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Although neoadjuvant chemotherapy with docetaxel + cisplatin + 5-fluorouracil (CF) has been the 
standard treatment for stage II and III esophageal cancers, it is associated with severe adverse events 
caused by docetaxel. Consequently, this study aimed to construct a prognostic system for CF regimens, 
especially for locally advanced esophageal cancers. Biopsy specimens from 82 patients treated with 
the CF regimen plus radical surgery were analyzed. Variants in 56 autophagy- and esophageal cancer-
related genes were identified using targeted enrichment sequencing. Overall, 13 single-nucleotide 
variants, including 8 non-synonymous single-nucleotide variants, were identified as significantly 
associated with esophageal cancer recurrence (p < 0.05). Particularly, variants of ATG2A p.R478C 
and ULK2 splice-site also showed significant differences in recurrence-free and overall survival. 
Subsequently, machine learning was used to construct a model for predicting esophageal cancer 
recurrence based on 21 features, including eight patient characteristics. A Naive Bayes machine-
learning model was shown to be highly reliable for predicting esophageal cancer recurrence with an 
accuracy of 0.88 and an area under the curve of 0.9. We believe that our results provide useful guidance 
in the selection of neoadjuvant adjuvant chemotherapy, including avoidance of docetaxel.
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Esophageal cancer ranks seventh in terms of incidence and sixth in terms of mortality globally1. The conventional 
standard treatment for stage II and III esophageal cancer in Japan was neoadjuvant chemotherapy with the 
cisplatin + 5-fluorouracil (5-FU) (CF) regimen followed by radical surgery2. According to previous reports, 
the 5-year survival rate for stage II cancers after neoadjuvant chemotherapy with the CF regimen is good 
at 69%. In contrast, the 5-year survival rate for stage III cancer is poor at 52%, indicating that neoadjuvant 
chemotherapy with the CF regimen has a limited effect in locally advanced cases3,4. Therefore, more potent 
neoadjuvant chemotherapy with the docetaxel + cisplatin + 5-FU (DCF) regimen has attracted attention in 
recent years. A phase III trial (JCOG1109) that compared the superiority of neoadjuvant chemotherapy with 
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DCF regimens versus CF regimens demonstrated an overall survival (OS) advantage in the neoadjuvant DCF 
arm5. Based on these results, neoadjuvant DCF therapy became the standard treatment in Japan in February 
20226. However, exacerbations of adverse events with docetaxel, specifically grade 3 or higher leukopenia 
(6.7% to 63.8%), neutropenia (23.4% to 85.2%), and hyponatremia (6.2% to 26.0%), have also been reported 
simultaneously5. This has raised concerns that a high level of chemotherapy-related adverse events may force 
a series of treatment interruptions, prevent the maintenance of ideal chemotherapy dose intensity, and make it 
difficult to complete treatment, including subsequent surgery. Additionally, although chemotherapy-induced 
leukopenia is a known prognostic factor for chemotherapy in some malignancies, it is not currently evident 
in esophageal cancer7–9. Therefore, we believe that the establishment of prognostic markers, particularly for 
CF regimens for cT3 resectable advanced esophageal cancers will provide useful guidance in the selection of 
neoadjuvant chemotherapy, including avoidance of docetaxel administration.

Autophagy is a highly regulated process of degradation and recycling of cellular components. The most 
important feature of autophagy is that it degrades intracellular proteins and organelles and recycles them as a 
new source of nutrients10. Recently, autophagy has been shown to contribute to the acquisition of chemotherapy 
resistance in established cancers via intracellular recycling, providing a substrate for metabolism, and maintaining 
a functional pool of mitochondria11. A high expression of PINK1, an initiator of mitophagy, was associated 
with poor prognosis in patients with esophageal cancer receiving CF and DCF regimens, suggesting that 
PINK1-mediated mitophagy contributes to resistance to neoadjuvant therapy12. However, it was not established 
as a biomarker because high PINK1 protein expression did not correlate with the response to neoadjuvant 
chemotherapy in biopsy specimens taken before neoadjuvant adjuvant chemotherapy. In contrast, we reported 
that single nucleotide variants (SNVs) in the PINK1 gene may be a biomarker for non-recurrence in colorectal 
cancer patients treated with postoperative adjuvant chemotherapy13.

Therefore, this study aimed to construct a prognostic system for CF regimens, particularly for locally 
advanced cancers. This system can aid in the selection of neoadjuvant chemotherapy, including avoidance of 
docetaxel administration.

Results
Original target enrichment sequencing
Biopsy specimens from patients with esophageal cancer undergoing radical surgery after treatment with the CF 
regimen were used to identify SNVs and insertions/deletions (INDELs) for 56 genes related to autophagy and 
esophageal cancer using targeted enrichment sequencing to construct a prognostic system for the CF regimen. 
Between May 2012 and June 2020, 91 patients underwent the CF regimen + radical surgery at Saitama Medical 
University International Medical Center, of which 82 patients were eligible for the study after the required 
amount of DNA was obtained. The clinical characteristics of the 82 patients are shown in Table 1. Among the 
82 patients, the total number of recurrent cases was 45, representing a recurrence rate of 55%. Next-generation 
sequencing yielded a median of 2,252,009 reads per sample (range: 714,042–6,247,424 reads per sample). Among 
the designed target bases, 87.1% (range: 40.2%–98.4% per sample) had at least a 15-fold coverage, with a mean 
coverage of 660-fold (range: 156.11–1,963 fold) per nucleotide in the coding region of the target gene (Fig. 1a,b).

n = 82

Age years

 Median (range) 68 (51–80)

Gender (%)

 Male/Female 74 (90%)/8 (10%)

Organization type (%)

 Basaloid/SCC 3 (4%)/79 (96%)

Neo-adjuvant course (%)

 1/2 11 (13%)/71 (87%)

Tumor location (%)

 Upper/Middle/Lower 11 (13%)/36 (43.5%)/35 (43.5%)

cT category (%)

 cT1/T2/T3 1 (1%)/3 (4%)/78 (95%)

cN category (%)

 cN0/N1/N2 30 (37%)/32 (39%)/20 (24%)

cM category (%)

 cM0/M1 79 (96%)/3 (4%)

cStage (%)

 I/II/III/IV 1 (1%)/30 (37%)/48 (58%)/3 (4%)

Recurrence (%)

 Non-recurrence/recurrence 37 (45%)/45 (55%)

Table 1.  Clinical characteristics of the patients included in this study.

 

Scientific Reports |        (2025) 15:25669 2| https://doi.org/10.1038/s41598-025-11252-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Breakdown of SNVs and INDELs
The next-generation sequencing data analysis only reports the presence of AltSeq (Alt, any other allele found 
at that locus); therefore, if there are no sequence reads, AltSeq is considered absent. Variant filtering based on 
criteria such as depth of coverage, variant allele frequency, and AltSeq counts reduces false positive results and 
ensures confidence in the variants detected. Therefore, by setting thresholds for "Depth of coverage ≥ 15, Variant 
allele frequency ≥ 5%, and AltSeq ≥ 2," we aimed to ensure that detected variants are supported by a sufficient 
number of sequencing reads and are present at a significant level to be considered genuine (Fig. 1c). The original 
target enrichment sequencing for cases of neoadjuvant chemotherapy showed that a total of 12,562 SNVs or 
INDELs were detected within the target region (Fig. 1d). Among these variants, 7,962 were non-synonymous 
SNVs, meaning they resulted in amino acid changes in the protein sequences. Additionally, 88 frameshift 
deletions and 17 frameshift insertions were detected, indicating alterations that cause a shift in the reading frame 
of the gene. SNVs associated with stop-gain variants were identified in 596 locations (Fig. 1d). These variants 
result in the premature termination of protein synthesis.

Variants correlated with recurrence
We examined the association between SNVs or INDELs and recurrence. Variants found in samples from 82 
patients and recurrence were treated as binary events and subjected to Fisher’s exact test. A total of 13 variants 
were found to have significant differences with a p < 0.05. Among these variants, eight were nonsynonymous 
SNVs, four were synonymous SNVs, and one was a splicing site variant (Table 2).

Survival analysis of 13 candidate SNVs in recurrence-free and overall survival
Recurrence-free survival (RFS) analysis was conducted for the 13 identified variants, with significant differences 
revealed for 6 of the 13 variants (Fig. 2a,b; Supplementary Table S2). OS analysis was also performed for the 13 
identified variants, with significant differences observed for two variants: ATG2A p.R478C (p < 0.005) and ULK2 
splice-site (p = 0.05) (Fig. 2c,d).

Fig. 1.  Results of the original target enrichment sequencing in our ESCC clinical cases. (a) The violin plot 
depicts the distribution of the coverage ratio for each of the 82 multiplexed samples. Percentage of regions with 
a depth of coverage greater than 15x. (b) The violin plot depicts the distribution of the mean depth for each of 
the 82 multiplexed samples. (c) Variant filtering thresholds (AltSeq: Alt, any other allele found at that locus). 
(d) The number of SNVs or INDELs identified by the original target enrichment sequencing is shown. The 
classification was performed by variant type.
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Fig. 2.  Relationship between variants of ATG2A p.R478C and ULK2 splice-site and ESCC prognosis with CF 
neoadjuvant chemotherapy. Recurrence-free survival with (a) ATG2A p.R478C or (b) ULK2 1442–1 G > T. 
Overall survival with or without (c) ATG2A p.R478C or (d) ULK2 1442–1 G > T.

 

Gene symbol Exonic function Nucleotide change Aa change

Non-recurrence Recurrence

p-valueRefSeq (n) AltSeq (n) RefSeq (n) AltSeq (n)

EP300 Non-synonymous SNV NM_001362843:c.5432G > A p.R1811Q 31 7 44 0 0.0072

PTCH1 Non-synonymous SNV NM_001354918:c.4169G > A p.R1390Q 29 6 42 0 0.0062

ATG2A Non-synonymous SNV NM_001367971:c.1432C > T p.R478C 37 0 37 7 0.0147

ATG7 Synonymous SNV NM_001144912:c.1857 T > C p.D619D 33 5 45 0 0.0160

ULK2 Splicing NM_001142610:c.1442-1G > T splicing 19 17 33 10 0.0306

BNIP3 Non-synonymous SNV NM_004052:c.610C > T p.R204C 28 4 41 0 0.0330

FAT1 Non-synonymous SNV NM_005245:c.6118G > A p.D2040N 32 4 44 0 0.0348

ULK2 Non-synonymous SNV NM_001142610:c.1464C > A p.F488L 30 4 41 0 0.0356

ULK1 Non-synonymous SNV NM_003565:c.2446A > G p.T816A 29 9 24 21 0.0416

BECN1 Synonymous SNV NM_001313998:c.1302G > A p.T434T 34 4 45 0 0.0378

ZNF750 Synonymous SNV NM_024702:c.618C > T p.P206P 34 4 45 0 0.0378

KMT2D Non-synonymous SNV NM_003482:c.12712C > T p.R4238C 34 4 44 0 0.0397

FAT1 Synonymous SNV NM_005245:c.12900G > A p.A4300A 34 4 42 0 0.0440

Table 2.  Results of target enrichment sequencing. 82 patients were included in the analysis; Fisher’s exact test 
of 560 SNVs or INDELs showed 5 SNVs with p < 0.05. Aa change: amino acid change, RefSeq: allele in the 
reference genome, AltSeq: Alt, any other allele found at that locus.
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Variant ATG2A p.R478C, extracted as a candidate prognostic factor, showed an association not only 
with RFS but also with OS in the univariate analysis (p = 0.025 and 0.002, respectively). Variant ULK2 splice-
site showed an association with RFS but not with OS (p = 0.016 and 0.054, respectively). Additionally, the 
multivariate Cox regression analysis revealed that either the presence of variant ATG2A_R478C or the absence 
of variant ULK2_1442-2G > T (p = 0.046, hazard ratio = 2.076) and conventional open thoracotomy (p = 0.018, 
hazard ratio = 2.096) were independent prognostic factors for RFS. Likewise, the multivariate Cox regression 
analysis of OS revealed that either the presence of variant ATG2A_R478C or the absence of variant ULK2_1442-
2G > T (p = 0.029, hazard ratio = 2.764) and clinical lymph node metastasis (p = 0.040, hazard ratio = 2.604) were 
independent prognostic factors for OS (Tables 3, 4). The clinical background characteristics of all 78 patients 
were compared, and the differences in patient backgrounds between the two identified SNV statuses are shown 

Factor Category

Univariate Multivariate

p value HR 95% CI p value HR
95% 
CI

Age  ≥ 70 (vs. < 70 ) 0.394 0.716 0.330–1.551

Sex Female (vs. Male) 0.834 0.880 0.264–2.927

ASA-PS 2 or 3 (vs. 0or 1) 0.302 1.651 0.636–4.284

Body Mass Index  ≥ 18.5 (vs. < 18.5) 0.721 0.856 0.364–2.014

Tumor location Mt or Lt (vs. Ut) 0.694 1.237 0.428–3.579

Clinical tumor depth cT3 (vs. T1-2) 0.862 1.194 0.162–8.819

Clinical lymph node metastasis Presence (vs. absence) 0.077 2.210 0.896–5.451 0.040* 2.604 1.047–
6.476

Clinical distant metastasis (Supravlavian Lymph 
node metastases) Presence (vs. absence) 0.651 1.396 0.326–5.969

Thoracic apprach OT (vs. MIE) 0.050 2.119 0.983–4.566 0.212 1.650 0.751–
3.623

Variant in ATG2A_R478C Presence (vs. absence) 0.002* 3.741 1.494–9.366

Variant in ULK2_1442-2G > T Absence (vs. presence) 0.054 2.370 0.959–5.848

Either presence of variant in ATG2A_R478C or 
absence of variant in ULK2_1442-2G > T

(vs. Both of absence of variant 
in ATG2A_R478C and presence 
of variant in ULK2_1442-
2G > T)

0.054 2.371 0.959–5.860 0.029* 2.764 1.109–
6.890

Table 4.  Univariate and multivariate Cox regression analysis for OS. HR: hazard ratio, CI: confidence interval, 
Ut: Upper thoracic, Mt: Middle thoracic, Lt: Lower thoracic, OT: Open thoracotomy, MIE: minimally invasive 
esophagectomy, *: p < 0.05.

 

Factor Category

Univariate Multivariate

p value HR 95% CI p value HR
95% 
CI

Age  ≥ 70 (vs. < 70 ) 0.216 0.679 0.365–1.261

Sex Female (vs. Male) 0.788 0.880 0.364–2.240

ASA-PS 2 or 3 (vs. 0or 1) 0.619 1.205 0.577–2.518

Body Mass Index  ≥ 18.5 (vs. < 18.5) 0.889 1.051 0.518–2.134

Tumor location Mt or Lt (vs. Ut) 0.196 1.697 0.752–3.825

Clinical tumor depth cT3 (vs. T1-2) 0.150 0.477 0.170–1.341

Clinical lymph node metastasis Presence (vs. absence) 0.297 1.412 0.735–2.710 0.317 1.414 0.717–
2.785

Clinical distant meastasis (Supravlavian Lymph 
node metastases) Presence (vs. absence) 0.705 1.314 0.317–5.450

Thoracic apprach OT (vs. MIE) 0.005* 2.315 1.266–4.237 0.018* 2.096 1.138–
3.861

Variant in ATG2A_R478C Presence (vs. absence) 0.025* 2.469 1.085–5.617

Variant in ULK2_1442-2G > T Absence (vs. presence) 0.016* 2,.331 1.147–4.739

Either presence of variant in ATG2A_R478C or 
absence of variant in ULK2_1442-2G > T

(vs. Both of absence of variant 
in ATG2A_R478C and presence 
of variant in ULK2_1442-
2G > T)

0.016* 2.331 1.146–4.470 0.046* 2.076 1.013–
4.255

Table 3.  Univariate and multivariate Cox regression analysis for RFS. HR: hazard ratio, CI: confidence 
interval, Ut: Upper thoracic, Mt: Middle thoracic, Lt: Lower thoracic, OT: Open thoracotomy, MIE: minimally 
invasive esophagectomy, *: p < 0.05.
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in Supplementary Table S3. There were no statistically significant differences in patient background factors for 
either SNV status.

Correlation between pathogenic/likely pathogenic SNVs and recurrence rate
SNVs and INDELs classified as pathogenic or likely pathogenic mutations in ClinVar were found at 212 locations 
in 22 genes, including 17 esophageal cancer-related genes. Among these variants, 11 frameshift deletions, 15 
splicing variants, 95 nonsynonymous SNVs, and 87 stop-gain variants were identified. Fisher’s exact test was 
conducted for each gene to assess their association with recurrence, but none of the genes showed statistically 
significant differences (Supplementary Fig. S1). Notably, pathogenic/likely pathogenic variants were observed in 
81 of 82 specimens analyzed. This suggests that while these variants were prevalent among the patient samples, 
they did not appear to influence the recurrence or prognosis significantly.

Machine learning model to predict recurrence
In this study, 13 SNVs were found to be candidate predictors of the recurrence of neoadjuvant chemotherapy 
with CF regimens for esophageal cancer. However, some specimens had multiple types of SNVs, making it 
unclear which SNVs should be trusted for prediction (Supplementary Fig. S2a). Therefore, we constructed a 
recurrence prediction model using machine learning, considering 21 factors including the SNVs found in this 
study and patient background (Supplementary Fig. S2b).

Fifteen algorithms were trained using the Pycaret classification module, and 21 features, including patient 
background and SNVs, were used to construct a model with recurrence as the correct answer. The accuracy level 
of the entire model was compared based on the value of Accuracy, and the result showed the highest value of 
0.8467 in Naive Bayes (Supplementary Tables S4 and S5). Furthermore, when tune_model was performed for 
Accuracy, the value became 0.883, which was defined as the final_model (Fig. 3a). When eight types of patient 
backgrounds were used as features, the value of Accuracy was 0.546 in Naive Bayes (Fig.  3a). Additionally, 
other evaluation metrics such as area under the curve (AUC), Recall, Precision, F1 Score, Kappa, and Matthews 
Correlation Coefficient also demonstrated the superiority of the model using all 21 factors, including SNVs 

Fig. 3.  Machine learning model to predict recurrence. (a) An indicator to evaluate the prediction of recurrence 
by Naive Bayes with patient background or patient background + SNVs as features. (Prec.: precision). (b) The 
ROC (receiver operating characteristic) curve for fine-tuned Naive Bayes. Class 0 means non-recurrence. Class 
1 means recurrence. (c) Confusion matrix for fine-tuned Naive Bayes.
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(Fig. 3a). Based on the learning curve results, it is unlikely that overlearning occurred (Fig. S2C). These results 
showed that incorporating SNVs along with patient background information significantly improves the 
predictive performance of the model.

A receiver operating characteristic curve for the Naive Bayes algorithm was generated, showing an AUC 
value of 0.9 for both class 0 (no recurrence) and class 1 (recurrence) (Fig. 3b). This AUC value indicates that this 
model has excellent discriminative ability to distinguish possible recurrences.

The confusion matrix is one of the representations used in machine learning to evaluate the performance 
of classification models. From the confusion table, the true positive value was 7, which is higher than the false 
negative value of 4 (Fig. 3c). Furthermore, it is noteworthy that the number of true negatives was 14, and the 
number of false positives was 0 (Fig. 3c). These results suggest that the Naive Bayes classification model has high 
performance in terms of both sensitivity (true positive rate) and specificity (true negative rate) in predicting 
recurrence in patients with esophageal cancer.

Comparison of the expression of coding RNAs between recurrence and non-recurrence 
groups
In this study, several prediction systems for the ineffectiveness group with CF regimens were demonstrated. 
Therefore, we performed a comprehensive expression analysis to understand the biological characteristics of 
the poor response group to propose a selective treatment. In the analysis of differential gene expression between 
recurrence and non-recurrence specimens among the 19,972 coding genes, 241 genes were found to have higher 
expression levels in the recurrence group compared to the non-recurrence group, while 428 genes showed lower 
expression levels in the recurrence group compared to the non-recurrence group, based on the criteria of fold 
change ≥ 2 and p < 0.05 (Fig. 4a).

Fig. 4.  Expression analysis between recurrence and non-recurrence groups. (a) Volcano plot of differentially 
expressed genes between recurrence (n = 7) and non-recurrence (n = 8) groups. (b, c) Summary of biological 
processes in gene ontology (GO-BP) and KEGG-pathway analyses of genes with elevated expression in 
recurrence and (d, e) non-recurrence groups. (f) Principal component analysis performed on 19 genes 
involved in glutathione metabolism and keratinization. Red specimen names indicate non-recurrence group; 
blue specimen names indicate recurrence group.
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Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using the 
DAVID database revealed enrichment of specific biological processes associated with highly expressed genes 
in the recurrence and non-recurrence groups (Fig. 4b–e; Supplementary Tables S6 and S7). In the recurrence 
group, eight genes with high expression were enriched in processes related to “glutathione metabolism” (Fig. 4c). 
In contrast, in the non-recurrence group, 11 genes with high expression were enriched in processes related 
to “keratinization” (Fig.  4d). These genes, especially those contributing to "glutathione metabolism," may be 
potential additional therapeutic targets for patients with poor response to the CF regimen.

Possibility of predicting recurrence by analysis of gene set expression levels
Prediction of recurrence was examined by analyzing the expression levels of a set of 19 genes associated with GO 
“keratinization” and KEGG analysis “glutathione metabolism” terms. Principal component analysis (PCA) was 
performed on the gene expression data for the 19 genes. Plotting the data showed that the first PCA effectively 
distinguished between recurrent and non-recurrent outcomes (Fig. 4f). In particular, the non-recurrence group 
appeared to have less variance.

The expression levels of 37 autophagy-related genes were also examined; however, none of them showed 
significant differences (Supplementary Table S8). A PCA analysis of the 37 autophagy-related genes was also 
performed (Supplementary Fig. S3), but no clear distinction of recurrence could be made. These observations 
suggest that the 37 genes associated with autophagy are not compatible with the prediction of recurrence by 
expression level analysis.

Discussion
In this study, we aimed to construct a prognostic system for CF regimens for locally advanced cancers. We 
identified variants of autophagy and esophageal cancer-related genes as biomarkers that could predict the 
efficacy of CF therapy prior to treatment. Based on these results, we constructed a machine-learning model that 
can predict postoperative recurrence based on 21 factors consisting of clinical factors and SNVs. Additionally, 
we established a highly heterogeneous treatment selection system using a machine-learning model.

High expression of PINK1 protein, an initiator of mitophagy, correlated with poor response to neoadjuvant 
chemotherapy with CF or DCF regimens in surgical specimens from patients with esophageal cancer 
receiving neoadjuvant chemotherapy; however, no correlation was observed in biopsy specimens taken prior 
to chemotherapy. Thus, PINK1 protein expression is not considered a predictive biomarker for response to 
neoadjuvant chemotherapy with CF or DCF regimens in patients with esophageal cancer. In contrast, we identified 
13 SNVs in this study as prognostic predictors of neoadjuvant chemotherapy with CF regimen in patients with 
esophageal cancer. Specifically, SNVs such as p.R478C in ATG2A and the splice site of ULK2 were found to be 
significant. To the best of our knowledge, this is the first study to report these SNVs as prognostic predictors of 
esophageal cancer. However, SNVs in the PINK1 gene (c.1018G > A and c.1562A > C), previously suggested to be 
prognostic factors for 5-FU-based adjuvant chemotherapy in colon cancer, showed no significance in esophageal 
cancer. Additionally, SNVs identified in esophageal cancer did not show significant differences in colorectal 
cancer. The fact that prognosis-related SNVs differ between colorectal cancer and esophageal cancer suggests 
that genetic characteristics affecting treatment response and outcome may differ significantly between different 
cancer types. This underscores the importance of considering organ-specific genetic profiles when developing 
personalized medicine approaches.

ATG2A plays an important role in autophagosome formation, an early step in autophagy, and promotes lipid 
translocation required for autophagosome membrane expansion14. ATG2A is involved in promoting colony 
formation and cell migration in glioblastoma cell lines by activating autophagy. This suggests its involvement 
in cancer progression and therapeutic response15. In this study, an ATG2A p.C478 minor variant was found to 
be significantly associated with worse RFS and OS compared to p.R478 major variant. This suggests that the 
p.C478 variant may contribute to a worse response to CF regimens by activating autophagy. Additionally, in 
silico analysis with PolyPhen2 showed that the p.C478 variant is “probably damaging” with a score of 1.000 
indicating that the high score is functionally significant. Nevertheless, further biochemical characterization is 
required to better understand the functional impact and role of the p.C478 mutation in ATG2A on neoadjuvant 
chemotherapy for esophageal cancer. Such characterization efforts may pave the way for the development of 
targeted therapies aimed at modulating the activity of this mutant and the identification of biomarkers to guide 
treatment decisions, especially in relation to CF regimens.

Thirteen variants showed significant differences in this study, predicting recurrence after treatment with CF 
regimens for esophageal cancer. Therefore, we constructed a machine learning model to predict recurrence using 
21 features, including eight patient backgrounds and 13 SNVs, which showed high values of Accuracy = 0.88 and 
AUC = 0.9. However, we have recognized some limiting factors. First, although the difference in the importance 
of the features of the 13 SNVs was examined, the Naive Bayes algorithm is difficult to compute directly and has 
not been shown. Second, in this study, the hyperparameters were optimized collectively using the tune_model 
function; however, it is also possible to effectively tune individual parameters. Third, the number of samples was 
limited due to the fact that there were 25 test samples and a single cohort. Consequently, in the future, we aim to 
improve the decision rate when SNV analysis and pathological image results are added to the machine learning 
features.

Prognostic prediction of CF regimens by SNVs showed that the ATG2A p.R478C (p < 0.005) and ULK2 
splice-site (p = 0.05) variants were candidates. Furthermore, when machine learning was performed considering 
the information from the 13 SNVs as features, the AUC = 0.9 was high. On the other hand, the confusion matrix 
in Fig. 3c had four cases of non-recurrence where recurrence was expected. PCA performed on 19 genes that 
were shown to be differentially expressed in the expression analysis between the recurrence and non-recurrence 
groups suggested the possibility of predicting the likelihood of recurrence. Since the purpose of RNAseq analysis 
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in this study was to determine the biological characteristics of the recurrence group, the number of samples 
was limited to 15. However, in the future, the number of specimens should be 82, the same as that in the SNV 
analysis, to examine whether prognosis can also be predicted by expression analysis. We would also like to 
consider improving the decision rate when the results of the expression analysis are added to the machine 
learning features. This study involved an analysis of a small number of cases at a single institution, and external 
validation using a larger cohort may be warranted in the future.

The KEGG pathway analysis showed that genes contributing to glutathione and drug metabolism were 
enriched in the recurrence group. The G6PD gene, included in the glutathione metabolism term, encodes a 
glucose-6-phosphate dehydrogenase, whose contribution to the generation of NADPH (the reduced equivalent) 
is essential for redox homeostasis and reductive biosynthesis in the cell. Rapidly proliferating cancer cells 
support cellular requirements for NADPH production and fatty acid and nucleic acid synthesis. As a result, 
aberrant activation of G6PD leads to increased cell proliferation and adaptation in many types of cancer16,17. One 
study evaluated cells of 94 patients with lymph node-positive invasive breast cancer using tissue microarrays and 
two public databases. The results indicated that high G6PD mRNA expression was correlated with significantly 
poorer OS18. A panel of patient-derived spheroids was established from clinical material of ovarian cancer, and an 
integrated analysis combining chemotherapy resistance data with gene expression profiling was conducted. The 
results revealed that cisplatin resistance was significantly associated with increased levels of glucose-6-phosphate 
dehydrogenase (G6PD) and glutathione-producing oxidoreductase19. Furthermore, the combination of a G6PD 
inhibitor and cisplatin suppressed spheroid growth in vitro and almost eliminated peritoneal metastases in a 
mouse xenograft model19. These reports suggest that significantly higher G6PD gene expression in the recurrent 
group may correlate with a lower efficacy of cisplatin in CF therapy. Therefore, the combination of CF therapy 
with a G6PD inhibitor may increase the efficacy of neoadjuvant　chemotherapy.

However, we believe that our model for predicting the efficacy of CF therapy is a significant finding because 
it is expected to avoid excessive drug toxicity caused by DCF therapy while simultaneously providing a non-
inferior therapeutic effect. Even in cases where CF therapy is deemed ineffective, the therapeutic effect of 
standard DCF therapy can be expected. In future studies, it is necessary to examine whether our model for 
predicting the efficacy of CF therapy has any relevance for the efficacy of DCF therapy, especially whether 
patients who are expected to respond poorly to CF therapy can be rescued by DCF therapy. While our results 
represent an important step toward clinical application, further validation is needed implementation in clinical 
practice is possible. If the usefulness of this biomarker is demonstrated by other studies in the future, it will be 
possible to determine the optimal treatment strategy for individual patients before treatment is initiated through 
routine next-generation sequencing analysis.

In conclusion, we identified candidate genes that can predict the prognosis of CF regimens and constructed 
a machine-learning model to further predict recurrence in patients with esophageal cancer treated with 
neoadjuvant chemotherapy using CF regimens. We believe this information is useful for the selection of 
neoadjuvant　chemotherapy, including the avoidance of docetaxel. Avoidance of unnecessary drugs may be 
useful not only for patients but also for health economics.

Methods
Tissue samples
This study was approved by the Institutional Review Board of the Saitama Medical University International 
Medical Center (2022–113 and 2024–055), and the requirement for obtaining informed patient consent was 
waived due to the retrospective nature of the study.

Ninety-one patients with esophageal cancer who underwent a neoadjuvant CF regimen plus radical surgery 
at Saitama Medical University International Medical Center between May 2012 and June 2020 were enrolled in 
the study. Of these, tissue samples from 82 with sufficient DNA content, obtained during biopsy, were included 
in the analysis (Table 1). The tissue specimens were processed and embedded into paraffin blocks, which were 
used for further analysis. Tumor cells in the tissue specimen were determined visually and microscopically by a 
pathologist using hematoxylin and eosin-stained sections.

Target sequencing in our clinical ESCC cases
Fifty-six autophagy- and ESCC-related genes were selected for target-enrichment sequencing. Among them, 37 
autophagy-related genes have been reported previously, with some additions or omissions13,20. Whole-genome 
analysis of 552 ESCC cases identified cancer driver genes, among which 19 genes detected at a high frequency 
were selected21. The target regions were designed to enrich the exonic regions and exon–intron junctions of the 
56 genes (Supplementary Table S1). The mean percentile of the target regions covered was 99.57%.

DNA extraction, library preparation, and data analysis for targeted capture sequencing
Biopsy specimens from 82 patients were analyzed. The assessment and recovery of cancerous tissue regions were 
performed using previously reported methods13,22. From the extracted DNA, a library of all exonic sequences 
of the 56 genes was prepared using the HaloPlex Target Enrichment kit (Agilent Technologies, Santa Clara, 
CA), according to the manufacturer’s instructions. The libraries were high-throughput sequenced on a NextSeq 
platform (Illumina, San Diego, CA) with 150-bp paired-end reads, according to the manufacturer’s protocol. 
Identification of SNVs and small INDELs was based on Mutect2 of the Genome Analysis Toolkit, as previously 
reported13,23. SNVs that showed multiallelic sites were excluded. The violin plot figure was generated using R 
package (​h​t​t​p​s​:​​/​/​b​i​o​c​​o​n​d​u​c​t​​o​r​.​o​r​g​​/​p​a​c​k​​a​g​e​s​/​r​​e​l​e​a​s​e​​/​-​b​i​o​c​​/​h​t​m​l​/​e​d​g​e​R​.​h​t​m​l).
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Study design and statistical analyses
A 2 × 2 cross-tabulation table was created with and without variants, and with and without recurrence. A Fisher’s 
exact test was performed using R, based on the cross-tabulation table, to examine the association between gene 
variants and recurrence.

The variants with a preliminarily inferred association with postoperative recurrence were examined for their 
associations with OS and RFS. OS was defined as the period from the date of surgery to the date of death. 
RFS was defined as the period from the date of surgery to the date of first evidence of recurrence. RFS or OS 
was censored at the last confirmed date of no recurrence for patients who did not show recurrence or die. OS 
and RFS were analyzed using the Kaplan–Meier method, and significance was determined by the log-rank test 
using the open-source Python software package. The median follow-up period for patients surviving without 
death was 51.2 (range: 7.0–107.8) months. Survival analysis was performed for 78 samples that had sufficient 
sample volume to allow the analysis of all variants that were candidates for prognostic factors. Univariate 
and multivariate survival analyses were performed using a stratified Cox proportional hazard model. In the 
multivariate analyses, covariates were selected using backward elimination. All statistical tests were two-sided, 
and p < 0.05 was considered statistically significant.

RNA extraction, library preparation, and data analysis for RNA sequence
Total RNA was isolated from formalin-fixed paraffin-embedded (FFPE) biopsy specimens (n = 15) from patients 
with esophageal cancer treated between 2012 and 2019. Libraries for RNA sequencing were prepared from total 
RNA as described previously24. Of the 15 specimens, 8 and 7 specimens showed non-recurrence and recurrence, 
respectively.

The resulting library was sequenced on an Illumina HiSeqX platform (2 × 150-bp read length). Data analysis 
was based on previously reported methods with some modifications24. Differentially expressed genes were 
defined as genes that showed a two-fold or greater difference in the expression level of transcripts per million 
values between the recurrence and non-recurrence groups and a significant difference of p < 0.05. The significance 
estimate of the differences in gene expression, such as the p-value, was calculated from RSEM’s expected counts 
using edgeR package in R, and the volcano plot figure was generated using R. For the enrichment analysis, 
DAVID (https://david.ncifcrf.gov/) was used for GO and KEGG analyses25.

Raw counts from the gene expression data were normalized to log counts per million (log-CPM) and further 
transformed into z-scores. PCA was performed using R, based on log-CPM (z-score) values.

Machine learning model construction
The model development was performed using the Google Collab platform, and Pycaret was the first package used 
for machine learning, which required the installation of packages containing pandas, NumPy, warnings, and 
Pycaret (version: 3.3.2, Moez A. PyCaret: an open-source, low-code machine learning library in Python. ​h​t​t​p​s​:​/​/​w​
w​w​.​p​y​c​a​r​e​t​.​o​r​g​​​​​​)​​. Feature sets from 8 different patient backgrounds and 21 different patient backgrounds + SNVs 
were entered separately into Pycaret to build a recurrence prediction model. Pycaret divided each set into 
training (70%) and independent test cohorts (30%). Each feature set was trained on 15 machine learning models, 
and the stability of the models was evaluated by performing tenfold cross-validation of the performance of each 
model and the genomic features that contributed the most to automatic generation in the training cohort. The 
most accurate models were subjected to hyperparameter tuning, and the tuned models were assembled using the 
blending method. The missing values in the SNVs were filled using Pandas df. fillna (data.mean()).

Data availability
The datasets extracted and/or analysed during the current study are available in the DDBJ ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​d​d​b​j​.​n​i​
g​.​a​c​.​j​p​/​d​r​a​/​i​n​d​e​x​-​e​.​h​t​m​l​​​​​)​, and the accession numbers were PRJDB19608 and PRJDB19609. However, the above 
correspondence table linking patient identification codes to personal information is not publicly available due 
to privacy and ethical constraints. When an application for secondary use of sequence data is submitted, we will 
ask the applicant to present the purpose of use and review the pros and cons of granting access before making 
a decision. The person who handles applications for use is Masataka Hirasaki (hirasaki@saitama-med.ac.jp).
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