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OPEN A Bayesian nonparametric method

for jointly clustering multiple
spatial transcriptomic datasets and
simultaneous gene selection

Donald Turner'™ & Yang Ni%?2

In spatial transcriptomics, many algorithms are available for clustering cells into groups based on gene
expression and location, although not without limitations. Such limitations include having to know
the number of clusters, limiting inference to only one donor, and being unable to identify information
common to multiple donors. To address these limitations, we propose a Bayesian nonparametric
clustering algorithm capable of incorporating spatial transcriptomic data from multiple donors, which
can identify clusters both common to all donors and idiosyncratic for each donor, features a variable
selection of informative genes, and is able to determine the number of clusters automatically. Our
method makes use of a Bayesian nonparametric method for combining inference across donors and

a partition distribution indexed by pairwise distance information to cluster both within and across
multiple spatial transcriptomics datasets. In our simulations and a real-data application, we show that
our method can outperform other commonly used clustering algorithms.

Itisknown that the function of many biological systems (e.g., embryos, tumors) depends on the spatial organization
of the cells’. This dependence motivates the field of spatial transcriptomics, in which gene expression and spatial
information at the cellular or spot level are used to model biological systems. Advancements in sequencing
technologies, such as STARmap, have enabled robust intact-tissue RNA sequencing capable of simultaneous
measurement of over 1,000 genes while preserving spatial information?.

Interest in identifying sub-populations of cells based on gene expression and spatial location has motivated
the development of statistical clustering methods for spatial transcriptomics data. Methods such as Giotto®
and Seurat! are based on dimension reduction and nearest-neighbor clustering. The Python library stLearn
makes use of graph-based community detection methods for clustering on normalized cellular spatial and
gene expression data®. Although based on robust and well-understood methodology, these methods require
specification of K, the total number of clusters, which may not be known a priori.

There are methods that can automatically select K, which tend to be Bayesian approaches. Such methods
include BayesSpace®, which implements a Markov random field model for clustering. Using this method, K can
either be specified beforehand or obtained from the elbow of the pseudo-log-likelihood. SPRUCE’ employs
a Bayesian mixture model for clustering, either prespecifying K or using the widely applicable information
criterion to determine K. DR-SC® performs dimension reduction and spatial clustering jointly using a hidden
Markov random field model. Similarly to SPRUCE, K is either fixed or selected using the modified Bayesian
information criterion. These methods, although capable of identifying sub-populations without specification of
K, do not incorporate information from multiple related spatial transcriptomics samples, which are becoming
more and more available.

Allen et al.? introduced MAPLE, a method which utilizes a spatial autoencoder, neighbor network, and finite
Bayesian mixture model to jointly cluster observations using multiple spatial transcriptomics samples. However,
it is often of interest to compare multiple groups of spatial transcriptomics data (e.g., healthy versus diseased
tissue), and determine information common to each group and idiosyncratic within each group, which MAPLE
is not capable of.

To address the aforementioned limitations of the existing methods, we propose a Bayesian nonparametric
mixture model capable of performing spatial clustering on multiple spatial transcriptomics datasets with a
data-driven determination of K, and can be used to identify information common to all experimental groups
and idiosyncratic to each group. We also include a variable selection component, which can identify the genes
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most significant in the clustering process via a spike-and-slab prior. This joint clustering and variable selection
approach bypasses the post-selection inference problem, which arises when one first identifies clusters and then,
given the clusters, identifies significant differentially expressed genes across clusters. Simulation results show
that our method outperforms other established methods such as DR-SC in terms of clustering accuracy. The
simulations also show that our variable selection is accurate. We further demonstrate the proposed method with
the motivating STARmap dataset? and discuss the significance of our findings.

Methods
Let Y; € R"*P denote gene expression for n; cells and p genes in group/donor j =1,...,J and let
X; € lR"J "2 denote the matching spatial coordinates of the cells Our goal is to cluster cells 1nto unknown
cell types from multiple spatial transcriptomic datasets (Y, X;)?. =1 and, simultaneously, select genes that are
differentially expressed across cell types. We call our method, Multiple Spatial Sparse Clustering (MSC). A
schematic illustration of the proposed MSC is provided in Fig. 1, which depicts three key inferential goals: (i) cell
types common to all groups, (ii) cell types idiosyncratic to each group, and (iii) differentially expressed genes.
To achieve those goals, we introduce three sets of latent variables. First, let ;; € {0, 1} be a binary variable
such that 7j; = 0 if cell i in group j belongs to a cell type that is common to all groups (i.e., every donor has cells
of this type) and rﬂ = 1 if the cell type is idiosyncratic/unique to group j (i.e., only donor j has such cell type).

Let no = Z 022 I(rje = 0) and n} Z] ) I(rj; = 1) then be the number of cells from the

common cell types and from the cell types 1dlosyncrat1c to group j, respectively. Second, let s3; € {1,..., qno}
be a categorical variable such that s}; = £ if cell i in group j belongs to the common cell type £. Similarly, let
sji€{l,..., Gn « } be a categorical variable such that s;; = £ if cell i belongs to cell type £ idiosyncratic to

group j. Note that both the number of common cell types ¢n, and the number of idiosyncratic cell types qn are
unknown and allowed to grow with n9 and n}, respectively. Lastly, let z, € {0, 1} be a binary variable such that
zn, = 1 if gene h is differentially expressed across cell types and z;, = 0 otherwise. We propose a new Bayesian
nonparametric hierarchical model that allows us to make inferences on these latent variables.

Specifically, given zj,, we assume the ith row Y j; = (yji1, - - ., Yjip) of Y ; follows,
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Fig. 1. Schematic illustration of the proposed MSC (created with BioRender).
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Since z;, = 1 means that gene  is differentially expressed across cell types, a sophisticated prior model will be
used for 6;;, to accommodate the heterogeneity whereas a simple prior model would suffice for 7.

Let 8;; = {0;in]2zn = 1} and let mn, = {SY, ..., S‘(I)no} be the partition of ng cells from the common
cell types where Sy = {(j,4)|s); = ¢}. Let da(-) denote a point mass at a. We assume that conditional on
r;; = 0 (i.e., common cell types),

dng

Osilry =0~ S I(% = 006, (), be~Go, Ty ~ plag), 0
=1

where Gy is a base distribution and p(7y,) is a random partition distribution, both to be specified later. In
words, (1) implies that cells of the same type (say, £) share the same mean gene expression, i.e., 8;; = ¢ for all
(j. i) such that 9, = £.

Similarly, let Tns = {s4,..., Sén,f } be the partition of n} cells from the cell types idiosyncratic to group j

where S7 = 7,1)|s5: = £}. We assujme that conditional on 7;; = 1 (i.e., idiosyncratic cell types),
J j Y. Yp

J

n*
J

Ojilrji =1~y I(sji =03y, (), Wje~CGo,  mnz ~ plmas).
(=1

To incorporate the spatial information in partitioning the cells, we leverage the Ewens-Pitman attraction (EPA)
distribution!®. Specifically, let A(+, -) denote a similarity function such that A(i,i’) = 1/d;;» where d; is the
Euclidean distance between cells i and i’. The EPA distribution sequentially allocates cells to clusters. The order
in which cells are allocated is random, determined by a random permutation o = (01,...,0,) of {1,...,n},
where the ith cell allocated is ;. The EPA distribution for the common partition is then given by,

J
p(ﬂ—no) :H H pji(CM?éa)‘?ﬂ—(Ula"'70-”74.7‘1‘,))5
j=1ir;;=0

S I(ryg =0),
pji(a, 6, \, (o1, ... ,0n,,)) = 1 for (j, i) such that 7j; = n;; = 0, and, for other (j, i) such that r;; = 0 and

nji > 0,

where 4 is a discount parameter § € [0, 1), « is a mass parameter & > —9, nj; = Z;,zl >

pji(0, 0, \, (01, .., 0n;)) = Plon;;+1 € S|, 8, \,m(01,...,0n,,))

nji—0an;; Zgﬁes Mongi+1,9)
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cells that are already in cluster S. To make the inference of partition invariant to the order of allocations, Dahl et

Note that encourages cell i in group j to be allocated to cluster S if it is spatially close to the

al. (2017)'° assumes a uniform prior on the permutation, o9 = (01, ...,0n,) ~ p(oo) o< 1, which we follow.
Similarly, for j = 1, ..., J, the EPA distribution for the partition idiosyncratic to group j is given by,
p(wn;) = H p;i(a, 5 7(o]1,. .., UJ*"J*L))’
wirg; =1

wheren};, = Zifl I(rji = 1), pji(a, 0, A\, m(0}1,...,05,+ )) = 1forisuchthatrj; = 1and n}; = 0, and,
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and o} = (ajl,..,,ajn;) ~p(oj) o< 1.

We complete the specification of MSC with conjugate priors for the remaining hyperparameters,

Th "~ IG(G,T, bq—)
Go = N(0,7,/K)
rj; ~ Bernoulli(e), & ~ beta(ae,b:)

zn ~ Bernoulli(p.), p. ~ beta(az,b.)

In all our implementation, we set ¢, ar, br, ac, be, a. and b, equal to 1, § to 0, and ~ to 0.008. We choose to
non-informative hyperparameters rather than set hyperpriors on them to retain the conjugacy of our model,
otherwise we introduce more computational complexity into our inference. « = 1 is a typical choice for Dirichlet
process mixture models'!''%. The choice of § = 0 in the EPA distribution implies that the distribution of subsets
in our data partition is equivalent to a Dirichlet process mixture'®. We choose a small value for « to ensure a high
variance in our likelihood, which provides a larger scope when searching for clusters across the sample space.

Posterior inference

We use the blocked Gibbs sampler to draw posterior inference. We choose to ’blocK’ (i.e., sample simultaneously)
cluster and grouping labels for computational benefits and potential help with mixing and convergence'®. For
simplicity, we assume J = 2 as in our real data. The sampler iteratively samples parameters (75s, S;i ), €, 2n, and
p- from their respective full conditional distributions, which is outlined below.

1. Sampling (r;i, sj:). For each observation Yj;, we consider four cluster assignment options: 1) assignment
to an existing idiosyncratic cluster, 2) generation of a new idiosyncratic cluster, 3) assignment to an existing
common cluster, and 4) generation of a new common cluster. Let ¢ and ¢ denote the normal-inverse-gamma
posterior predictive distribution and the marginal likelihood, respectively. Suppose we have K; clusters in
each idiosyncratic group and K clusters in the common group. Then the probability for each option is given
by,

p
ug o (1= &)p(ma, | 850 = k) [ [ dwson | ¥ —sin),
h=1
p
uj oc (1= e)p(mn, | 550 = K + 1) [ [ e@sin),
h=1
P
ok o €P(Tngy | s0i = k) H O(Ysin | Y —jin),
h=1

p
uf o e p(mng | s0: = Ko+ 1) [ | e(iin),
h=1

where Y _j;p, is the set of all the other observations of gene 4 in the same cluster to which i belongs. Using the
above probabilities, we sample:

(k, 1) with probability u;k, for k =1,..., Kj,
(K; +1,1) with probability u;,
(S‘i ’r"i) = . .. J
Je (k,0) with probability uog, for k =1,..., Ko,
(Ko 4+ 1,0), with probability ug.

2. Sampling e. We sample ¢ directly from Beta(ac + no, be + Zj ny).

3. Sampling z. Let K = Ko + K1 + K> be the total number of clusters across both experimental groups. For
geneh =1,...,p,let Y, be the cells in cluster £ = 1, ..., K and Y}, be all the cells. We sample zj, from
the following probabilities,

K
P(zn = 1] psy Ya) o px [ [ (Yan),
k=1

P(zn =0 pz, Yn) oc (1= pz)p(Yn).
4. Sampling p.. We sample p. directly from Beta (az + > zmba = zh).

To improve mixing, we implement an additional split-merge update for cluster (s;;) and group (7;;) assignments.
We propose to split a common cluster into multiple idiosyncratic clusters, or merge multiple idiosyncratic
clusters into one common cluster.
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o Split move. Sample k € {1, ..., Ko} uniformly. Let 7 = [r1, 2], and define Y similarly. Then the Metrop-
olis-Hastings ratio of accepting the splitting of the common cluster k into two new idiosyncratic clusters is
given by,

(1/Ko) lezl (p(Yi|si =k,ri =1)(1 — )" p(mn, | s = k))
[T, (1/K0) (@(Y | v = 0)em0p(mn,))

)

If the splitting is accepted, we increase K1 and K> by 1 and decrease Ko by 1.

o Merge move. Sample k1 € {1,..., K1} and k2 € {1,..., K2} uniformly. Then the Metropolis-Hastings ra-
tio of accepting the merge of idiosyncratic clusters k1 and k2 into one common cluster is given by
(1/K1)(1/K2)@(Y | so € {k1, ka},r = 0)e"p(mn, | S0 € {k1, k2})
(1/Ko)p(Y1 [ 11 = 0)p(Yz [ r2 = 0)(1 — &)™2p(mn, )p(Tns)

If the merge is accepted, we decrease K1 and K> by 1 and increase Ko by 1.
We give a pseudocode summary of the sampler below. Functions mentioned in the pseudocode are explained in
more detail in the supplementary materials.

Sampler pseudocode

Define n = ):;:1 nj
Permute rows(Y)

foriel,..., n do
for jel,...,Jdo
fork€0,...,K;do >k = 0 for new cluster
if k = 0 then
L=ML(Yji|...) > ML is the Normal-Inverse-Wishart marginal likelihood
else
L=PP(Yji|Yj—isji=krji=1,...) > PP is the Normal-Inverse-Wishart posterior predictive distribution
mi=EP(D|sji=k,rji=1,...) > EP gives partition probabilities via the EPA distribution
pix=Lxmix(l—¢)
end if
end for
forke0,...,Kp do
if k =0 then
L =ML(Y_,‘,’ [...)
else

L= PP(Y]',' ‘ Y__,‘,'..Y,' =k,r;=0,...)
o =EP(D|si=k,ri=0,...)
pok =L xmxe
end if
end for X
pj={pPiho
Po = {poc k%
Sample £* from [K;+1,1,..., Kj.Ko+1.1,..., Ko] with probabilities [p;, po]
Set Sji = k* and Wi = j.l;k
if k" e [K;+1,..., K;] then
rji=1
else
rji =0
end if
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Ni=Yr
No =n—N
€ =rbetal(as +No,be +N1)
P =p0=1
forhecl,...,pdo
for / € unique(s) do
P =pa xzLYy|sh=p,...) > zL is the normal marginal likelihood for selection indicators z;
end for
Pzl = Pz1 X Tz
po=zL(Yp|...)xm
Sample z* from {0, 1} with probabilities {p.o, p-1}
W=z
end for

m,=rbetalaz+Yz.br+p—Y72)
if Ko > 1 then

Perfor

m split update. The ratio stated in section 2.1 of the supplementary materials is given below

(1/Ko) (Thier ML(Y |51 =k.r1=1))(1—€)" EP (2, |s1=k)

end if
if K,'] >0

(TMrer /K ML(Y[r=0)e"0EP (n, )

and K, >0 for ji,jp €1,...,J then

Perform merge update with the given merging probability:
(1/K;;)(1/Kjy ML(Y|so€ {ky k2 },r=0)e"0EP (1 |sp€ {k1,k2 })

(1/Kg)ML(Y j, [t =OML(Y jy |rj, =0)(1—¢)" /1

end if
end for
end for

+n;, o
2 EP[}tnj] );:’(ﬁ”jl )

Real data

We demonstrate the proposed model on a publicly available real spatial transcriptomic dataset obtained from
the work of Wang et al., taken from the visual cortices of a number of mice using the STARmap single-cell
RNA sequencing technique®. The mice were placed under two experimental conditions: one given an hour of
light exposure after 4 days kept in a dark environment, and the other kept in continual darkness. We randomly
picked one mouse from the light exposure group (n; = 837) and another from the continual darkness group
(n2 = 927). We will refer to them as Mouse 1 and Mouse 2, respectively. We considered the same 17 spatially
varying genes as in Chakrabarti et al. (2023)!4. We also followed their preprocessing steps: we removed cells
showing extreme expression of genes and log-normalized the data with a scaling factor equal to the median
expression of total reads per cell. Genes were standardized and spatial distances were normalized to (0, 1). Our
goal is to cluster cells based on gene expression and spatial location both within each experimental group and
across the groups and to select differentially expressed genes across clusters. We ran a Markov chain for 5,000
iterations with a thinning factor of 1/25. No burn-in period was implemented.

Results
Of the 17 genes, we identified 12 significant differentially expressed genes: PLCXD2, RORB, Cux2, Pcp4, NRNI,
Nectin3, ARX, OTOFE PROK2, Homerl, eRNA3, and SLC17A7.

We investigate the significance of the selected genes. PLCXD2 by itself has no known function in the brain,
but together with another gene, GPR158, it is part of a signaling complex responsible for the development of
the dendritic spine!®. RORB, according to GeneCards', is linked to circadian rhythms and plays a role in the
development of epilepsy. Cux2, like PLCXD2, is involved with the development of the dendritic spine!”. Pcp4 is
expressed in bone marrow stem cells, in which it is associated with the deposition of calcium!®. NRN1 is associated
with neurodevelopment and synaptic plasticity and serves as a biomarker for schizophrenia!®. Nectin3 regulates
the creation of cellular adhesive molecules called nectins®’. ARX plays a role in the development of the forebrain,
pancreas, and testes?!. Mutations in the OTOF gene have been shown to result in auditory neuropathy?2.. PROK2
is a biomarker for Kallmann syndrome, which is characterized by impaired sense of smell and delayed puberty*
due to the underdevelopment of neurons in the brain that signal the hypothalamus. Homerl, similarly to
PLCXD2 and Cux2, is involved with the development of the dendritic spine**. eRNA3 is known to regulate gene
expression, but its function remains debated?”. SLC17A7 is a member of the SLC17 family of genes found in
neuron-rich areas of the brain, responsible for glutamate transport?.

A gene set enrichment analysis was performed on the 12 selected genes using Enrichr?’?. Analysis was
performed on the MGI Mammalian Phenotype Level 4 2024 ontology™.

As shown in Fig. 2, the phenotype term most strongly associated with our gene set is abnormal miniature
excitatory postsynaptic currents, which is a “defect in the size or duration of spontaneous currents detected
in postsynaptic cells that occur in the absence of an excitatory impulse”*’. The associated genes were NRN1,
Homerl, OTOE and SLC17A7. This may suggest that the difference in light exposure between the mice could
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MGI Mammalian Phenotype Level 4 2024
Abnormal Miniature Excitatory Postsynaptic Currents MP:0004753 *1.76e-07

Impaired Contextual Conditioning Behavior MP:0009454 *2.08e-05
Abnormal Neocortex Morphology MP:0008547 *1.83e-04

Small Olfactory Bulb MP:0002741 *3.22e-04

Abnormal Olfactory Bulb Morphology MP:0000819 *5.54e-04
Impaired Cued Conditioning Behavior MP:0009456 *8.24e-04
Abnormal Dendrite Morphology MP:0008143 *1.09e-03

Impaired Coordination MP:0001405 *1.84e-03

Abnormal Nervous System Physiology MP:0003633 *2.45e-03

Seminal Vesicle Hypoplasia MP:0005148 *3.59e-03

0 1 2 3 4
—logio(p-value)

Fig. 2. Gene set enrichment results for the MGI Mammalian Phenotype Level 4 2024 ontology.

WikiPathway 2023 Human
Circadian Rhythm Genes WP3594 *2.06e-04

Kallmann Syndrome WP5074 *1.43e-02

Disruption Of Postsynaptic Signaling By CNV WP4875 *1.96e-02

BDNF TrkB Signaling WP3676 *1.96e-02

Synaptic Signaling Pathways Associated With Autism Spectrum Disorder WP4539 2.96e-02
Synaptic Vesicle Pathway WP2267 3.02e-02

Clock Controlled Autophagy In Bone Metabolism WP5205 4.7e-02

Fragile X Syndrome WP4549 7.08e-02

Ectoderm Differentiation WP2858 7.92e-02

Neuroinflammation And Glutamatergic Signaling WP5083 8.09e-02

0 1 2
—logio(p-value)

Fig. 3. Gene set enrichment results for the WikiPathway 2023 Human database. A star indicates that the p-
value adjusted for multiple testing is also significant.

be related to the aforementioned defect. The second term, impaired contextual conditioning behavior, denotes
impaired ability to associate an aversive experience with the neutral environment®’. The associated genes are
NRN1, Homerl, and ARX. As with the first term, our results may indicate that light exposure or lack thereof
inhibits this conditioning.

To see how such genes are functionally relevant for humans, we also performed an enrichment analysis
using the WikiPathway 2023 Human database®!. As shown in Fig. 3, our selected gene set is most closely related
to the circadian rhythm genes. The overlapping genes were Homerl, PROK2, and RORB. The significance of
these enriched genes in Mouse 1 and Mouse 2 indicates that the relationship between the difference in light
exposure and the expression of genes associated with circadian rhythm may be worth further investigation.
Also, interestingly, a significant pathway in the WikiPathway enrichment results is related to the disruption of
postsynaptic signaling by copy number variations, reinforcing the connection between the 12 selected genes and
postsynaptic signaling as suggested in MGI enrichment results.

A graph of protein-protein interactions was obtained from the STRING database®? and is shown in Fig. 4.
The graph shows coexpression for Slc17a7 between both Homerl and RORB, reinforcing their connection to
synaptic/circadian functions in our enrichment analysis. Interestingly, no connections among NRN1, Homer1,
ARX, or OTOF are shown in the graph although they are associated in the mammalian phenotype enrichment
analysis.
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Fig. 4. Protein-protein interaction graph obtained from the STRING database. 11 of the 12 selected genes are
shown (eRNA3 was not available in the database).
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Fig. 5. Clustering results on the cellular measurement locations for each mouse. Colors represent cluster

assignment, and the point type corresponds to group assignment (circles for the common model, triangles for
idiosyncratic).

In terms of the clustering results, our algorithm assigned most cells to the 5 common cell types shared
between the two mice (589 out of 837 cells for Mouse 1, and 610 out of 927 cells for Mouse 2). We found 26
idiosyncratic clusters for Mouse 1, and 16 idiosyncratic clusters for Mouse 2. The clustering results are visualized
spatially in Fig. 5. To visualize these clusters, we applied UMAP® to the gene expression to reduce the data to 2
dimensions, which shows the similarity of cells in gene expression in a 2-dimensional space.

Fig. 6 displays the UMAP embeddings of cells assigned to the common clusters and idiosyncratic clusters in
Groups 1 and 2. It reveals distinct clusters in the embedded space, especially for the common clusters. We also
see that each idiosyncratic group covers a different region in the 2-dimensional space, which would be expected
for information unique to each group. Compared to the common clusters, there are much more cell clusters in
the idiosyncratic groups. There are a few potential explanations for this somewhat expected result. For example,
mitochondrial content, which is known to affect gene expression“, was not measured in our data. The cell cycle
stages of individual cells can also affect gene expression® and hence the clustering. These would lead to higher
cellular heterogeneity in terms of gene expression than the heterogeneity arising from cell types alone, which

could partially explain why we found many more idiosyncratic clusters than the expected number of cell types
in mouse brains.

Scientific Reports|  (2025) 15:26916 | https://doi.org/10.1038/s41598-025-11693-5 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

UMAP Embedding of Common Group UMAP Embedding of Idio. Group 1 UMAP Embedding of Idio. Group 2

Fig. 6. UMAP embedding of cells assigned to the common clusters and idiosyncratic clusters in Groups 1 and
2 from left to right. Cluster assignments are indicated by colors.

Autocorrelation of Model Log-Likelihood
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Fig. 7. Autocorrelation function for the model log-likelihood. Blue dashed lines are the boundaries of a 95%
confidence interval.

To assess convergence, the autocorrelation function was calculated for the model log-likelihood, and is plotted
in Fig. 7. Rapid decay toward 0 indicates that the sampler has converged and produces independent draws from
the posterior distribution. The Geweke diagnostic was calculated on our log-likelihood chain, resulting in a Z-
score of —0.8591 and a corresponding p-value of 0.3903, providing further evidence of convergence.

Inference was run on a personal computer using an AMD Ryzen 5 3600 processor and 16 GB of memory.
Using this machine yielded a computing time of 13 days. Although our computing time is heavy compared to
existing methods, our method allows for much richer inference including spatial clustering, variable selection,
comparison between experimental groups, and uncertainty quantification. Most of our code was implemented
in R, aside from the function for obtaining partition probabilities from the EPA distribution (section 1.2.4 in the
supplementary materials), which was coded in C++. A full C++ implementation may improve computing time,
and will be a subject of our future investigations.

Simulations

In addition to real data, we also conduct simulations to evaluate the proposed method. We consider 6 scenarios
with varying dimensions p = 15, 20, 25, 30, 40, 50. Under each scenario, we fix the number of signal variables to
5 (i.e., p — b variables are noises) and the number of samples per group to n; = 100 for group j = 1, 2. The five
signal variables are generated together with the two-dimensional spatial coordinates from a mixture of seven-
dimensional multivariate Gaussian distributions, with a proportion € = 0.6 of data in each group generated
from a common model with three clusters, and the remaining generated from two idiosyncratic models with two
clusters for each group. The mixture of Gaussian shares the same banded covariance matrix where the diagonal
elements are equal to 0.15, the vth diagonals are 0.03/v for v = 1, 2, 3, 4, and the rest are 0. The mean for each
cluster is sampled from a grid of seven equally spaced numbers ranging from 1 to 10. The p — 5 noise variables
are generated from independent standard normal distributions.

A Gibbs sampler was used to obtain cluster labels s;;, group assignment r;;, and variable selection zj
over 3000 iterations, discarding a burn-in period of 2000 iterations. Cluster labels s;; were determined via
the least-square criterion®, and variable selection 2, and the selection 7;; of common vs idiosyncratic model
were determined by the mean probability model (i.e., using 0.5 as a cutoff to threshold their probabilities). For
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MSC K-means DR-SC BayesSpace
Zj::léoo’ 0.993 (0.002) | 0.877 (0.003) | 0.955 (0.007) | 0.895 (0.022)
Zj::zéoo’ 0.993 (0.003) | 0.867 (0.003) | 0.905 (0.007) | 0.932(0.018)
ZJ=:2 ;00’ 0.988 (0.003) | 0.854 (0.004) | 0.901 (0.007) | 0.945 (0.012)
Zj::?)éoo’ 0.994 (0.002) | 0.843 (0.005) | 0.874 (0.007) | 0.933 (0.014)
;Lj:=4300, 0.992 (0.003) | 0.819 (0.004) | 0.873 (0.006) | 0.949 (0.008)
Z’JVZZSéOO’ 0.992 (0.003) | 0.800 (0.005) | 0.852 (0.009) | 0.937 (0.014)

Table 1. Combined group NMI from our simulations. Standard errors are given in parentheses. There are 5
signal variables in each scenario, the others being noise.

evaluation, we calculated the normalized mutual information (NMI) for cluster labels s;;, misclassification rate
for r;;, and true positive & false discovery rates for variable selection z;,. NMI was calculated on the two groups
of labels concatenated to one vector, compared to the true labels (also concatenated to one vector). We compare
the clustering performance of our method to the popular K-means model, the joint dimension reduction and
spatial clustering (DR-SC®) method, and BayesSpace®. Both K-means and DR-SC were applied separately to
each experimental group with the true number of clusters K = 5 (3 common and 2 idiosyncratic clusters per
experimental group), and NMI was calculated on the resulting group labels concatenated to a single vector, also
compared to the true labels. BayesSpace was implemented for 5000 iterations, discarding a burn-in period of
2000 iterations.

For p = 15 across 50 replicates, our method achieved a mean NMI 0.993, a mean misclassification rate
for r 0.06, and a true positive rate of 1 and a false negative rate of 0 for z. In comparison, K-means obtained
mean Group 1 and Group 2 NMI of 0.877, DR-SC returned NMI of 0.955, and BayesSpace returned an NMI
of 0.895. Our method outperforms the others similarly in terms of clustering across the other scenarios
of varying data dimension, as shown by Table 1. The true positive and false negative rate of z is 1 and 0
respectively across all scenarios. For p = {20, 25, 30, 40, 50}, we obtain respective r misclassification rates of
{0.05,0.06,0.03,0.06, 0.05}. We emphasize that the competing method cannot make inferences about variable
selection or group assignment.

Conclusion

We have introduced a Bayesian nonparametric model for clustering observations from multiple datasets and
grouping observations across datasets using information common across all datasets and idiosyncratic to each
dataset in this paper. Clustering, grouping, variable selection, and K are all determined automatically in the
proposed Bayesian model. Our simulations and real data application demonstrate the proposed method, with
simulations showing the advantage of the method over existing clustering algorithms.

We designed our model as a synthesis of a nonparametric Bayesian method for combining inference across
experiments, and a partition distribution prior indexed by pairwise information. We have shown how the model
is implemented in a Gibbs sampler. Our model was applied to spatial transcriptomic data for two mice, showing
its ability to cluster and group observations using gene expression and pairwise distances, and its capability for
selecting significant genes. We have discussed the selected genes and their biological significance.

There remain many extensions and possible future work for this model. Here, we have applied our model to
two groups of data, but theoretically, this model may be used for an arbitrary number of datasets. The limiting
factor in scaling this method to include more datasets is runtime. A component for data preprocessing could
also be added to the model, allowing all-in-one analysis of raw transcriptomic data. In future work, we will
investigate ways to improve computing efficiency and including additional components to bolster the versatility
of our model.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary
information files].
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