
Optimal planning of integrated 
nuclear-hybrid renewable energy 
systems for electrical distribution 
networks based on artificial 
intelligence
Samira M. Nassar1, A. A. Saleh1, Ayman A. Eisa1, E. M. Abdallah2 & Ibrahim A. Nassar2

In recent years, small-scale nuclear power plants, particularly micro nuclear reactors, have emerged 
as viable alternatives, gaining importance in the technical and economic operation of electrical 
distribution systems. As consumer demand for electricity continues to rise, the use of renewable 
energy sources and nuclear energy has become essential, especially as dependence on conventional 
energy sources grows increasingly unsustainable from an environmental standpoint. In this study, 
mathematical models for various Hybrid Energy Systems (HES) are developed using both single and 
multi-objective functions. Active Power Loss (APL) is selected as the first single-objective fitness 
function, while the total Net Present Cost (NPC) serves as the second. These two objectives are also 
considered together in a multi-objective optimization framework. The White Shark Optimizer is 
employed to determine the optimal configuration that achieves an improved voltage profile, reduces 
power losses, and minimizes both cost and greenhouse gas (GHG) emissions. The proposed modeling 
and simulations are conducted using MATLAB software, and the optimization methodology is applied 
to three types of HES on two standard radial distribution networks; the IEEE 33-bus and IEEE 69-bus 
systems. The three HES configurations analyzed are; Nuclear-Renewable Hybrid Energy System (N-R 
HES), Stand-alone Fossil Fuel-based Thermal Generators (FFTGs), and Renewable-Fossil Fuel Hybrid 
Energy System. Among the three, the N-R HES demonstrates the most favorable between system 
performance, cost efficiency, and environmental impact. Results and analysis prove that N-R HES is 
the most effective solution for sustainable energy generation and decarbonization, offering the lowest 
NPC and APL.
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N-R HES	� Nuclear-renewable hybrid energy system
O&M	� Operating and maintenance
PV	� Photo voltaic
RESs	� Renewable energy sources
SMRs	� Small modular reactors
WSO	� White shark optimizer
WTG	� Wind turbine generator

Electricity is essential for both economic growth and global development. As populations increase and economies 
advance, the demand for electricity continues to rise. In recent years, the world has encountered two significant 
challenges in addressing this high demand: finding ways to meet it without exhausting finite energy resources, 
primarily fossil fuels, and generating electricity in an environmentally responsible manner1.

Most electricity today is generated from traditional sources such as coal, gas, and oil. Using these resources to 
produce power often leads to increased greenhouse gas emissions in the environment. As a result, researchers are 
conducting studies to reduce the environmental impact of generating electricity from conventional sources2,3.

In response to growing energy demands, the world is actively seeking alternative sources of energy that can 
meet current needs while ensuring their availability for future generations. Renewable energy sources (RESs), like 
wind, ocean energy, solar, hydropower, and geothermal, are naturally abundant and are increasingly recognized 
as sustainable methods for generating electricity4,5. The weather directly impacts the availability of renewable 
energy sources. As a result, RES often struggle to provide a consistent energy supply over extended periods. 
To meet base load demands and to support RES during times of unavailability, additional energy sources are 
necessary. Since RESs are intermittent and long-term energy storage is not economically viable, this dependence 
leads to reduced energy production from RESs, thereby increasing the reliance on diesel engines to fulfill most 
energy demands.

As a result, the diesel engine will supply most of the energy, while renewable energy will account for only a 
small fraction. Consequently, integrating fossil fuel with renewable energy-dependent energy systems is not an 
effective strategy for reducing greenhouse gas emissions. To decrease these emissions, nuclear power is essential 
for electricity generation, as renewable energy sources are limited. To address the unpredictability of renewable 
energy, it is important to combine nuclear power with these renewable sources6.

Nuclear energy produces no pollutants during operation; however, some pollutants are generated during the 
mining, transportation, construction, and decommissioning phases. A modern alternative to fossil fuel thermal 
generators (FFTG) is the integration of Nuclear Power Plants (NPPs) with renewable energy sources (RES). This 
combination enhances the resilience, continuity, and reliability of the energy system7. Traditional NPPs require 
large installation sites and involve high initial costs. In contrast, Micro Modular Reactors (MMRs) provide 
a more favorable alternative by reducing capital expenses and eliminating the need for extensive installation 
space. MMRs offer several advantages over traditional NPPs, including shorter construction times, flexible and 
straightforward designs, and suitability for small-scale power production systems8.

The International Atomic Energy Agency (IAEA) classifies NPPs based on their power ratings. NPPs rated 
below 300 megawatts electric are considered “small” NPPs, while those with power ratings of up to 700 MWe 
are classified as "medium." Together, small and medium NPPs are often referred to as "small modular reactors" 
(SMRs)9.

The MMR (Micro Modular Reactor) is classified as a small-modular reactor, with a rating power ranging 
from 1 to 50 MWe. It provides a cost-effective, safe, and emission-free energy source suitable for off-grid and 
on-grid applications. Its compact footprint and modular design significantly influence energy system modeling. 
Developed in factories, the MMR enhances power generation capabilities and includes high-level safety features.

Moreover, the reactor simplifies construction, offers flexibility, and is easily transportable, requiring only 
a small installation area. As a result, the MMR is an ideal option for remote industries, transportation electric 
power, and backup power for large-scale production plants10.

Therefore, the necessary development of power plants will decrease by substituting FFTG with these types of 
micro reactors, which are currently being used with renewable energy sources either as the primary electricity-
generating source or as an alternate source of power11.

Hence, combining renewable and nuclear energy into a single hybrid energy system can significantly enhance 
overall performance. This approach allows a nuclear plant to operate at full capacity while simultaneously 
meeting the demand for flexible generation rates. Additionally, it produces low-carbon products and energy 
services. By integrating renewable and nuclear energy sources, both of which emit minimal carbon dioxide 
during power generation, this system can effectively reduce overall carbon dioxide emissions12. Currently, a 
scientific report on nuclear-renewable integration has recently been published by the International Atomic 
Energy Agency (IAEA). This document explores the role of small-modular reactors in the hybridization of 
nuclear and renewable energy. It also addresses national goals for renewable and nuclear energy, as well as the 
opportunities and challenges associated with integrating these two energy sources13. Building on this context, 
the present study aims to investigate Hybrid Energy Systems (HES) through a comprehensive assessment that 
includes mathematical modeling, system configuration, component sizing, and performance analysis. Three 
different HES configurations are modeled; (1) the Stand-alone Fossil Fuel-based Energy System, (2) the Fossil 
Fuel–Renewable Hybrid Energy System, and (3) the Nuclear–Renewable Hybrid Energy System (N-R HES). For 
the first time, the White Shark Optimizer (WSO)a recent meta-heuristic algorithmis employed to optimize these 
configurations for solving both single and multi-objective functions.

The single-objective optimization focuses on minimizing the Net Present Cost (NPC) while also enhancing 
bus voltage profiles and reducing Active Power Loss (APL). Meanwhile, the multi-objective optimization 
simultaneously targets the minimization of NPC and APL, along with improvements in voltage profile. This multi 
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objective optimization strategy represents a novel contribution, as it addresses both technical and economic 
aspects, unlike many prior studies that primarily emphasize economic performance indicators.

A comparative performance analysis of the three HES configurations is performed using multiple techno-
economic key performance indicators (KPIs), including APL, greenhouse gas (GHG) emissions, and NPC. The 
simulation is performed on two standard radial distribution test systems: the IEEE 69-bus and IEEE 33-bus 
networks. Results indicate that the Nuclear–Renewable Hybrid Energy System (N-R HES) outperforms the other 
configurations, offering significant reductions in GHG emissions while enhancing both technical and economic 
viability.

System modeling
This study evaluates the costs associated with Diesel Generators, Micro Modular Reactors (MMRs), and 
Renewable Energy Sources (RES), while also accounting for active power losses to improve overall network 
performance. It considers both the financial aspects of these energy systems and the practical constraints 
involved in their implementation. The detailed steps of the study are outlined in the supplementary material 
titled "Overview of Study Steps".

The analysis focuses on three system configurations:

Fossil fuel and renewable hybrid energy systems
Standalone fossil fuel energy systems
Nuclear–renewable hybrid energy systems (N-R HES)

Key performance indicators (KPIs) related to cost and power losses for each configuration are modeled using 
MATLAB 2020. The White Shark Optimizer (WSO) algorithm is utilized to optimize all systems, with the 
primary objective of identifying the configuration that minimizes both Active Power Loss (APL) and Net 
Present Cost (NPC).

Solar energy
The solar power output from solar PV is influenced by ambient temperature, the surface area of the solar 
PV system, and solar irradiance (SR)14,15.The solar PV power generation is determined using the following 
equations:

	
pPV (t) = NPV × pR,PV ×

( SR
SRref

)
× [1 + NT (TC − Tref)]� (1)

	
TC = Tair +

((TNO − 20
800

)
× SR

)
� (2)

where,pR,PV, SRref, NT, and NPV denote the rated power of the PV panel, reference solar radiation (1000 W/
m2), module temperature coefficient (− 3.7 × 10^3 (1/°C)), and the number of PV panels, and Tref indicates 
the reference (25°C),TNO and Tair are normal and ambient operating cell temperature, respectively. Technical 
specifications of the solar PV module utilized in the study are provided in Table 1 10.

Wind power
One effective energy source that can generate electricity without using fuel is a wind turbine generator. The 
output power of a wind turbine can be calculated using the following formula16:

	
PW (t) =

{ 0V < Vcin, V > Vout

Pr ×
(V(t)−Vcin

Vr−Vcin

)
Vcin ≤ V (t) ≥ Vr

Pr Vr ≤ V (t) ≥ Vout

� (3)

where,Pr, and PW (t) denote the wind turbine’s rated power (kW) and the power generated (kW) at each time 
step (t), respectively., Vr indicates the calculated wind speed (m/s) at the hub height at “t” step time and, Vcin 

Characteristics Values

Capital cost ($/kW) 640

Lifetime (years) 25

Efficiency of the MPPT unit (%) 100

O&M cost ($/kW) 640

Reference efficiency of PV panel (%) 24

Nominal operating cell temperature (°C) 45

Replacement cost ($/kW/Year) 12

PV panel reference temperature(°C) 25

Temperature coefficient (1/°C) 0.0041

Table 1.  The technical specifications of solar photovoltaic (PV) systems.
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is cut-in speed of the wind turbine, V (t) is the wind turbine rated speed (m/s)and Vout is cut-out speed (m/s), 
sequentially.The technical specifications of the wind turbine used in the study are presented in Table 2 16.

Diesel generator
This study compares the proposed N-R HES with traditional energy systems that rely on fossil fuel-based 
generators (FFG). The costs associated with a diesel generator can be generally classified into three main 
parameters: capital cost, maintenance cost, and operating cost. The decommissioning cost is considered 
negligible17. The technical specifications of the diesel generator are presented in Table 3 18.

Small and micro modular reactors
SMRs are nuclear reactors of the fourth generation, capable of producing up to 300 megawatts of power. Within 
this category, MMRs are a type of small-scale fourth-generation nuclear reactor with outputs ranging from 
1 to 50 megawatts electrical. MMRs can utilize Combined Heat and Power (CHP) systems, allowing them to 
generate both thermal energy and electricity simultaneously. They have the potential to serve as a reliable source 
of electricity in isolated locations not connected to any electrical grid. Several companies are actively developing 
small and micro-scale nuclear reactors, and there are several advantages of MMRs over conventional large-scale 
nuclear power plants. First, MMR designs prioritize safety and ease of use, incorporating built-in safety features, 
sealed cores, and modular construction. They are designed to be simple to operate and can be constructed 
quickly. MMRs are produced at a factory, then packaged and transported to their designated locations. Some 
designs are self-contained and require minimal human intervention. The scale and risk associated with MMRs 
are similar to those of research reactors, which have a long history of safe operation19.

The initial deployment of a new technology typically incurs higher installation costs compared to subsequent 
deployments. As experience is gained and lessons are learned, these costs tend to decrease. The experience 
gained from operating production plants, is referred to as the learning rate. The "one-factor learning curve" 
formula can be used to illustrate the relationship between the lessons learned and the reduction in technology 
costs18:

	 LR = 1 − 2R� (4)

where, R denotes the cost reduction rate (%) and LR presents the learning rate. The actual rate of learning 
varies from case to case. The location and complexity of a project’s design determine the unique costs associated 
with it, including the fixed costs of equipment related to a specific learning rate. As the learning rate increases, 
the overnight capital cost of the MMR units decreases. The capital costs associated with multiple units can be 
determined using the following formula18:

	 CT u = CT 1st × NR
u � (5)

Characteristics Values

Generator size (kw) 1000

Lifetime (years) 2.5

Capital cost ($/kW) 800

Fuel cost ($/kWh) 202

O&M cost ($/kW/Year) 35

CO2 emissions (kg /MWh) 700

Table 3.  The technical specifications of the diesel generator.

 

Characteristics Values

Nominal capacity (kw) 3600

Lifetime (years) 25

Capital cost ($/kW) 1130

Cut-in speed (m/s) 3.5

Anemometer height (m) 50

Rated speed (m/s) 12

Hub height (m) 45

Cut-out speed (m/s) 25

O&M cost ($/kW/Year) 48

Power law exponent 1/7

Replacement cost ($/kW) 1130

Table 2.  The technical Specifications of wind turbine generator.
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where, CTu is the MMR unit cost of Nu number unit ($), and CT1st is the 1st MMR unit cost ($). Table 4 shows 
the detailed MMR input parameters19.

As the MMRs are produced in the factory, it is expected that the learning curve will be between 5 and 
15%. For this study, an average learning rate of 10% is considered. Additionally, it is anticipated that as more 
operational experience is gained, both fuel costs and operations and maintenance (O&M) costs will decrease. 
However, the analysis excludes the reduction in O&M and fuel costs to avoid unnecessary complications, as 
these expenses constitute only a small portion of the overall costs. The primary factor influencing the value of 
MMR is the overnight expenses.

In the MMR capital cost study, both licensing costs and site engineering costs are included. Due to the variety 
of manufacturers and technologies, refurbishment costs may not be factored into a fixed economic model for 
MMRs. Therefore, refurbishment costs are instead included in the fixed O&M cost.

Decommissioning costs accrue while the MMR is in operation, and these costs are regarded as being equally 
distributed over the project’s duration.

The total cost associated with transporting the fuel module from the factory to the designated site, as well 
as installing it, is known as the refueling cost. The MMR fuel cost is deducted from the refueling cost since it is 
already included in the overall fuel costs.

Nuclear power plants, including microreactors, can operate in two different modes: base load and load-
following. In base load mode, the microreactor (MMR) consistently delivers its maximum power level. In 
contrast, a load-following microreactor adjusts its output based on short-term or long-term variations in system 
demand.

When traditional base load systems, like NPPs, are adapted to manage fluctuating demand, it increases wear 
and tear on the system and raises O&M costs. The amount of electricity generated does not affect the costs of fuel 
or O&M. Consequently, load-following, which can lead to reduced electricity output, is considered uneconomic 
and very inefficient19.

In contrast, base-load mode operates simply and efficiently, consistently supplying a specific quantity of 
energy over a given period. Variable renewable energy sources and dispatchable generating sources provide 
for the remaining demand in HES. The ideal configuration, availability, and overall system cost all influence 
a suitable energy mix. Furthermore, load-following NPPs are necessary if nuclear generation accounts for a 
significant portion of energy contribution. The overall contribution of nuclear energy to HES is diminished 
when combined with renewable energy sources. This research focuses on the base-load operation of MMRs, 
examining all of the aspects mentioned above 18.

Key performance indicators (KPIs)
The feasibility is assessed by comparing various energy systems using the KPIs. The following economic, 
technical, and environmental KPIs are used in this study.

Economical KPIs (net present cost)
The primary distinction between Net Present Value (NPV) and Net Present Cost lies in their respective signs. 
NPV represents all future cash flows present value associated with an investment, including both positive and 
negative amounts, calculated using a discount rate. For investors, a lower NPC indicates a greater potential 
profit20. The NPC can be determined using the following formula.

	 Net Present Cost (NPC) = − Net Present Value (NPV)� (6)

	
NPV = Cashflow

(1 + rld)t
− Initial Investment� (7)

	
rld = i − f

1 + f
� (8)

Characteristics Values

Reactorsize (kWe) 1000

Lifetime (years) 40

Capital cost ($/kWe) 15,000

lifetime of the core (years) 10

fuel Cost ($/MWh) 10

CO2 emissions (kg /MWh) 4.55

O&M Cost ($/kWe) 350

Capacity factor (%) 95

Refueling cost of fuel module (million $) 20

Plant efficiency (%) 40

Decommissioning cost ($/MWh) 5

Table 4.  Technical specifications of MMR.
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where, rld denotes the real discount rate (%), f is nominal discount rate (8%), i indicates inflation rate (2%), 
and t is the number of the time periods, respectively. This analysis takes into account the real discount rate by 
considering the impact of inflation21. The following formula can be used to determine the NPC over lifetime 
project.

	
NP V =

n∑
t=0

Rt

(1 + rld)t � (9)

where, n denotes the project lifetime and Rt indicate the inflow and outflow of net cash over a specific time 
period.

Technical KPIs (active power loss)
Loss minimization is one of the key operational prerequisite in RDS for improving the efficient use of (WTG and 
PV) energy22. In this study backward-forward sweep approach is performed for load flow solution23.

	

PTloss =
nbr∑

K(mn)=1

R(K)

[
P2

(n) + Q2
(n)∣∣V(n)

∣∣2

]
� (10)

where, nbr denotes the branches number of network, k is the index branch between buses m and n,PTloss is the 
active power loss, P(n) is the load real power, Q(n) is load reactive power, V(n) is the magnitude of the voltage 
at nth bus.

Environmental KPIs (CO2 gas emissions)
Energy producers release various pollutants over their operational lifetime, including sulfur dioxide nitrogen 
oxides, particulate matter,carbon monoxide, unburned hydrocarbons (UHC), and carbon dioxide. This study 
focuses specifically on carbon dioxide (CO2) emissions. The following formula calculates the amount of CO2 
produced by any generator12.

	
CO2 emissions = Emission Factor

(
kg

MW h

)
× AGE (MWh)� (11)

where, AGE is the annually generation of electricity of the generators. The SMRs emissions factor and diesel 
generators are 4.55 (kg/MWh) and 700 (kg/MWh), respectively24. When calculating the NPC, the CO2 emissions 
penalty is taken into consideration. The following formula can be utilized to determine the annual penalty for 
CO2 emissions.

	
CCE = ACE × CEP × i(1 + rld)n

(1 + rld)n − 1 � (12)

where, CCE is The cost of the penalty for CO2 emissions ($),CEP and ACE arethe penalty of CO2 emissions 
($/tonne) and the CO2 emissions annually (tonne). Carbon taxes differ significantly across countries. The 
International Monetary Fund (IMF) has determined that for major CO2emitting nations to fulfill their carbon 
emission reduction commitments, they should implement a charge of between $50 and $100 per ton by 2030. 
For this analysis, a CO2 emissions penalty of $30 per ton is used to demonstrate its impact on the NPC.

Problem formulation
The optimization problem formulation, involving the objective functions and constraints is discussed in this 
section using the WSO algorithm.

Objective function
The optimization problem seeks to identify the best configuration for HES to achieve minimizing in both APL 
and NPC. In addition to the N-R HES, two other energy systems are optimized for comparison: the Renewable 
and Fossil Fuel Hybrid Energy System and the Fossil Fuel-based Energy System.

The objective function of the optimization problem discusses the economical and technical KPIs, as well as its 
constraints represent environmental KPI. The total APL for test system (IEEE 33 bus) when integrated different 
Energy System acts as the first fitness function, while the total NPC of each energy system acts as the second 
fitness function. This approach clearly outlines the fitness functions used to express the optimization problem 
as follow:

	
minfAP L =

∑
PT loss� (13)

	
minfNP C =

∑
jϵk

NP Cj � (14)

where, NP Cj  is the NPC of the jth component, while k refers to the set of energy system components. The 
optimal balancing solution for MOF is determined using the weighted sum method25, as shown in Eq. (15):

Scientific Reports |        (2025) 15:26004 6| https://doi.org/10.1038/s41598-025-11049-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
minf = w1

Pwith DG
L

Pno DG
L

+ w2
NPCwith DG

NPCno DG , w1 + w2 = 1� (15)

where, w1 and w2 are the weighting factors of active power loss and NPC, respectively; Pwith DG
L and NPCwith DG 

indicate APL and NPC after energy sources installation; Pno DG
L and NPCno DG denote APL and NPC before 

energy systems integration.
For the two objectives, the fuzzy member ship functions are computed as follows:

	
fPL (p.u) = PLmax − PL

PLmax − PLmin
� (16)

	
fNPC (p.u) = NPCmax − NPC

NPCmax − NPCmin
� (17)

where,PLmin, PLmax indicatethe minimum and the maximum value of total power loss, respectively;PL indicates 
to the APL value;NPCmax, NPCmin denote the maximum and the minimum value of NPC, respectively.

The energy system consists of a diesel generator, MMR, WTG, and solar PV. The net present value of each 
component is the current value of all associated costs, which include capital cost, operating and maintenance 
costs, replacement costs, and fuel expenses. Additionally, the costs of decommissioning the MMRs and refueling 
cost are also factored. A formula for calculating the NPC of any energy system component is discussed below.

	 NP Cj = Ccap,j + CO&M,j + Cfuelc,j + Crep,j − Csalv,j � (18)

where, Ccap,j, CO&M,j , Cfuelc,j,Crep,j and Csalv,j refer to the current value of capital cost, O&M cost, fuel cost, 
replacement cost, and the salvage value of the jth component, respectively. The salvage value represents the 
amount of value that remains at the end of the project lifecycle when the component is no longer in use. At the 
start of the project, the capital cost for each component is determined. Both the capital cost of each component 
and the total number of components are factored into the overall capital cost. The following formula can be used 
to calculate the capital cost:

	 Ccap,j = Ncom,j×Ccapc,unit(j)� (19)

where, Ccap,j  represents the capital cost of the jth component, Ncom,j  is the components number, and 
Ccapc,unit(j) refers to the cost of the jth unit. MMR capital costs are calculated differently because the cost 
reduction is included as part of the overall capital cost. Furthermore, the rate at which MMRs reduce their 
costs is correlates with their learning rate. The following formula can be utilized to calculate the capital cost of 
MMRs12:

	
Ccap,MR =

NMR∑
k=1

Ccapc,MR(1st) × (NMR)R� (20)

where,Ccap,MR refers to the total MMR capital cost,Ccapc,MR(1st) implies theprice ofthe 1st MMR unit, NMR 
is theMMR numbers,and R represents thecost reduction rate. Operating and Maintenance costs for a component 
are incurred annually and continue until the project’s completion. Each year, the O&M costs of components are 
determined using the following formula12.

	
CO&M,j = Ncom,j × CO&M,yearly(j) × (1 + rld)n − 1

rld(1 + rld)n � (21)

where,CO&M,j  denotes the present value of the overall O&M cost, Ncom,j  is the components number, and 
CO&M,yearly(j) indicates the annual O&M cost of the jth component. Any component that has reached the end 
of its lifespan needs to be replaced. The number of replacements required is determined by the project overall 
lifespan and the lifetime of the individual components. To calculate the present value of the replacement costs 
for these components, the following formula is used12:

	
NR = ceil⌈ n

CLT j
⌉ − 1� (22)

	
Frep =

NR∑
k=1

(k×CLT j)� (23)

	
Crep,j = Ncom,j × Crep,unit(j) × 1

(1 + rld)Frep
� (24)

where,Crep,j , CLT j , NR, and Crep,unit(j) refer to the present value of the jth component replacement cost, 
the jth unit lifetime, NR is the required number of replacement, and the per-unit replacement cost of the jth 
component, respectively.The function ceil(X) rounds the value of X up to the nearest whole number that is equal 
to or greater than X. When calculating costs for MMRs (Multi-Modal Resources) and fossil fuel generators, the 

Scientific Reports |        (2025) 15:26004 7| https://doi.org/10.1038/s41598-025-11049-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


price of fuel is factored in. In contrast, renewable energy sources like wind turbines and solar photovoltaic do not 
require fuel. The annual fuel cost is calculated using a specific formula12:

	
Cfuelc,j = Eyearly,j × CUfuel,j × (1 + rld)n − 1

rld(1 + rld)n � (25)

where,Cfuelc,j  denotes the jth component fuel cost ($),Eyearly,j  represents the jth component energy 
generation annually (MWh),CUfuel,j  the perunit fuel price energy generation of the jth component, and RAT j  
isthe jth component rating. The salvage value is calculated based on linear depreciation. When a component’s 
salvage value is directly proportional to its remaining lifespan, this is referred to as linear depreciation. The 
following formula is used to determine the present value of the salvage value12:

	
Csalv,j = Ncom,j × Crep,unit(j) × CLT rem,j

CLT j
× 1

(1 + rld)n � (26)

	 CLT rem,j = CLT j − (n − LT rep,j)� (27)

	
LTrep,j = CLTj × floor

⌊
n

CLTj

⌋
� (28)

where,Csalv,j  represents the present worth of the jth component of the salvage value, and CLT rem,j  indicates 
the jth component remaining life at the end of the project lifetime. The function floor(X) rounds the number 
X down to the nearest whole number that is less than or equal to X. This analysis focuses solely on MMRs 
when calculating the costs associated with decommissioning and refueling. It includes a yearly distribution 
of decommissioning costs, even though the actual decommissioning of MMRs takes place at the end of the 
project12.

	
Cdecom,MR = Eyearly,MR × CUdecom,MR × (1 + rld)n − 1

rld(1 + rld)n � (29)

where,Cdecom,MR denotes the MMR total decommissioning cost($),Eyearly, MR represents the annually MMR 
energy generation (MWh), and Cdecom,MR refers totheper unit decommission cost($/MWh). In this study, 
the fuel module lifetime is established at ten years, indicating that the MMR will be refueled every decade. Fuel 
costs are not included in the overall refueling expenses for the MMRs. The refueling costs consist of labor costs, 
gasoline transportation costs, and other related expenses. The present value of the refueling costs is calculated 
using the following formulas12.

	
Crefueling,MR = NMMR ×

MRrefuel∑
k=1

Crefueling,MR(unit) × 1
(1 + rld)Frefuel

� (30)

	
MRrefuel = ceil⌈ n

LT fb(MR)
⌉ − 1� (31)

	
Frefuel =

MRrefuel∑
k=1

(n×LT fb(MR)� (32)

where,Crefueling,MR indicates the MMR refueling cost,Crefueling,MR(unit) refers to the cost of refueling 
every decade,LT fb(MR) denotes the fuel bundle lifetime, and MRrefuel represents the required refueling 
number in the lifetime project.

Constraints
In order to solve the proposed objective functions, the following constraints must be met26.

Power balance constraint:

	

Nbus∑
n=1

PDGn =
Nbus∑
n=1

PD,n + PTloss,

Nbus∑
n=1

QDGn =
Nbus∑
n=1

QD,n + QTloss� (33)

Voltage magnitude constraint:

	 Vmin
n ≤ Vn ≤ Vmax

n � (34)

DG size constraint:

	 Pmin
DGn ≤ PDGn ≤ Pmax

DGn, Qmin
DGn ≤ QDGn ≤ Qmax

DGn� (35)
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where,Nbus indicates the buses number, PDGn and QDGn refer to the available active and reactive power as a 
result of the DG placement at bus n, PDn and QDn are the active and reactive power demands at bus n, V min

n  
is the minimum voltage bound and V max

n  is the maximum bound of system voltage27.

Implementation of optimization algorithm: white shark optimizer
The literature indicates that researchers have employed both artificial intelligence (AI)-based and conventional 
optimization techniques. Traditional methods, while grounded in initial assumptions that make them user-
friendly and capable of producing meaningful results, often face limitations due to the restrictive nature of those 
assumptions. These limitations must be carefully addressed to ensure accuracy and reliability. In the context 
of distribution systems, effective allocation of energy sources is critical; hence, the application of heuristic and 
meta-heuristic optimization techniques is highly recommended.

The White Shark Optimizer (WSO), first introduced in 2022, offers several advantages for solving global 
optimization problems. It is recognized for its flexibility in handling a wide variety of optimization challenges, 
along with its simplicity, robustness, and ability to efficiently converge on global solutions. Notably, WSO 
exhibits a high convergence rate even in complex problem spaces. Another significant advantage of WSO is its 
ability to deliver practical and cost-effective solutions for complex optimization scenarios, with minimal need 
for parameter adjustments making it a versatile tool for a broad range of applications. The mathematical model 
used for WSO initialization, iteration, and halting phases is covered in this section28.

The “n” white shark population, along with its locations in the problem area, suggests a potential solution. 
The regular random initialization discussed below is used to create the initial population in the search domain.

	 wi
j = lj + ×r(uj − lj)� (37)

where,wi
j  denotes the ith white shark initial vector in the jth dimension,ujandlj  indicate the upper and lower 

search space boundaries in the jth dimension, respectively and r is a random number created in the interval [0, 
1].

Simultaneously, the white sharks adjust their posture in a wavy motion towards the prey, as illustrated by 
Eq. (37).

	
ui

k+1 = µ
[
ui

k + p1
(
wgbestk − wi

k

)
× c1 + p2(wvi

k
best − wi

k) × c2

]
� (37)

where,ui
k+1 indicates the new ith white shark speed vector in the iteration (k + 1)th, i = 1, 2, . . ., n, is the index 

in population size “n” of white shark, ui
k  denotes the ith white shark present velocity vector in the kth step, wi

k  
is the ith white shark present position vector in the iteration (k)th, wvi

k
best is the ith optimum position vector that 

the swarm recognizes, wgbestk  refers to the optimal location vector in the kth step that any white shark has yet to 
create, p1 and p2 are two white shark strength c1 and c2 denote the numbers generated uniformly consistently in 
the interval [0, 1], and vi is the ith white shark index vector that reached the optimal position given by Eq. (38).

	 ν = ⌊n × rand(1, n)⌋ + 1� (38)

Now, the behavior of white sharks when approaching prey was described using the location update mechanism 
detailed in Eq. (39). Thus, great white sharks can sustain their position in the optimal location closest to their 
prey. This behavior is described in Eq. (40).

	
wi

k+1 =
{

wi
k.wo + u.a + l.b, rand < mv

wi
k + ui

k
f

, rand ≥ mv
� (39)

	
w′i

k+1 = wgbestk + r1 −→
Dw

sgn(r2 − 0.5)r3 < ss� (40)

where, wi
k+1 indicates the ith white shark updated vector site at (k + 1)th step, b and a represent a single-

dimension binary number, and l and u refer to the search space of the lower and upper boundaries, respectively. 
The variables "mv " and "f " denote the motion energy and frequency of a white shark, respectively, “rand” 
denotes a random number generated in the interval from [0, 1], and wo represents a logical vector.

The flowchart in Fig. 1 illustrates the implemented WSO method.

Results and discussion
This section analyzes the results of the study. It compares the proposed energy systems using technical, financial, 
and environmental key performance indicators. Performance analysis of the IEEE 33 and IEEE 69 bus systems 
demonstrates the effectiveness of the proposed algorithm29.The first test system, the IEEE 33-bus, has a total load 
of 3.72 MW and 2.3 MVAR30. Detailed data for this system are provided in Supplementary Appendix A. The 
second test system, the IEEE 69-bus, has a total load of 3.89059 MW and 2.6936 MVAR at a voltage of 12.6 kV31. 
Additional details are available in Supplementary Appendix B.

IEEE 33-bus radial distribution system
Several case studies were simulated using the WSO algorithm, focusing on power losses, net present cost, voltage 
profiles, and greenhouse gas emissions. Three different scenarios were designed to explore a variety of case 
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studies, each with distinct objective functions and constraints. The following provides a description of these 
scenarios:

•	 Scenario 1: Active Power Loss Minimization
•	 Scenario 2: Minimization Net Present Cost
•	 Scenario 3: Multi-objective function (minimizing net present cost, and active power loss).

Scenario1: active power loss minimization (single-objective problem)
The WSO algorithm is utilized to achieve optimal allocation among the three energy systems, through solving 
a single objective problem which is minimize total active power loss. The three energy resources are described 
as follows:

•	 Case-01: Stand alone Fossil Fuel Energy Systems,
•	 Case-02: Fossil Fuel and Renewable Hybrid Energy Systems, and.
•	 Case-03: Nuclear Renewable Hybrid Energy Systems.

Fig. 1.  Flow chart of the implemented WSO algorithm.
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The consequences of implementing the three cases in each of the previously mentioned scenarios are analyzed by 
observing various parameters, including unit positions, size, voltage magnitude, and active power loss reduction 
using WSO. For the research on renewable energy systems, a single day representative wind speed and solar 
radiation of daily summer in the Upper Egypt region is provided, as illustrated in Table 5 32.

In scenario 1, the simulation was performed for three cases including case-01 (FFTGs), case-02 (FFTGs 
and RESs), and case-03 (N-R HES), respectively; according to Table 6 in the base case, the minimum voltage 
is 0.9131 p.u., and the active power loss is 202.66 kW. In the first case, by integrating FFTGs, the reduction of 
APL is70%, and the minimum voltage is 0.967. The cost in this case is 53 million dollars, and CO2 emissions are 
16,082 tons/year with a penalty of $49,886. In the second case, by integrating FFTGs with RESs, APL reduces 
to 23.8 KW with a reduction of 88%, and the minimum voltage is 0.981. The corresponding cost in this case is 
29 million dollars, and CO2 emissions are 8196 tons/year with a penalty of $25,423. In the third case, for the 
implementation of N-R HES, APL decreases to 18.81 KW with reductions of 91% and the minimum voltage to 
0.992. The resulting cost is 46million dollars, and CO2 emissions are 49.8 tons/year with a penalty of $154.3. The 
comparisons between the effects of the integration of different energy systems using the suggested approach 
are shown in Table 6. Figure 2 presents the convergence graph comparison of all cases for this scenario. Also, 

Parameter Base Case Case-01 Case-02 Case-03

APL (KW) 202.7 61.66 23.81 18.81

APL reduction (%) – 70 88 91

Cost (million $) – 53.52 29.36 46.29

Generator/MMR(MW), Loc – 2.6 (6) 1.336 (30) 1.248 (30)

Generator (MVAR) – 1.63 0.828 0.774

Solar PV(MW), Loc – 0.00 0.780 (25) 0.780 (25)

Wind (MW), Loc – 0.00 0.691 (14) 0.753 (13)

Wind (MVAR) – 0.00 0.428 0.466

VMIN (p.u.) 0.9131 0.967 0.981 0.9922

CO2 emission(ton/year) – 16,082 8196 49.75

CO2 Penalty ($) – 49,886 25,423 154.32

Table 6.  Optimization results for first scenario of IEEE 33-bus for various energy systems.

 

Time (h) Solar radiation (w/m2) Wind speed (m/s)

0 0 5.5

1 0 5.1

2 0 4.6

3 0 4.0

4 0 4.2

5 0 4.3

6 14 4.8

7 63 4.4

8 172 4.3

9 395 4.1

10 653 4.3

11 849 4.5

12 979 4.8

13 1020 4.9

14 978 5.3

15 856 6.2

16 663 7.1

17 417 7.9

18 184 8.2

19 49 8.6

20 2 7.5

21 0 6.8

22 0 5.9

23 0 5.6

Table 5.  Daily summer wind speed and solar radiation.
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a voltage profile comparison for all cases is shown in Fig. 3. It’s observed that among the three cases, Case-01 
has the lowest APLR at 70%, while Case-03 has the highest APLR at 91%. This improvement in Case-03 can be 
attributed to the integration of the renewable and nuclear energy sources, as both the diesel SMRs and wind 
turbine contribute to providing active and reactive power which results in a more significant minimization in 
active power loss. The least environmental impact is observed in Case-03; N-RHES emits only 49.8 tons of CO2 
annually, whereas Case-01 emits 16,082 tons. Consequently, the penalty for CO2 emissions is highest for Case-
01 and lowest for Case-03. Therefore, Case-03 outperforms the other two energy systems in the IEEE 33-bus 
radial distribution network regarding both technical (APL) and environmental (GHG emissions) KPIs.

Scenario 2: optimizing single-objective problem (net present cost (NPC))
In this scenario, the net present costs of the three energy systems were optimized by using the optimal 
distribution of DG, PV, WTG, and MMR units. Table 7 compares each case effect using the suggested approach. 
Furthermore, the convergence characteristic of the recommended approach in this case is displayed in Fig. 4. 
The voltage profile of the energy systems integration is displayed in Fig. 5.

It’s observed of scenario 2 that in case-01, the integration of FFTGs achieves a reduction in NPC to 40.8 
million dollars. The relative APL in this case is 66.33KW, and CO2 emissions are 12,821 tons/year with a penalty of 
$39,772. In case-02 for using FFTGs with RESs, NPC decreased to 31.25million dollars. The corresponding APL 
is 77.38 kW, and the CO2 emission is 9198 tons/year with a penalty of $28,533. In case-03, the implementation 
of N-R HES resulted in a decrease of NPC to 22.22 million dollars. The related APL is 81.05 KW, and CO2 
emissions are 39.86 tons/year with a penalty of $123.6. It’s observed that the minimum voltages in all cases are 
the same as shown in Table 7. It’s observed that for the three cases analyzed, Case-01 has the highest Net Present 
Cost (NPC) value at 40.8 million dollars, while Case-03 has the lowest NPC value, recorded at 22.22 million 
dollars. Additionally, Case-03 demonstrates the least environmental impact. Specifically, Case-01 emits 12,821 
tons of CO2 annually, whereas N-RHES has significantly lower emissions at just 39.86 tons. Consequently, 
Case-01 incurs the highest penalty for CO2 emissions, while Case-03 faces the lowest penalty. Therefore, when 

Fig. 3.  Voltage profile for first scenario of IEEE 33-bus under different case studies.

 

Fig. 2.  Convergence characteristics of IEEE 33-bus for scenario 1 for Case-01, Case-02 and Case-03.
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Fig. 5.  Voltage profile for second scenario of IEEE 33-bus under different case studies.

 

Fig. 4.  Convergence characteristics of IEEE 33-bus for scenario 2 for Case-01, Case-02 and Case-03.

 

Parameter Base case Case-01 Case-02 Case-03

Cost (million $) – 40.8 31.25 22.22

APL(KW) 202.7 66.33 77.38 81.05

APLReduction(%) – 67.3 62 60

Generator/MMR(MW) ,Loc – 2.09 (24) 1.5 (9) 1 (11)

Generator (MVAR) – 1.29 0.929 0.619

Solar PV(MW),Loc – 0.00 0.0651 (33) 0.203 (33)

Wind (MW) ,Loc – 0.00 0.054 (31) 0.046 (32)

Wind (MVAR) – 0.00 0.033 0.029

VMIN (p.u.) 0.1931 0.95 0.95 0.95

CO2 emission(ton/year) – 12,821 9198 39.86

CO2 Penalty ($) – 39,772 28,533 123.6

Table 7.  Simulation results for second scenario of IEEE 33-bus for various energy systems.
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considering both economic (NPC) and environmental (GHG emission) KPIs, Case-03 outperforms the other 
two energy systems in the IEEE 33-bus radial distribution system.

Scenario 3: multi-objective problem (minimizing net present cost, and active power losses)
In Scenario 3, fuzzy logic and the weighted sum approach are selected to determine the optimal weight of NPC 
and APL25. The effects of unit allocation are evaluated after the installation of distributed generation units, 
including DG, PV, WTG and MMR. This assessment involves calculating various characteristics like active 
power losses, net present cost, and minimum bus voltages in the power radial distribution network. Comparison 
of the effects of all cases is displayed in Table 8. Also in Fig. 6, comparison of the NPC and APL in each case is 
presented.

To analyze the results of Scenario 3, a simulation was conducted focusing on multi-objective functions. The 
study examined the impact of different energy system integrations on active power losses (APL), net present 
cost (NPC), and minimum bus voltages. The findings indicate that in Scenario One, where APL is the primary 
objective function, APL decreases more significantly than NPC. In Scenario Two, where NPC is the objective 
function, APL shows a less substantial decrease, while NPC improves to a greater extent. Therefore, it is essential 
to carry out multi-objective functions to simultaneously reduce both APL and NPC, as demonstrated in Table 
8.The comparison of active power losses and net present cost in each case study integrated into the network is 
given in Fig. 6.

Comparison among the proposed hybrid energy systems in terms of APL, NPC and voltage profile.
The comparisons of the different scenarios with various energy systems concerning net present cost, active 
power loss, and bus minimum voltages are shown graphically in Figs.  7, 8, and 9, respectively. The results 
indicated that Case-03 exhibits the least NPC of all energy systems in scenarios 2 and 3 when concerned with 
NPC as an objective function. As shown in Fig. 7, NPC is 22.22 million dollars in scenario 2, and 39.7million 
dollars in scenario 3, while Case-01 has the highest NPC. Also, the results showed that in terms of APL, Case-03 
has the lowest APL (18.81 kW) in scenario 1 and (81.05 kW) in scenario 2 and (9.9 kW) in scenario 3, while 
Case-01 has the highest APL, as in Fig.  8. Additionally, Fig.  9 indicates the significant improvement of the 
voltage profile, where the minimum voltage magnitudes are 0.967 p.u., 0.95 p.u., and 0.97p.u. in scenarios 1, 
2, and 3, respectively. Finally, the proposed N-R HES generates the lowest CO2 emissions and incurs a smaller 
CO2 penalty, as shown in Figs. 10 and 11, respectively. From the findings, it is evident that in scenario 3, Case-
03 emerges as the most effective energy system for the IEEE 33-Bus, demonstrating excellence in technical, 
economic, and environmental KPIs.

Fig. 6.  NPC and APL of IEEE 33-bus for third scenario under different energy systems.

 

Parameter Case-01 Case-02 Case-03

Cost (million $) 53.25 41.34 39.72

APL(KW) 30.83 12.87 9.9

Generator/MMR(MW), Loc 2.6 (6) 1.351 (6) 1 (30)

Generator (MVAR) 1.62 0.837 0.715

Solar PV(MW), Loc 0.00 0.6099 (15) 0.766 (25)

Wind (MW), Loc 0.00 0.7316 (31) 1.012(11)

Wind (MVAR) 0.00 0.4534 0.627

VMIN (p.u) 0.97 0.98 0.992

CO2 emission (ton/year) 16,000 8285 45.96

CO2 Penalty ($) 49,634 25,700 142.56

Table 8.  Result of optimization for various energy systems of IEEE 33-bus in terms of APL and NPC.
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Fig. 9.  Comparison of Minimum Voltage of IEEE 33-bus for different energy systems.

 

Fig. 8.  Comparison of APL of IEEE 33-bus for different energy systems.

 

Fig. 7.  Comparison of NPC of IEEE 33-bus for different energy systems.
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IEEE 69-bus radial distribution system
Scenario 1: active power loss minimization (single-objective problem)
The optimal placement of (DG, PV, WTG, and MMR) units was used in scenario 1 in order to reduce the total 
active power loss of the three energy systems. Table 9 displays the effects of every case using the proposed 
approach. Additionally, Fig.  12 shows the convergence characteristic of the suggested approach. The voltage 
profile of different energy systems integration is displayed in Fig. 13.

Form the analysis for scenario 1 results, according to Table 9 in the base case, the minimum voltage is 0.9034 
p.u, and the active power loss is 238.8 kW. In case-01, the implementation of FFTGs achieves improvement in 
APL that decreases to 24.7 KW with a reduction of 90%, and the minimum voltage is 0.973. The cost in this case 
is 40.8 million dollars, and CO2 emissions are 12,264 tons/year with a penalty of 38,043 dollars. After introducing 
FFTGs with RESs in Case-02, the APL reduces to 8.13 KW with a reduction of 96%, and the minimum voltage is 
0.994. The relative cost in this case is 44.3 million dollars, and CO2 emissions are 11,074 tons/year with a penalty 
of 34,351 dollars. In the third case, for the integration of N-R HES, APL reduces to 7.35 KW with reductions of 
97% and the minimum voltage to 0.994. The corresponding cost is 52.77 million $ and CO2 emission is 70.34 tons/
year with a penalty of 218.9 $. It’s observed that for the three cases, Case-03 demonstrates the highest APLRat 
97%, while Case-01 shows the lowest APLR at 90%. Annually, Case-03 emits only 70.34 tons of CO2 from the 
N-RHES, compared to 12,264 tons from Case-01. This indicates that Case-03 has the least environmental impact 
based on these factors. Consequently, Case-01 incurs the largest penalty for CO2 emissions, whereas Case-03 
faces the lowest penalty. Therefore, with respect to technical (APL) and environmental (GHG emissions) KPIs, 
Case-03 surpasses the other two energy systems in the IEEE 69-bus radial distribution system.

Fig. 11.  Comparison of CO2 Penalty of IEEE 33-bus for different energy systems.

 

Fig. 10.  Comparison of CO2 emission of IEEE 33-bus for different energy systems.
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Fig. 13.  Voltage profile for first scenario of IEEE 69-bus under different case studies.

 

Fig. 12.  Convergence characteristics of IEEE 69-Bus for scenario 1 for Case-01, Case-02 and Case-03.

 

Parameter Base Case Case-01 Case-02 Case-03

APL (KW) 238.8 24.70 8.13 7.35

APL Reduction (%) – 90 96 97

Cost (million $) – 40.81 44.26 52.77

Generator/MMR(MW), Loc – 2 (61) 1.806 (61) 1.76 (61)

Generator (MVAR) 1.239 1.119 1.094

Solar PV(MW), Loc – 0.00 0.00 0.246(21)

Wind (MW), Loc – 0.00 0.536 (17) 0.631 (12)

Wind (MVAR) – 0.00 0.332 0.391

VMIN (p.u) 0.9034 0.973 0.994 0.994

CO2 emission (ton/year) – 12,264 11,074 70.34

CO2 Penalty ($) – 38,043 34,351 218.19

Table 9.  Result of optimization for various energy systems of IEEE 69-bus in terms of APL.
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Scenario 2: optimizing single-objective problem (net present cost)
In this scenario, the net present cost is minimized for IEEE 69-Bus using the WSO algorithm. The comparisons 
of the results of integration of DG, PV, WTG, and MMR in each of the aforementioned.

Cases are shown in Table 10. Figures 14 and 15 present the convergence graph and voltage profile comparison 
for the different energy systems, respectively.

For results analysis of scenario 2, it’s observed that in the first case, the introduction of FFTGs resulted in 
decreasing of NPC to 40.8 milliondollars. The corresponding APL in this case is 24.72 KW and CO2 emission 
is 12,821 tons/year with a penalty of $39,772. In the second case for the implementation of FFTGs with RESs, 
NPC decreased to 21.05 milliondollars. The related APL is 63.51 KW and CO2 emission is 6174 tons/year with 
a penalty $19,153. In the third case, the integration of N-R HES achieves a reduction in NPC to 20.28million 
dollars. The relative APL is 66.79 KW and CO2 emission is 39.86 tons/year with a penalty of $123.64. It’s observed 
that the minimum voltages in all cases are 0.973 p.u., 0.956 (p.u.), and 0.959(p.u.), respectively. The convergence 
curve and the voltage magnitude for all the cases are displayed in Figs. 14 and 15, respectively. It’s observed that 
from the three cases analyzed, Case-01 has the largest NPC value at 40.8 million dollars, while Case-03 has the 
lowest NPC value at 20.28 million dollars. Regarding environmental impact, Case-03 produces the least CO2, 
releasing only 39.86 tons annually from the N-RHES system. In contrast, Case-01 emits a significantly greater 
amount of CO2. Consequently, the penalties for CO2 emissions are lowest for Case-03 and highest for Case-01. 
Therefore, Case-03 excels over the other two energy systems in the IEEE 69-bus radial distribution system when 
evaluating environmental (GHG) and economic (NPC) KPIs.

Scenario3: multi-objective problem (minimizing net present cost and active power losses,)
This scenario employs WSO for optimizing the placement of (DG, PV, WTG, and MMR) units under multi-
objective functions and constraints. Table 11 displays the results of different energy systems integration. Also, 
the comparison of the APL and NPC of all cases is given in Fig. 16.

Fig. 14.  Convergence characteristics of IEEE 69-bus for scenario 1 for Case-01, Case-02 and Case-03.

 

Parameter Case-01 Case-02 Case-03

Cost (million $) 40.8 21.05 20.28

APL(KW) 24.72 63.51 66.79

Generator/MMR(MW), Loc 2.09 (49) 1.007 (65) 1 (62)

Generator (MVAR) 1.296 0.624 0.6197

Solar PV(MW), Loc 0.00 0.00 0.0013 (66)

Wind (MW), Loc 0.00 0.114 (26) 0.0034 (29)

Wind (MVAR) 0.00 0.0707 0.0021

VMIN (p.u) 0.973 0.9557 0.9586

CO2 emission (ton/year) 12,821 6174 39.86

CO2 Penalty ($) 39,772 19,153 123.64

Table 10.  Optimization result for various energy systems of IEEE 69-bus in terms of NPC.
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Fig. 16.  NPC and APL of IEEE 69-Bus for third scenario under various case studies.

 

Parameter Case-01 Case-02 Case-03

Cost (million $) 44.89 50 44.21

APL(KW) 14.38 4.18 3.94

Generator/MMR(MW), Loc 2.2 (61) 1.868 (61) 1.83 (61)

Generator (MVAR) 1. 36 1.158 1.135

Solar PV(MW), Loc 0.00 0.780 (4) 0.780 (48)

Wind (MW), Loc 0.00 0.564 (17) 0. 576 (17)

Wind (MVAR) 0.00 0.349 0.357

VMIN (p.u) 0.975 0.994 0.995

CO2 emission (ton/year) 13,490 11,454 73.02

CO2 Penalty ($) 41,848 35,532 226.50

Table 11.  Optimization result for various energy systems of IEEE 69-bus in terms of APL and NPC.

 

Fig. 15.  Voltage profile of IEEE 69-bus for second scenario under various case studies.
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For results analysis of scenario 3, it’s observed that in Case-03, the integration of N-R HES achieves 
improvement in both NPC 44.21 million dollars) and APL (3.94kW) compared with Case-02, the NPC (50 
million dollars) and APL (4.18 kW) and Case 01, which NPC (44.89 million dollars) and APL (14.38 kW).

Comparison among the integrated energy systems in terms of APL, NPC and voltage profile.
The comparisons of the different scenarios with various energy systems in terms of net present cost, bus 
minimum voltages, and active power loss are displayed graphically in Figs. 17, 19, and 18, respectively. In the 
third scenario, N-R HES exhibits the lowest NPC and APL within the three energy systems. As shown in Fig. 16, 
NPC is 44.21 million dollarsand APL (3.94 kW). Additionally, Fig. 19 indicates the significant improvement of 
the voltage profile, where the minimum voltage magnitude is 0.995 (p.u.).Ultimately, the proposed N-R HES 
produces the least CO2 emissions and incurs a lower CO2 penalty, as illustrated in Figs. 20 and 21, respectively. 
Results indicate that Case-03, which excels in technical, financial, and environmental KPIs, is the most efficient 
energy system for the IEEE 69-Bus in scenario three.

Conclusion
Large-scale nuclear power plants are not a new concept. However, due to their high capital costs and associated 
risks, the implementation of small-scale nuclear power plants has been proposed as a more viable alternative. 
In this study, the White Shark Optimizer (WSO) is employed to determine the optimal sizing and placement 
of various Hybrid Energy Systems (HES), including a Stand-alone Fossil Fuel Energy System, a Fossil Fuel–
Renewable Hybrid Energy System, and a Nuclear–Renewable Hybrid Energy System. These configurations are 
optimized to achieve both single- and multi-objective functions aimed at improving voltage profiles, reducing 
power losses, and minimizing costs and greenhouse gas (GHG) emissions.

Fig. 19.  Comparison of Minimum Voltage of IEEE 69-bus for different energy systems.

 

Fig. 17.  Comparison of NPC of IEEE 69-bus for different energy systems.
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To validate the proposed approach, a comprehensive performance analysis is conducted using the IEEE 
33-bus and IEEE 69-bus radial distribution systems. Three key performance indicators Net Present Cost 
(NPC), Active Power Loss (APL), and GHG emissions are used to compare the different scenarios. The results 
demonstrate that the combination of nuclear and renewable energy sources offers the most effective solution for 
sustainable energy generation and decarbonization. Compared to other configurations, the Nuclear–Renewable 
HES (N-R HES) achieves the lowest NPC and APL while emitting the least amount of CO₂.For the IEEE 33-bus 
system, the best scenario involving multi-objective optimization reduces power losses to 9.9 (kW) and NPC to 
39.72 (million $), while improving the minimum voltage magnitude from 0.9131 to 0.992 p.u. The system also 
generates the lowest CO₂ emissions (45.96 tons/year) and incurs a reduced CO₂ penalty of $142.56.

Similarly, for the IEEE 69-bus system, the N-R HES achieves the lowest APL (3.94 kW) and NPC (44.21 
million $), along with a significant improvement in voltage profile, where the minimum voltage magnitude 
reaches 0.995 p.u. Ultimately, the proposed N-R HES produces the lowest CO₂ emissions (73.02 tons/year) and 
incurs a smaller CO₂ penalty of $226.50.

These findings prove that integrating nuclear and renewable energy sources in a hybrid system is both 
technically and economically feasible and may represent the most effective strategy for eliminating emissions in 
radial distribution networks.

The main findings of this study are summarized as follows:

Fig. 20.  Comparison of CO2 emission of IEEE 69-bus for different energy systems.

 

Fig. 18.  Comparison of APL of IEEE 69-bus for different energy systems.
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The study explores the feasibility and advantages of incorporating micro nuclear reactors, into hybrid energy 
systems for reliable and sustainable electricity distribution.
Mathematical models for various HES configurations are developed to enhance the technical, economic, and 
environmental performance of distribution networks by solving both single and multi-objective optimization 
problems.
A novel metaheuristic algorithm, the White Shark Optimizer, is applied for the first time to find the optimal 
configuration of HES for improving minimizing power losses, voltage profiles, reducing costs, and lowering 
greenhouse gas emissions.
Results prove that the N-R HES provides the most effective among cost, environmental impact, and system 
performance.

Future work

•	 Despite the promising results, the current evaluation is limited to standard test distribution networks. Future 
research should extend the analysis to real-world, large-scale distribution systems to better assess the practical 
feasibility and performance of Nuclear-Renewable Hybrid Energy Systems (N-R HES).

•	 The models assume steady-state operation. Therefore, future work could expand the optimization framework 
by considering transient events or system faults, which may significantly impact system performance.

•	 Finally, the study does not account for the influence of energy storage systems. Integrating emerging technol-
ogiessuch as advanced energy storage systems into future studies could further improve operational sustain-
ability, flexibility, and efficiency.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
upon reasonable request.
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