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Hyperspectral imaging (HSI) shows significant promise in the medical field for tissue detection and 
perfusion assessment. To extend its application to intraoperative diagnosis, laparoscopic cameras 
combining a high resolution color video and simultaneous HSI were developed. Spatial scanning in 
these cameras is performed through a push-broom motor driving a line-scan spectrograph. However, 
long acquisition times and the necessity of absolute immobility for patient and operator currently limit 
its usability in the operating room. To provide a hyperspectral acquisition alternative to the traditional 
push-broom motor approach, we have developed an HSI stitching pipeline that enables freehand line 
scanning. Our method utilizes the dual recording capability of the camera, which has both an RGB and 
an HSI sensor. It applies the transformations observed in the RGB video to the corresponding HSI data, 
then seamlessly merges this data to create a coherent panorama. This allows operators to visualize 
hyperspectral data as an incrementally expanding overlay on the color video by scanning the scene 
with the laparoscope. The pipeline evaluation confirms the generation of globally consistent and well-
interpretable panoramas with a high level of detail. The registration error is not only comparable to the 
push-broom method but also corresponds to a real-world error of less than 0.4 mm in 95 % of the cases. 
Therefore, the proposed method enhances the practicability of intraoperative hyperspectral imaging 
by providing a dynamic, video-like experience of HSI visualizations.

Hyperspectral imaging (HSI) is an emerging technology in medical diagnostics, offering noninvasive and 
marker-free insights. By analyzing the unique spectral properties of tissues, hyperspectral imaging enables the 
detection of parameters like oxygen saturation and hemoglobin levels. These parameters can be visualized in 
false-color images and used for tissue recognition and perfusion assessment1. The adoption of HSI in clinical 
practice shows great promise for surgical guidance in robotic and minimally invasive procedures. Despite the 
availability of real-time multispectral imaging, HSI prevails in demanding tissue characterization due to its high 
spectral resolution2.

Initial challenges, such as bulky equipment and limited resolutions, have been addressed by the introduction 
of advanced systems like the TIVITA® Mini Endoscopy Edition (Diaspective Vision GmbH, Am Salzhaff-
Pepelow, Germany). This hyperspectral camera for minimally invasive surgery (HSI MIS) is a laparoscopic 
system that produces two asynchronous raw data streams: a high-resolution RGB color video and a narrow 
vertical “line” of hyperspectral data with high spatial and spectral resolution, covering 500–1000 nm across 100 
spectral bands at 5 nm spacing. For detailed information about the HSI MIS system, please refer to the technical 
evaluation by Köhler et al.2, or to the description of the preprocessing steps and algorithms used to determine 
tissue parameters3.

Processing the two data streams captured by the HSI MIS system enables the display of both the RGB video and 
the hyperspectral data in side-by-side windows. However, whereas the RGB video shows the field of view (FOV) 
in real time, the hyperspectral display can only provide a static snapshot of the scene at a particular moment. 
This limitation arises from the need to scan the scene line by line for spatial information, which is achieved by 
an integrated stepper motor that guides the spectrograph along a linear rail. By placing these lines side by side, 
a static capture of the scene can be performed. Scanning the scene, however, results in long acquisition times: 
Depending on the resolution, the push-broom scanner requires between 4.6 s and more than 10 s to obtain a 
complete hyperspectral capture of the FOV. During this time, both the laparoscope and the scene must be kept 
absolutely still, otherwise image distortion and motion artifacts will occur. This is a major limitation for surgical 
applications, as organs such as the lungs or the heart perform a natural, continuous movement that cannot be 
halted.
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Further, displaying both imaging modalities side by side does not ensure optimal surgical guidance. For 
precise localization of critical structures, augmenting the RGB video with hyperspectral data would be of great 
interest. In previous research4, we developed a method to visualize the physiological parameters in the spatial 
context of the video: By continuously registering a previously captured hyperspectral image with the current 
frame of the RGB video, both modalities could be overlaid in real-time. However, as soon as the camera is 
moved on to another part of the scene, the registration can no longer be performed and the overlay disappears. 
In addition, changes in the scene that have occurred in the meantime cannot be taken into account.

Facing similar constraints, Yoon et al. present a concept in5,6 to reconstruct a complete hyperspectral data 
cube from a line-scan HSI. The method uses a hyperspectral endoscopy system (HySE) that combines a CMOS 
camera capturing wide-field images and a single-line scanning spectrograph. After scanning the lumen with the 
endoscope, a panoramic image is created from the wide-field images by co-registering them in pairs. Nonetheless, 
although the data are acquired in real time, the hypercube is reconstructed offline. This post-processing step 
requires about 50 s to build a hypercube with 51 spectral channels from 59 line-scan images5. As a result, the 
technique only allows to handle very short image sequences and is not suitable for live surgical guidance.

To address the shortcomings of both the HSI MIS and the HySE system, we developed an HSI processing 
algorithm that offers an alternative to the push-broom capture method. By manually sliding the laparoscope 
laterally across the region of interest, the user generates a series of HSI lines. Our algorithm combines (“stitches”) 
all lines successively and builds a dynamically expanding panorama of hyperspectral data as the laparoscope 
moves. To visualize both modalities together, the panorama is overlaid onto the RGB video recorded by the RGB 
camera. We assessed the performance of the implemented method by evaluating its subjective quality, accuracy, 
and the robustness of hyperspectral reconstruction.

Stitching pipeline
Image stitching describes the process of combining overlapping images with differing alignments, orientations, 
or illuminations into a single panorama. The rationale behind image stitching involves establishing the relative 
orientation of images, aligning them based on this orientation, and finally assembling them on a common 
canvas7.

In our case, direct stitching of HSI lines was not feasible, as the extreme narrowness of the HSI lines makes 
it impossible to determine their alignment to each other. Instead, our method leverages the simultaneous 
recording of the FOV by both RGB and HSI sensors. This shared perspective enables the transfer of laparoscope 
movements captured in the RGB video directly to the corresponding HSI lines. Therefore, the process unfolds 
as follows. First, we quantify the transformation between two RGB frames. This step is referred to as registration 
and involves identifying changes in orientation (rotation, translation, scaling, and shearing), in order to establish 
geometric correspondence between the frames. Next, we apply this transformation to the HSI lines that were 
recorded in the same period. Finally, we merge the transformed HSI lines into a panorama, ensuring a coherent 
visual representation.

Given the real-time requirements, only incremental stitching techniques, which adapt and integrate data 
as they are captured, can be employed. Several concepts for incremental global registration8,9, or for combined 
local and global registration10,11 have been introduced in the past. The proposed algorithm employs the hybrid 
method from12, dividing the registration into an initial rough frame-to-frame approximation and a refined 
frame-to-panorama registration using a panorama keypoints database.

To leverage the parallel processing capabilities of a multi-threading approach, we segmented the pipeline 
into independent modules, with each module responsible for a different processing phase on its own thread. 
The modules are discussed individually in the following sections. It should be noted that all default parameters 
described therein were determined empirically on cardboard test targets during development. These values need 
to be individually configured to adapt the pipeline to the varying requirements of different use cases or changes 
in hardware.

The pipeline was developed using Python 3.8, with multi-threading and GUI managed by Qt®13 version 5.15. 
The OpenCV library14 version 4.5 was used for most of the image processing tasks.

Preliminary steps
First, the entrance slit of the spectrograph was fixed in position to capture a narrow, one-pixel-wide vertical line 
of hyperspectral data in the center of the FOV. Further, several measures were necessary to accommodate the 
cameras’ characteristics. We corrected the laparoscope’s barrel distortion by generating a calibration map, which 
was precomputed once during setup and subsequently applied in real time to undistord each incoming RGB 
frame. To address the slight angle discrepancies between the RGB and HSI sensors, we established a homography 
to align their image planes. This process yielded a sensor homography matrix, denoted as Hsens. Additionally, 
since the position of the entrance slit of the spectrograph was fixed, we accounted for the horizontal shift of the 
line from the left edge to the center of the RGB image, which was represented as the homography Hpos.

Image acquisition and preprocessing
The image acquisition and preprocessing module simultaneously handles the two asynchronous raw data streams 
sent by the laparoscope to a Windows 10 computer via a CAT  5 Ethernet cable. Both cameras in the HSI 
MIS system can record at a maximum rate of 120 fps. However, due to bandwidth limitations of the Ethernet 
connection, the RGB image video had to be reduced to 10 fps, and the hyperspectral stream to 70 fps. These 
values were empirically determined as being robust against fluctuations and showing satisfying results without 
overloading the connection.

In addition to the preprocessing steps described in3 and2, the calibration map is applied to the RGB images 
to undistort them. Further, a contrast-limited adaptive histogram equalization (CLAHE, clip limit: 2.0, tile 
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grid: 8 ×  8)15 is conducted to mitigate varying illuminations and intensity inhomogeneities. To ensure later 
synchronization between the images of both streams, each RGB image and each hyperspectral line is coupled 
with a timestamp documenting the moment of its arrival from the laparoscope system. Therefore, the image 
acquisition and preprocessing module yields two distinct asynchronous output streams (Fig. 1a):

•	 Pairs consisting of an undistorted, contrast enhanced RGB image of dimensions 960  ×  540  pixels 
(width × height) and its respective timestamp. The former is hereafter referred to as RGB frame, with the ith 
frame denoted by Ii. These pairs are passed to the picking module.

•	 Pairs consisting of a line of hyperspectral data, hereafter referred to as HSI line and denoted by Ĩj  (for the jth 
line since sequence start) of dimensions 1 × 540 × 100 pixels (width × height × spectral) and its respective 
timestamp. These pairs are passed to the stitching module.

In subsequent sections, a parameter p is denoted by its simple notation when it is related to RGB data, and by p̃ 
when related to HSI data.

Local keypoint picking
To register two frames effectively, one approach involves detecting salient keypoints in the images and describing 
each of them, in order to match the corresponding features. This is the role of the picking module, which extracts 
and selects (“picks”) keypoints from the incoming RGB frames (Fig. 1b).

Each new incoming frame undergoes initial processing using an Oriented FAST and Rotated BRIEF (ORB) 
detector16, extracting the 1000 most salient keypoints. All keypoints are saved with their corresponding pixel 
coordinates (x, y), referenced to a coordinate system with origin in the upper left-hand corner of the RGB frame. 
ORB computes a binary descriptor for each keypoint, resulting in two lists per frame: one containing keypoint 
coordinates and the other their respective descriptors. The module keeps track of the keypoints’ coordinates and 
descriptors for two frames: the latest captured RGB frame Ii and its predecessor Ii−1.

Correspondences between the keypoints are then established and a brute force matcher using Hamming 
norm as a distance measurement produces a list of matches between both sets. This list is subsequently refined 
using a Lowe’s ratio of 0.8.

The final stage of the local registration process consists of estimating the transformation that maps the 
matched keypoints. For this purpose, it is assumed that the laparoscope camera has the geometric properties of a 
pinhole camera model and that the movements of the laparoscope are small enough to approximate the observed 
scene by a plane. Thus, the mapping can be approximated by a local transform homography17, mapping the 
common keypoints of the current frame to their counterparts in the preceding frame:

	 H(i,i−1) : Ii �→ Ii−1.� (1)

The pixel coordinate origin of the previous frame serves as the reference for transformation, with the current 
frame being the image to warp. The homography is estimated using a RANdom SAmple Consensus (RANSAC) 
algorithm18 with a confidence level of 0.995 and a threshold of 8.0 pixels.

Locally registering two consecutive frames may seem superfluous, as this first homography will be replaced 
by a more accurate global homography in the next module. Nevertheless, this serves three key objectives:

•	 Improving the quality of the keypoints. Using RANSAC early for outlier detection identifies higher-quality 
keypoints, ensuring only robust matches are utilized for global alignment in the registration module.

•	 Identifying motion. The homography estimate identifies image motion. Running the stitching pipeline with 
minimal camera movement wastes computing resources and enlarges the keypoints database unnecessarily. 
Assessing spatial displacement between frames helps decide if there’s sufficient change for further processing.

•	 Filtering low-quality frames. The local homography estimation in the pipeline helps filter out low-quality 
frames through plausibility checks, preventing problems caused by insufficient overlap or textureless regions. 
This process involves ensuring a sufficient number of 40 inlier matches for robust detection, evaluating image 
motion for excessive displacement, and checking for abnormal frame distortion due to the transformation. 
Frames failing the quality tests are discarded. After 20 invalid attempts, the panorama is reset and a new 
stitching sequence begins. Otherwise, the picking module forwards a tuple containing the keypoint coordi-
nates, descriptors, and timestamp of the RGB frame to the registration module.

Global registration
The registration module establishes global registration between the last RGB image and the current panorama. 
Global registration is favored over local registration as the latter can lead to drift from error accumulation. 
However, continuously saving the entire RGB panorama and extracting its keypoints to register with a new 
frame would be computationally prohibitive. Instead, the module maintains a database containing coordinates 
and descriptors of its strongest keypoints since the start of the sequence (Fig. 1c).

Global homography
In a first step, a brute force matcher, similar to the one operating in the picking module, matches the previously 
extracted keypoints of the current frame with the keypoints stored in the database. The coordinates of the 
keypoints are used to compute the global homography mapping the keypoints of the current frame to their 
counterpart in the panorama:

	 H(i,P ) : Ii �→ P,� (2)
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Fig. 1.  Flowchart of the stitching pipeline. Modules are depicted in gray, with data transfers indicated by 
yellow parallelograms. RGB frames are represented in green, and HSI in blue. Note that HSI lines are depicted 
with an illustrative width for clarity, although they are 1 pixel wide in reality. Timestamps are omitted for 
simplification. (a) This module receives and preprocesses two asynchronous raw data streams from the 
laparoscope and forwards them separately. (b) The picking module extracts salient keypoints from the current 
RGB frame Ii and matches them with its predecessor Ii−1. Sanity checks associated with this frame-to-
frame registration enable the selection of the best keypoints. (c) The coordinates and descriptors of the most 
robust keypoints from frame Ii are transferred to the global registration module, which maintains a database 
of accumulated keypoints since sequence start. A brute force matcher establishes correspondence between 
current and stored keypoints, enabling computation of a global frame-to-panorama homography H(i,P ). 
(d) The homography is adjusted for application on HSI lines and used to warp and stitch the buffered set of 
corresponding lines L̃i onto the panorama. (e) The visualization module renders the HSI panorama as an 
overlay on the RGB video. This figure has been designed using an icon from Flaticon.com
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where P denotes the panorama described by the keypoints database in its most recent state. A RANSAC 
algorithm identifies inlier matches and H(i,P ) undergoes plausibility tests similar to local registration. If 
deemed plausible, the homography is sent to the stitching module for HSI line alignment based on the estimated 
global transformation.

Database maintenance
After each processed RGB frame, the database undergoes a maintenance step. For each keypoint in a new frame, 
the matching process for global registration results in three possible outcomes:

•	 No match: the keypoint is considered new and added to the database after aligning with the general coordinate 
system using the homography H(i,P ). This system is set by the upper left corner of the first incoming RGB 
frame at the beginning of the stitching sequence and does not change thereafter.

•	 Inlier match, contributing to a plausible homography, likely describes the same physical point in the scene. 
Assuming that a more recent description of a keypoint is more reliable than an older one, the coordinates and 
the descriptor are updated in the database.

•	 There is a match, but it is either deemed to be an outlier match after the RANSAC algorithm, or it is involved 
in the computation of an implausible homography matrix: The keypoint is considered a potential uncertainty 
factor and is discarded.

The database is regulated to prevent excessive growth. Key measures include selecting only the 500 most 
relevant matches based on Hamming distance for global homography calculation, adding only the 50 strongest 
unmatched keypoints to the database, retaining the 200 inlier matches with the lowest Hamming distance, and 
removing keypoints that did not match after 80 iterations. These steps ensure consistent computational speed, 
essential for meeting real-time requirements.

Line stitching
The stitching module aims to apply the previously computed homography transform to the temporally 
corresponding HSI lines in order to position them accurately on the panorama canvas (Fig. 1d). It inputs two 
asynchronous data streams:

•	 Pairs of the global homography, mapping the current RGB frame to the panorama, and its timestamp. The 
pair is denoted by (H(i,P ), ti) and arrives from the registration module at 10 fps by default.

•	 Pairs consisting of an HSI line and its timestamp. The pair is designated (Ĩj , t̃j) and arrives from the image 
acquisition module at 70 fps. These tuples are buffered until the tuple homography–timestamp arrives, which 
triggers the stitching mechanism.

Selection of the HSI lines
First, we have to determine which lines coincide in time with the current RGB frame. At the default frame rates 
of 70 fps (HSI) and 10 fps (RGB), about 7 HSI lines are captured between two consecutive RGB images. The 
timestamps help pinpoint these lines within the buffered list as the set L̃i of lines captured between the frames 
Ii−1 and Ii:

	 L̃i = {Ĩj | ti−1 ≤ t̃j + δ < ti},� (3)

δ being the correction of a slight time delay between the raw data of both streams that was determined empirically 
as being approximately 35 ms.

Preparation of the HSI lines
The aim of the HSI MIS pipeline is to visualize physiological tissue parameters through hyperspectral imaging. 
However, as most captured wavelengths are invisible to the human eye, the data must be transformed into false-
color images. Synthetic colors, derived from measured reflectance and tailored to the desired vital parameter, 
create a false-color line of size 1 × 540 in the spatial dimension.

Homography adjustment
The homography H(i−1,P ) corresponds to the first line in L̃i. For the subsequent lines Ĩk  in L̃i, linear 
interpolation to the next homography is applied:

	
H(k,P ) =

(
1 − k

|L̃i|

)
H(i−1,P ) + k

|L̃i|
H(i,P ),� (4)

with k ∈ {0, 1, ..., |L̃i| − 1}. H(i−1,P ) is initialized as the identity matrix at the beginning of the stitching 
sequence.

These homographies, though, describe transformations that are valid for 960 × 540 pixels RGB images and 
cannot be directly applied to the centered HSI line due to differing coordinate origins and sensor displacement. 
This was considered in the preliminary steps by determining the adjustments Hpos and Hsens. Therefore, 
the coordinate system must be adjusted before H(k,P ) can be applied to a HSI line. This is done by matrix 
concatenation:

	 H ′
(k,P ) = H−1

posH−1
sensH(k,P )HsensHpos.� (5)
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This equates sequentially converting the coordinate system from a centered HSI line to a RGB frame, applying 
the homography mapping, and reverting the coordinate system back to that of the centered HSI line.

Offset calculation
The panorama’s canvas is then expanded to fit the HSI lines. When initiating a stitching sequence, the panorama’s 
coordinate system is set by the first line, aligning the origin with its upper left corner. This origin remains as long 
as no new line has to be placed left or above this first line. In this case, the coordinates of the line would hold 
negative values, which is not compatible with image coordinates. If needed, the origin of the canvas is therefore 
shifted by an offset in x and/or y direction. This translation can again be expressed as a homography, denoted for 
the line Ĩj  by HT

j , which is accumulated over time by means of matrix multiplication. This allows the panorama 
to grow on all sides and dynamically update the coordinate origin as its upper left corner.

Adaptive line width
The HSI line has a native width of one pixel. Stitching such narrow lines at 70 fps, requires slow scanning speed 
to ensure complete scene coverage. To bridge the gaps between the lines, the HSI line’s width can be artificially 
expanded through the duplication of its intensity values w̃ times along the horizontal spatial dimension. 
However, selecting an appropriate value for w̃ is a challenging task. Line duplication corresponds to piece-
wise constant interpolation, introducing inherent inaccuracies. Consequently, the line width should be kept 
as minimal as possible while meeting the scanning speed’s requirements. To find the best compromise, we 
developed a dynamic approach that increases the line width in sync with the scanning speed. The rationale for 
this approach is to ensure that the width of a line is always at least as large as the distance to its successor.

This distance is determined by the amount of movement since the last frame, which is given by the 
transformation H(i,i−1). Its equivalent for HSI lines can be determined by using the global homography of the 
current and its inverse for the past iteration:

	 H ′
(i,i−1) = H ′−1

(i−1,P )H
′
(i,P ).� (6)

The horizontal translation induced by H ′
(i,i−1) is calculated for the four corner points of an HSI line. Let 

(xm, ym) and (x′
m, y′

m) be the coordinates of such a corner cm before and after transform, respectively, with 
m ∈ {0, 1, 2, 3}. Then, the translation on the x-axis of this corner is computed as the absolute value 

∣∣x′
m − xm

∣∣. 
The largest translation among the four corners is denoted as Ti, which represents the maximal horizontal gap in 
pixels that has to be covered by the elements of the set L̃i. It is then divided by the number of elements in the set 
and rounded up to the nearest whole number:

	
w̃i =

⌈
Ti

|L̃i|

⌉
.� (7)

w̃i is thus the ideal width for the lines contained in L̃i. In practice, the width should not exceed a maximum 
value, so that it is capped at a default threshold of 8 pixels. All lines in the buffer are duplicated horizontally, now 
having a spatial dimension of w̃i × 540 (width × height).

Line warping and stitching
Eventually, each line contained in L̃i is warped according to its associated homography. This homography maps 
each pixel of the line to its position in the new panorama. Let Ĩk  be the kth line in L̃i and the jth line in 
the stitching sequence. Then, by combining the term given by (5) with the offset homography HT

j , the final 
transform used to warp Ĩk  is computed as

	 Hfinal
k = HT

j H ′
(k,P ) = HT

j H−1
posH−1

sensH(k,P )HsensHpos.� (8)

The warped lines in L̃i are then aligned onto the canvas previously expanded to the correct dimensions if 
necessary. If areas overlap, the newer line replaces the older one in order to ensure that the panorama is always 
up to date. In this manner, with each new RGB image, the corresponding HSI lines are added to the canvas, thus 
making the panorama grow incrementally in real-time.

To ensure that the panorama does not grow uncontrollably over time, leading to increasing memory and 
computation time costs, a “forget-function” was implemented. After each new RGB frame, the area of the 
panorama to be displayed on the GUI is estimated. If needed, any sections of the panorama extending more than 
100 pixels beyond the display window are cropped.

To finish the iteration, the stitching module sends a pair containing the panorama and the final homography 
used for stitching the most recent line to the visualization module.

Panorama visualization
The role of the visualization module is to render the panorama as an augmentation of the RGB video (Fig. 1e). 
At this stage of the pipeline, the panorama has the orientation of the first line in the stitching sequence, despite 
possible movements during stitching. Therefore, to overlay the panorama over the current RGB image, it must 
first be adjusted to the current viewing angle of the camera. This step is achieved by transforming the panorama 
with the inverse of the homography sent by the stitching module, before cropping it to the dimensions of the 
monitor view. Both images are then superimposed on each other by means of a linear blend operator. The overlay 
represents the augmentation of the current RGB frame with reconstructed hyperspectral data. Displaying 
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such overlays at 10 fps allows the user to visualize the growing panorama of hyperspectral data in a video-like 
experience.

Depending on preference or application, the user can switch between display modes in the system: RGB 
video with full temporal and spatial resolution, static HSI push-broom capture, or dynamic freehand HSI using 
the stitching pipeline.

Evaluation methods
Experimental setup
Recording tests were performed using the 2D targets displayed in Fig. 2: a USAF 1951 test target19 and a frame 
extracted from a laparoscopic visceral surgery video20. Both targets were printed on cardboard in two sizes to 
accommodate varying working distances: the USAF target at 65 × 69 mm and 85 × 90 mm, each duplicated to 
fill a DIN A4 page, and the surgery image at 140 × 80 mm and 210 × 148 mm.

Robotic scans
We first carried out a series of tests to investigate the pipeline’s suitability for use in robotic surgery. For this, the 
laparoscope was mounted to a KUKA LBR iiwa 7 R800 robotic arm21 (Fig. 2). The robot arm replicated scanning 
paths with the camera at a velocity of 10  mm/s. Different paths were programmed to assess the algorithm’s 
robustness against various geometric transformations. To determine whether the distance between target and 
laparoscope affects the quality of the reconstructed HSI panorama, the test series were performed twice: at a 
working distance of 35 mm and at 60 mm, leading to a total of 28 image sequences of about 20–30 seconds.

To explore the impact of the scanning speed on the quality of the reconstruction, experiments with the USAF 
target were performed at different speeds. The robot arm’s velocity was programmed at increments from 5 mm/s 
to 100 mm/s. For these tests, the camera followed a 70 mm horizontal path, recording successively at working 
distances of 35 mm and 60 mm.

Push-broom scans
For a direct comparison between reconstructed robotic arm panoramas and push-broom images, ten static 
captures of the USAF target were made using both RGB imaging and static HSI hypercubes, with the latter 
acquired via the integrated push-broom motor. The scanning speed of the push-broom motor was estimated by 
timing the capture duration and measuring the target area covered.

Freehand scans
The second series of tests focused on freehand scans to mimic real-world scenarios. The cardboard targets were 
positioned on a table, and recordings were made while standing, using a hand-guided motion that combined all 
geometric transformations. The working distance varied between approximately 30 mm and 60 mm. Unlike the 

Fig. 2.  Experimental setting for the robot-guided evaluation scans. Left: laparoscope mounted to a KUKA 
arm. Top right: USAF 1951 target. Bottom right: image frame from laparoscopic visceral surgery video.
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robotic series, the scanning speed was variable and estimated to fluctuate between 5–20 mm/s. Four freehand 
scans of about 30 seconds each were reconstructed.

Throughout all scanning processes, except for the push-broom image captures, the laparoscope simultaneously 
recorded an RGB video at 10 fps and a raw hypercube consisting of all hyperspectral lines at 70 fps. Despite the 
feasibility of real-time execution, these files were saved to a hard disk, and the stitching operations for the test 
series were conducted offline to facilitate measurements and retrospective analyses. In the experiments, the 
adaptive line width feature was disabled to ensure consistent spatial alignment with the acquired data, enabling 
reliable manual keypoint annotation during evaluation. The fixed width of 3 pixels was selected as a compromise 
between visual interpretability and annotation accuracy.

Computational speed
To assess real-time capability, we measured the processing time per RGB frame for each core module across 20 
additional sequences of 65 s each (total of approx. 12,500 RGB frames), conducted under the same conditions 
as the freehand scans. These times were converted to fps to quantify module-wise throughput. This breakdown 
reflects the pipeline’s multi-threaded design, which allows parallel execution of independent processes, and helps 
identify potential bottlenecks. The computational time of the threads for image acquisition and preprocessing 
was not measured, since their real-time capacity was already known from previous studies2. In addition, we 
analyzed how processing times evolved over time, in order to assess whether computational or memory demands 
increased during extended operation.

Qualitative examination
To evaluate the perceived quality of the stitching algorithm, the resulting HSI panoramas of the test series were 
presented. Since displaying the physiological parameters is not only irrelevant for evaluation, but even hinders 
visual perception, synthetic gray colors were used to mimic a grayscale RGB image. The first impression in 
terms of global realism and perception of details was reviewed. Further, potential artifacts, distortions, or other 
representation errors were sought.

Accuracy metrics
Given our objective of augmenting RGB video with HSI data through a semitransparent overlay, our evaluation 
centered on the panorama’s geometric consistency, and particularly its alignment with the corresponding RGB 
frame, serving as the ground truth. For this purpose, keypoint pairs representing identical physical landmarks 
were manually marked on both RGB images and their corresponding HSI panoramas.

Registration accuracy was calculated using the Euclidean distance between each pair of keypoints. The 
median of these distances across all pairs and images provided the overall registration error, reported in pixels 
(px) with interquartile range (IQR, Q1–Q3). This calculation assessed sequences across varying camera paths, 
hyperspectral image acquisition methods, and scanning speeds, analyzing error distribution across these factors. 
To determine the clinical relevance of the computed error, we further converted the registration error from 
pixels to millimeters by cross-multiplying the width in pixels of the HSI image and the width in millimeters of 
the corresponding target section.

Results
Qualitative examination
Figure 3 presents a screen capture taken during a freehand scan. Videos illustrating the incremental generation 
of such overlays can be found as supporting material to this publication. Furthermore, Fig. 4 shows examples 
of panoramas obtained using a robotic arm, illustrating precise target reproduction despite geometric 
transformations induced by the camera path. The patterns are clear, undistorted, and correctly proportioned. 
However, upon closer inspection, minor artifacts emerge: “jagged” elements, where straight lines appear zigzag 
(left and middle circles in Fig. 4), and a ghosting effect, where elements show a slightly offset shadow (left and 
right circles). These artifacts are more pronounced in the high-contrast USAF target images.

Figure 5 shows two panoramas from freehand scans, with observations similar to those from robot-recorded 
panoramas. Additionally, two new artifact types are noted: noticeable intensity differences at overlaps (red circles 
in Fig. 5) and slight displacements in sections scanned at different times, causing offsets in continuous elements 
(top circle in Fig. 5).

During scanning speed assessments at 35  mm working distance, the algorithm could not reconstruct 
meaningful panoramas at speeds higher than 50  mm/s. Thus, these sequences were excluded from further 
quantitative evaluation. The problem was not observed in sequences recorded at a greater distance.

At a 60 mm working distance, as shown in Fig. 6 (a–d), quality visibly declines with increased speed, evidenced 
by emerging black regions between lines and a slight “jagged” appearance in straight lines. Overall, scans from 
35 mm distances were more negatively impacted than those at 60 mm. The adaptive line width, designed to 
eliminate these black gaps, is shown in Fig. 6 (e, f) to effectively resolve the problem. Additionally, slower scans 
with enabled adaptive line width resulted in reconstructions with line widths typically between 1 and 2 pixels, 
potentially enhancing registration accuracy over the fixed 3-pixel width of the non-adaptive approach, though 
this was not quantitatively assessed.

Registration error
Quantifying the hyperspectral reconstruction quality is a major element in the evaluation of the stitching 
pipeline. For this purpose, the influence of various factors on the registration error was investigated.
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Impact of the geometric transformation
Figure 7a displays for each camera path the distribution of the registration errors between the RGB frames and 
the corresponding HSI panoramas. The key statistics show that the errors are similarly distributed across the 
different paths, with medians ranging from 2.1 px (IQR: 1.4–3.0) to 2.2 px (IQR: 2.0–3.6). Due to a few outliers, 

Fig. 4.  Examples of HSI panoramas reconstructed from robot arm scans, presented in synthetic grayscale, and 
categorized based on the robot arm’s camera path. The red circles show cut-outs for a detailed visualization of 
artifacts. Working distance: 35 mm (a,b) and 60 mm (c).

 

Fig. 3.  Screenshot of the GUI taken during freehand scanning, showing a reconstructed false-color HSI 
panorama augmenting the RGB video.
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Fig. 6.  HSI panoramas, reconstructed at various scanning speeds. With increasing speed, the HSI lines are 
too far apart to be stitched together seamlessly, resulting in black gaps between the lines (b–d). However, 
panoramas (e,f) show that this problem can successfully be solved by the adaptive line width (ALW).

 

Fig. 5.  Reconstructed HSI panoramas, obtained from freehand scans and displayed in synthetic gray scales. 
The figures indicate the number of RGB frames and HSI lines processed in each sequence. A scale at the 
bottom gives an indication of the size of the scanned area on the physical target. Left: The laparoscope scanned 
along a sinuous path from left to right with progressive zoom-out. The yellow dashed circle represents the 
laparoscope’s circular field of view; the solid yellow line within it marks the position of the HSI acquisition 
line at that moment. Reconstructed target section: approximately 15 × 12 cm. Right: Path starting at the 
top left, turning around at the bottom right and ending at the top center. Red circles show cut-outs for a 
detailed visualization of artifacts. The left side of the green rectangle corresponds to an area with overly high 
registration errors. Reconstructed target section: approximately 11 × 13 cm.
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the maxima are slightly higher for rotations (8.1 px) and perspectives (7.8 px) than for translations (7.1 px) and 
scales (6.7 px).

Impact of the acquisition method
The accuracy of robot arm scans, freehand scans, and integrated push-broom captures is presented in Fig. 7, 
combining all working distances where applicable. After aggregating the camera paths, robotic and push-
broom scans show similar error distributions with identical quartiles Q1, Q2, Q3 at 1.4 px, 2.2 px, and 3.2 px, 
respectively. Differences arise in outliers and maxima (8.1 px for robotic scans vs. 6.7 px for push-broom).

For the freehand scans (Fig. 7b), Q1 and Q2 align with those of the other methods, while Q3 is slightly higher 
at 3.6 px. In contrast, the maximum error for freehand scans peaks notably at 19.0 px, with 13 outliers among 400 
keypoint pairs–eleven of which exceed the combined maximum error of the robotic and push-broom methods. 
Notably, all these outliers are concentrated in the same section of a single panorama.

To estimate the real-world correspondence of these errors, we assumed an average working distance of 
50 mm. At this distance, the 960 px wide RGB image shows a section of the target of 85 mm width. Therefore, 
the identical medians of the three acquisition methods (2.2 px) correspond to a distance of 0.2 mm in the real-
world, and the maximum error of 19.0 px translates to a discrepancy of 1.7 mm. Overall, 95 % of the keypoints 
exhibit a registration error of under 0.4 mm.

Impact of the scanning speed
Figure 8 shows how robot-driven scan speed affects HSI panorama alignment with the RGB frame, revealing a 
linear correlation between speed and registration error. At a distance of 35 mm, the mean error increases from 
2.5 px at 5 mm/s to 4.5 px at 50 mm/s. As for 60 mm, the mean errors range from 1.7 px at 5 mm/s to 6.0 px at 
100 mm/s. Errors are generally higher at shorter distances, especially as speed increases. As for the push-broom, 
its performance roughly lines up at the lower range of the regression lines, with estimated speeds of 6 mm/s and 
10 mm/s at working distances of 35 mm and 60 mm, respectively.

Computational speed
Median processing times per frame and corresponding thoughput capacities of the assessed modules were 
43 ms / 23  fps (local keypoints picking), 28 ms / 35  fps (global registration), 19 ms / 53  fps (line stitching), 
and 9 ms / 106 fps (visualization). Occasional spikes in the first three modules caused brief drops, with 6 fps 
as the rare worst-case minimum, but these delays were quickly compensated. The main runtime drivers were 
ORB keypoint extraction (80 % of picking time) and global feature matching (54 % of registration time). Over 
the minute-long sequences, processing times increased during the first 25 s but stabilized thereafter. This trend 
correlated with the sizes of the keypoint database and the panorama held in memory, both of which similarly 
plateaued thanks to regulated database pruning and automatic truncation of the panorama beyond the monitor 
view. Since both the database and the panorama account for most of the memory usage, their stabilization shows 
that overall memory consumption remains stable over time.

Discussion
The qualitative examination acknowledged well-formed, expressive panoramas with a high level of detail, 
regardless of the scanning path or the working distance. Although presented in gray scales, the panoramas 
suggested that good readability and interpretation of hyperspectral data would be possible in a clinical context. 

Fig. 7.  Distribution of the registration error with regard to the different acquisition methods, combining 
both working distances for (a,c). The robotic scans are organized by camera path; freehand scans integrate all 
transformations; push-broom scans involve only translations. The error is defined by means of the Euclidean 
distance in pixel between manually annotated, corresponding keypoints on RGB frames and HSI panoramas. 
The panoramas of (a,b) were reconstructed via image stitching. Samples sizes: robot arm 1200, freehand 400, 
push-broom 200 keypoint pairs.
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Overall, the quantitative results confirmed these positive visual impressions and attested accurate panoramic 
reconstruction, with misregistration values comparable to those of push-broom scanning. In 95 % of the cases, 
neither robot-guided nor freehand scans exceeded a registration error of 5 px, amounting to less than half a 
millimeter on a real object at a realistic working distance of 50 mm. Furthermore, the pipeline showcased real-
time capability, delivering smooth and fluid HSI visualization at a frame rate of 10 fps. Occasional minor lagging 
did not detract from the real-time video-like experience. This performance remained consistent and stable over 
time.

Yet, the qualitative examination of the panoramas revealed a few artifacts. A zigzag pattern was observed in 
some horizontal straight lines of the USAF target, appearing slightly jagged. This effect likely results from minor 
camera movements at frequencies exceeding the RGB sensor’s frame rate, which the homography transformation 
cannot fully correct. A ghosting effect was also noted, where light shadows appeared offset from areas of high 
contrast. Since this effect was also present in push-broom images, it seems to be an inherent characteristic of 
hyperspectral acquisition rather than a result of the stitching algorithm. Lastly, intensity discrepancies were 
observed in freehand panoramas, where overlapping sections showed visible seams due to varying pixel 
intensities. This artifact stems from vignetting, a reduction in brightness toward the image periphery, and 
is further influenced by variations in working distance, particularly when moving closer to the object. Such 
variations are common in laparoscopic settings, where precise distance control is not always feasible. To address 
this, physiological parameter calculations rely on spectral ratios rather than absolute intensities, making 
them largely robust to these fluctuations. By keeping the spectrometer slit fixed at the image center—where 
illumination is highest—our approach achieves a higher spectral signal-to-noise ratio than conventional push-
broom systems. Furthermore, since the entire spectral information of each pixel is captured simultaneously, the 
scanning process does not affect spectral shape, even if spatial registration is imperfect. This spectral integrity is 
a notable advantage over other scanning approaches. Future work will focus on systematically quantifying the 
influence of intensity fluctuations on spectral integrity and parameter estimation.

On a spatial level, minor misregistration sometimes occurs, primarily due to the accumulation of several 
known systematic errors with similar effects on reconstruction, making it difficult to disentangle their individual 
contributions. One source of error is the spectrograph position, as the automated centering of the spectrograph’s 
entrance slit via the integrated motor varies slightly with each GUI restart. This requires periodic adjustment of 
line coordinates for stitching, leading to minor offsets. Another factor is barrel distortion, where residual radial 
distortion in RGB frames, despite calibration efforts, can affect homography accuracy. Although the central 
positioning of the spectrograph minimizes the impact, minor uncorrected distortions in HSI lines may still 
accumulate toward the panorama’s periphery. Additionally, a delay between RGB and HSI data appears to be 
present, as the raw images sent from both sensors to the Ethernet connection seem to be separated by a minimal 
time lag. While this delay was empirically estimated and compensated for in the algorithm, its accuracy and 
consistency over time remain uncertain.

Despite the overall accuracy of the reconstruction, a deeper analysis of the freehand scan uncovered an 
unexpected small set of error outliers, all located in the left half of the green square in Fig. 5b. This area, stitched 
early in the sequence around 20 seconds prior, exhibits notable drift from cumulative minor registration errors. 
In contrast, the right half, representing the latest scanned data, shows minimal error. This discrepancy is also 
responsible for the offset noted in the top red circle. In principle, the global frame-to-panorama registration 
significantly reduces drift, but the keypoints database’s forget-function, designed to limit its size by deleting 

Fig. 8.  Distribution of the registration error with regard to the scanning speed. At a working distance of 
35 mm, the stitching algorithm failed at speeds faster than 50 mm/s, so that no data are available for this 
distance at higher velocities. The blue and the red dashed lines correspond to the linear regression over the 
measured error values at both working distances. The squares depict the push-broom performance at both 
working distances, with error bars at one standard deviation. Samples: each point maps the registration error 
of one image, each square of five images, with each image averaged over 20 keypoint pairs (total: 340 keypoint 
pairs).
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older keypoints, can constrain the effectiveness of global registration. However, such misalignment is unlikely in 
live scenarios, as the function truncating areas outside the FOV would remove older regions potentially causing 
registration errors.

We also acknowledge that increasing scanning speed presents challenges with the current hardware setup. 
Higher speeds likely amplify systematic errors, leading to a decline in registration accuracy. The greater 
the displacement of a physical landmark between consecutive RGB frames, the higher the systematic error. 
In our experiments, accuracy decreased linearly, as only constant translations with the robotic arm were 
assessed. However, at higher velocities, misregistration is expected to escalate more rapidly, particularly with 
additional transformations such as rotations. Further, black gaps appear between HSI lines in empty canvas 
regions when the spacing between consecutive lines exceeds the width of a single line. The adaptive line width 
effectively eliminates this artifact, but its primary role is to improve visual continuity and readability—the 
underlying accuracy loss due to higher speeds remains unchanged. Lastly, at very high scanning speeds, the 
stitching algorithm can fail, producing distorted panoramas due to incorrect homography matrix estimates. 
Contributing factors include insufficient overlap for reliable keypoint matching, feature redundancy, uneven 
feature distribution, and vignetting effects that hinder keypoint detection. While plausibility checks filter out 
many incorrect estimations, some erroneous transformations persist. However, these shortcomings stem from 
the bandwidth constraints of the Ethernet connection, which limits data transmission between the laparoscope 
camera and the image processing computer. In the future, embedding image processing directly into the camera 
will eliminate this bottleneck, significantly increasing frame rate and system performance.

Despite demonstrating robustness in our experimental setting, the proposed method has currently three key 
limitations restricting its clinical applicability. First, the geometric transformation model assumes a planar scene. 
This assumption holds to some extent, as the RGB camera’s frame rate, combined with slow scanning motion, 
results in minimal shifts between frames. However, the model cannot capture complex spatial transformations 
in scenes with significant depth variation. In surgical scenarios, parallax effects and distortions caused by depth 
changes can degrade accuracy22. Second, our targets contained evenly distributed, detail-rich features that 
facilitated effective traditional keypoint detection. However, traditional keypoint detectors perform poorly in 
textureless areas, leading to keypoint clustering in high-contrast regions22. This limitation becomes clinically 
relevant when scanning structurally uniform tissues or organs, such as the liver. Finally, although the stitching 
pipeline is relatively resilient to motion artifacts compared to push-broom imaging, occlusions and deformations 
during stitching might still introduce distortions. In our future research, we will investigate the extent to which 
parallax and textureless regions affect registration, and assess the impact of dynamic factors—such as patient 
breathing and pulsating blood vessels—on overall accuracy.

Nevertheless, we believe that the main strength of our approach lies in the overall RGB/HSI co-registration 
framework, which provides a solid real-time running foundation for integrating more advanced techniques. Its 
modular structure allows for replacing individual components to address current limitations. In particular, deep 
learning models hold great promise for enhancing accuracy and reliability—whether by replacing traditional 
feature extractors and matchers, moving beyond the single homography principle to handle depth-varying 
images with parallax, or incorporating non-rigid transformations to account for local deformations in image 
registration. Yet, deep learning algorithms are computationally expensive, posing challenges for real-time 
processing. A promising approach would involve an adaptive stitching algorithm that dynamically switches 
between traditional methods and neural networks based on processing conditions. Such a hybrid pipeline would 
combine the speed of our current algorithm with the power of neural networks. Our future work will explore 
these directions to enhance pipeline robustness and adaptability, advancing it toward clinical applicability.

Conclusion
We introduced a stitching algorithm for the HSI MIS system as an alternative to the push-broom motor-based 
hyperspectral acquisition method. Our real-time pipeline processes incoming RGB video and HSI data, enabling 
users to visualize hyperspectral information as a dynamically expanding overlay by manually scanning the scene 
with the laparoscope. Evaluations demonstrate that our method achieves accuracy comparable to the push-
broom approach while offering several advantages. Operators can rapidly capture hyperspectral data from a 
smaller region of interest without waiting for a full-field scan, increasing system flexibility. Additionally, the 
algorithm continuously updates previously scanned areas, enabling real-time refreshment of hyperspectral 
information by revisiting regions. By dynamically adjusting the central line area of the panorama, our approach 
also helps mitigate image distortions and motion artifacts caused by patient movement. Overall, this method 
transforms hyperspectral visualization from a static to a dynamic process, enhancing usability. Its compatibility 
with emerging applications such as robotic surgery further underscores its potential to replace the current push-
broom acquisition technique.

Data availability
The data is available from the corresponding author upon reasonable request.
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