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Crayfish Optimization Algorithm (COA) suffers from degradation of diversity, insufficient exploratory 
capability, a propensity to become caught in local optima, and an imprecise search engine for 
optimization. To address these issues, the current research introduces a hybrid strategy enhanced 
crayfish optimization algorithm (MSCOA). Initially, a chaotic inverse exploration initialization 
method is utilized to establish the population’s position with high diversity, significantly enhancing 
the global exploration capability. Second, an adaptive t-distributed feeding strategy was employed 
to define the connection between feeding behavior and temperature, increasing population variety 
and enhanced the algorithm’s local search effectiveness. Finally, an adaptive ternary optimization 
mechanism is introduced in the exploration phase: a curve growth acceleration factor is used to 
collaboratively guide global and individual optimal information, while a hybrid adaptive cosine 
exponential weigh dynamically adjusts the search intensity. Additionally, an inverse worst individual 
variant reinforcement approach is employed to enhance the population evolution efficiency. In the 
hybrid test sets of CEC2005 and CEC2019, MSCOA shows improved convergence accuracy compared 
to the traditional COA algorithm, and the Wilcoxon test (p < 0.05) confirms its superiority over 
five other comparison algorithms. MSCOA outperforms other algorithms in terms of robustness, 
convergence speed, and solution accuracy, although there is still room for further improvement. 
When combined with Extreme Learning Machine (ELM) and applied to the Wisconsin breast cancer 
dataset, the MSCOA-ELM model achieved 100% accuracy and F1 score, a 28.9% improvement over the 
baseline ELM, demonstrating the algorithm’s efficiency and generalization ability in solving practical 
optimization problems.
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Optimization is widely regarded as the most efficient method for determining the best solution to various 
real-world problems in complex domains. All scientific fields face the constant challenge of optimization, 
and hundreds of Metaheuristic Algorithms (MA) have been devised to handle the growing complexity of 
optimization issues. A wide class of algorithms called MA is used to tackle challenging optimization issues. 
Numerous domains, including engineering design1, machine learning2, the medical profession3, community 
detection4, atmospheric sciences5, and others, heavily rely on these metaheuristic techniques. MAs are often 
categorized into many groups according to where they got their inspiration: evolutionary algorithms6, swarm 
intelligence (SI)7, physics-based algorithms8, and human behavior-based algorithms9. Among them, SI is 
particularly popular in scientific research and practical applications due to the simplicity and efficiency of its 
mathematical model.

SI is a type of stochastic optimization algorithms that tackle complicated optimization issues by mimicking 
the collective behavioral traits of a natural collection of organisms, such as Spider wasp optimizer10, Genghis 
khan shark optimizer11, Puma optimizer12, Dung beetle optimizer13, Gazelle optimization algorithm14, Grey 
wolf optimizer15 and Frilled Lizard Optimization16 etc. These algorithms are used in computer science17, 
engineering science18, Mathematics19, Environmental Sciences20, biomedical science21 and many other fields 
have demonstrated powerful problem solving capabilities.

In recent years, the integration of metaheuristic algorithms and machine learning has achieved remarkable 
progress in various fields. Researchers have explored how metaheuristic optimization algorithms can enhance 
machine learning models. Jovanovic et al.22 proposed a hybrid approach combining machine learning and 
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swarm intelligence optimization to tackle the problem of credit card fraud detection. Han et al.23 utilized a 
hybrid method based on Convolutional Neural Networks (CNN) and Extreme Learning Machine (ELM) for 
the optimal and efficient modeling of Proton-exchange Membrane Fuel Cells (PEMFC), further optimizing the 
model using an improved Honey Badger Algorithm (IHBA) to achieve optimal results. Ewees et al.24 employed 
the Honey Badger Optimization (HBO) algorithm to optimize Long Short-Term Memory (LSTM) networks, 
boosting wind power forecasting performance. Additionally, Ma et al.25 combined the Multi-Verse Optimization 
(MVO) algorithm with Support Vector Regression (SVR) for geohazard modeling, achieving great success. 
Jovanovic et al.26 tuned the multi-headed LSTM structure using a modified Particle Swarm Optimization (PSO) 
algorithm to enhance fuel price forecasting accuracy. These studies highlight that the fusion of metaheuristic 
optimization and machine learning can optimize model structures and improve prediction and classification 
performance. In the future, this research domain holds great potential, particularly in intelligent scheduling 
optimization, automated hyperparameter tuning, and deep learning-driven adaptive search strategies, which 
could further strengthen the synergy between optimization algorithms and machine learning.

The new swarm intelligence algorithm Crayfish Optimization Algorithm (COA)27 was put out by Jia et al. 
in 2023, inspired by crayfish behaviors such as burrow scrambling, foraging, and heat avoidance. COA mimics 
crayfish behaviors through a two-phase strategy: in the exploration phase, it mimics crayfish searching for 
habitats to enhance global search ability, while in the exploitation phase, it mimics burrow scrambling and 
foraging behaviors to achieve local optimization. The algorithm is dynamically adjusted based on temperature 
changes, with crayfish searching for burrows to avoid the heat when the temperature exceeds 30 °C and foraging 
when it falls below 30°C.

Motivations behind the present work
Although COA possesses numerous advantages, it also has several shortcomings:

•	 Decline in population diversity.
•	 Tendency to fall into local optima.
•	 Insufficient exploration capability.
•	 Lack of adaptability due to static parameters.

Contribution of this study
To efficiently address these limitations of COA, this study proposes a hybrid strategy enhanced crayfish 
optimization algorithm (MSCOA). To evaluate its performance, MSCOA is combined with Extreme Learning 
Machine (ELM) and applied to breast cancer prediction. The key contributions of this study are as follows:

•	 The chaotic inverse exploration initialization strategy is proposed to initialize the population position by in-
troducing Logistic-Tent chaotic mapping with variational quasi-inverse learning to generate more diverse and 
uniformly distributed solutions and increase the algorithm’s effectiveness for global search.

•	 The adaptive t-distributed feeding strategy is used to describe the relationship between feeding amount and 
temperature, which effectively increases the algorithm’s potential to search locally and successfully expands 
the possibility for adaption in the simulated real-world environment.

•	 Curve growth acceleration factor C1 is proposed to optimize burrow positioning, ensuring the integration of 
individual and global optimal solutions while making better use of population information.

•	 Hybrid adaptive cosine exponential weights ω  are introduced into the crayfish position update formula, 
allowing the algorithm to dynamically adjust search intensity and balance global exploration and local con-
vergence.

•	 Inverse worst individual variance strengthening strategy applies inverse perturbation to poor solutions, guid-
ing the population out of local optima.

•	 A novel method, the adaptive ternary optimization mechanism, is proposed by integrating C1, ω , and the 
inverse worst individual variance strengthening strategy into the position update process during the Summer 
Resort Stage.

•	 The MSCOA-ELM model is developed and applied to breast cancer prediction, demonstrating the algorithm’s 
potential for practical applications.

To clearly highlight the main contributions of MSCOA, they are summarized in the following numbered list:

	1.	 Introduction of a chaotic inverse exploration initialization strategy.
	2.	 Implementation of an adaptive t-distributed feeding strategy.
	3.	 Proposal of a curve growth acceleration factor for optimized burrow positioning.
	4.	 Integration of hybrid adaptive cosine exponential weights in position updates.
	5.	 Development of an inverse worst individual variance strengthening strategy.
	6.	 Creation of a novel adaptive ternary optimization mechanism.
	7.	 Application of MSCOA-ELM to breast cancer prediction, demonstrating real-world utility.

This paper’s fundamental format is as follows: Sect.  Introduction  provides a succinct synopsis of the topics 
and issues discussed throughout the paper. Section Motivations behind the present work introduces previous 
research on COA improvements and its practical applications. Section Contribution of this study provides a 
comprehensive summary of COA. Section 4 proposes MSCOA, detailing the algorithmic flow and the specifics 
of the MSCOA algorithm. Section 5 presents the experimental results and conducts analysis and discussion. 
Section 6 integrates MSCOA with ELM (MSCOA-ELM) for breast cancer prediction. Finally, Sect. 7 summarizes 
the paper.
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LITERATURE REVIEW
Owing to its quickness, flexibility, and adaptability, COA been applied across a wide range of fields. For 
instance, Hussam et al.28 developed a hybrid COASaDE optimizer for handling difficult optimization issues 
and engineering design issues. In order to address FS issues, Shaymaa et al.29 presented a successful IBCOA 
approach. Sait et al.30 explored the application of COA in engineering design optimization with the assistance of 
Artificial Neural Network, and Shikoun et al.31 offer a novel BinCOA for feature selection.

COA has also been used for PV parameter extraction32, cybersecurity33, PV parameter estimation34, skidney 
tumor segmentation and classification35, and friction behavior modeling in complex machinery36.

Moreover, Yakubu et al.37 used COA to generate an optimal resource allocation in both the fog and cloud 
layers that reduces the delay and execution time of the system. Jia et al.38 used the COA approach to deftly 
find the crucial hyperparameters of the model. Jiang et al.39 showcased the BiLSTM approach for time-series 
forecasting, optimized by the enhanced crayfish optimization algorithm (ICOA). Huang et al.40 suggest an 
innovative fault diagnostic methodology for distribution transformers and COA is used to optimize parameters. 
Almutairi et al.41 leveraged a hierarchical optimization strategy that integrates particle swarm optimization with 
crayfish optimization for more effective solutions.

Nevertheless, COA’s performance in complex optimization tasks is hindered by challenges such as local 
optima, diminished population diversity, and insufficient exploration capacity during the optimization process.

To mitigate these issues, Zhong et al.42 proposed HRCOA, which combines ROA’s exploitation operators with 
COA’s summer resort operators to streamline the algorithm. However, this method struggles with inefficiencies 
in high-dimensional problems. In an attempt to improve the algorithm’s performance, Zhang et al.43 presented 
ECOA, which introduces four enhancement measure, yet its convergence accuracy remains inadequate for 
complex multimodal functions. Jia et al.44 presented MCOA, a mechanism for updating the environment based 
on the crayfish’s survival habit. The MCOA uses a ghost-based antagonistic learning strategy along with the 
water quality factor to guide the crayfish in its search for better environments. However, this approach still has 
limitations in balancing global exploration and local exploitation. Finally, Wang et al.45 suggested IMCOA to 
address the disconnect between global exploration and local exploitation phases in COA, particularly during the 
summer vacation and tournament phases, but it fails to completely eliminate premature convergence.

Crayfish optimization algorithm
Crayfish (scientific name: Procambarus clarkii) is a kind of freshwater crustacean46 that is indigenous to North 
America, which has been brought to several regions of the world due to its adaptability. Temperature significantly 
impacts its survival47, influencing behavior such as burrowing to avoid heat or foraging when conditions are 
favorable.

As omnivores, crayfish may eat a wide range of foods, including grains, insects, and plant material48. When 
Crayfish feed, they usually claw large food items, tear it off, and send it to the second and third walking feet for 
grasping and nibbling. For small amounts of food, their second and third walking feet are used to grab and bite 
directly. And crayfish typically utilize pincers or fast concealment as a defensive tactic to keep other crayfish 
from stealing them49. As seen in Fig. 1, The behavior of freshwater crayfish when foraging, avoiding summer 
heat, and competing is the inspiration’s origin for the COA, which are applied in the algorithm’s exploration and 
development phases.

Temperature and feeding
Changes in environmental temperature cause crayfish to exhibit different behavioral stages. Temperature is 
defined as Eq. (1). Within a suitable temperature range (20°C to 35 °C), crayfish engage in foraging behavior and 
their feeding amount is regulated by temperature, showing an approximate normal distribution trend. These are 
the particular equations:

Fig. 1.  Structure diagram of crayfish.
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	 temp = rand × 15 + 20� (1)

	
P = C1 ×

(
1√

2 × π × σ
× exp

(
− (temp − µ )2

2σ 2

))
� (2)

where µ  indicates the most ideal outside temperature for crayfish foraging. By adjusting C1 and σ , the quantity 
of food that crayfish eat at various temperatures can be controlled.

Summer resort stage
When external temperatures exceed 30 °C, crayfish instinctively retreat into their burrows to escape the heat. The 
expression for the burrow position is denoted as Eq. (3).

	 Xshade = (XG + XL) /2� (3)

where XL stands for the ideal spot in the existing population and XG signifies the optimal position attained 
throughout the iterative process. The rivalry between crayfish for burrows is arbitrary. Equation (3) states that 
when rand <0.5, the crayfish straight to escape the heat because there aren’t any other crawfish battle for it.

	 Xt+1
i,j = Xt

i,j + C2*rand*
(
Xshade − Xt

i,j

)
� (4)

where t is the amount of cycles that are currently in progress, Xt
i,j symbolizes the j-th dimensional position of 

the i-th crayfish in the t-th iteration, and C2 is a coefficient that decreases linearly from 2 to 0. This is how it is 
calculated.

	 C2 = 2 − (t/T )� (5)

Competition stage
The presence of rand >0.5 and an ambient temperature over 30 °C suggests that other crayfish are also considering 
the burrow. The crayfish now fight over who gets to keep the burrow. Every crayfish X will modify its location 
based on where another crayfish X is located. The formula is as follows.

	 Xt+1
i,j = Xt

i,j − Xt
z,j + Xshade� (6)

where B is the crayfish population size and z denotes another randomly obtained crayfish individual with the 
following Eq. 

	 z = round (rand∗( B − l )) + l� (7)

Foraging stage
Crayfish will approach the food source if the outside temperature is at or below 30°C. When they locate the 
food, they assess it. If the food is too large, they will tear it apart using their claws and alternate between their 
second and third legs to feed. However, if the food is of moderate size, the crayfish will directly approach and 
consume it. The food’s position is denoted as Xfood, which is represented as Xfood = XG. The food’s size Q can 
be described by Eq. (8).

	 Q = C3 × rand× fitnessi/fitnessfood� (8)

where, C3 denotes the food factor, which is a constant value indicating the largest food size, with a specific value 
of 3, fitnessi denotes the fitness value of the i-th crayfish and fitnessfood denotes the fitness value of the food.

The food is considered excessively large when the food size Q >( C3+1)/2. At this time, the crayfish begins 
tearing it with the first claw. The following is the mathematical equation:

	
Xfood = exp(− 1

Q
) ∗ Xfood� (9)

The food is alternately picked up and brought to the mouth using the second and third paws as it is shredded, 
becoming smaller. Equation (10) combines sine and cosine functions to simulate the alternating motion of the 
second and third claws.

	 Xt+1
i,j = Xt

i,j + Xfood ∗ p ∗ (cos (2 ∗ π ∗ rand) − sin (2 ∗ π ∗ rand))� (10)

When the food size Q ≤ (C3 + 1) /2, the crayfish simply travels towards the food position and feeds, as 
Eq. (11) illustrates.

	 Xt+1
i,j =

(
Xt

i,j − Xfood

)
∗ p + p ∗ rand ∗ Xt

i,j � (11)
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Hybrid strategy enhanced crayfish optimization algorithm
To solve the problem of COA, this paper proposes MSCOA. To address the issue of insufficient population 
diversity in COA, where traditional random initialization leads to uneven solution distribution and low global 
search efficiency, this study proposes a Chaotic Reverse Initialization Strategy. To overcome the fixed step size 
in the COA feeding phase, which limits local search capability and makes static parameters less adaptable to 
dynamic optimization environments, this paper introduces the t-Distribution Feeding Strategy. To tackle the 
problem of excessive reliance on the current best solution, which can easily lead to local optima and premature 
convergence, we propose the Inverse Elite Variant Reinforcement Strategy. Lastly, to address the lack of a dynamic 
weight mechanism in COA, which hinders the flexible adjustment of search intensity, this paper introduces the 
Curve Growth Bootstrap Factor and Hybrid Adaptive Cosine Exponential Weighting.

Chaotic reverse initialization strategy
In intelligent optimization algorithms, the quality of the original population has a non-negligible effect on the 
algorithm’s performance, and can directly impact both the convergence rate and global search capability50. The 
random initialization adopted by the basic COA algorithm may lead to the distribution of the initial population 
being too scattered or concentrated, which lacks effective guidance of the search space. An inadequately 
distributed population may prematurely converge to local optima, reducing the overall search effectiveness. To 
address this, a chaotic inverse initialization strategy is adopted to optimize the population initialization process. 
This is achieved by incorporating Logistic-Tent chaotic mapping along with quasi-inverse learning, enhancing 
the algorithm’s global search efficiency.

Logistic-Tent chaotic mapping  Good randomness, traversability, and non-repetition characterize chaotic mo-
tion. Chaotic mapping has been a popular technique in optimization algorithms in recent years. The algorithm’s 
performance may be further enhanced by incorporating chaotic behavior, which can further increase the popu-
lation variety and global search efficiency51.

Logistic mapping is a kind of single-peaked mapping, which fully carries over the benefits of unpredictability 
and sensitivity to beginning values that are present in chaotic systems. This is how it is expressed mathematically:

	 Xn+1 = a× Xn(1 − Xn)� (12)

where Xn is the outcome of the iteration Xn ∈ (0,1), and a is a parameter a ∈ (0,4).
The Tent chaotic system, another one-dimensional mapping, is known for its uniform probability distribution 

and strong autocorrelation. Its mathematical form is as follows:

	
Xn+1 =

{
b× Xn , 0 ≤ Xn < 0.5

b × (1 − Xn) , 0.5 < Xn ≤ 1 � (13)

where Xn is the iteration result Xn ∈ (0,1), and a is a control parameter b ∈ (0,4) and it is b ̸= 0.5 when 
the system is chaotic.

By combining these two chaotic systems, Zhu et al.52 produced a Logistic-Tent composite chaotic system. 
The benefits of both Tent and Logistic mapping are combined in the Logistic-Tent chaotic mapping, which 
promotes the stability and diversity of chaotic behavior. diversity of chaotic behavior. It is capable of generating 
highly complex and unpredictable sequences with good traversal properties. Here is the Logistic-Tent mapping 
expressed mathematically:

	
Xn+1 =

{ (k× Xn (1 − Xn) + (4 − r) Xn/2) mod 1, Xn < 0.5
(k× Xn (1 − Xn) + (4 − r) (1 − Xn) /2) mod 1, Xn ≥ 0.5 � (14)

where Xn is the iteration result Xn ∈ (0,1), and k is a control parameter k ∈ (0,4).
In Fig. 2, the histograms of these three chaotic mappings after 500 iterations are shown, where it is observed 

that the Logistic-Tent mapping has a more uniform distribution between [0,1] than the other two typical 
mappings. This means that using Logistic-Tent mapping for population initialization can more thoroughly cover 
the search space and raise the likelihood of identifying the global optimum. Secondly, Lyapunov exponent is 
an important measure of chaotic performance, and this index is maximized to 1.2937 for Logistic-Tent cascade 

Fig. 2.  Three kinds of chaotic mapping histograms.
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chaotic sequences, compared to 0.6926 for Tent chaotic sequences and 0.6930 for Logistic chaotic sequences53. 
Obviously Logistic-Tent chaotic mapping has better chaotic properties.

Quasi-reverse learning
Compared with independent randomly generated candidate solutions, the reverse solution is beneficial and 
more conducive to the propensity optimal solution54. Therefore, in this work, the chaotic initialized population 
obtained by mapping the Logistic-Tent chaotic sequence into the solution space is subjected to quasi-reverse 
learning to further optimize the initial population and enhance the likelihood of receiving an excellent initial 
solution.

Opposition-based learning (OBL) was established by Tizhoosh55, generating opposite individuals in the 
current individual region, comparing and selecting the individuals with high adaptability for subsequent 
iterations, which can effectively enhance the population’s quality and variety, and is conducive to optimizing its 
search effect. The following is the mathematical formula for reverse learning:

	 XOBL(n + 1) = LB + UB − X (n)� (15)

where LB and UB are the bottom and upper boundaries of the search space, respectively.
Quasi-opposition-based learning (QOBL) is one kind of OBL56, and previous studies have demonstrated that 

using quasi-opposition-based solutions is more effective than inverse solutions in finding the global optimum. 
Quasi-opposition-based learning obtains the function of the population as follows:

	
XQOBL (n + 1) =

{
CS + rand (0,1) × (MP − CS) , if MP > CS

MP + rand (0,1) × (CS − MP ) , otherwise � (16)

where X (n) is the chaotic initialized population after the Logistic-Tent chaotic mapping of Eq. (13), and LB, 
UB represent the chaotic initialized population’s top and lower boundaries, respectively. XQOBL (n) is the new 
population produced via quasi-reverse learning. MP is illustrated in Eq. (17).

	 MP = LB + UB − X (n)� (17)

CS as shown in equation Eq. (18).

	
CS = LB + UB

2
� (18)

Flowchart of chaotic inverse exploration initialization strategy
As shown in Fig. 3, this strategy first generates a chaotic initialized population by initializing the population with 
Logistic-Tent chaotic mapping, and then generates its inverse solution using quasi-reverse learning, which can 
explore various areas of the issue space, avoiding the over-concentration of individuals in certain regions during 
the initialization, and reducing the likelihood of discovering the local optimum solution process at an early 
stage. Finally, the chaotic initialized population is merged with the inverse population, the fitness is calculated, 
and the optimal n individuals are chosen to become the new initial population. It can make the inverse solution 
complementary to the original solution and improve the coverage of the population, thus strengthening the 
optimization algorithm’s early-stage exploration capability.

t-Distribution feeding strategy
An adaptive t-distributed feeding strategy was employed to define the connection between feeding behavior and 
temperature. This approach increased population variety and enhanced the algorithm’s local search effectiveness.

Fig. 3.  Flow chart of chaotic reverse initialization strategy.
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The t-distribution, sometimes referred to as the student distribution, is introduced in this work. Equation (19) 
shows its probability density function, which has the degree of freedom parameter n. This study uses Eq. (19) to 
illustrate the link between the temperature and the feeding quantity. The t-distribution combines the features of 
the Gaussian and Cauchy distributions. Figure 4 compares the pictures of the three distributions.

	
f (x) =

τ
(

n+1
2

)
√

n × π × τ
(

n
2

) ×
(

1 + x2

n

)− n+1
2

, −∞ < x < +∞ � (19)

where τ  is the Gamma function.
From Fig. 4, It is evident that early in the t-distribution iteration, the properties of the Cauchy distribution will 

be displayed, enhancing the population’s variety. At the middle and late stage of iteration, the value of the degree 
of freedom parameter is larger. Compared with the Gaussian distribution in the original text, the t-distribution 
approximates the Gaussian distribution, which increases the algorithm’s ability to evolve locally. And the 
t-distribution has a longer tail relative to the Gaussian distribution, which means it can better capture extreme 
values or outliers. For modeling data such as crayfish intake, which comes with a high degree of volatility, the 
t-distribution can be a more realistic reflection of the actual situation. Therefore, using an adaptive t-distribution 
feeding strategy maintains the algorithm’s stability and enhances the population’s variety.

Curve growth guidance factor
Curve growth acceleration factor is used to control the influence of the global and individual optimal solutions, 
thus raising the likelihood of discovering the globally best solution and enhancing search efficiency.

Xshade is an important guide to the evolution of crayfish populations. When the quantity of iterations 
rises, many particles may become trapped in local optima. To preserve population variety and enhance the 
algorithm’s capacity to escape these local optima, the global optimum’s effect on the solution search process must 
be increased. This adjustment helps make the search more stable and comprehensive.

To achieve this, we introduce two parameters, C1 and C2, as outlined in Eqs. (20) and (21), which respectively 
control the influence of the global and individual optimal solutions. These parameters allow for varying weight 
distributions at different stages of the iteration, increasing the search’s variety and unpredictability. The algorithm 
is able to avoid stagnating in local optimum solutions because to this flexibility.

	 C1 = a × log ((bx + c) /T ) + d × e(f*t+g)/T � (20)

	 C2 = 1 − C1 � (21)

Updated formula for the location of Xshade updated to formula 23. By dynamically adjusting C1 and C2, the 
algorithm can strike a balance finding novel answers with taking use of already-found ones. Specifically, as C1 
is incremented, C2 is decremented accordingly (Fig. 5 (a)), and this change ensures that information about 
the global and individual optimal solutions is combined to more fully utilize the information about the current 
population, thus improving the search efficiency and raising the likelihood of discovering the globally ideal 
answer. When the quantity of iterations rises, the values of C1 and C2 are automatically adjusted in the process, 
allowing the algorithm to focus on extensive exploration at the beginning and progressively shift to localized and 
refined development in the later stages. This dynamic adjustment mechanism makes a difference to boost the 
algorithm’s convergence speed and global search capability.

In order to make C1, C2 meet the requirements, after experiments, the parameters of Eq. (20) are set as 
a = 0.11; b = 1; c = 1; d = 0.11; f = 1; g = 1. As shown in Fig. 5 (b), Sensitivity analysis shows that:

•	 when a = d = 0.11, the C1 curve exhibits a smooth transition, balancing exploration and exploitation, which 
leads to stable and effective search performance.

Fig. 4.  Image comparison of T-distribution, Cauchy distribution, Gaussian distribution.
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•	 When a = d = 0.5, rises too early, leading to premature convergence to local optima, reducing global explora-
tion capacity.

•	 When a = d = 0.01, C1 increases slowly, resulting in low global search efficiency, thereby lowering the conver-
gence efficiency.

•	 Setting b = c = f = g = 1 simplifies the formula structure and reduces the complexity of parameter tuning, mak-
ing the algorithm easier to implement while maintaining robust performance.

Experimental verification shows that setting a = d = 0.11 and b = c = f = g = 1 achieves the best balance between 
exploration and exploitation.

	 Xshade = C1*XG + C2*XL� (22)

The dynamically weighted three-step displacement updating strategy updates the equation for the summer 
avoidance phase, in which crayfish enter the burrow directly, to Eq. (23) through three improvements in the 
curve growth bootstrap factor, the hybrid adaptive cosine exponential weighting, and the inverse elite variant 
reinforcement strategy.

	 Xi+1 = ω * (C1*r1*cos (r2) * (Xworst − Xi) + C2*r2*sin (r2) * (Xshade − Xi))� (23)

where ω  is an innovative hybrid adaptive cosine exponential weight suggested in this paper as in Eq. (24). The 
f﻿igure below, Fig. 5, displays the amount of iterations.

	
ω =

cos
(

π
2 •

(
1 − t

T

))
1 + exp (a − bt)

� (24)

where a = 5 and b = 0.1. As shown in Fig. 6 (a), if a is too small, the initial ω  becomes too large, resulting in 
insufficient local search at the early stage, which negatively impacts optimization quality. Conversely, if a is too 
large, the initial ω  is smaller, but since the denominator’s decay rate remains the same, ω  grows more slowly. 
While this improves early-stage accuracy, it weakens global search capability, making the algorithm prone to 
local optima. Additionally, Fig. 6 (b) shows that if b is too small, the denominator decays too slowly, causing ω  
to remain at a low value for an extended period, leading to weak global search ability and slow convergence. On 
the other hand, if b is too large, the denominator decreases rapidly, causing ω  to reach its maximum too early. 
This results in premature convergence, preventing sufficient local optimization. Through the above comparisons, 
the combination of a = 5 and b = 0.1 provides adequate local search time in the early phase while ensuring a 
well-timed transition to global search. This prevents both premature convergence and prolonged stagnation. 
Therefore, this parameter selection is theoretically and experimentally justified.

As illustrated in Fig.  7, the weight factor exhibits a positive correlation with the number of iterations, t, 
indicating a nonlinear growth trend. Initially, there is a slow change both in the initial and final phases of the 
incremental procedure. when the algorithm first starts, the inertia weight is kept at a lower value for an extended 
period, which strengthens local optimization capability, thereby increasing the accuracy. In the intermediate and 
advanced phases, when the crayfish population exhibits higher convergence, the inertia weight increases with 
the number of iterations, stabilizing at a larger value for an extended duration. This adjustment fosters the global 
optimization potential of the crayfish population, improving the speed.

The design of the inertia weight integrates both cosine and exponential functions, which allows the algorithm 
to dynamically adjust its search intensity. This ensures a balanced approach, accommodating the global 
exploration needs as well as the local convergence requirements, effectively improving overall performance.

(a) (b)

Fig. 5.  Image comparison of T-distribution, Cauchy distribution, Gaussian distribution.
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Xworst is the position after applying the Inverse Worst Elite Mutation Strategy update. In this paper, Xshade 
i.e., the global ideal solution as well as the local ideal solution, has been fully utilized, while the worst position is 
the neglected information. For the purpose of better utilizing the information provided by Xworst, this paper 
proposes the Reverse Elite Mutation Reinforcement Strategy. After the worst individual Xworst is selected, it is 
firstly subjected to quasi-reverse learning, through which the effective information in the individual at the worst 
position is maximized and the reverse elite solution is generated to guide the search process to approach best 
possible answer. Second, a nonlinear Cauchy-Gaussian variation strategy is applied to the worst position Xworst. 
This method introduces random perturbations to the globally optimal individuals, preventing local optima from 
being reached by the algorithm. In this paper, based on the Cauchy-Gaussian variation strategy, we introduce 
hybrid adaptive cosine exponential weights ω  to perturb the generated inverse elite solution with nonlinear 
Cauchy-Gaussian variation as in Eq.  (25). Pre-iteration population is more dispersed, given a larger weight 
of the Cauchy distribution, is conducive to generating a large step size jumping out of the current position, to 
facilitate the search for better solutions. Late iteration of population is more aggregated, given a larger weight 
of the Gaussian distribution, is conducive to generating a small step size in the current position. It is beneficial 
to generate small step length to carry out local perturbation at the current position to avoid local optima and 
improve the algorithm’s convergence accuracy.

	 Xoworst = Xoworst1 ∗ ((1 − ω ) ∗ Cauchy + ω ∗ Gaussian)� (25)

where, Xoworst is the individual of the reverse elite solution perturbed by the nonlinear Cauchy-Gaussian 
variational strategy and Xoworst1 is the reverse elite solution after quasi-reverse learning. A random variable 
with a Gaussian distribution is referred to as Gaussian, while a random variable with a Cauchy distribution is 
referred to as Cauchy.

Fig. 7.  Image of ω .

 

Fig. 6.  Image of parameters a, b selected.
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After solving the perturbation for the reverse elites, the greedy strategy is finally performed. Comparing the 
individuals before and after the mutation, the one with better adaptation is selected as the new individual. The 
selection of the optimal solution based on the greedy strategy is shown in Eq. (26).

	
Xworst =

{
Xoworst if fobj (Xoworst) < fobj ( Xoworst1)

Xoworst1 otherwise � (26)

where, fobj () is the fitness function.
The variables r1 and r2 represent random numbers within the range [0,1], which enhance individual 

randomness, disrupt directional tendencies, and introduce greater evolutionary possibilities. By incorporating 
sine and cosine functions, individual positions are updated through various methods, effectively preventing 
premature convergence and preserving population diversity. The resilience and stability of the algorithm are 
greatly increased by this approach, thereby enabling a more balanced process of prospecting and extraction.

In the first phases of the algorithm, Xshade representing the global and local optimal solutions, is used to 
guide the overall position towards a balanced state. At a later stage, the reverse elite solution of Xworst, there 
may be unexplored regions, and in order to make the value more comprehensive, the proportion of reverse elite 
solution of Xworst is gradually increased. Therefore, the formula introduces C1, C2, as in Eqs. (20) and (21). 
C1 is gradually increased and C2 is taken to be gradually decreased.

MSCOA pseudo-code
Algorithm 1  Pseudo-code of the MSCOA.
Initialization using Eq. (14) and Eq. (16) to generate an initial population.

Calculate the fitness value of the population to obtain XG, XL, Xworst
While t < T.
Defining temperature temp using Eq. (1)
Calculate the value of C1, C2,ω ,
Update Xworst using Eq. (17)
for i = 1 to N.
If temp > 30.
Define cave Xshade using Eq. (23)
If rand < 0.5.
Perform Summer Resort Stage.
Calculate Xoworst using Eq. (26)
Update Xworst according to Eq. (27)
Crayfish enters the summer resort stage based on Eq. (24)
Else

Perform Competition Stage.
Crayfish competes for caves using Eq. (7)

End.
Else.
Perform Foraging Stage.
Obtain food intake p and food size Q from Eq. (18) and Eq. (9)
If Q > 2

Crayfish shreds food using Eq. (10)
Crayfish forages based on Eq. (11)

Else

Crayfish forages based on Eq. (12)

End.
End.
Update fitness values, XG, XL, Xworst
t = t + 1.
End.

MSCOA flowchart
In Fig. 8, the workflow of MSCOA is shown. First, population initialization is performed, using Eq. (14) and 
Eq. (16) to set the crayfish population, calculate the fitness value, and obtain the global optimum XG, local 
optimum XL, and global worst position Xworst. Next, Eq. (16) is used for updating global worst position Xworst, 
and Eq.  (1) is used to set the temperature temp, and to determine whether to enter into a high temperature 
environment (i.e., Temp > 30). When the temperature exceeds 30 degrees, the algorithm either proceeds to the 
summer resort or the competition stage, after defining Xshade through Eq. (22). In the case where rand < 0.5, 
the algorithm simulates the crayfish’s behavior in a high-temperature environment, entering the summer resort 
stage. Equation  (25) is used to calculate Xoworst and Eq.  (26) is used to update Xworst Eq.  (23) is used to 
adjust the position of crayfish. On the contrary, if rand > 0.5, crayfish will move to the competition stage and 
compete for burrows for better survival. This process is carried out by Eq.  (6) for competition for burrows. 
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When not exceeding 30 degrees, the food size Q is computed using Eq. (8), and the food intake p is calculated 
by Eq. (19), and based on the size of Q, the decision of which foraging behavior to take is made. If Q > 2, the 
crayfish shredded the food according to Eq.  (9), followed by foraging behavior according to Eq.  (10). When 
Q < 2, Eq. (11) is applied to perform the foraging behavior. In each round of iteration, the algorithm updates the 
global and local optimal solution XG and XL, and gradually approximates the optimal solution based on the 
fitness value. The whole algorithm ends after the termination condition t > T is satisfied.

Compared with traditional COA, MSCOA introduces additional mechanisms to enhance the diversity of 
search and global exploration, avoiding trapping in local optimal solutions and improving performance in 
challenging optimization tasks.

Computational complexity analysis
The time complexity illustrates the algorithm’s convergence rate. Let T represent the number of iterations, n 
the population size, and dim the search space’s dimension. In the original COA, initialization complexity is 
O (n ∗ dim), with each iteration being O (T ∗ n ∗ dim), leading to an overall complexity of O (T ∗ n ∗ dim).

In MSCOA, after applying chaotic inverse exploration during initialization, the complexity becomes: 
O (n ∗ dim + n ∗ log (n)). The most significant part is O (n ∗ dim). In the iterative process, despite 
introducing a dynamically weighted three-step displacement updating strategy, the time complexity remains 
consistent with COA at O (T ∗ n ∗ dim).

Thus, MSCOA shares the same asymptotic time complexity as COA, O (T*n*dim), with added computations 
from chaotic reverse initialization slightly impacting constants without altering the overall order.

Experimental Results and Discussions.
Three primary experiments are conducted in this part. The first main experiment is to test the enhanced 

strategy’s efficacy introduced in the algorithm, the second is evaluating MSCOA’s performance against a number 
of similarly comparable algorithms. The third one compares the suggested algorithm against other algorithms 
from the second experiment using a rank-sum method. This test may be used to determine whether MSCOA and 
other algorithms differ noticeably from one another. Additionally, the fourth experiment utilizes the Friedman 
test to assess the overall performance of these comparative algorithms.

	A.	 Experimental setup.

To thoroughly examine the optimization accuracy and conversion rate of the proposed algorithm, 17 standard 
test functions have been selected from the CEC2005 and CEC2019 test sets for comparative experiments, aiming 
to comprehensively analyze the performance of the optimization algorithm. The function names, expressions, 
search ranges, and operational solutions are shown in Table 1. The dataset is appropriate for assessing an algorithm’s 
performance in terms of local search, global search, resilience, and convergence ability since it contains a variety 
of optimization problem types, including unimodal, multimodal, hybrid, and high-dimensional issues.

Among them, F1 through F6 are unimodal functions, meaning they have a single global optimum. These 
functions are appropriate for evaluating the algorithm’s capacity for local searches and rate of convergence. 
Multimodal functions, such as F7–F12, contain several local optima but only one global optimum. These 

Fig. 8.  Flow chart of MSCOA.
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functions are primarily used to assess the algorithm’s capacity for both global search and escape from local 
optima. The hybrid composite functions F13–F15 have a very complicated search space and incorporate several 
distinct mathematical functions. The main purpose of these functions is to evaluate the optimization algorithm’s 
resilience and capacity for global search. High-dimensional multimodal functions, such as F16 and F17, have 
increased dimensionality and several local optima. They are employed to evaluate the algorithm’s capacity for 
exploration and exploitation abilities in high-dimensional complex environments.

Different categories of test functions are used to evaluate the optimization algorithm’s performance in terms 
of convergence speed, global search ability, ability to avoid local optima, robustness, and high-dimensional 
optimization capability. To obtain unbiased results, in all comparisons, the overall size and maximum number of 
iterations for all functions are set to 30 and 1000, respectively.

All experiments were run on a PC equipped with an Intel (R) Core (TM) i5-12500 H CPU, 16.00 GB RAM, 
and Windows 11 operating system, and all algorithms were implemented using MATLAB R2022a.

Comparison with different improvement strategies
MSCOA is compared with the crayfish optimization algorithm (COA1) that only applies the chaotic inverse 
exploration initialization strategy, the crayfish optimization algorithm (COA2) that only employs the adaptive 
t-distribution feeding strategy, the crayfish optimization algorithm (COA3) that only employs the curve-growth 
bootstrap factor, and the crayfish optimization algorithm (COA4) that only implements the dynamically-
weighted three-step displacement update strategy, and the.

parameter settings are as the same as in this paper, to verify the superiority of MSCOA. To better illustrate 
the impact of each single strategy on the COA more clearly, the convergence curves of various algorithms on the 
functions F1-F17 are given in Fig. 9.

In Fig.  9, F1–F6 demonstrate that each strategy enhances convergence speed to varying degrees, with 
MSCOA consistently achieving faster convergence to lower fitness values compared to the original COA and its 
variants. This indicates that MSCOA excels in local search capabilities, allowing for more efficient and effective 
optimization. From F7–F12, it is evident that each strategy contributes to the superior performance of MSCOA, 
enhancing its exploration ability and enabling it to tackle complex optimization problems more effectively. From 
F13–F15, it can be observed that every strategy, to some extent, strengthens MSCOA’s global search capability, 
endowing it with better robustness and improved global optimization performance. Finally, from F16 and F17, 
it is clear that MSCOA also demonstrates strong exploration and exploitation abilities in high-dimensional 
complex environments.

Taken together, the algorithms applying the various improvement strategies show different degrees of 
performance improvement. The MSCOA algorithm incorporating the various improvement strategies has 
enhanced optimization search and solution capabilities. It provides better robustness in complex optimization 
problems, thus potentially avoiding premature convergence.

Comparison between different novel intelligent algorithms
MSCOA is compared against COA22, GWO15, Subtraction-Average-Based Optimizer (SABO)57, Dung 
Beetle Optimizer (DBO)13, Wind-Driven Optimization (WWPA)58, Chernobyl Disaster Optimizer (CDO)59, 
Lungs Performance-Based Optimization (LPO)60 and Artificial Protozoa Optimizer (APO)61 under the same 
parameter settings: a population size of 30, a spatial dimension of 20, and a maximum iteration count of 1000. 
(Many optimization algorithms require a sufficient number of iterations to gradually converge to the optimal 
or near-optimal solution. If the number of iterations is too low, the algorithm may not have enough time to 
explore the search space thoroughly, leading to suboptimal solutions. Conversely, an iteration count of 1000 
generally provides most optimization algorithms with enough time to perform an adequate search and evolution 
process, increasing the likelihood of convergence to a satisfactory solution. Moreover, excessively increasing 
the number of iterations significantly raises computational time and resource consumption. For complex 
optimization problems with large population sizes, excessive iterations can make computations infeasible in 
practical applications due to prolonged execution times. A maximum iteration count of 1000 strikes a balance 
between convergence performance and computational cost. It ensures that the algorithm has sufficient iterations 
to achieve good convergence behavior without making the computational time excessively long. In the field 
of optimization algorithm research, many studies and related literature frequently use around 1000 iterations 
to evaluate algorithm performance. This standardization allows for a consistent and comparable assessment 
across different algorithms, enabling researchers to fairly evaluate the performance of new algorithms against 
existing ones). To objectively assess optimization performance, these parameter values were used for 30 different 
executions of each method. The optimal value, average value, and standard deviation for each algorithm were 
recorded. A lower average value indicates higher optimization accuracy, but a lower standard deviation signifies 
more stability. The test results are illustrated in Table 4, with the best outcomes are indicated by bold numerals. 
Figure 10 provides a comparative visualization of fitness curves across algorithms for functions f1 to f17, and 
Fig. 11 displays the corresponding box plots.

In Table 2, the results of running MSCOA and various basic algorithms on functions F1-F17 are shown. 
Table 2 indicates that MSCOA can determine the optimal value on the 5 tested functions F1, F2, F3, F4, F5, 
F8, F10, F14 and F16 for dimension dim = 30. For the functions F6, F7, F11 and F17, the optimization results 
are quite near to the ideal value even if MSCOA is unable to achieve the theoretical optimal value. Meanwhile, 
comparative analysis of the standard deviations (std) across functions F1-F17 reveals that MSCOA demonstrates 
significantly smaller deviations in the majority of cases. This shows that the MSCOA has strong convergence 
stability and good robustness.

Figure 10 shows that MSCOA exhibits strong local convergence speed in unimodal functions (f1-f6), quickly 
reaching the optimal value. In bimodal functions (f7-f12), MSCOA shows strong global search ability, successfully 
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avoiding local optimization. For functions f13-f15, MSCOA demonstrates good adaptability, robustness, and 
strong global search capability. In high-dimensional multimodal functions, MSCOA still performs excellently in 
terms of search and exploration ability, even when facing complex situations. Overall, MSCOA performs better 
in searching, but there is still room for improvement in complex functions and high-dimensional spaces.

It is evident from Fig. 11 that MSCOA has superior overall performance over multiple experiments compared 
to the other algorithms, usually finding better solutions, more focused results and more stable performance. It 
clearly outperforms other algorithms with higher median, high fluctuations and outliers.

Fig. 9.  Convergence curves of various algorithms.
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Comparison of Wilcoxon rank sum test
To assess the efficacy and optimization performance of MSCOA, this study used the Wilcoxon rank sum test62 
to confirm if the outcomes of MSCOA’s running are statistically distinct from those of other algorithms at a 
significance threshold of a = 5%63. The hypothesis is disproved when p < a, suggesting that the two algorithms 
differ significantly from one another. In the event where p > a, the hypothesis is accepted, signifying that there is 
no discernible variation between the two methods. Table 4 displays the MSCOA, COA, SABO, GWO, WWPA, 
CDO, LPO and APO test findings at a significance level of a = 5%.

Fig. 9.  (continued)
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Table 4 shows that there are notable variations between the calculation results and the other seven methods, 
and that for the majority of test functions, the most of the p values of MSCOA are smaller than the significance 
level a.

Runtime analysis on different problem sizes
To supplement the theoretical complexity discussion and validate the scalability of MSCOA, this study conducts 
comprehensive experiments on benchmark functions F1–F4 across varying problem dimensions (10, 30, 50, 

Fig. 9.  (continued)
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(a) f1

(b) f2

(c) f3

Fig. 10.  Convergence diagram of various algorithms.
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and 100). Additionally, a log-log fitting analysis is performed to derive the empirical time complexity. Table 5 
presents the average computational time (in seconds) of MSCOA and the baseline algorithms.

As shown in Table  3 the runtime of all algorithms increases with the problem dimensionality. MSCOA 
exhibits relatively higher computational time in high-dimensional scenarios (e.g., 100 dimensions), primarily 
due to the incorporation of enhanced strategies such as the Chaotic Reverse Initialization Strategy, which 
increases computational overhead.

(d) f4

(e) f5

(f) f6

Fig. 10.  (continued)
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However, in conjunction with Fig. 12 and the empirical time complexity (where MSCOA approximates O(n), 
the observed linear increase in runtime aligns well with theoretical expectations. Compared to other algorithms, 
which demonstrate a slower runtime growth, MSCOA balances computational efficiency and optimization 
performance, ensuring effective search capability while maintaining a reasonable trade-off between runtime and 
solution quality.

(g) f7

(h) f8

(i) f9

Fig. 10.  (continued)
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Scalability test of MSCOA for Large-Scale problems
In order to further verify the scalability of MSCOA in high-dimensional optimization tasks, we conducted 
additional experiments on complex optimization problems with dimensions of D = 200 and D = 500. Table 3 
summarizes the mean, standard deviation, and minimum value metrics obtained by MSCOA on selected variable-

(j) f10

(k) f11

(l) f12

Fig. 10.  (continued)
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dimensional benchmark functions F1–F4, F7–F10, F13, and F14. The results indicate that even with a substantial 
increase in dimensionality, MSCOA continues to exhibit relatively stable and competitive performance.

From Table 3, it can be observed that for most functions, the fitness values achieved by MSCOA remain 
close to the global optimum, accompanied by small standard deviations. This outcome implies that, despite the 
significant increase in dimensionality, MSCOA still maintains commendable convergence stability and accuracy. 

(m) f13

(n) f14

(o) f15

Fig. 10.  (continued)
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These findings are consistent with the time-complexity analysis presented in the previous section, which shows 
that the algorithm’s runtime grows linearly with the problem dimension. Hence, MSCOA demonstrates strong 
scalability in large-scale optimization tasks.

Application of MSCOA in predicting breast cancer
Extreme learning machine
Huang et al.64 introduced the Extreme Learning Machine (ELM) learning technique for a single hidden layer 
feedforward neural network. The structure of the ELM is illustrated in Fig. 13.

ELM involves solving a system where the weights between the input and hidden layer are randomly assigned, 
while the output weights β  are determined by minimizing the difference between the predicted and target 
outputs. This is formulated as Eq. (27).

	 H • β = T � (27)

where H is the output matrix of the hidden layer, β  represents the vector of output weights, and T is the matrix 
of target outputs.

The solution for the output weights is found using the Moore-Penrose inverse of H65, denoted as H+. The 
solution is expressed as:

	 β = H+T � (28)

This yields a unique optimal solution by merely defining the quantity of hidden nodes, without impacting the 
input weights or biases of the hidden neurons66. These characteristics have drawn a lot of academics to research 
the theory, applications, and extensions of ELM67,68. At the moment, supervised learning has been the primary 
focus, with promising results69,70.

(p) f16

(q) f17

Fig. 10.  (continued)
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Fig. 11.  The box-plot of various algorithms.
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Function Result MSCOA COA DBO SABO GWO WWPA CDO LPO APO

F1

min 0 0 1.29E-106 6.66E-123 6.42E-37 1.26E-04 1.11E-103 3.58E+02 2.32E-15

std 0 0 6.97E-66 6.88E-116 9.43E-33 2.32E+00 5.83E-91 3.81E+02 2.09E-12

avg 0 0 1.38E-66 1.29E-116 3.20E-33 1.65E+00 1.64E-91 1.07E+03 8.94E-13

F2

min 0 0 7.96E-53 5.30E-67 4.02E-21 1.34E-02 6.35E-51 7.14E+00 1.66E-08

std 0 0 7.45E-28 7.82E-65 3.17E-19 6.25E+00 7.25E-47 3.31E+00 4.60E-08

avg 0 1.17E-267 1.36E-28 3.51E-65 1.43E-19 4.27E+00 2.84E-47 1.26E+01 6.80E-08

F3

min 0 0 5.94E-94 6.56E-68 1.32E-17 2.09E-01 1.53E-95 1.43E+03 1.31E-06

std 0 0 6.00E-51 5.33E-47 2.88E-13 1.08E+02 1.91E-82 1.33E+03 1.10E-04

avg 0 0 1.18E-51 9.73E-48 8.19E-14 6.49E+01 3.50E-83 3.45E+03 1.13E-04

F4

min 0 0 1.69E-53 1.34E-51 1.91E-12 5.10E-03 2.38E-47 1.81E+01 5.00E-05

std 0 0 1.53E-22 4.35E-50 1.25E-10 3.06E-01 9.27E-43 4.98E+00 1.59E-04

avg 0 1.36E-239 2.80E-23 3.14E-50 1.05E-10 3.80E-01 3.80E-43 2.53E+01 2.14E-04

F5

min 1 1 1 1 1 1.02E+00 1 2.84E+07 3.48E+02

std 0 0 1.28E+06 5.40E-03 1.32E+05 2.03E+02 0 5.88E+07 6.32E+04

avg 1 1 4.51E+05 1.00E+00 6.23E+04 7.89E+01 1 1.13E+08 5.82E+04

F6

min 4.24E+00 4.22E+00 4.27E+00 4.25E+00 3.47E+01 5.05E+00 5 6.35E+03 1.03E+02

std 0 1.85E-01 1.43E+03 1.12E+01 2.99E+02 3.31E+00 0 2.46E+03 1.51E+02

avg 4.98E+00 4.95E+00 1.01E+03 9.76E+00 4.83E+02 8.23E+00 5 1.05E+04 3.23E+02

F7

min 4.26E-07 6.86E-06 4.99E-05 2.45E-05 2.82E-04 3.40E-03 1.00E-05 1.04E-01 7.18E-04

std 7.98E-05 1.14E-04 0.0014 1.01E-04 7.01E-04 4.20E+00 1.72E-04 1.35E-01 1.01E-03

avg 1.01E-04 1.16E-04 1.60E-03 1.51E-04 1.30E-03 2.42E+00 2.28E-04 2.62E-01 2.29E-03

F8

min 0 0 0 0 0 4.10E-03 2.37E+01 3.10E+01 2.46E-01

std 0 0 5.05E+00 0 2.28E+00 2.76E+01 7.64E+00 1.11E+01 1.03E+00

avg 0 0 1.36E+00 0 1.62E+00 2.61E+01 4.30E+01 6.53E+01 2.32E+00

F9

min 4.44E-16 4.44E-16 4.44E-16 4.44E-16 1.82E-14 4.12E-02 4.00E-15 1.22E+01 2.56E-08

std 0 0 0 1.08E-15 5.65E-15 1.76E+00 0 1.83E+00 1.30E-07

avg 4.44E-16 4.44E-16 4.44E-16 3.64E-15 2.72E-14 2.69E+00 4.00E-15 1.55E+01 1.60E-07

F10

min 0 0 0 0 0 2.60E-03 0 3.25E+00 1.17E-09

std 0 0 1.94E-02 9.70E-02 3.48E-02 2.44E-01 2.46E-01 4.52E+00 7.31E-03

avg 0 0 6.90E-03 1.77E-02 3.44E-02 2.48E-01 1.31E-01 1.29E+01 7.31E-03

F11

min 6.45E+00 4.70E+00 1.41E+00 5.56E+00 1.00E+00 8.36E+00 4.42E+00 1.06E+01 1.92E+00

std 7.21E-01 1.75E+00 1.87E+00 6.70E-01 1.2581 8.34E-01 7.73E-01 7.89E-01 4.27E-01

avg 7.66E+00 7.74E+00 4.38E+00 7.49E+00 2.63E+00 1.01E+01 6.14E+00 1.16E+01 2.86E+00

F12

min 3.55E+01 1.19E+01 1.09E+01 3.58E+01 7.03E+00 1.26E+02 5.90E+01 5.31E+01 3.14E+00

std 7.95E+00 3.14E+01 1.49E+01 1.20E+01 1.02E+01 8.47E+00 6.33E+00 9.28E+00 1.58E+00

avg 6.86E+01 4.84E+01 3.54E+01 5.29E+01 2.06E+01 1.46E+02 7.54E+01 6.82E+01 5.79E+00

F13

min −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −9.53E-01 −1.02E+00 −1.03E+00 −1.03E+00

std 2.90E-06 1.37E-13 5.83E-16 2.61E-02 7.50E-08 1.37E+00 5.60E-03 4.47E-03 4.42E-15

avg −1.03E+00 −1.03E+00 −1.03E+00 −1.02E+00 −1.03E+00 1.90E-01 −1.00E+00 −1.03E+00 −1.03E+00

F14

min 3.00E+00 3.00E+00 3.00E+00 3.0039 3.00E+00 3.13E+00 3.00E+00 3.00E+00 3.00E+00

std 3.90E-03 4.55E-10 3.22E-15 3.27E+00 1.48E+01 9.07E+01 3.37E+01 6.21E-02 1.25E-15

avg 3.00E+00 3.00E+00 3.00E+00 4.42E+00 5.70E+00 6.09E+01 4.05E+01 3.05E+00 3.00E+00

F15

min 2.04E+01 2.10E+01 2.12E+01 2.10E+01 2.07E+01 2.14E+01 2.12E+01 2.15E+01 21.0122

std 7.41E-02 1.98E+00 1.77E-01 8.74E-02 3.21E+00 1.44E-01 1.00E-01 1.19E-01 3.54E+00

avg 2.15E+01 2.11E+01 2.14E+01 2.15E+01 2.10E+01 2.17E+01 2.15E+01 2.18E+01 1.99E+01

F16

min −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.73E+00 −3.86E+00 −3.86E+00 −3.86E+00

std 1.40E-03 1.41E-01 3.00E-03 2.01E-01 2.40E-03 6.29E-01 4.20E-03 6.19E-04 2.71E-15

avg −3.86E+00 −3.84E+00 −3.86E+00 −3.67E+00 −3.86E+00 −2.38E+00 −3.86E+00 −3.86E+00 −3.86E+00

F17

min −4.8386 −1.05E+01 −1.05E+01 −9.3738 −1.05E+01 −1.05E+01 −9.10E+00 −8.35E+00 −1.05E+01

std 7.15E-01 3.08E+00 2.92E+00 1.26E+00 1.79E+00 2.04E+00 1.45E+00 1.69E+00 1.70E+00

avg −3.46E+00 −6.79E+00 −8.71E+00 −4.90E+00 −9.95E+00 −5.23E+00 −5.73E+00 −3.90E+00 −1.01E+01

Table 2.  Optimization results of different algorithms.
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MSCOA-ELM algorithm modeling
The MSCOA-ELM algorithm model is constructed based on the 2 algorithm models described in this paper. 
Using the MSCOA algorithm, the optimal parameters are obtained by carrying out the phase of heat avoidance, 
the competition phase, and the foraging phase, which are the 3 processes, and then input into the ELM algorithm 
to seek the optimal prediction effect. Figure 14 depicts the MSCOA-ELM algorithm model’s execution procedure.

In Fig. 14, ELM model using MSCOA are shown. First, after the algorithm starts, the parameters of MSCOA 
and ELM are initialized to ensure that all variables and parameters are set to their initial state. Next, the fitness 
value of each population individual is computed, and the individual’s merit is measured by evaluating the fitness 
of the population. Then, it enters the behavioral updating phase, executing refuge, competition and foraging 
behaviors sequentially, and constantly updating the positions of individuals in the population through Eq. (21), 
Eq. (8), Eq. (10), or Eq. (11), so as to seek the globally optimal solution. After each update, it checks whether 
the stopping condition is satisfied, and if it is not satisfied, the position update and fitness evaluation are 
repeated until the halting condition is fulfilled. When the halting condition is reached, the algorithm outputs 
the optimized MSCOA parameters and the corresponding ELM model to ensure that the model parameters are 
optimal. Finally, the algorithm ends and outputs the best optimization results for further model training and 
prediction.

Performance evaluation metrics
A confusion matrix is a matrix that categorizes the classification problem according to the two dimensions of 
the true situation and the discriminative situation, and the binary classification confusion matrix is displayed 
in Fig. 15.

Fig. 12.  Algorithms performance comparison across different problem sizes.

 

Function MSCOA vs. COA MSCOA vs. DBO MSCOA vs. SABO MSCOA vs. GWO MSCOA vs. WWPA MSCOA vs. CDO MSCOA vs. LPO MSCOA vs. APO

F1 1 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12

F2 1.66E-11 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12

F3 1 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12

F4 4.57E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12

F5 1 5.85E-09 1.21E-12 1.21E-12 1.21E-12 1 1.21E-12 1.21E-12

F6 0.022783 0.013894 1.64E-05 1.72E-12 1.72E-12 0.1608 1.72E-12 1.72E-12

F7 0.652 2.03E-09 0.0406 4.08E-11 3.02E-11 0.0024 3.02E-11 3.02E-11

F8 1 0.0216 1 1.90E-09 1.21E-12 1.21E-12 1.21E-12 1.21E-12

F9 1 1 3.94E-12 8.30E-13 1.21E-12 1.69E-14 1.21E-12 1.21E-12

F10 1 0.0216 0.3337 1.70E-08 1.21E-12 1.95E-09 1.21E-12 1.21E-12

F11 0.1453 6.01E-08 0.0963 6.72E-10 1.61E-10 8.48E-09 3.02E-11 3.02E-11

F12 0.0251 3.35E-08 5.61E-05 3.02E-11 3.02E-11 8.84E-07 0.25805 3.02E-11

F13 2.99E-11 1.45E-11 1.96E-10 0.015 3.02E-11 3.02E-11 3.02E-11 2.60E-11

F14 3.02E-11 2.89E-11 2.15E-10 1.17E-09 3.02E-11 1.41E-04 3.02E-11 5.18E-12

F15 8.89E-10 0.0026 0.0679 0.0724 2.03E-07 0.0877 2.67E-09 1.61E-10

F16 3.02E-11 5.51E-06 3.34E-11 0.1335 3.02E-11 1.55E-09 3.02E-11 1.21E-12

F17 3.59E-05 9.23E-07 2.25E-04 5.49E-11 0.025101 3.01E-07 0.0069724 1.14E-09

Table 3.  Wilcoxon signed-rank test result.
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The matrix has four components: TP (True Positive): Correctly classified positive examples.TN (True 
Negative): Correctly classified negative examples. FP (False Positive): Incorrectly classified as positive when they 
are negative (Type I error). FN (False Negative): Incorrectly classified as negative when they are positive (Type 
II error).

In this paper, 20% of the data was utilized for testing all models, while the remaining 80% was used for 
training. A number of performance metrics, including as each model’s accuracy, precision, recall, and F1 
score, are assessed, based on the four variables of the confusion matrix. The following is an explanation of the 
performance measures:

The percentage of correctly anticipated events to all occurrence is known as accuracy.

	
Accuracy = T P + T N

T P + T N + F P + F N
� (29)

The following ratio represents precision: the amount of correctly forecast positive cases divided by the entire 
amount of expected positive cases. The following is the formula 30.

	
P recision = T P

T P + F P
� (30)

Recall is described as the proportion of correctly anticipated positive events to each instance within actual class. 
The following formula is displayed.

	
Recall = T P

T P + F N
� (31)

F1score: the precision and recall weighted average, which has the following definition:

	
F 1score = 2 × P recision × Recall

P recision + Recall
� (32)

AUC-ROC curve: the model’s capacity to differentiate between categories is shown by the AUC, while the ROC 
is a probability curve. It indicates the model’s capacity for category discrimination. AUC indicates how well the 
model distinguishes between various groups. Plotting TPR on the y-axis against FPR on the x-axis is known as 
the ROC curve. FPR is defined as follows, and TRP is a synonym for recall:

	
FPR = FP

FP + TN
� (33)

Optimal hidden neurons in ELM
To determine the optimal number of hidden neurons in the ELM and assess its impact on performance, we 
conducted comparative experiments using the MSCOA-ELM model with configurations comprising 2, 5, 8, 
and 20 hidden neurons. The results indicated that when the number of hidden neurons was set to 5 or 20, the 
accuracy reached 0.9825. As shown in Fig. 16, the average optimal number of hidden neurons was 7.50, with 
an average optimal accuracy of 0.9912. A smaller number of neurons resulted in underfitting due to insufficient 
feature learning capacity, while an excessive number increased model complexity without significantly enhancing 

Fig. 13.  ELM model structure.
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Fig. 15.  Binary confusion matrix.

 

Fig. 14.  Breast cancer prediction process based on MSCOA-ELM.
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accuracy. Considering the trade-offs among model complexity, generalization ability, and result stability, we 
ultimately selected 8 hidden neurons. This configuration enables the ELM to effectively extract features while 
avoiding both underfitting and overfitting, thereby ensuring reliable performance in subsequent applications.

Results and discussion
1) generalization ability evaluation of MSCOA-ELM on diabetes dataset  Firstly, to evaluate the generaliza-
tion capability of MSCOA-ELM, experiments were conducted on the diabetes dataset from the UCI Machine 
Learning Repository. The performance of each model index is shown in Table 4, and the ROC curve is shown 
in Fig. 17. As shown in Table 3, MSCOA-ELM exhibits marked improvements in accuracy, precision, recall, F1 
score, and AUC compared to the original ELM model, indicating that the introduction of MSCOA can more 
effectively optimize ELM parameters and enhance the model’s feature learning and classification performance. 
However, from an overall perspective, certain indicators of SABO-ELM and APO-ELM remain slightly superior 
to those of MSCOA-ELM, suggesting that while MSCOA-ELM has already achieved a commendable perfor-
mance on this dataset, there is still room for further improvement. In general, the experimental results of MS-
COA-ELM on the diabetes dataset confirm its promising generalization ability, but also highlight the need for 
deeper research and exploration in algorithm refinement and parameter tuning.

2) ability evaluation of MSCOA-ELM on breast Cancer dataset  Subsequently, MSCOA is formally applied to 
the Wisconsin Diagnostic Breast Cancer dataset from the UCI dataset. From UCI machine learning repository 
website https://archive.ics.uci.edu/ml/index.php search Wisconsin Diagnostic Breast Cancer to download.

This section aims to use machine learning techniques to establish an adjunctive diagnostic for breast cancer 
prediction. Numerous models, including the recommended MSCOA-ELM, were assessed, tuned, and trained. 
Fig. 18 illustrates the outcomes of the confusion matrix experiments for all predictive models applied to the 
Wisconsin Diagnostic Breast Cancer dataset, alongside a visualization of the classification results. Based on 
metrics, each model’s performance was assessed, and Table 7 presents the findings.

As presented in Table  5, MSCOA-ELM achieved 100% in accuracy, precision, recall, and F1-score, 
demonstrating that MSCOA can robustly converge to the optimal set of weights and biases of the ELM model. 
GWO-ELM (accuracy = 0.976) and COA-ELM (accuracy = 0.967) approached the performance of MSCOA-ELM 
but exhibited relatively lower recall. DBO-ELM showed the highest recall (0.959) with a lower precision (0.946). 
SABO-ELM maintained a perfect precision of 1.0, yet its recall was merely 0.893. WWPA-ELM presented the 
lowest recall (0.852) among the models. CDO-ELM attained an F1-score of 0.927, surpassing WWPA-ELM’s 
0.915, thereby highlighting its superior overall performance. The original ELM model exhibited notably lower 
accuracy (0.710) and F1-score (0.778), underscoring the necessity of metaheuristic algorithms for parameter 
optimization. The AUC values and ROC curve shown in Fig. 19 further validated these results. Meanwhile, the 
ROC curves and AUC metrics of other models reflected their trade-offs between true positive rate and false 
positive rate, aligning with the analyzed precision-recall dynamics.

Dimension MSCOA COA DBO SABO GWO WWPA CDO LPO APO

10 1.2524 0.0289 0.0355 0.0418 0.0235 0.0039 0.0281 0.0115 0.0139

30 3.7156 0.0529 0.0411 0.0700 0.0589 0.0038 0.0851 0.0119 0.0155

50 5.1788 0.0757 0.0447 0.0870 0.0946 0.0039 0.1344 0.0131 0.0168

100 9.4740 0.1417 0.0612 0.1454 0.1772 0.0051 0.2574 0.0170 0.0223

Table 4.  Comparison of performance measures of each model.

 

Fig. 16.  Box Plot of Optimal Accuracy Distribution and Optimal Hidden Neuron Number Distribution.
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3) robustness verification on noisy data  To validate the robustness of the MSCOA-ELM in real medical scenar-
ios, this study introduces Gaussian noise and label flipping into the Wisconsin Diagnostic Breast Cancer dataset 
(WDBC) to simulate the measurement errors or label noise that may occur in actual clinical data. Specifically, 
Gaussian noise with a mean of 0 and a standard deviation of σ is added to the input features, with the noise level 
set at σ = 5%. In addition, 5% of the sample labels are randomly flipped to simulate mislabeling. After generating 
the noisy data, the dataset is partitioned into training and testing sets using the original 80%−20% split.

Experimental results, as shown in Table 6, reveal that on the original, noise-free data, the standard ELM 
achieves an accuracy of only 64.0351%, whereas the MSCOA-ELM, by optimizing the ELM parameters, attains 
an accuracy of 92.9825%, thereby demonstrating a stronger feature learning capability. After introducing noise, 
the standard ELM’s accuracy increased to 78.0702%, which may be attributed to overfitting to noise patterns; 
however, MSCOA-ELM maintained a high accuracy of 90.3509%. This indicates that MSCOA-ELM effectively 
filters out noise impacts and sustains model stability, making it more suitable for real-world medical scenarios 
where data imperfections are prevalent.

Conclusion and future work
This study proposes an Enhanced Crayfish Optimization Algorithm (MSCOA) by integrating chaotic reverse 
exploration initialization, an adaptive t-distributed feeding strategy, and a ternary optimization mechanism, 
significantly improving the algorithm’s global search capability, local exploitation efficiency, and dynamic 
balance performance.

Experimental results demonstrate that MSCOA generally outperforms or matches traditional COA and other 
metaheuristic algorithms on 17 benchmark functions from CEC2019 and CEC2005. For unimodal functions, 
MSCOA exhibits superior local exploitation efficiency and consistently identifies global optima. On multimodal, 
composite, and high-dimensional functions, MSCOA remains competitive, effectively avoiding local optima 
while balancing global exploration and local optimization. Wilcoxon rank-sum tests (95% confidence level) 
confirm significant performance differences between MSCOA and comparison algorithms.

Furthermore, MSCOA is integrated with Extreme Learning Machine (ELM) for breast cancer prediction. 
Evaluated on the Wisconsin Diagnostic Breast Cancer dataset (UCI), MSCOA-ELM achieves 100% accuracy, 
demonstrating its potential to assist clinicians in earlier and more accurate diagnoses.

However, there are still some limitations in the current study:

Theoretical limitations

•	 While MSCOA improves the local-global balance, its performance on highly complex problems remains 
improvable, and the algorithm’s complexity may lead to increased computational overhead for large-scale 
applications.

•	 Although the adaptive t-distribution feeding strategy and hybrid weights have been empirically validated, 
theoretical proofs of convergence remain incomplete.

•	 Performance in spaces with over 1000 dimensions requires further validation, as the inherent randomness of 
the initial chaotic mapping may impact stability.

•	 In noisy environments, the performance of MSCOA may deteriorate due to the influence of measurement 
errors and imperfect data on fitness evaluation, which can result in suboptimal solutions.

•	 The current version of MSCOA is primarily designed for single-objective optimization, and its effectiveness 
in multi-objective optimization problems has not been sufficiently validated.

Practical limitations

•	 Model performance is heavily dependent on the quality of medical data and is sensitive to noise and class 
imbalance.

Fig. 17.  Comparison of ROC for Different Models on Diabetes Dataset.
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•	 Training MSCOA-ELM on embedded systems may face resource constraints compared to lighter-weight al-
gorithms.

•	 The training time of MSCOA-ELM may be limited in embedded devices when compared to more efficient 
models.

Fig. 18.  Comparison of ROC Curves for Different Models on Breast Cancer Dataset.
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Future work can be improved in the following areas:

•	 Enhance MSCOA via novel mechanisms (e.g., multi-strategy fusion) to broaden its applicability across vari-
ous fields such as finance, energy, and industrial optimization.

•	 Integrate machine learning with metaheuristics to improve adaptability.
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•	 Apply model pruning or quantization techniques to reduce resource consumption in edge computing envi-
ronments.

•	 Investigate strategies to enhance MSCOA’s robustness against noise to improve performance in noisy envi-
ronments.

•	 Develop multi-objective extensions of MSCOA to enhance its applicability and reliability in complex re-
al-world scenarios.

Finally, at the policy level, MSCOA-ELM provides a cost-effective AI tool for early breast cancer screening, 
supporting standardized diagnostic workflows.

•	 Governments and healthcare institutions should prioritize funding for “optimization algorithm + medical AI” 
research.

•	 establish data-sharing platforms to bridge regional healthcare disparities.
•	 Open-sourcing the MSCOA-ELM framework could democratize access to advanced diagnostic tools in de-

veloping regions.
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Fig. 18.  (continued)

Model Accuracy Precision Recall F1-Score AUC

ELM 0.710 0.725 0.840 0.778 0.9222

MSCOA-ELM 1 1 1 1 0.9580

COA-ELM 0.967 1 0.937 0.967 0.9533

DBO-ELM 0.939 0.946 0.959 0.951 0.9579

SABO-ELM 0.940 1 0.893 0.943 0.9575

GWO-ELM 0.976 1 0.953 0.976 0.9573

WWPA-ELM 0.908 0.987 0.852 0.915 0.9363

CDO-ELM 0.924 0.969 0.888 0.927 0.9555

LPO-ELM 0.929 0.935 0.960 0.947 0.9576

APO-ELM 0.974 0.970 0.985 0.977 0.9559

Table 7.  Comparison of performance measures of each model.
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Model Accuracy Precision Recall F1-Score AUC

ELM 0.6948 0.588 0.200 0.298 0.6910

MSCOA-ELM 0.8377 0.833 0.660 0.737 0.7017

COA-ELM 0.7987 0.794 0.529 0.635 0.7064

DBO-ELM 0.7987 0.868 0.559 0.681 0.7067

SABO-ELM 0.8312 0.892 0.600 0.718 0.7055

GWO-ELM 0.7792 0.735 0.632 0.679 0.7087

WWPA-ELM 0.7597 0.757 0.500 0.602 0.7080

CDO-ELM 0.7597 0.757 0.500 0.602 0.7141

LPO-ELM 0.8312 0.780 0.653 0.713 0.6977

APO-ELM 0.8442 0.761 0.729 0.743 0.7049

Table 6.  Comparison of performance measures of each model.

 

Data Type Algorithm Accuracy

Original Standard ELM 64.0351%

Original MSCOA-ELM 92.9825%

Noisy Standard ELM 78.0702%

Noisy MSCOA-ELM 90.3509%

Table 8.  Accuracy comparison between MSCOA - ELM and standard ELM on original and noisy Data.

 

Fig. 19.  Comparison of ROC Curves for Different Models on Breast Cancer Dataset.

 

Test Function

D = 200 D = 500

avg std min avg std min

F1 0 0 0 0 0 0

F2 0 0 0 0 0 0

F3 0 0 0 0 0 0

F4 0 0 0 0 0 0

F7 1.27E-04 1.97E-04 6.72E-06 1.2996E-04 1.28E-04 1.43E-06

F8 0 0 0 0 0 0

F9 8.88E-16 0 8.88E-16 8.88E-16 0 8.88E-16

F10 0 0 0 0 0 0

F13 −1.03E + 00 3.12E-07 −1.32E + 00 −1.03E + 00 2.10E-06 −1.03E + 00

F14 3.00E + 00 1.06E-02 3.00E + 00 3.00E + 00 5.28E-03 3.00E + 00

Table 5.  The test results of MSCOA for higher dimensional problems (D = 200 and D = 500).
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Data availability
The source code and datasets used in this study are available upon request by contacting the corresponding 
author at victoria@stu.sxufe.edu.c.
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