to sample size limitations and the lack of bias correction11,17,18. The negative 
bias inherent to both the i.i.d. and Markov models suggests that the true entropy values are higher than the mean 
values presented.

When we compare leopard seals with their musical human counterparts (compared specifically to the 
progression of musical notes in the melody), the entropy estimates of leopard seal songs are higher than those of 
simple nursery rhymes, indicating they have more randomness. For nursery rhymes, the 39 tunes selected from 
‘The Golden Song Book’ by Katherine Tyler Wessells were found to have a mean entropy estimate (modelled as 
an i.i.d.) of 0.82156, within the lower range of the leopard seal estimates (Fig. 4). While the nursery rhymes were 
not explicitly calculated as the 1st order Markov model entropies, these values are expected to be significantly 
lower54. In contrast, the leopard seal calling bouts are more structurally constrained and predictable compared 
to the music by the Beatles43 which ranged from 2.128 to 3.319 bits. They are further constrained still when 
compared to the best entropy estimates for music by Classical composers (including Hasse, Mozart, Schubert, 
Hadyn and Mendelssohn) at 3.03 to 4.84 bits42,45  Baroque composers (including Bach, Corelli, Handel and 
Telemann) at 3.68 to 4.19 bits42 and Romantic composers (including Strauss and Schumann) at 3.050 to 3.397 
bits45,55 (Fig. 4).

Fig. 2.  Typical behaviour of leopard seal vocalisations - the male will sing a sequence of sounds underwater 
before returning to the surface to breathe (represented by a ‘Z’) and repeats this cycle for hours at a time. The 
sequence of sounds is then converted to a symbolic code (Microsoft PowerPoint Version 2505).
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The best entropy estimate values (SWML) are higher in the leopard seal song than those of the humpback 
whale song (Fig. 4) suggesting there could be more information within the temporal structure of the leopard seal 
sequences. For the humpback whales, information such as individual identity57 or advertisements of fitness58 
could be conveyed through different means such as frequency and temporal characteristics58 or the repetition 
of motifs57 but the structure of the song is more predictable53,56. Kershenbaum et al. suggest that information 
can be encoded in sequences through six paradigms: repetition, diversity, combination, ordering, overlapping 
and timing59. For leopard seals, the entropy estimates suggest that the structure itself is crucial for conveying 
information, i.e. that ordering is the method by which information is conveyed. This is consistent with the notion 
that stereotyped calls are better suited for long distance communication amongst a widely dispersed population, 
as the characteristics are less likely to be lost due to signal degradation, frequency selective fading or Doppler 
shift23.

Change in entropy can be normalised relative to the alphabet size through an estimation of redundancy. 
Redundancy estimates were calculated from each of the three estimates of entropy for each leopard seal (Fig. 5). 
The highest estimates of redundancy, typically resulting from the SWML entropy estimate, ranged between 0.51 
and 0.72 per song52,53. This is lower than that of humpback whales, which range from 0.81 to 0.96 per song53,56. 
This indicates that the leopard seals vocalisations, while strongly constrained, are less structurally constrained 
than the humpback whales.

Recording lengths of the leopard seal calling bouts ranged from 151 to 1183 units, and we used a linear 
regression to test whether the length of the calling bout had an impact on the estimate of entropy. Data was 
normally distributed and there was no evidence of heteroscedasticity. We found that the recording length 
(sequence length) had no influence entropy estimate (linear regression, p = 0.914, R-squared = 0.000498, Fig. 3). 
From this result we can infer that the recording length limits we imposed (discarding all recordings < 150 units 
in length) were sufficient to provide confidence in our estimates of the leopard’s seal vocalisation entropy.

Vocal behaviour varies amongst size classes of male leopard seals during the breeding season. For the smaller 
and potentially less fit males, the further along in the season they are, the fewer calls their sequences may 
contain, due most likely to the fatigue associated with this behaviour28. In contrast, the larger males maintain a 
more consistent call rate that does not vary throughout the breeding season28. Future studies would benefit from 
examining this relationship with a larger sample size.

ID t l Â Hmax Ĥ0
Ĥ0
(BC) Ĥ1

Ĥ1
(BC) ĤSW ML (n) ρ o ρ 1 ρ SW ML

92 A 90 224 4 2 1.58 1.59 0.68 0.72 0.63 (12) 0.21 0.64 0.68

92B 135 419 6 2.58 2.25 2.26 1.38 1.43 1.38 (16) 0.13 0.45 0.46

92D 135 467 6 2.58 2.13 2.14 0.97 1.01 0.87 (50) 0.17 0.61 0.66

92G 180 537 6 2.58 2.12 2.12 0.96 1.00 0.80 (44) 0.18 0.61 0.69

92 H 90 254 6 2.58 2.26 2.28 1.07 1.15 1.05 (27) 0.12 0.55 0.59

92I 360 833 6 2.58 2.24 2.24 1.17 1.20 1.04 (38) 0.13 0.54 0.60

92P 360 1183 6 2.58 2.13 2.14 0.98 1.00 0.81 (50) 0.17 0.61 0.69

93 A 45 169 5 2.32 1.58 1.60 0.82 0.91 0.75 (28) 0.31 0.61 0.68

93T 45 151 6 2.58 2.02 2.05 1.13 1.28 1.34 (48) 0.21 0.51 0.48

U11 90 230 6 2.58 2.36 2.38 1.27 1.36 0.88 (41) 0.08 0.47 0.66

U13 90 255 6 2.58 2.17 2.19 1.00 1.09 0.98 (49) 0.15 0.58 0.62

U14 90 222 6 2.58 1.96 1.97 0.91 1.01 0.85 (45) 0.24 0.61 0.67

U2 45 416 6 2.58 2.24 2.25 1.38 1.43 1.37 (16) 0.13 0.45 0.47

U20 45 163 6 2.58 2.08 2.10 1.17 1.30 1.25 (17) 0.19 0.50 0.51

U24 90 177 6 2.58 2.08 2.10 0.85 0.97 0.82 (46) 0.19 0.62 0.68

U25 90 238 6 2.58 2.05 2.06 1.05 1.14 1.01 (50) 0.20 0.56 0.61

U26 90 250 6 2.58 2.07 2.08 1.09 1.17 1.04 (46) 0.19 0.55 0.60

U30 90 160 6 2.58 2.36 2.38 1.21 1.34 1.33 (44) 0.08 0.48 0.49

U31 45 381 6 2.58 1.87 1.88 1.09 1.15 0.93 (37) 0.27 0.55 0.64

U32 45 323 5 2.32 1.89 1.90 0.92 0.96 0.65 (50) 0.18 0.59 0.72

U4 135 313 6 2.58 2.22 2.32 1.10 1.17 0.83 (49) 0.14 0.55 0.68

U7 450 946 6 2.58 2.22 2.22 1.24 1.26 1.24 (50) 0.14 0.51 0.52

U79 90 303 6 2.58 2.05 2.06 0.89 0.96 0.75 (26) 0.20 0.63 0.71

U81 270 709 6 2.58 2.03 2.03 0.95 0.98 0.77 (49) 0.21 0.62 0.70

U82 360 706 6 2.58 2.14 2.14 1.12 1.15 1.06 (48) 0.17 0.56 0.59

U9 180 407 6 2.58 2.25 2.26 0.95 1.00 0.89 (34) 0.13 0.61 0.66

Table 1.  Male Leopard seal song parameters and modelled estimates of song entropy. The recording length 
T (min), length of the observed sample calling sequence l, observed alphabet size Â, entropy estimations 
(maximum, i.i.d. (with bias correction), 1st order Markov (with bias correction) and SWML (with window size 
and bias correction)) and redundancy ρ  for each estimator are recorded for each individual seal.
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Conclusion
Leopard seal song remains an enigmatic behaviour, but by examining the structure of the sequences we can shed 
light on the means by which information is encoded. From the estimates of entropy, we can infer that the leopard 
seal calling bouts have more sequential structure than can be fully captured by a 1st order Markov model. While 
the exact purpose of the leopard seal’s singing behaviour is unknown, there is a significant relationship between 
the typical vocal behaviour of a phocid seal and the nature of its mating system23,60. Pinniped species that breed 
at higher densities have more calls in their vocal repertoire than those that breed at low densities23which could 
mean that structure plays a more significant role in advertisements of fitness or individual identity for leopard 
seals as their vocal repertoire contains fewer calls. Similarly, song fulfils a variety of biological functions across 
many mammalian taxa, including humans. Comparing the leopard seal entropy estimates to other mammalian 
song systems (including human music) allows us to make inferences on the behavioural significance of sequence 

Fig. 3.  Results of bootstrapping analysis: (a) the first hypothesis test comparing the i.i.d. to the 1st Order 
Markov model and (b) the second hypothesis test comparing the 1st Order Markov to the SWML entropy 
estimates. The horizontal bars indicate the lower bound of the 95% confidence interval for the bootstrapped 
sequence entropy estimates. Leopard seals are numbered from 1 to 26 in order of the length of their call 
sequences, ranging from 151 to 1183 units.
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structure. The entropy estimates of the leopard seals being higher than those of the humpback whale suggests 
that there is comparatively less predictability within the leopard seal sequences, and as such more information is 
encoded in the structure of the sequences. From this we can infer that structure is necessary for the leopard seals to 
convey information over long distances, as it is less susceptible to degradation than other acoustic characteristics. 
This is consistent with previous observations of signalling identity in leopard seals vocal sequences31.

Using sequence structure to communicate information about the caller’s identity has been observed in 
other marine mammals - individual identity is coded into some acoustic coda sequences of sperm whales61–63. 
Individual leopard seals were observed to retain their particular sequences over three days31which suggests that 
the sequences are stable and could encode information about the singer’s identity. The presence of individual 
identity coding within leopard seal calling sequences should be investigated in future. While the probability laws 
which govern the pattern of these acoustic sequences are unknowable to us, by modelling the sequence we can 
gain valuable insight into the acoustic behaviour of leopard seals.

Fig. 4.  Comparison of entropy estimates of the Eastern Antarctic male leopard seals with that of the humpback 
whales (Hawaiian53 and Australian56), bottlenose dolphins17,18 (‘bray’ call estimate indicated by *) and squirrel 
monkeys11 and entropy estimates of melodic contour of various music styles (songs by the Beatles43 various 
Classical42,45 Baroque42 and Romantic45,55 composers, and children’s nursery rhymes54). Entropy estimation 
methods are indicated by colour.
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Methods
Study area and data collection
Recordings were made from November to January in 1992 to 1994 and 1997 to 1998, in the Davis Sea, Eastern 
Antarctica (from 68◦ 25′ S, 77◦ 10′ E to 68◦ 35′ S, 77◦ 50′ E). The recordings were made between 1600 and 
0300 along the edge of the fast ice, to correspond with the period of highest vocal activity21,31. Recordings were 
made on 45-minute tapes with a Sony WMD6C audio-cassette recorder, a Brüel and Kjær 8103 hydrophone and 
a custom preamplifier, and this system had a frequency response from 35 to 15 000 Hz ± 3 dB. The hydrophone 
was deployed 6 m below the surface of the water. Individual seals were identified with an oil-based paint in 
distinctive patterns to maximise the likelihood of recording the same seal. Calls were grouped by month 
(November, December or January).

Call classification
Recordings were excluded when two animals were observed to be calling simultaneously or when the signal-to-
noise ratio (SNR) was too low. Terminology often varies across taxa, as such in this study we define a ‘call’ to be 
a single sound unit, a ‘calling bout’ to be an unbroken string of calls delivered underwater between successive 
returns to the surface, and a ‘song’ to be a session of successive calling bouts. The discrete call types used in this 
analysis were identified in Rogers et al., 1995. Five distinct call types were identified in these recordings and 
annotated with the following symbol: high double trills (H), medium single trills (M), low descending trills (D), 
low double trills (L) and a hoot with a low single trill (O). This classification is consistent with the systems defined 
in20,31. A break between calling bouts, identified by a period of silence between bouts, was marked with a ‘Z’ in 
the sequence. Spectrograms of calls were produced using Visualization Software (LLC version 16.0) with a with 
a 4096 point fast Fourier Transform, 75% overlap, 50 s window, yielding 15.625 Hz frequency resolution. Calls 
were classified manually by a single observer and then checked by a second blind observer. To avoid pseudo-
replication, only one recording of underwater vocalisations by each individual seal was included in the analysis. 
If the vocalising leopard seal’s identity was unknown (either because the seal had not been marked or because 
the seal had moved into the water prior to the arrival of the research team), the sequences were compared with 
those in Rogers and Cato 200231 to eliminate recordings of the same individuals.

Entropy analysis
This entropy analysis method is derived from the method detailed in Suzuki et al., 2006. The leopard seals 
can be considered an information source (or process) X  which produces a sequence of outputs dictated by 
the source’s probability law. If Xi is a random variable representing the source output at time i, where Xj

i

denotes (Xi, Xi+1, . . . , Xj) , i ≤ j, then a particular sample output (i.e. vocalising bout) of the random 
variable is denoted by xj

i . The probability distribution P r {X = x} is denoted by p (x). The source can be 

Fig. 5.  Comparison of estimates of redundancy from three entropy estimators (i.i.d., 1st Order Markov and 
SWML) for each individual leopard seal by sequence length.
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considered to be stationary if all joint probability distributions are time invariant and can be considered ergodic 
when all outputs possess the same statistical properties. The Shannon entropy of a source can be calculated 
directly from the probability distribution of the source. However, since the true probability distribution of a 
vocalising animal is unknown, the entropy can be estimated by assuming a model distribution. The entropy 
of a sequence is maximised when all outcomes are equally likely. For example, a fair die has higher entropy 
or ‘randomness’ than a biased die, which is more predictable and thus lower entropy. Assuming that all of the 
sounds an animal can produce are equally likely creates an estimate of the maximum entropy.

The first model is the independent identically distributed (i.i.d.) model, which assumes that there is no time 
structure to the source (i.e. each output has no dependence on previous outputs). To calculate the empirical 
distribution from a sample sequence xl

1 of length l, the probability of each output is calculated as:

	
p̂ (a) = |{i : xi = a, i ∈ [1, l]}|

l
� (1)

Where the estimated alphabet Â is

	 Â = {i : xi ∈ [1, l]}� (2)

The entropy can then be estimated as

	
Ĥ0 = −

∑
a∈ Â

p̂ (a) log2p̂ (a)� (3)

The second model estimated is a first order Markov model, which assumes that each output is dependant only on 
the output that immediately preceded it. The empirical joint and conditional probabilities of each pair of possible 
outputs are calculated from the observed sample sequence.

	
p̂ (a1, a2) = |{i : xi−1 = a1, xi = a2, i ∈ [2, l]}|

l − 1
� (4)

	
p̂ (a1|a2) = |{i : xi−1 = a1, xi = a2, i ∈ [2, l]}|

|{i : xi = a1, i ∈ [2, l]}| � (5)

The entropy estimate can then be calculated as

	
Ĥ1 = −

∑
a1,a2∈ Â

p̂ (a1, a2) log2p̂ (a1|a2) = −
∑

a1,a2∈ Â
p̂ (a1, a2) log2p̂ (a1, a2) − Ĥ0� (6)

This concept can be similarly extended for higher order Markov models, i.e. an nth order Markov model assumes 
that the output is dependent on the previous n symbols38. As the alphabet of the seals consisted of a maximum 
of 6 symbols30  there are 36 theoretical transitions that are possible within the sequences. The data must be 
sufficiently long enough to obtain accurate estimates of the probabilities in Eqs. (4) and (5), and thus a minimum 
sequence length of 10 × 36 = 360 units would be appropriate to calculate an empirical probability distribution. 
However, in practise we observe significantly less transitions (e.g., two consecutive “Z” symbols are impossible 
in the sequence as a “Z” indicates a period of unlimited silence), and as such we set the minimum sequence 
length to be 150 symbols and discarded any sequences below this length. Higher order Markov estimates were 
not calculated due to these sample size constraints.

The third entropy estimator used in this study was a model-free non-parametric entropy estimator, the Sliding 
Window Match Length (SWML) entropy estimation. This entropy estimate is desirable as it is applicable to a 
broader class of sources and converges rapidly in sequence length l, meaning that it produces a good estimate of 
the entropy from a relatively short sequence of data. Wyner and Ziv calculate the SWML entropy estimate for a 
stationary ergodic source with vanishing memory as:

	
E [Li (n)]

n
= 1

H
+ O (1)

logn
� (7)

Where n is equal to the width of the sliding window64. For a window size n and a sequence index i, the match 
length Li (n) is defined as

	 Li (n) = max
{

L : xi+L−1
i = xi−k+L−1

i−k , k ∈ [1, n]
}

.� (8)

For a window of size n immediately preceding a symbol xi in the observed sequence at index i, the match 
length is the longest string of symbols inside the window which matches the symbols following xi. The match 
length is related to the source entropy via the following Eq. 

	
lim

n→ ∞

Li (n)
logn

= 1
H

with probability one.� (9)

The SWML entropy estimator for a stationary ergodic process is defined as follows, where n is the specified fixed 
window size and n′

i  is the effective window size (defined as such to remove errors in edge cases when i < n).
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ĤSW ML (n) = l

[∑
l
i=3

Li (n′
i )

logn′
i

]−1

� (10)

where

	 n′
i = min {i − 1, n} .� (11)

Even when sequence length requirements are met, both the i.i.d. and Markov models exhibit a negative bias due 
to Jensen’s Inequality38,51 and so we have bias corrected the entropy estimates using the Eqs. (12) and (13)65.

	
Ĥ ′

0 = Ĥ0 + 0.72

∣∣∣Â
∣∣∣ − 1

l

� (12)

	
Ĥ ′

1 = Ĥ1 + 0.72

∣∣∣D̂
∣∣∣ −

∣∣∣Â
∣∣∣

l

� (13)

With Â and l as defined in Eq. (1), and where D̂ is equal to the number of all observed diagram transitions 
(pairs of symbols). In contrast, the SWML exhibits a positive bias which cannot be analytically accounted for, 
although it is known to be O(1)

logn , and thus vanishes with increasing window size n53.
Two hypotheses were tested to determine whether the leopard seal vocalisations contained time structure 

that was captured by the Markov or SWML entropy estimates. The first hypothesis test compared the entropy 
estimates from the i.i.d. and 1 st Order Markov models against each other, where the null hypothesis was that the 
source does not have time structure (i.e. knowing the previous symbol does not reduce uncertainty about the 
current symbol). Thus, the null hypothesis predicts that Ĥ0 = Ĥ1 (significance level α = 0.05). The alternate 
hypothesis is then Ĥ0 > Ĥ1, and this is a one-sided test as further constraining the system cannot increase the 
uncertainty. Similarly, we compared the 1 st order Markov model and the SWML estimate such that the second 
null hypothesis predicts that Ĥ1 = ĤSW ML, i.e. knowing more than one previous sound in a call sequence 
does not increase our ability to predict the next sound (thus the alternate hypothesis is Ĥ1 > ĤSW ML).

For each individual leopard seal, an empirical i.i.d. probability distribution was obtained by observing the 
occurrence of each sound in the call sequence. To establish bootstrap confidence bounds for the first hypothesis 
test, we simulated a set of 1000 bootstrap i.i.d. call sequences of equal length to each seal’s original recorded 
vocalisation, drawn from the empirical i.i.d. probability distribution. Next, we estimated the first order Markov 
model entropy for each of the synthetic sequences and calculated a 95% one-sided confidence interval for this 
dataset. If the 1 st order Markov entropy estimates of the leopard seal calling bouts are below this confidence 
bound, the result is significant, and we can reject the null hypothesis. Similarly, we established the confidence 
bounds for the second hypothesis test by creating 1000 sequences generated by the empirical first-order Markov 
model estimated from the sequence after counting all sequential pairs of sounds in each leopard seal calling 
bout. If the SWML entropy estimate is lower than the confidence bound of the bootstrapped Markov sequences, 
the first-order Markov model does not capture all of the structure in the sequence. Several studies of animal 
acoustical communications have compared entropy estimates from different order Markov models11,17,18 though 
only Suzuki et al. and Miksis-Olds et al. applied the SWML estimator to obtain a nonparametric bound on the 
entropy53,56.

The redundancy of each observed sequence is calculated from the entropy estimates using the Eq. (14).

	
ρ = Hmax − Ĥ

Hmax
� (14)

The estimates of redundancy were calculated from the entropy estimator with the consistently lowest estimates 
of entropy.

Data and code availability
The observational data and the analysis code that support the findings of this study are available in Dryad with 
the identifier: ​h​t​t​p​:​​​/​​/​d​a​t​a​d​r​y​a​​d​.​o​r​​g​/​s​h​​a​​r​e​/​b​​z​l​1​C​1​i​​r​9​U​m​W​P​​a​v​i​B​H​​Z​V​8​S​U​q​5​X​t​X​Y​s​D​Z​1​H​W​0​j​5​5​G​V​b​w. Data will 
be made publicly available in Dryad upon publication. Annotated leopard seal sequence files are also provided 
as supplementary information files. Correspondence and requests for materials should be addressed to Lucinda 
Chambers (lucinda.chambers@unsw.edu.au).
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