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Excessive moisture in iron ore hinders pulverization, beneficiation, and smelting. Traditional detection 
methods struggle with complex ore compositions. This study developed a hyperspectral model to 
estimate moisture in Hebei magnetite. Samples were preprocessed using S-G smoothing, MSC, SNV, 
derivatives, and continuum removal. CARS selected optimal bands, while PSO-LSSVR improved 
modeling. Reflectance showed a negative correlation with moisture, with Fe³⁺ (990 nm) and -OH 
(1440/1920 nm) absorption features. The models achieved R² values of 0.798 and 0.648. The integrated 
approach outperformed conventional methods, enabling accurate moisture detection for industrial 
use.
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With the promotion of intelligent mining policies, hyperspectral technology has become an important research 
focus in iron ore identification1. The water content of iron ore plays a critical role in ensuring product quality and 
production stability in mineral processing2. However, the complexity of production processes and the limited 
accuracy of traditional methods make rapid and precise moisture detection in iron ore challenging. Therefore, 
advancing modern identification technologies is essential to meet mining production demands.

Hyperspectral technology has attracted growing attention for its rapid, non-destructive detection of water 
content. In agriculture, researchers have leveraged its advantages to develop spectral models for moisture 
estimation, achieving promising predictive results3–5. In soil moisture prediction, model optimization improves 
both predictive accuracy and overall model efficiency6–8. Wang et al.9 used infrared spectroscopy to analyze the 
spectral characteristics of sandstone and develop a moisture inversion model. They found that the absorption 
peaks near 1400 nm and 1900 nm were positively correlated with water content in the near-infrared spectra. Xu 
et al.10 found that the spectral reflectance of tuff decreases progressively as water content increases. Zhang et al.11 
found that the absorption intensity near 1400 nm and 1900 nm was positively correlated with rock moisture 
content. However, research on mineral moisture detection remains limited. Bai et al.12 conducted in-depth 
research on zinc ores with different water contents, revealing that the water content has a linear influence on 
the spectrum. Gao et al.13 explored the water content of sinter by laser-induced breakdown spectroscopy, and 
found that there is a significant linear relationship between the water content and the average spectral intensity. 
Maurais J14 employed spectral technology to monitor water content changes in tailings, revealing a clear 
correlation between spectral reflectance and moisture. The spectral features of evaporation residue effectively 
indicated surface drying rates. However, research on iron ore moisture is still limited, with room for improving 
model accuracy.

Hebei iron ore, with its large reserves and uniform composition, is ideal for producing high-quality steel. 
However, moisture in magnetite generates steam during smelting, affecting efficiency and safety. This study 
focuses on Anshan-type magnetite (38% grade), designing 20 moisture levels (0–40%) across 9 particle sizes. 
After spectral pretreatment, characteristic bands were selected using competitive adaptive reweighting, and 
moisture prediction models were developed using random forest regression, least squares support vector 
regression (LSSVR), and particle swarm optimized LSSVR. The models’ accuracy and errors were compared 
to identify the optimal model for rapid, accurate moisture detection, enabling real-time monitoring during 
smelting. There are still some shortcomings in this study, such as the relatively single type of ore studied. 
However, in terms of novelty, compared to previous studies that focused on tailings or limited ore types, there are 
few studies that involve predicting the moisture content of magnetite with comprehensive particle size changes. 
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This study combines advanced preprocessing, feature selection, and optimization algorithms to provide higher 
accuracy and wider applicability for industrial applications.

Experiments and methods
Sample collection and processing
Magnetite from a certain area in Hebei Province, China is selected as the experimental sample, with a grade of 
about 38% and the main component of Fe3O4, as shown in Fig. 1(a). The samples were crushed by a ball mill, 
and nine kinds of particle sizes (particle size 1: < 0.045 mm, particle size 2: 0.045–0.075 mm, particle size 3: 
0.075–0.1 mm, particle size 4: 0.1–0.15 mm, particle size 5: 0.15–0.3 mm, particle size 6:0.3–0.5 mm, particle 
size 7:0.5–2 mm, particle size 8: 2–3 mm, particle size 9: >3 mm) were selected by standard screening. Before 
the experiment, slowly add water to the magnetite powder to ensure that the free water on its surface disappears 
completely, and then measure the saturation, and calculate that the saturation of the magnetite powder tends 
to 35.0%, as shown in Fig. 1(b). Based on this, 20 water content grades between 0% and 40% were designed to 
simulate magnetite samples under different humidity conditions to study the relationship between their spectral 
characteristics and water content. The water content grades are shown in Table 1.

Hyperspectral measurement of water content in magnetite
The water content spectrum of magnetite samples is measured by a portable ground object spectrometer 
(FieldSpec4) produced by Analytical Spectral Devices Company of the United States, and its spectral range 
is 350–2500 nm. The experiment was carried out in dark and dark environment to reduce the interference of 
external light on spectral measurement. After fully shaking the prepared mineral powder sample, put it in a 
black light-proof box. The water content of samples was determined by evaporation method at intervals to obtain 

Number Water content (%) Number Water content (%)

1 0 11 21.0

2 3.0 12 24.0

3 5.0 13 25.0

4 6.0 14 28.0

5 9.0 15 30.0

6 10.0 16 31.0

7 12.0 17 33.0

8 15.0 18 35.0

9 18.0 19 38.0

10 20.0 20 40.0

Table 1.  Water content grade of the samples.

 

Fig. 1.  Experimental flow chart: (a) magnetite collection, (b) magnetite sample treatment and saturation 
measurement, (c) magnetite spectrum experimental test.
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samples with different water content grades. In the process of spectral measurement, the lens of the spectrometer 
illuminates the sample vertically at 90 degrees, and 10 spectral curves are collected repeatedly, and the average 
value is taken as the original data. The experimental measurement process of the spectrum is shown in Fig. 1(c). 
Because the data in 350–399 nm and 2401–2500 nm bands are noisy and have low stability15, only the spectral 
data in 400–2400 nm band are selected for data analysis and modeling.

Correlation analysis between spectral data preprocessing and pearson
Pretreatment of hyperspectral data can improve the accuracy and stability of the water content spectrum of 
magnetite to a certain extent16, and S-G smoothing filtering (S-G), Multiple Scattering Correction, MSC), 
Standard Normal Transform (SNV), Second Derivative, SD), Logarithm Reciprocal, LR) and Continuum-
Removal, CR) are used to transform the original spectrum. Pearson correlation coefficient is used to analyze 
the correlation between the water content of magnetite and the reflectivity of different data transformations, and 
the significance of the correlation coefficient is tested at the level of P = 0.01 to analyze the influence of spectral 
transformation on the prediction of the water content of magnetite.

Competitive adaptive weighting algorithm (CARS) for optimizing characteristic band
The hyperspectral data of water content in magnetite have the characteristics of strong band continuity and 
miscellaneous spectral information, and there are multiple collinearities between bands. In order to reduce data 
redundancy, the CARS algorithm is used to optimize features. CARS algorithm is based on the Monte Carlo 
sampling method and partial least squares regression model (PLSR) to select the characteristic wavelength. By 
using the exponential decay function and adaptive weighted sampling to calculate the weight of the absolute value 
of the regression coefficient, the wavelength variables with large weight and small collinearity are combined into 
a new subset of variables, and the band corresponding to PLSR model with minimum root mean square error of 
cross-validation is selected as the final characteristic band, to improve spectral data processing efficiency, reduce 
information redundancy and enhance the accuracy of ground object recognition17.

Construction and accuracy evaluation of water content prediction model
Random Forest Regression (RFR), Least Squares Support Vector Regression (LSSVR) and Particle Swarm 
Optimization Least Squares Support Vector Regression (PSO-LSSVR) are used to predict the water content of 
magnetite.Random forest regression (RFR) model constructs multiple regression trees by random sampling, 
and synthesizes the weighted average results of these trees as the final prediction. The RFR model can effectively 
capture the complex nonlinear relationship between independent variables and dependent variables, and 
is suitable for high-dimensional data processing. The model performance can be optimized by adjusting the 
number of decision trees and the number of feature splits18. Least square support vector regression (LSSVR) is an 
alternative algorithm based on support vector (SVM), which has a perfect theoretical framework and transforms 
quadratic optimization problems into the solution process of linear equations, thus simplifying the solution of 
problems19. Particle Swarm Optimization Least Squares Support Vector Regression (PSO-LSSVR) is an advanced 
method combining Particle Swarm Optimization (PSO) and Least Squares Support Vector Regression (LSSVR). 
This method uses particle swarm optimization to optimize the superparameter selection of LSSVR and improve 
the performance and prediction accuracy of the model. The particles move in the search space, approach the 
target through continuous iteration, and finally converge to the optimal solution, which effectively reduces the 
risk of the model falling into local optimization20.

In the hyperspectral modeling, the Random Forest (RF) model was configured with 100 decision trees 
to balance accuracy and computational efficiency. For the Particle Swarm Optimization (PSO) algorithm, a 
population size of 30 particles was used, which provided stable convergence and effective parameter optimization 
for the LSSVR model. The calibration set and the prediction set are randomly divided by the ratio of 3:1, and 
the training set and the test set are divided respectively for 200 samples with 9 granularity levels. The number of 
training set samples accounts for about 75% of the total sample, with 150 training set samples, and the remaining 
50 samples are test set samples, which ensures the rationality and reliability of training set model establishment 
and test set verification. Taking the determining coefficient (R2) and Root Mean Squared Erro (RMSE) as 
evaluation indexes, the closer the R2 value is to 1 and the smaller the RMSE value, the better the stability and 
applicability of the model.

Based on the above description of the experimental process and analysis methods, the method flowchart of 
this study is shown in Fig. 2.

Results and discussion
Spectral curve characteristics of magnetite with different water content
The reflection spectra of magnetite with different water contents are shown in Fig. 3. The spectral curves of 
magnetite with different particle sizes are almost the same, and the reflectivity ranges from 0 to 0.03. With the 
increase of particle size, the reflectivity shows a downward trend, and the two are negatively correlated. The 
water content has a certain influence on the spectral characteristics of magnetite. With the increase of water 
content of magnetite, the overall reflectivity tends to decrease. However, the water content has little influence 
on the overall shape and trend of magnetite reflection spectrum curve. The spectral reflectance of magnetite 
has obvious absorption characteristics at 990  nm, 1440  nm and 1920  nm, and the absorption characteristic 
at 990 nm is the absorption band of Fe3+, which is determined by the properties of magnetite. The absorption 
characteristics at 1440 nm and 1920 nm are influenced by -OH bond. The spectral curves of magnetite with 
different water contents decrease in the range of 400–500  nm, and gradually increase in the range of 500–
600 nm, forming a weak trough near 500 nm, which is characterized by weak absorption due to the influence of 
Fe3+. In the range of 600–990 nm, the reflection shows a downward trend. Due to the increase of particle size, 
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the spectral characteristics of Fe3+ are suppressed, and the band of 750–800 nm gradually tends to be flat. The 
absorption band of Fe3+ appears near 990 nm. In the range of 990–1920 nm, the reflectivity is relatively stable, 
and there are absorption peaks caused by the vibration of -OH bond at 1440 nm and 1920 nm, and the higher the 
water content, the stronger the absorption depth. The spectral reflectance tends to be stable at 1920–2400 nm. 
The change of water content of magnetite has little influence on the overall trend of reflection spectrum curve, 
but it has great influence on the spectral reflectivity. The water content is negatively correlated with the overall 
reflectivity of magnetite and positively correlated with the absorption depth of characteristic peak.

Correlation analysis results of spectral data preprocessing and pearson
The spectral data of magnetite with nine particle sizes are transformed and the data results are shown in Fig. 4. 
Compared with the original spectral curve, the 6 spectral transformations enhance the spectral characteristics 
and remove some noise to a certain extent, and the results of MSC and SD transformation tend to highlight 
the overall spectral characteristics. Figure 4(a) shows the spectral curve after S-G smoothing, and the curve 
variation law is almost the same as the original spectral curve, which well preserves the original shape of the 

Fig. 3.  Nine Hyperspectral curves of magnetite with different particle sizes and water contents: (a) particle size 
1; (b) particle size 2; (c) particle size 3; (d) particle size 4; (e) particle size 5; (f) particle size 6; (g) particle size 7; 
(h) particle size 8; (i) particle size 9.

 

Fig. 2.  Methodological flowchart.
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spectrum and has obvious noise filtering effect in the band of 400–550 nm. Figure 4(b) is the spectral curve after 
MSC transformation, highlighting the absorption characteristics at 1440 nm and 1920 nm, and the absorption 
depth is positively related to the particle size, which is mainly related to the surface characteristics of particles 
and the light scattering mechanism. When the particle size is larger, the ratio of its surface area to volume 
increases, and more light is reflected by the particle surface, and the large particle size usually leads to multiple 
scattering of light, which increases the ratio of reflected light. Figure 4(c) and Fig. 4(f) are curves after SNV and 
CR transformation. Compared with other transformations, the spectral characteristics near 440 nm, 990 nm, 
1440 nm and 1920 nm are more obvious. Figure 4(d) SD transform has the best spectral features at 440 nm, 
990 nm and 1920 nm. With the increase of particle size, the features around 1920 nm are enhanced, but the 
effect of filtering noise is relatively poor. Figure 4(e) The characteristics of LR transform at 1920 nm are obviously 
different, and the reflectivity of different water contents is obviously distinguished.

The correlation coefficient between water content and spectral reflectance after different spectral 
transformations is shown in Fig. 5. The overall change trend of the correlation of the six transformations is 
consistent, and LR shows a partially opposite trend. After MSC, SNV, LR and CR transform, the correlation 
of most bands is obviously improved. The absolute value of correlation coefficient between MSC and SNV is 
about 0.8, that of S-G, LR and CR transform is about 0.6, and that of SD transform is about 0.5. In particle size 
1, the maximum correlation coefficients between MSC and SNV are − 0.908 (459  nm) and-0.914 (465  nm). 
The correlation of particle sizes 2, 3, 4, 8 and 9 is low, and the average correlation coefficient is about 0.6. 
The maximum correlation coefficients of particle sizes 5, 6 and 7 are − 0.950 (412 nm), −0.903 (435 nm) and 
− 0.946 (438 nm) in MSC transformation, and − 0.892 (457 nm) and − 0.902 (492 nm) in SNV transformation, 
respectively. By comprehensive comparison, MSC and SNV transform have strong adaptability to the spectral 
data of magnetite water content, and the effect of improving data quality is good.

CARS algorithm feature band screening to improve data quality
With the increase of sampling times, the change results of the number of bands selected by the sample, RMSECV 
and regression coefficient of each band are shown in Fig. 6. With the increase in Monte Carlo sampling times, 
there are fewer and fewer remaining variables. In the process of increasing the number of runs, the accuracy of 
the model will increase with the deletion of useless variables in the early stage, but when the variables decrease 
in the later stage, the useful variables will also be deleted, leading to the increase of RMSECV. After several runs, 
the better results will be selected.

The characteristic band positions of six transformed spectral data screened by CARS are shown in Fig. 7. 
This process effectively reduces the redundancy of the data and provides a more refined database for subsequent 
analysis. The characteristic bands screened by different transformation methods are different. The bands screened 
by S-G, MSC, and LR transform are mainly located around 440 nm and 900 nm, while the characteristic bands 
of SD transform are mainly concentrated in the range of 440–500 nm, and the bands screened by SNV and CR 
transform are mainly distributed around 400 nm and 1350 nm. Through the screening of the CARS algorithm, 
the key features of spectral data are highlighted, and redundant information is eliminated, which further 

Fig. 4.  Spectral data results of 9 kinds of magnetite particles after transformation: (a) S-G smooth; (b) MSC; 
(c) SNV; (d) SD; (e) LR; (f) CR.
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Fig. 6.  CARS screening process: (a) Number of selected bands; (b) RMSECV.

 

Fig. 5.  Thermal diagram of correlation between water content and spectral reflectance after different 
transformations.
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improves the quality of spectral data and ensures that the model can capture the spectral information related to 
water content more accurately, thus improving the accuracy and reliability of prediction.

Establishment and optimization results of water content prediction model
Based on 6 characteristic bands of spectral transformation selected by CARS algorithm, combined with three 
models of RFR, LSSVR and PSO-LSSVR, the water content of magnetite with nine particle sizes was estimated, 
resulting in 162 different results. When analyzing these results, it is found that the magnetite powder with 
particle sizes of 1, 2, 3 and 4 is easy to bond when the water content increases, resulting in relatively poor spectral 
recognition effect; However, for magnetite with particle sizes of 8 and 9, due to the large surface characteristics 
of particles and light scattering, the effect of identification model is good but not outstanding. By comparing 
the prediction effects of all particle sizes, it is found that magnetite with particle sizes of 5, 6 and 7 has the 
best prediction effects under the three models, indicating that moderate particle sizes are more conducive to 
improving the accuracy and stability of spectral identification.

Figure 8 is a scatter plot of the predicted value and the measured value of the optimal spectral transformation 
mode in the three models. Figure 8(a-l) are the optimal results of RF, LSSVR and PSO-LSSVR models respectively. 
The data points of RF and PSO-LSSVR models are more concentrated and closer to the 1:1 line, while the data 
points of LSSVR model are more discrete, which may easily lead to data instability. Among the three models, 
PSO-LSSVR has the most stable model effect, and the training set R2 reaches about 0.980. Particle size 1(SNV-
CARS-PSO-LSSVR), 5(MSC-CARS-PSO-LSSVR), 5(SNV-CARS-PSO-LSSVR), 6(MSC-CARS-PSO-LSSVR) 
and 7(CR-CARS-PSO-LSSVR). After transformation, the accuracy of the model has been improved to varying 
degrees, among which MSC, SNV and CR have better effects. In the RF model, the effects of particle size 1(MSC-
CARS-RF), particle size 5(MSC-CARS-RF), particle size 6(SNV-CARS-RF) and particle size 7(CR-CARS-RF) 
are the best, and the prediction sets R2 are 0.547, 0.663, 0.549 and 0.554 respectively. In the LSSVR model, R2 of 
the prediction sets of particle size 6(MSC-CARS-LSSVR), particle size 6(SNV-CARS-LSSVR) and particle size 
7(CR-CARS-LSSVR) are 0.668, 0.778 and 0.682, and RMSE is 4.91%, 5.45% and 0.682, respectively. Comparing 
the three models, the effect of LSSVR model is slightly inferior to that of RF model, and PSO-LSSVR model has 
the best effect, with higher R2 and lower RMSE.

The water content prediction model R2 established by Yu et al. for tailings is 0.798, and the root mean square 
error RMSE is 0.077. Compared with the field measured values, the water-leaving reflectivity of the remote 
sensing model of heavy metals established by Liang et al.21 at the wavelength of 350–950 nm is 0.964, and the 
verification accuracy R2 of the iron tailings water content model established by Cao et al.22 is 0.92, and the field 
verification R2 reaches 0.79. In this study, the water content models of magnetite with particle size 1(SNV-CARS-
PSO-LSSVR) and particle size 7(CR-CARS-PSO-LSSVR) were finally selected, and the prediction set R2 was 
0.798 and 0.789 respectively, and the RMSE was 5.64% and 5.41% respectively.

Fig. 7.  CARS algorithm processes the screening results of spectral characteristic bands after pretreatment of 9 
particle sizes: (a) SG-CARS; (b) MSC-CARS; (c) SNV-CARS; (d) SD-CARS; (e) LR-CARS; (f) CR-CARS.
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Conclusion
This study investigated nine magnetite samples from Hebei Province with moisture contents ranging from 0 
to 40% using hyperspectral techniques. Results demonstrated a clear negative correlation between spectral 
reflectance and moisture, with prominent absorption features near 990 nm, 1440 nm, and 1920 nm attributed 
to Fe³⁺ ions and -OH bonds. Advanced preprocessing and feature selection methods effectively enhanced these 
spectral signatures, reducing noise and improving model inputs. Among the tested models, PSO-LSSVR showed 
the most stable and accurate moisture predictions across different particle sizes. The selected models achieved 
high accuracy, providing a reliable method for rapid and precise magnetite moisture detection. This approach 
offers significant potential for industrial and mining applications, enabling real-time monitoring and improved 

Fig. 8.  Results of measured and predicted values of the better model among 9 particle sizes: (a-d) RF model, 
(e-g) LSSVR model; (h-l) PSO-LSSVR model.

 

Scientific Reports |        (2025) 15:25694 8| https://doi.org/10.1038/s41598-025-11127-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


process control during ore beneficiation and smelting. Future work will focus on expanding the model to diverse 
sample types to enhance its generalizability and practical applicability.

Data availability
All data generated or analyzed during this research process are included in this published article.
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