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In spatial transcriptomics, many algorithms are available for clustering cells into groups based on gene 
expression and location, although not without limitations. Such limitations include having to know 
the number of clusters, limiting inference to only one donor, and being unable to identify information 
common to multiple donors. To address these limitations, we propose a Bayesian nonparametric 
clustering algorithm capable of incorporating spatial transcriptomic data from multiple donors, which 
can identify clusters both common to all donors and idiosyncratic for each donor, features a variable 
selection of informative genes, and is able to determine the number of clusters automatically. Our 
method makes use of a Bayesian nonparametric method for combining inference across donors and 
a partition distribution indexed by pairwise distance information to cluster both within and across 
multiple spatial transcriptomics datasets. In our simulations and a real-data application, we show that 
our method can outperform other commonly used clustering algorithms.

It is known that the function of many biological systems (e.g., embryos, tumors) depends on the spatial organization 
of the cells1. This dependence motivates the field of spatial transcriptomics, in which gene expression and spatial 
information at the cellular or spot level are used to model biological systems. Advancements in sequencing 
technologies, such as STARmap, have enabled robust intact-tissue RNA sequencing capable of simultaneous 
measurement of over 1,000 genes while preserving spatial information2.

Interest in identifying sub-populations of cells based on gene expression and spatial location has motivated 
the development of statistical clustering methods for spatial transcriptomics data. Methods such as Giotto3 
and Seurat4 are based on dimension reduction and nearest-neighbor clustering. The Python library stLearn 
makes use of graph-based community detection methods for clustering on normalized cellular spatial and 
gene expression data5. Although based on robust and well-understood methodology, these methods require 
specification of K, the total number of clusters, which may not be known a priori.

There are methods that can automatically select K, which tend to be Bayesian approaches. Such methods 
include BayesSpace6, which implements a Markov random field model for clustering. Using this method, K can 
either be specified beforehand or obtained from the elbow of the pseudo-log-likelihood. SPRUCE7 employs 
a Bayesian mixture model for clustering, either prespecifying K or using the widely applicable information 
criterion to determine K. DR-SC8 performs dimension reduction and spatial clustering jointly using a hidden 
Markov random field model. Similarly to SPRUCE, K is either fixed or selected using the modified Bayesian 
information criterion. These methods, although capable of identifying sub-populations without specification of 
K, do not incorporate information from multiple related spatial transcriptomics samples, which are becoming 
more and more available.

Allen et al.9 introduced MAPLE, a method which utilizes a spatial autoencoder, neighbor network, and finite 
Bayesian mixture model to jointly cluster observations using multiple spatial transcriptomics samples. However, 
it is often of interest to compare multiple groups of spatial transcriptomics data (e.g., healthy versus diseased 
tissue), and determine information common to each group and idiosyncratic within each group, which MAPLE 
is not capable of.

To address the aforementioned limitations of the existing methods, we propose a Bayesian nonparametric 
mixture model capable of performing spatial clustering on multiple spatial transcriptomics datasets with a 
data-driven determination of K, and can be used to identify information common to all experimental groups 
and idiosyncratic to each group. We also include a variable selection component, which can identify the genes 
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most significant in the clustering process via a spike-and-slab prior. This joint clustering and variable selection 
approach bypasses the post-selection inference problem, which arises when one first identifies clusters and then, 
given the clusters, identifies significant differentially expressed genes across clusters. Simulation results show 
that our method outperforms other established methods such as DR-SC in terms of clustering accuracy. The 
simulations also show that our variable selection is accurate. We further demonstrate the proposed method with 
the motivating STARmap dataset2 and discuss the significance of our findings.

Methods
Let Yj ∈ Rnj ×p denote gene expression for nj  cells and p genes in group/donor j = 1, . . . , J  and let 
Xj ∈ Rnj ×2 denote the matching spatial coordinates of the cells. Our goal is to cluster cells into unknown 
cell types from multiple spatial transcriptomic datasets (Yj , Xj)J

j=1 and, simultaneously, select genes that are 
differentially expressed across cell types. We call our method, Multiple Spatial Sparse Clustering (MSC). A 
schematic illustration of the proposed MSC is provided in Fig. 1, which depicts three key inferential goals: (i) cell 
types common to all groups, (ii) cell types idiosyncratic to each group, and (iii) differentially expressed genes.

To achieve those goals, we introduce three sets of latent variables. First, let rji ∈ {0, 1} be a binary variable 
such that rji = 0 if cell i in group j belongs to a cell type that is common to all groups (i.e., every donor has cells 
of this type) and rji = 1 if the cell type is idiosyncratic/unique to group j (i.e., only donor j has such cell type). 
Let n0 =

∑J

j=1

∑nj

i=1 I(rji = 0) and n∗
j =

∑J

j=1

∑nj

i=1 I(rji = 1) then be the number of cells from the 
common cell types and from the cell types idiosyncratic to group j, respectively. Second, let s0

ji ∈ {1, . . . , qn0 } 
be a categorical variable such that s0

ji = ℓ if cell i in group j belongs to the common cell type ℓ. Similarly, let 
sji ∈ {1, . . . , qn∗

j
} be a categorical variable such that sji = ℓ if cell i belongs to cell type ℓ idiosyncratic to 

group j. Note that both the number of common cell types qn0  and the number of idiosyncratic cell types qn∗
j

 are 
unknown and allowed to grow with n0 and n∗

j , respectively. Lastly, let zh ∈ {0, 1} be a binary variable such that 
zh = 1 if gene h is differentially expressed across cell types and zh = 0 otherwise. We propose a new Bayesian 
nonparametric hierarchical model that allows us to make inferences on these latent variables.

Specifically, given zh, we assume the ith row Y ji = (yji1, . . . , yjip) of Y j  follows,

Fig. 1.  Schematic illustration of the proposed MSC (created with BioRender).
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Y ji ∼

p∏
h=1

N(yjih|θjih, τh)zh N(yjih|ηjih, τh)1−zh .

Since zh = 1 means that gene h is differentially expressed across cell types, a sophisticated prior model will be 
used for θjih to accommodate the heterogeneity whereas a simple prior model would suffice for ηjih.

Let θji = {θjih|zh = 1} and let πn0 = {S0
1 , . . . , S0

qn0
} be the partition of n0 cells from the common 

cell types where S0
ℓ = {(j, i)|s0

ji = ℓ}. Let δa(·) denote a point mass at a. We assume that conditional on 
rji = 0 (i.e., common cell types),

	
θji|rji = 0 ∼

qn0∑
ℓ=1

I(s0
ji = ℓ)δϕℓ (·), ϕℓ ∼ G0, πn0 ∼ p(πn0 ),� (1)

where G0 is a base distribution and p(πn0 ) is a random partition distribution, both to be specified later. In 
words, (1) implies that cells of the same type (say, ℓ) share the same mean gene expression, i.e., θji = ϕℓ for all 
(j, i) such that s0

ji = ℓ.
Similarly, let πn∗

j
= {Sj

1, . . . , Sj
qn∗

j

} be the partition of n∗
j  cells from the cell types idiosyncratic to group j 

where Sj
ℓ = {(j, i)|sji = ℓ}. We assume that conditional on rji = 1 (i.e., idiosyncratic cell types),

	
θji|rji = 1 ∼

qn∗
j∑

ℓ=1

I(sji = ℓ)δψjℓ (·), ψjℓ ∼ G0, πn∗
j

∼ p(πn∗
j
).

To incorporate the spatial information in partitioning the cells, we leverage the Ewens-Pitman attraction (EPA) 
distribution10. Specifically, let λ(·, ·) denote a similarity function such that λ(i, i′) = 1/dii′  where dii′  is the 
Euclidean distance between cells i and i′. The EPA distribution sequentially allocates cells to clusters. The order 
in which cells are allocated is random, determined by a random permutation σ = (σ1, . . . , σn) of {1, . . . , n}, 
where the ith cell allocated is σi. The EPA distribution for the common partition is then given by,

	

p(πn0 ) =
J∏

j=1

∏
i:rji=0

pji(α, δ, λ, π(σ1, . . . , σnji )),

where δ is a discount parameter δ ∈ [0, 1), α is a mass parameter α > −δ, nji =
∑j

j′=1

∑i−1
i′=1 I(rj′i′ = 0), 

pji(α, δ, λ, π(σ1, . . . , σnji )) = 1 for (j, i) such that rji = nji = 0, and, for other (j, i) such that rji = 0 and 
nji > 0,

	

pji(α, δ, λ, π(σ1, . . . , σnji )) = P(σnji+1 ∈ S | α, δ, λ, π(σ1, . . . , σnji ))

=





nji−δqnji

α+nji
×

∑
σs∈S

λ(σnji+1,σs)∑nji

s=1
λ(σnji+1,σs)

for S ∈ π(σ1, . . . , σnji )
α+δqnji

α+nji
otherwise

Note that 
∑

σs∈S
λ(σnji+1,σs)∑nji

s=1
λ(σnji+1,σs)

 encourages cell i in group j to be allocated to cluster S if it is spatially close to the 

cells that are already in cluster S. To make the inference of partition invariant to the order of allocations, Dahl et 
al. (2017)10 assumes a uniform prior on the permutation, σ0 = (σ1, . . . , σn0 ) ∼ p(σ0) ∝ 1, which we follow.

Similarly, for j = 1, . . . , J , the EPA distribution for the partition idiosyncratic to group j is given by,

	

p(πn∗
j
) =

∏
i:rji=1

p∗
ji(α, δ, λ, π(σ∗

j1, . . . , σ∗
jn∗

ji
)),

where n∗
ji∗ =

∑i−1
i′=1 I(rji = 1), p∗

ji(α, δ, λ, π(σ∗
j1, . . . , σ∗

jn∗
ji

)) = 1 for i such that rji = 1 and n∗
ji = 0, and, 

for other i,

	

p∗
ji(α, δ, λ, π(σ∗

j1, . . . , σ∗
jn∗

ji
)) = P(σ∗

n∗
ji

+1 ∈ S | α, δ, λ, π(σ∗
j1, . . . , σ∗

jn∗
ji

))

=




n∗
ji−δqn∗

ji

α+n∗
ji

×

∑
σ∗

s ∈S
λ(σ∗

jn∗
ji

+1,σ∗
s )

∑n∗
ji

s=1 λ(σ∗
jn∗

ji
+1

,σ∗
s )

for S ∈ π(σ∗
j1, . . . , σ∗

jn∗
ji

)

α+δqn∗
ji

α+n∗
ji

otherwise,
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and σ∗
j = (σ∗

j1, . . . , σjn∗
j
) ∼ p(σ∗

j ) ∝ 1.
We complete the specification of MSC with conjugate priors for the remaining hyperparameters,

	

τh ∼ IG(aτ , bτ )
G0 = N(0, τh/κ)
rji ∼ Bernoulli(ε), ε ∼ beta(aε, bε)
zh ∼ Bernoulli(ρz), ρz ∼ beta(az, bz)

In all our implementation, we set α, aτ , bτ , aε, bε, az  and bz  equal to 1, δ to 0, and κ to 0.008. We choose to 
non-informative hyperparameters rather than set hyperpriors on them to retain the conjugacy of our model, 
otherwise we introduce more computational complexity into our inference. α = 1 is a typical choice for Dirichlet 
process mixture models1112. The choice of δ = 0 in the EPA distribution implies that the distribution of subsets 
in our data partition is equivalent to a Dirichlet process mixture10. We choose a small value for κ to ensure a high 
variance in our likelihood, which provides a larger scope when searching for clusters across the sample space.

Posterior inference
We use the blocked Gibbs sampler to draw posterior inference. We choose to ’block’ (i.e., sample simultaneously) 
cluster and grouping labels for computational benefits and potential help with mixing and convergence13. For 
simplicity, we assume J = 2 as in our real data. The sampler iteratively samples parameters (rji, sji), ε, zh, and 
ρz  from their respective full conditional distributions, which is outlined below. 

	1.	 Sampling (rji, sji). For each observation Yji, we consider four cluster assignment options: 1) assignment 
to an existing idiosyncratic cluster, 2) generation of a new idiosyncratic cluster, 3) assignment to an existing 
common cluster, and 4) generation of a new common cluster. Let ϕ and φ denote the normal-inverse-gamma 
posterior predictive distribution and the marginal likelihood, respectively. Suppose we have Kj  clusters in 
each idiosyncratic group and K0 clusters in the common group. Then the probability for each option is given 
by, 

	

ujk ∝ (1 − ε)p(πnj | sji = k)
p∏

h=1

ϕ(yjih | Y −jih),

u∗
j ∝ (1 − ε)p(πnj | sji = Kj + 1)

p∏
h=1

φ(yjih),

u0k ∝ ε p(πn0 | s0i = k)
p∏

h=1

ϕ(yjih | Y −jih),

u∗
0 ∝ ε p(πn0 | s0i = K0 + 1)

p∏
h=1

φ(yjih),

	 where Y −jih is the set of all the other observations of gene h in the same cluster to which i belongs. Using the 
above probabilities, we sample: 

	

(sji, rji) =




(k, 1) with probability ujk, for k = 1, . . . , Kj ,
(Kj + 1, 1) with probability u∗

j ,
(k, 0) with probability u0k, for k = 1, . . . , K0,
(K0 + 1, 0), with probability u∗

0.

	2.	 Sampling ε. We sample ε directly from Beta(aε + n0, bε +
∑

j
n∗

j ).
	3.	 Sampling zh. Let K = K0 + K1 + K2 be the total number of clusters across both experimental groups. For 

gene h = 1, . . . , p, let Ykh be the cells in cluster k = 1, . . . , K  and Yh be all the cells. We sample zh from 
the following probabilities, 

	

P(zh = 1 | ρz, Yh) ∝ ρz

K∏
k=1

φ(Ykh),

P(zh = 0 | ρz, Yh) ∝ (1 − ρz)φ(Yh).

	4.	 Sampling ρz . We sample ρz  directly from Beta
(
az +

∑p

h=1 zh, bz + p −
∑p

h=1 zh

)
.

To improve mixing, we implement an additional split-merge update for cluster (sji) and group (rji) assignments.
We propose to split a common cluster into multiple idiosyncratic clusters, or merge multiple idiosyncratic 

clusters into one common cluster.
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•	 Split move. Sample k ∈ {1, . . . , K0} uniformly. Let r = [r1, r2], and define Y  similarly. Then the Metrop-
olis-Hastings ratio of accepting the splitting of the common cluster k into two new idiosyncratic clusters is 
given by, 

	

(1/K0)
∏2

l=1 (φ(Yl | sl = k, rl = 1)(1 − ε)nl p(πnl | sl = k))∏2
l=1(1/Kl) (φ(Y | r = 0)εn0 p(πn0 ))

,

 If the splitting is accepted, we increase K1 and K2 by 1 and decrease K0 by 1.

•	 Merge move. Sample k1 ∈ {1, . . . , K1} and k2 ∈ {1, . . . , K2} uniformly. Then the Metropolis-Hastings ra-
tio of accepting the merge of idiosyncratic clusters k1 and k2 into one common cluster is given by 

	
(1/K1)(1/K2)φ(Y | s0 ∈ {k1, k2}, r = 0)εn0 p(πn0 | s0 ∈ {k1, k2})

(1/K0)φ(Y1 | r1 = 0)φ(Y2 | r2 = 0)(1 − ε)n1n2 p(πn1 )p(πn2 ) .

 If the merge is accepted, we decrease K1 and K2 by 1 and increase K0 by 1.
We give a pseudocode summary of the sampler below. Functions mentioned in the pseudocode are explained in 
more detail in the supplementary materials.

Sampler pseudocode
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Real data
We demonstrate the proposed model on a publicly available real spatial transcriptomic dataset obtained from 
the work of Wang et al., taken from the visual cortices of a number of mice using the STARmap single-cell 
RNA sequencing technique2. The mice were placed under two experimental conditions: one given an hour of 
light exposure after 4 days kept in a dark environment, and the other kept in continual darkness. We randomly 
picked one mouse from the light exposure group (n1 = 837) and another from the continual darkness group 
(n2 = 927). We will refer to them as Mouse 1 and Mouse 2, respectively. We considered the same 17 spatially 
varying genes as in Chakrabarti et al. (2023)14. We also followed their preprocessing steps: we removed cells 
showing extreme expression of genes and log-normalized the data with a scaling factor equal to the median 
expression of total reads per cell. Genes were standardized and spatial distances were normalized to (0, 1). Our 
goal is to cluster cells based on gene expression and spatial location both within each experimental group and 
across the groups and to select differentially expressed genes across clusters. We ran a Markov chain for 5,000 
iterations with a thinning factor of 1/25. No burn-in period was implemented.

Results
Of the 17 genes, we identified 12 significant differentially expressed genes: PLCXD2, RORB, Cux2, Pcp4, NRN1, 
Nectin3, ARX, OTOF, PROK2, Homer1, eRNA3, and SLC17A7.

We investigate the significance of the selected genes. PLCXD2 by itself has no known function in the brain, 
but together with another gene, GPR158, it is part of a signaling complex responsible for the development of 
the dendritic spine15. RORB, according to GeneCards16, is linked to circadian rhythms and plays a role in the 
development of epilepsy. Cux2, like PLCXD2, is involved with the development of the dendritic spine17. Pcp4 is 
expressed in bone marrow stem cells, in which it is associated with the deposition of calcium18. NRN1 is associated 
with neurodevelopment and synaptic plasticity and serves as a biomarker for schizophrenia19. Nectin3 regulates 
the creation of cellular adhesive molecules called nectins20. ARX plays a role in the development of the forebrain, 
pancreas, and testes21. Mutations in the OTOF gene have been shown to result in auditory neuropathy22. PROK2 
is a biomarker for Kallmann syndrome, which is characterized by impaired sense of smell and delayed puberty23 
due to the underdevelopment of neurons in the brain that signal the hypothalamus. Homer1, similarly to 
PLCXD2 and Cux2, is involved with the development of the dendritic spine24. eRNA3 is known to regulate gene 
expression, but its function remains debated25. SLC17A7 is a member of the SLC17 family of genes found in 
neuron-rich areas of the brain, responsible for glutamate transport26.

A gene set enrichment analysis was performed on the 12 selected genes using Enrichr27–29. Analysis was 
performed on the MGI Mammalian Phenotype Level 4 2024 ontology30.

As shown in Fig. 2, the phenotype term most strongly associated with our gene set is abnormal miniature 
excitatory postsynaptic currents, which is a “defect in the size or duration of spontaneous currents detected 
in postsynaptic cells that occur in the absence of an excitatory impulse”30. The associated genes were NRN1, 
Homer1, OTOF, and SLC17A7. This may suggest that the difference in light exposure between the mice could 
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be related to the aforementioned defect. The second term, impaired contextual conditioning behavior, denotes 
impaired ability to associate an aversive experience with the neutral environment30. The associated genes are 
NRN1, Homer1, and ARX. As with the first term, our results may indicate that light exposure or lack thereof 
inhibits this conditioning.

To see how such genes are functionally relevant for humans, we also performed an enrichment analysis 
using the WikiPathway 2023 Human database31. As shown in Fig. 3, our selected gene set is most closely related 
to the circadian rhythm genes. The overlapping genes were Homer1, PROK2, and RORB. The significance of 
these enriched genes in Mouse 1 and Mouse 2 indicates that the relationship between the difference in light 
exposure and the expression of genes associated with circadian rhythm may be worth further investigation. 
Also, interestingly, a significant pathway in the WikiPathway enrichment results is related to the disruption of 
postsynaptic signaling by copy number variations, reinforcing the connection between the 12 selected genes and 
postsynaptic signaling as suggested in MGI enrichment results.

A graph of protein-protein interactions was obtained from the STRING database32 and is shown in Fig. 4. 
The graph shows coexpression for Slc17a7 between both Homer1 and RORB, reinforcing their connection to 
synaptic/circadian functions in our enrichment analysis. Interestingly, no connections among NRN1, Homer1, 
ARX, or OTOF are shown in the graph although they are associated in the mammalian phenotype enrichment 
analysis.

Fig. 3.  Gene set enrichment results for the WikiPathway 2023 Human database. A star indicates that the p-
value adjusted for multiple testing is also significant.

 

Fig. 2.  Gene set enrichment results for the MGI Mammalian Phenotype Level 4 2024 ontology.
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In terms of the clustering results, our algorithm assigned most cells to the 5 common cell types shared 
between the two mice (589 out of 837 cells for Mouse 1, and 610 out of 927 cells for Mouse 2). We found 26 
idiosyncratic clusters for Mouse 1, and 16 idiosyncratic clusters for Mouse 2. The clustering results are visualized 
spatially in Fig. 5. To visualize these clusters, we applied UMAP33 to the gene expression to reduce the data to 2 
dimensions, which shows the similarity of cells in gene expression in a 2-dimensional space.

Fig. 6 displays the UMAP embeddings of cells assigned to the common clusters and idiosyncratic clusters in 
Groups 1 and 2. It reveals distinct clusters in the embedded space, especially for the common clusters. We also 
see that each idiosyncratic group covers a different region in the 2-dimensional space, which would be expected 
for information unique to each group. Compared to the common clusters, there are much more cell clusters in 
the idiosyncratic groups. There are a few potential explanations for this somewhat expected result. For example, 
mitochondrial content, which is known to affect gene expression34, was not measured in our data. The cell cycle 
stages of individual cells can also affect gene expression35 and hence the clustering. These would lead to higher 
cellular heterogeneity in terms of gene expression than the heterogeneity arising from cell types alone, which 
could partially explain why we found many more idiosyncratic clusters than the expected number of cell types 
in mouse brains.

Fig. 5.  Clustering results on the cellular measurement locations for each mouse. Colors represent cluster 
assignment, and the point type corresponds to group assignment (circles for the common model, triangles for 
idiosyncratic).

 

Fig. 4.  Protein-protein interaction graph obtained from the STRING database. 11 of the 12 selected genes are 
shown (eRNA3 was not available in the database).
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To assess convergence, the autocorrelation function was calculated for the model log-likelihood, and is plotted 
in Fig. 7. Rapid decay toward 0 indicates that the sampler has converged and produces independent draws from 
the posterior distribution. The Geweke diagnostic was calculated on our log-likelihood chain, resulting in a Z-
score of −0.8591 and a corresponding p-value of 0.3903, providing further evidence of convergence.

Inference was run on a personal computer using an AMD Ryzen 5 3600 processor and 16 GB of memory. 
Using this machine yielded a computing time of 13 days. Although our computing time is heavy compared to 
existing methods, our method allows for much richer inference including spatial clustering, variable selection, 
comparison between experimental groups, and uncertainty quantification. Most of our code was implemented 
in R, aside from the function for obtaining partition probabilities from the EPA distribution (section 1.2.4 in the 
supplementary materials), which was coded in C++. A full C++ implementation may improve computing time, 
and will be a subject of our future investigations.

Simulations
In addition to real data, we also conduct simulations to evaluate the proposed method. We consider 6 scenarios 
with varying dimensions p = 15, 20, 25, 30, 40, 50. Under each scenario, we fix the number of signal variables to 
5 (i.e., p − 5 variables are noises) and the number of samples per group to nj = 100 for group j = 1, 2. The five 
signal variables are generated together with the two-dimensional spatial coordinates from a mixture of seven-
dimensional multivariate Gaussian distributions, with a proportion ε = 0.6 of data in each group generated 
from a common model with three clusters, and the remaining generated from two idiosyncratic models with two 
clusters for each group. The mixture of Gaussian shares the same banded covariance matrix where the diagonal 
elements are equal to 0.15, the vth diagonals are 0.03/v for v = 1, 2, 3, 4, and the rest are 0. The mean for each 
cluster is sampled from a grid of seven equally spaced numbers ranging from 1 to 10. The p − 5 noise variables 
are generated from independent standard normal distributions.

A Gibbs sampler was used to obtain cluster labels sji, group assignment rji, and variable selection zh 
over 3000 iterations, discarding a burn-in period of 2000 iterations. Cluster labels sji were determined via 
the least-square criterion36, and variable selection zh and the selection rji of common vs idiosyncratic model 
were determined by the mean probability model (i.e., using 0.5 as a cutoff to threshold their probabilities). For 

Fig. 7.  Autocorrelation function for the model log-likelihood. Blue dashed lines are the boundaries of a 95% 
confidence interval.

 

Fig. 6.  UMAP embedding of cells assigned to the common clusters and idiosyncratic clusters in Groups 1 and 
2 from left to right. Cluster assignments are indicated by colors.
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evaluation, we calculated the normalized mutual information (NMI) for cluster labels sji, misclassification rate 
for rji, and true positive & false discovery rates for variable selection zh. NMI was calculated on the two groups 
of labels concatenated to one vector, compared to the true labels (also concatenated to one vector). We compare 
the clustering performance of our method to the popular K-means model, the joint dimension reduction and 
spatial clustering (DR-SC8) method, and BayesSpace6. Both K-means and DR-SC were applied separately to 
each experimental group with the true number of clusters K = 5 (3 common and 2 idiosyncratic clusters per 
experimental group), and NMI was calculated on the resulting group labels concatenated to a single vector, also 
compared to the true labels. BayesSpace was implemented for 5000 iterations, discarding a burn-in period of 
2000 iterations.

For p = 15 across 50 replicates, our method achieved a mean NMI 0.993, a mean misclassification rate 
for r 0.06, and a true positive rate of 1 and a false negative rate of 0 for z. In comparison, K-means obtained 
mean Group 1 and Group 2 NMI of 0.877, DR-SC returned NMI of 0.955, and BayesSpace returned an NMI 
of 0.895. Our method outperforms the others similarly in terms of clustering across the other scenarios 
of varying data dimension, as shown by Table 1. The true positive and false negative rate of z is 1 and 0 
respectively across all scenarios. For p = {20, 25, 30, 40, 50}, we obtain respective r misclassification rates of 
{0.05, 0.06, 0.03, 0.06, 0.05}. We emphasize that the competing method cannot make inferences about variable 
selection or group assignment.

Conclusion
We have introduced a Bayesian nonparametric model for clustering observations from multiple datasets and 
grouping observations across datasets using information common across all datasets and idiosyncratic to each 
dataset in this paper. Clustering, grouping, variable selection, and K are all determined automatically in the 
proposed Bayesian model. Our simulations and real data application demonstrate the proposed method, with 
simulations showing the advantage of the method over existing clustering algorithms.

We designed our model as a synthesis of a nonparametric Bayesian method for combining inference across 
experiments, and a partition distribution prior indexed by pairwise information. We have shown how the model 
is implemented in a Gibbs sampler. Our model was applied to spatial transcriptomic data for two mice, showing 
its ability to cluster and group observations using gene expression and pairwise distances, and its capability for 
selecting significant genes. We have discussed the selected genes and their biological significance.

There remain many extensions and possible future work for this model. Here, we have applied our model to 
two groups of data, but theoretically, this model may be used for an arbitrary number of datasets. The limiting 
factor in scaling this method to include more datasets is runtime. A component for data preprocessing could 
also be added to the model, allowing all-in-one analysis of raw transcriptomic data. In future work, we will 
investigate ways to improve computing efficiency and including additional components to bolster the versatility 
of our model.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].
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