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The production of hexamethylene-1,6-diisocyanate (HDI) via carbamate cracking avoids the use of 
phosgene; however, the environmental impact of this non-phosgene synthesis route has not been 
thoroughly studied. Conventional process simulations typically focus solely on economic indicators, 
which may overlook important environmental considerations. We have developed a multi-objective 
optimization framework that collectively accounts for total annual cost, green degree and total 
energy consumption for such a non-phosgene synthesis process of HDI. We used data from rigorous 
simulations to construct a surrogate model based on artificial neural networks. This model simplifies 
the numerical correlation among optimization objectives and process/operational parameters. The bat 
algorithm was employed for multi-objective optimization on such surrogate models with significantly 
reduced computational burden, resulting in a series of optimal solutions as the Pareto front. The 
optimal solution exhibits a 28.79% reduction in total energy consumption and a 19.72% reduction in 
the total annual cost compared to the real-world production data; the green degree of the optimized 
process is increased by 21.60%.
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Isocyanates are value-added chemicals with various industrial applications as exemplified by serving as 
feedstocks for polyurethane production1,2. The isocyanate market size is estimated at 16.56 million tons in 2024, 
and it is expected to reach 22.41million tons by 20293. Currently, the majority of isocyanates are produced 
through phosgene-involved reactions, posing significant risks to both the environment and human health4. The 
thermal cracking of N-substituted carbamates is known as the alternative phosgene-free approach5, but it is 
still not as economically competitive as the conventional phosgenation process4. Moreover, the environmental 
impact of such phosgene-free synthetic route remains unclear.

Hexamethylene-1,6-diisocyanate (HDI) is one of the most significant aliphatic diisocyanates, and the related 
research has focused on the synthesis and thermal cracking of hexamethylene dicarbamate6,7. For process 
optimization, Hsu et al. studied the optimized total annual cost of the distillation process for hexamethylene 
dicarbamate synthesis8. Wang et al. proposed the reactive distillation-vapor recompression integrated process 
for dicarbamate synthesis with reduced total operation cost and annual cost9. Comparatively, the optimization 
of the environmental impact of the HDI production process has not been reported, let al.one the synergistic 
optimization of production costs and environmental impact. The green degree is an integrated index 
composed of nine environmental impact categories including global warming and toxicological effects10. This 
index provides a quantitative assessment of the environmental impacts associated with chemical processes. 
Although the determination of weighting factors for environmental impact categories remains challenging, the 
green degree integrated with process simulation techniques provide a useful environmental assessment tool 
for chemical processes, with successful applications in chemical process design11–13process evaluation and 
optimization14–17solvent screening18,19. We consider the green degree as an appropriate metric for evaluating 
the environmental impact of the HDI production process. The reason is that it not only assesses the toxicity of 
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various substances generated during HDI production but also reflects the greenhouse gas effects of high-energy 
consumption units such as distillation and pyrolysis involved in HDI production. In this context, a multi-objective 
optimization (MOO) framework can be constructed for the HDI production process to simultaneously optimize 
the production costs and the green degree. Indeed, the green degree of energy is calculated by converting the 
system’s energy consumption into the green degree of greenhouse gases produced by corresponding specific 
utilities (e.g., coal and natural gas). To clearly reveal the factors influencing the energy consumption of the HDI 
production, the total energy consumption was considered as a third objective other than total annual cost and 
green degree for MOO.

The integration of first principles models with optimization algorithms is widely adopted for addressing MOO 
problems in chemical processes20–22. For the non-phosgene HDI production, the rigorous models of units such 
as methoxycarbonylation, thermal cracking and distillation comprise a large number of nonlinear equations due 
to complex thermodynamics and kinetics. Solving these equations already demands significant computational 
workload; when optimization algorithms are employed for multiple iterations, the overall computational workload 
becomes even larger23. Recently, machine learning approach has been used to develop surrogate models for the 
MOO of complex processes24,25. Machine learning is categorized into supervised, semi-supervised, unsupervised 
and reinforcement learning26,27. Surrogate models that approximate and replace actual models are considered 
as supervised machine learning. They are notable for reducing computational demands and minimizing costly 
engineering expenses. Therefore, the surrogate model-based optimization technique can be viewed as an 
effective framework that integrates machine learning with optimization algorithms. Common surrogate models 
include the polynomial response surface method28, Kriging method29, support vector regression30, radial basis 
function31, Gaussian process regression32 and artificial neural network (ANN)33. Among these techniques, ANN 
has been recognized for its reduced demand for computational resources34–36. ANN-based surrogate models 
offer several advantages for modeling complex industrial processes: (i) construction using only historical process 
data without requiring detailed phenomenological knowledge, (ii) strong generalization capability for accurate 
predictions on new operating conditions, and (iii) the ability to efficiently capture multiple nonlinear input-
output relationships simultaneously. These characteristics make ANNs particularly well-suited for identifying 
and modeling the complex nonlinear behavior inherent in this study. For the complex process simplified using 
an ANN-based surrogate model, the genetic algorithm is commonly employed for MOO37–39. The swarm 
intelligence algorithm is a metaheuristic algorithm that mimic the animal movement or the hunting behavior40. 
It has efficient and parallel global optimization capabilities and strong optimization performance, and has been 
applied in MOO in processes such as reactive distillation41, pressure swing adsorption42 and heat exchanger 
design43.

Herein, we report an ANN-assisted MOO framework to optimize the HDI process considering total annual 
cost, total energy consumption and green degree by using a surrogate model based on ANN in conjunction 
with optimization algorithms. The objective values under different process/operation parameters were obtained 
through rigorous simulation. The ANN was used to construct the mathematical correlation between parameters 
and objective values to form a surrogate model. We employed the bat algorithm to directly perform MOO 
on such a surrogate model, resulting in a set of Pareto solutions. The technique for ordering preferences on 
similarity of ideal solutions (TOPSIS) was used for decision-making on the Pareto front to determine the optimal 
solution for HDI production. The Sobol method was used for sensitivity analysis to investigate the impact of 
process parameters on different objectives. The reflux ratio and the tray number of the distillation unit was then 
identified as the significant factors for economic and environmental performance of HDI production process.

Methods
General framework
In this study, we propose a framework using an artificial neural network to assist in multi-objective optimization 
(ANN-MOO). The goal is to simultaneously minimize the total annual cost (TAC) and total energy consumption 
(TEC) while maximizing the green degree (GD) of the HDI process. Figure 1 illustrates the process optimization 
steps. In Step 1, we developed a steady-state mechanistic model of the HDI process using Aspen Plus. This model 
was validated against industrial data to ensure accuracy. Step 2 involves deriving decision variables from process 
parameters. We then constructed surrogate models based on ANN to predict the objective values and ensure the 
convergence of the HDI process. The accuracy of these models was thoroughly evaluated. In Step 3, we applied 
the bat algorithm to integrate the surrogate models from Step 2. The algorithm optimizes the HDI process with 
the objectives of minimizing TAC and TEC while maximizing GD, resulting in a solution set as the Pareto front. 
In Step 4, we employed the TOPSIS method to select the optimal solution from the Pareto front. This solution 
is re-integrated into the rigorous model developed on Aspen Plus and compared with the current operational 
scheme to verify the effectiveness and applicability of the proposed framework.

Optimization objective
Total annual cost
Total annual cost (TAC) is commonly utilized as an economic indicator for evaluating a process. It is estimated 
by Eq. (1):

	
T AC($/Y ear) = Operating Cost (OC) + Capital Investment (CI)

payback period
� (1)

The TAC includes both capital investment (CI) and operating cost (OC). The CI was calculated by summing 
the expenses for equipment such as the distillation tower, stages, reboiler, condenser and reactor, and these 
costs were spread over a three-year payback period. The OC includes expenses for electricity, recycling water 
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and steam. The annual operating cost was calculated based on 8000 working hours with the Marshall and Swift 
(M&S) index of 2176.6. The detailed calculation process can be obtained from the supporting information.

Green degree
This study used the green degree (GD) method as an assessment of environmental impact10. The green degree 
(GD) is an integrated environmental impact evaluation index. It considers nine environmental impact categories 
to comprehensively estimate the environmental performance: global warming potential (GWP), ozone depleting 
potential (ODP), photochemical ozone creation potential (POCP), acidification potential (AP), eutrophication 
potential (EP), ecotoxicity potential to water (EPW), ecotoxicity potential to air (EPA), human carcinogenic 
toxicity potential to water (HCPW), and human non-carcinogenic toxicity potential to water (HNCPW). The 
GD includes the GD of material and the GD of energy. The GD of material mainly refers to the degree of harm or 
impact on the environment caused by physical and chemical changes in substances. The environmental impact 
index of raw materials, auxiliary media, products, and wastes in the process of change needs to be considered in 
the quantitative calculation of their GD. The GD of energy includes the environmental impact of the waste and 
energy emitted during the production process.

The calculation of GD comprises three fundamental components: substance GD, energy GD, and process GD. 
Substance GD is quantified through a systematic procedure involving the normalization of nine environmental 
impact potentials associated with the substance, followed by their multiplication with corresponding weighting 
factors and subsequent summation. Energy GD is derived from the quantitative assessment of waste emissions 
resulting from the utilization of specific energy sources. The process GD is ultimately determined by integrating 
the GD values of all material and energy flows (both input and output) within the established system boundaries, 
thereby yielding the comprehensive GD evaluation for the entire industrial process. The details of GD calculation 
for HDI process are provided in Supporting Information. Finally, the simplified GD of the HDI process is as 
shown in Eq. (2)11:

	
GDprocess =

∑
GDmaterial,out −

∑
GDmaterial,in +

∑
GDenergy � (2)

where 
∑

GDprocess is calculated from the GD value of each substance component; the GD values of substances 
involved in this work are listed in Table S2; 

∑
GDenergy  results from the process energy consumption; and 

the GD values of different fuel sources are provided in Table S3. The larger the GDprocess value, the better the 
environmental performance would be. If GDprocess is positive, it indicates that the process is environment-
friendly; on the contrary, GDprocess represents that the process causes some harmful influence on the 
environment.

Total energy consumption
The law of mass & energy conservation is the basis of energy analysis, which is expressed as Eqs. (3) and (4)44:

	
Mass balance :

∑
min =

∑
mout� (3)

Fig. 1.  An ANN-assisted MOO framework for the HDI process.
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Energy balance : Q − W =

∑
minhin −

∑
mouthout� (4)

where m is the mass flow rate, Q is the heat transfer rate, W is power, and h is the specific enthalpy. The 
energy analysis calculations were performed using Aspen Plus process simulation software. The computations 
were based on steady-state assumptions with no mass accumulation in the system, while vapor-liquid phase 
equilibrium was described by appropriate thermodynamic models. All mass and energy balance equations for 
the operating units were automatically solved and verified by Aspen Plus.

In this study, the energy-consuming equipment includes the reboiler of the distillation column and reactors. 
Therefore, the total energy consumption (TEC) was considered as the primary objective for energy consumption 
analysis, which can be calculated according to the Eq. (5).

	
T EC =

∑
Qreboilor +

∑
Qreactor � (5)

Where Qreboilor  is the heat load of the reboiler. Qreactor  is the heat load of the reactor.

Surrogate model based on ANN
The construction steps of the ANN-based surrogate model are illustrated in Fig. 2. First, the sample dataset 
required for training the ANN model is obtained. After data preprocessing, MATLAB is employed to develop 
ANN-based surrogate models with varying network architectures. The optimal network structure is then 
determined by comparing the performance of different configurations. The resulting surrogate model can 
subsequently be utilized for multi-objective optimization.The code is available at ​h​t​t​p​s​:​/​/​g​i​t​l​a​b​.​h​k​/​l​b​-​g​r​o​u​p​/​L​
B​-​p​r​o​j​e​c​t​.​g​i​t​​​​​.​​

Data acquisition and pre-processing
To effectively train and test an ANN model, it is crucial to generate or collect a data set in which more input-output 
data points lead to better predictions and improved generalization. When data acquisition is computationally 
expensive or time-consuming, a balance must be maintained between data set size and prediction accuracy. 
In this study, the Latin hypercube sampling (LHS) method45 was employed to generate a sample set of 10,000 
samples.

To reduce the differences in ranges and units among different variables, it is necessary to perform data 
normalization during the modeling process46. This study employed the rescaling method for normalization as 
described in Eq. (6):

	
Si = Xi − min (X)

max (X) − min (X) � (6)

Where Xi is the set of data in the dataset, Si is the normalized dataset of Xi, max (X) and min (X) are 
respectively the maximum and minimum values in Xi.

The proportions of the training set, test set and validation set were set to 70%, 15% and 15%, respectively47. 
The maximum number of iterations was set to 8000.

Fig. 2.  Workflow of Surrogate Model Development.

 

Scientific Reports |        (2025) 15:33973 4| https://doi.org/10.1038/s41598-025-11730-3

www.nature.com/scientificreports/

https://gitlab.hk/lb-group/LB-project.git
https://gitlab.hk/lb-group/LB-project.git
http://www.nature.com/scientificreports


Details of ANN modeling
The ANN utilized in this study consists of an input layer, several hidden layers and an output layer (Fig. 3). 
The input layer receives a vector of predicted variable values X . As values propagate through each neuron 
in the hidden layers, they are processed via weights and biases, then passed through an activation function 
and sent the result to the next layer until arrived at the final output value Y . Initially, the model’s weights and 
biases are randomly assigned. To improve accuracy, these parameters are iteratively updated using a gradient 
descent algorithm, adjusting from the output layer back through the hidden layers until the error is reduced 
to an acceptable level. During the above process, the training set is directly employed to train the model by 
updating the weights and biases via backpropagation algorithms. The validation set is utilized to monitor the 
model’s performance in real-time during training (e.g., loss values after each epoch), enabling early stopping 
to prevent overfitting and facilitating hyperparameter tuning (e.g., learning rate, regularization parameters). 
Finally, the model’s generalization capability is rigorously evaluated using the test set.

In this study, MATLAB software and the ‘feedforward’ function were utilized for modeling. The network 
was trained using a back-propagation method with the Levenberg-Marquardt algorithm implemented via 
the ‘Trainlm’ function. The sigmoid function was selected as the activation function. The accuracy of the 
objective function significantly influences the outcomes of MOO, making it crucial to design an optimal model 
architecture, particularly regarding the number of neurons in the hidden layer. Less neurons make the learning 
process unreliable, while too many neurons lead to increased computational time and the overfitting the model48. 
However, there is no specific method for determining the number of neurons in the hidden layer49. To simplify 
the modeling process, a uniform number of neurons is used in the hidden layers. In this study, the number of 
neurons was determined using the empirical Eq. (7)50:

	 Nh =
√

NX + NY + a� (7)

where Nh is the number of neurons in the hidden layer, NX  refers to the number of input layers, NY  denotes 
the number of output neurons, and a is the constant between 1 and 10.

Evaluation metrics
The performance of the surrogate models was evaluated using the coefficient of determination ( R2) and mean 
squared error ( MSE), as shown in Eqs. (8) and (9):

	

R2 = 1 −
∑

N
i=1(ŷi−

−
y)

2

∑
N
i=1(yi−

−
y)

2 � (8)

	
MSE = 1

N

∑
N
i=1(ŷi − yi)2� (9)

where yi is the ith observed label value, ŷi is the ith estimated label value, 
−
y  is the mean of the observed 

label values, and N  is the number of observed label values. In general, R2 indicates the proportion of variance 
explained by the model and the strength of correlation in the prediction process. MSE serves as an error 
indicator that offer a measure in the same units as the target variable51. A smaller MSE value signifies better 

Fig. 3.  Structure of artificial neural network.
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predictive accuracy of the surrogate model. Similarly, an R2 value closer to 1 reflects a higher degree of fit and 
improved predictive accuracy of the surrogate model.

Optimization methods
Bat algorithm
The update formulas of the bat algorithm (BA)52 are inspired by the predatory behavior of bats, where the prey 
symbolizes the optimal solution. The details of the BA can be found in the supporting information. The flowchart 
of the BA is displayed in Fig. 4 The parameter settings for the algorithm are detailed in Table 1.

Decision-making in multi-objective optimization
The solution set on the Pareto front is derived using the ANN-MOO framework, which offers a range of trade-
offs among competing objectives. Each point in the set is equally viable, requiring additional information to 
identify the optimal point. Consequently, the TOPSIS method was employed to determine the optimal solution 

Parameter Value

Population size N 100

Number of generations T 200–500

Loudness attenuation coefficient α 0.9

Pulse emission rate increasing coefficient γ 0.9

Maximum loudness A0
i [1, 2]

Maximum pulse emission rate r0
i [0, 1]

Maximum number of iterations Itermax 500

Frequency fi [0, 1]

Table 1.  Parameter setting for BA.

 

Fig. 4.  Flowchart of the bat algorithm.
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by evaluating the similarity between the solution set and the ideal solution50,53. The detailed calculation of the 
TOPSIS is provided in the supporting information.

Sensitivity analysis
To identify the most influential parameters within the HDI process, we utilized the Sobol sensitivity analysis 
method. The Sobol method, which relies on variance decomposition, is a form of global sensitivity analysis 
commonly used to evaluate the sensitivity of parameters in nonlinear models54. The Sobol method fundamentally 
involves breaking down a model into a series of functions that depend on either individual parameters or 
combinations thereof. This approach enables the assessment of parameter sensitivity and interactions by 
evaluating how the variance of individual input parameters or sets of parameters impacts the overall output 
variance. This analysis includes the computation of the first-order and total-order Sobol indices55,56. When the 
first-order index ( Si) has a higher value, the corresponding input parameter has a greater impact on the output 
in comparison to other inputs. The total-order sensitivity index ( STi ) represents the comprehensive influence 
of input parameter Xi, encompassing not only the first-order effects but also all higher-order interaction effects 
that involve Xi. A higher value of STi  indicates that Xi plays a more crucial role as an input for Y . In this 
study, TAC, GD and TEC were considered as the performance criteria in the sensitivity analysis. The details of 
the Sobol method can be found in the supporting information.

Results and discussions
First principles modeling of the HDI process
In this study, Aspen Plus was applied to simulate the HDI process. The flowsheet for the HDI production and 
the main industrial data from a chemical company in Shanxi, China. The WILSON method was chosen as 
the physical method for the separation of dimethyl carbonate and methanol57while The NRTL method was 
chosen for the other processes in HDI production8,9. The RSTOIC block was selected for the reactor unit and 
the Radfrac block was chosen for the distillation column unit. The Sep block was used to separate solid salts 
and liquid mixture. When the duty was set to zero, the flash block was applied to simulate the storage tank. 
Additionally, any missing properties and binary interaction parameters were estimated using the estimation 
function of Aspen Plus. The process was based on the following assumptions:

(1) Steady-state operation and pressure drops were neglected for all equipment.
(2) Catalyst activation and coking were not considered.
(3) All gases are assumed to behave ideally, and heat loss from the components to the atmosphere is neglected.
The fundamental production process is illustrated in Fig.  5 Initially, a mixture consisting of 

hexamethylenediamine (HDA), dimethyl carbonate (DMC) and recycled DMC, with a DMC/HDA molar 
ratio of 4:1, is fed into Reactor 1 for the methoxycarbonylation reaction. A filter then isolates hexamethylene 
dicarbamate (HDC) as the intermediate product from the reaction mixture. The purified HDC was transported 
to next stage. Simultaneously, the remaining liquid mixture is combined with the gaseous product and is directed 
to a pressure-swing distillation unit for the separation of DMC and methanol. The high-pressure column 
produces a bottom stream containing 99.5 wt% DMC, which is recycled and combined with fresh HDA for 
Reactor 1. The low-pressure column extracts methanol with a purity of 99.5 wt %.

Fig. 5.  Process flow diagram of the HDI process.
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Stream S7, containing HDC, is mixed with fresh o-dichlorobenzene (ODCB) and introduced into the 
thermal decomposition reactor, referred to as Reactor 2. The gaseous output from Reactor 2 is sent to the DC1 
column for the removal of byproduct methanol and some ODCB. These byproducts are then transferred to 
another distillation column, DC2, for further purification. The liquid product from DC1 moves to the DC3 
column, where additional ODCB is separated. This separated ODCB is combined with the bottom stream from 
DC2 and recycled back to Reactor 2. The bottom stream from DC3 was sent to the next column (DC4) for final 
product purification. The bottom stream of DC4 contains unreacted intermediates, which can be redirected to 
Reactor 2 for further processing. The top stream yields the high-purity HDI product with the purity of 99.8 wt%. 
The process simulation results were compared with the industrial data, and the relative errors between the three 
stream products (S18, S30, S32) and the industrial data (S18*, S30*, S32*) are negligible (Table 2), demonstrating 
that the HDI process simulated in Aspen Plus is reliable for process analysis and optimization.

Decision variables and constraints
The HDI process comprises numerous variables including over 30 major streams and equipment parameters. 
Variable selection is conducted by evaluating the convergence performance of different parameter combinations. 
Ultimately, this study identified 12 independent variables associated with the distillate flow rates, total plate 
numbers and reflux ratios of the main columns shown in Fig. 5 The ranges for these variables were established 
to enable regular equipment operation and ensure successful convergence of the simulation process (Table 3). 
A set of constraints were used to confine the optimization in the desired direction as shown in Eq. (10). The 
partial input variables generated by the algorithm lead to un-converged and infeasible simulation results during 
iterations. As a consequence, larger penalty was applied to the objective function for un-converged simulation 
and the associated infeasible solutions were replaced during the optimization process.

Parameters Symbol Unit Range

T-102 Temperature V1 ℃ 90–150

C-101number of trays V2 – 40–50

C-101 mass reflux ratio V3 – 1–3

C-101 feed tray number V4 – 10–40

C-101 pressure V5 atm 6–13

C-102 number of trays V6 – 30–50

C-102 mass reflux ratio V7 – 1–3

C-102 feed tray number V8 – 10–40

C-203 number of trays V9 – 5–25

C-203 number of feed trays V10 – 2–23

C-203 distillate feed ratio V11 – 0.78–0.9

C-202 distillate feed ratio V12 – 0.5–0.9

Table 3.  Parameters of the HDI process.

 

Streams HDA* DMC* ODCB* S18 S30 S32 S18* S30* S32*

T (℃) 25 25 90 66.9 28.5 98.1 67.5 28.2 97.7

P (atm) 1 1 1 1.1 0.2 1.1 1.12 0.21 1.08

Mass flow (kg/h) 121.8 378 1535 66.8 66.2 172.6 67.0 65.9 173.1

Mass fraction (%)

HDI 0 0 0 0 0.001 0.999 0 0.002 0.998

HDC 0 0 0 0 0 0 0 0 0

HDA 1 0 0 0 0 0 0 0 0

DMC 0 1 0 0.005 0 0 0.006 0.001 0

MeOH 0 0 0 0.995 0.961 0 0.994 0.960 0

HMI 0 0 0 0 0 0 0 0 0.002

HMC 0 0 0 0 0 0 0 0 0

ODCB 0 0 1 0 0.038 0.001 0 0.036 0

Table 2.  Material balance of the HDI process. HDA*, DMC* and ODCB* represent the feed data of the 
industrial process, and this study used the same feed data for simulation; MeOH represents methanol, while 
HMI and HMC are reaction intermediates.
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


MF S16_DMC ≥ 99.5 %
MF S18_Methanol ≥ 99.5 %
MF S30_Methanol ≥ 96 %

MF S32_HDI ≥ 98 %
� (10)

MF S16_DMC , MF S18_Methanol, MF S30_Methanol and MF S32_HDI  represent the mass fraction of the 
DMC, methanol and HDI in their own product stream S16, stream S18, stream S30 and stream S32.

Result of the surrogate model
A dataset of 10,000 samples (Table S4 of.xlsx file) were utilized to build a surrogate model aimed at predicting 
convergence of process simulation, in which 6,358 converged samples (Table S5 of.xlsx file) were then used as 
the input for the objective value surrogate model, with each sample producing three objective values as output.

Two surrogate models were established: one to predict model convergence and the other for predicting the 
objective values. The surrogate model of convergence uses 12 process parameters as input and provides a binary 
output, where 0 indicates non-convergence and 1 indicates convergence. Therefore, the “fitcnet” function was 
utilized to train a neural network binary classification model, and the final training results of the convergence 
model are shown in Table 4. A prediction accuracy of 0.7305 demonstrates that the trained convergence model 
effectively predicts convergence within the decision variable space.

The surrogate model for predicting the objective value was developed using the methodology outlined in the 
Section "Surrogate model based on ANN". To explore various hyperparameter options for the neural network, 
all potential architectures were generated based on the criteria in Table 5. Different ANN models, with varying 
numbers of neurons and hidden layers, were trained and statistically assessed using a trial-and-error approach. 
After training and validating the ANN models, the mean squared error of all predicted data for test set were 
compared. As shown in Fig. 6, a parametric study was conducted to determine the neuron and hidden layer 
configuration that minimizes prediction error.

According to Fig. 6, the neural network with three hidden layers and 12 neurons achieves the lowest mean 
squared error, indicating minimal deviation from the simulation results. Fewer than 6 neurons results in 
underfitting and information loss, while more than 12 neurons leads to overfitting and noise memorization.

The ANN composed of three hidden layers with 12 neurons presents the best performance among all the 
ANN models (Fig.  7). Figures  8a-c show that the regression between the ANN model’s predictions and the 
Aspen Plus simulation data has strong level of agreement. The data points are tightly clustered along the central 
line in the regression plots. The coefficients of determination R2 of the ANN model are 0.98886, 0.99996 and 
0.99996 for the TAC, TEC and GD, respectively. The mean squared error values are 1.57245, 0.14187 and 0.11556 
for the TAC, TEC and GD, respectively. The error histogram (Figs. 8d-f) exhibits that model predictions have 
errors close to zero and follow a normal distribution. Based on the results, the surrogate model shows high 
precision and stability in estimating the HDI process’s TAC, TEC and GD values, rendering it an effective tool 
for supplying accurate objective functions in multi-objective optimization algorithms.

Multi-objective optimization results
Computational efficiency
Figure 9 illustrates the convergence results of optimizing the HDI process with the ANN-MOO framework. 
Notably, the optimization process achieves similar convergence outcomes when Itermax is set to 250, 300 and 
350. This suggests that the optimization process fully converges by Itermax of 350, and further increases in 
Itermax do not significantly improve the results.

Figure 10 presents the composition of optimization time. Significantly, the most time-intensive process within 
the proposed ANN-MOO framework is data collection for the HDI process because of the frequent invocations 
of Aspen Plus. Invoking Aspen Plus for a single fitness evaluation takes approximately 15 s. Therefore, optimizing 

Hyper Parameter Range

Hidden layer (number) 1–3

Neurons in each hidden layer (number) 4–14

Table 5.  Range of hyperparameter in neural network architecture design for objective value prediction.

 

Hyperparameter or result Value

Hidden layer (number) 2

Neurons in each hidden layer (number) [6, 108]

Transfer function (type) “Relu” and “Softmax”

Regularization term strength 1 × 10−4

Maximum number of training iterations 1000

Accuracy 0.7305

Table 4.  The details of the convergence model.
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the HDI process without the use of surrogate model requires approximately 145.9 h. In contrast, the ANN-MOO 
framework significantly reduces this time by requiring only 42.3 h for data collection, 1.48 h for training the 
ANN model and optimizing hyperparameters, and just 0.26 h for MOO through the BA. The key advantage 
of the proposed framework is to achieve the Pareto front solution without repeatedly invoking the complex 
models for solution and verification. This approach results in a substantial reduction of 71% in computing time. 
Therefore, the computational efficiency is remarkably enhanced when optimizing the HDI process with the 
ANN-MOO framework.

The analysis of MOO results
Figure 11a illustrates the Pareto front achieved through the ANN-MOO framework. Once the Pareto front is 
established through optimization, its validity needs to be assessed. To verify this, 785 random samples were 
generated and compared against the Pareto front. Neither the random samples nor the dataset values surpassed 
the solutions on the Pareto front. The consistency between the Pareto front from the ANN-MOO framework 
and ANN-free MOO framework (Fig. 11b) reflect the reliability of the ANN as a surrogate model for the HDI 
process within the design space.

The HDI process developed in this study imposes constraints on flow rates and product purity, resulting in 
relatively small variations in the material GD of the HDI process. According to Eq. (5), the energy consumption 

Fig. 7.  Selected surrogate model architecture.

 

Fig. 6.  Comparison of mean squared error for Different ANN structures and objectives: (a)~(c) One Hidden 
Layer for TAC, TEC and GD, respectively; (d)~(f) Two Hidden Layers for TAC, TEC and GD, respectively; 
(g)~(i) Three Hidden Layers for TAC, TEC and GD, respectively.
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Fig. 9.  Convergence results of optimizing the HDI process using the ANN-MOO framework when Itermax is 
defined as 250, 300 and 350, respectively.

 

Fig. 8.  Regression and error histogram for different predicted data: (a)~(c) regression of TAC, TEC and GD, 
respectively; (d)~(f) error histogram of TAC, TEC and GD, respectively.
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of the HDI process is negatively correlated with GD, which corresponds to the results shown in Fig. 12a of 
the Pareto front. We observe that a reduction in TEC leads to an increase in TAC (Fig. 12b). The heat load of 
the distillation reboiler and reactor constitute the main components of TEC. Taking the distillation column as 
an example, when TEC is relatively low, the heat load of the reboiler is also reduced. To maintain separation 
efficiency, the number of trays in the distillation column increases, resulting in an increase in equipment 
investment within TAC that far exceeds the decrease in operating costs due to lower energy consumption. Due to 
the inverse mathematical relationship between GD and TEC, GD is the positively correlated with TAC (Fig. 12c). 
The three-dimensional Pareto front with TAC, GD and TEC as objectives is illustrated in Fig. 12d. The TAC, GD 
and TEC range from 92.55 × 104 to 105.85 × 104 $/year, −303.97 × 104 to −289.59 × 104 gd/year and 221.96 × 102 
to 239.08 × 102 GJ/year, respectively. In order to systematically evaluate the trade-offs among these conflicting 
objectives, the TOPSIS method was employed to identify the most advantageous solution (Table S6 of.xlsx file). 
The most favorable solution for the HDI process under study is represented by the red-filled circle in Fig. 12d.

The optimal solution for the HDI process shows TAC, GD and TEC values of 94.27 × 104 $/year, −294.59 × 104 
gd/year and 227.85 × 102 GJ/year, respectively. Compared with the actual operating point in Table  6, after 
optimization using the proposed ANN-MOO framework, the HDI process achieved a 19.72% reduction in TAC, 
a 21.60% increase in GD and a 28.79% reduction in TEC. This indicates a well-balanced performance across 
economic, environmental and energy metrics. Currently, there are no reported studies on the GD of the HDI 
production process. Under optimal conditions, the GD of the HDI production process is calculated as −2.05 gd 
per kilogram of product. As far as we know, there are two reported cases regarding the calculation of GD for 
the whole chemical production process: the GD of methyl methacrylate production is approximately 0.64 gd 
per kilogram of product10and the GD of CO2 conversion process to dimethyl carbonate is 0.07 gd per kilogram 

Fig. 11.  (a) Validation of Pareto front with random experiments; (b) Comparison between the Pareto front 
obtained by ANN-MOO framework and MOO invoked Aspen Plus.

 

Fig. 10.  The computational efficiency comparison of the ANN-MOO framework and MOO invoked Aspen 
Plus.
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of product58. Although both processes include energy-intensive separation units, the low-GD raw materials 
were converted to high-GD products, so that the green degree of the whole production process was guaranteed. 
Similarly, the HDI production involves multiple distillation processes; but the use of non-phosgene raw materials 
and the aliphatic nature of HDI with lower environmental impact compared to aromatic counterparts result in 
a substance GD that offset the negative impact of high energy consumption on GD. Therefore, the GD per 
kilogram of HDI is relatively close to other two products reported in the literature. Moreover, after optimization, 
the GD of the distillation unit in the HDI production process is −0.75 gd per kilogram of product, which is better 

Parameters Actual operating point Best solution

T-102 Temperature (℃) 140 150

C-101number of trays 46 50

C-101 mass reflux ratio 1.91 2.01

C-101 feed tray number 31 40

C-101 pressure (atm) 10 13

C-102 number of trays 33 30

C-102 mass reflux ratio 1.8 3

C-102 feed tray number 23 10

C-203 number of trays 15 5

C-203 number of feed trays 13 2

C-203 distillate feed ratio 0.85 0.78

C-202 distillate feed ratio 0.76 0.90

TAC (×104 $/year) 117.43 94.27

TEC (×102 GJ/year) 319.90 227.85

GD (×104 gd/year) −375.74 −294.59

Table 6.  Comparison of simulation results for actual operating point and optimal condition.

 

Fig. 12.  Pareto front based on ANN-MOO framework in design space (a) side view (b) top view (c) front view 
(d) 3D scale.
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than the reported GD of azeotropic distillation separation (−1.22 gd per kilogram of product) and ionic liquid 
extraction (−37.76 gd per kilogram of product)13,59.

To assess the reliability of the proposed ANN-MOO framework, we input the optimal solution determined by 
TOPSIS into Aspen Plus for simulation. Table 7 presents the convergence results and key stream outcomes from 
Aspen Plus under optimal process parameters. The simulation result shows that the optimal solution obtained 
through the TOPSIS method meets the flow and purity requirements of the HDI product. Additionally, the 
differences in TAC, GD and TEC values between the rigorous model and the ANN surrogate model are minimal, 
highlighting the effectiveness of the ANN surrogate model for the HDI process.

Sensitivity analysis results
The global sensitivity analysis was conducted using the Sobol method, which is based on the decomposition of 
variance in the model output, to evaluate the contributions of each input variable to the model output. Figure 13 
shows the first-order index ( Si) and total-order index ( ST i) for TAC, GD and TEC, respectively. Based on 
the Si and ST i, V11 (C-203 distillate feed ratio) is identified as the most influential input parameter for TAC 
(Fig. 12a). In addition, the Si of V5 (C-101 pressure), V6 (C-102 number of trays), V7 (C-102 mass reflux ratio) 
and V8 (C-102 feed tray number) also indicate a significant impact on the TAC of the HDI process. While the 
Si of V12 (C-202 distillate feed ratio) for TAC is small, the ST i is significantly larger than Si. The differences 
between the Si and the ST i indicate the greater impact of interactions among input variables on objective 
values compared to the effects of individual input variables. The insignificancy of Si and ST i for the remaining 
input are reflected by the near-zero value. Figures 13b-c indicate that the variables V5, V6, V7, V8 and V11 also 
have a significant impact on GD and TEC. The influence of the remaining variables on GD and TEC is relatively 
minor. However, the Sobol index values for V9 (C-203 number of trays) show a more pronounced influence on 
TAC than on GD and TEC. It can be attributed to the fact that the number of trays directly influences the capital 
costs associated with the equipment.

The C-101 pressure, C-102 number of trays, C-102 feed tray number and C-203 distillate feed ratio are the 
most significant parameters for the HDI process based on the Sobol method. Therefore, the influence of these 
parameters on TAC, GD and TEC is further analyzed. Figure 14 shows the optimized operating parameters 
of the significant variables corresponding to the Pareto-optimal front. Figure 14a depicts the value of C-101 
pressure corresponding to the Pareto point. The optimal points are mainly concentrated around 13 atm, which 
is close to the upper limit of the decision variables. This is because higher C-101 column pressure facilitates the 
separation of methanol and DMC60, thereby reducing the reboiler load and related operation cost. Moreover, the 
reduction in reboiler load also leads to a decrease in the reflux in the pressure swing distillation section, thereby 
reducing the overall heating load and enhancing the GD of the HDI process.

Fig. 13.  Sobol sensitivity indices for (a) TAC (b) TEC (c) GD.

 

Parameters Aspen plus Surrogate model

Convergence. Converged. Converged.

Mass fraction of methanol in stream S18 0.995 \

Mass fraction of methanol in stream S30 0.963 \

Mass fraction of HDI in stream S32 0.986 \

Mass flow rates of stream S18 (kg/h) 66.78 \

Mass flow rates of stream S30 (kg/h) 65.53 \

Mass flow rates of stream S32 (kg/h) 179.38 \

TAC (×104 $/year) 95.24 94.27

TEC (×102 GJ/year) 231.31 227.85

GD (×104 gd/year) −296.86 −294.59

Table 7.  Comparison of results for Aspen plus and the surrogate model under the optimal solution.
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Figures 14b-c show that the C-102 number of trays and C-102 feed tray number exhibit similar distribution 
trends at the Pareto points, with values of 30, [35, 50] and 10, [14, 26], respectively. This indicates a strong 
interaction between these two parameters. When the C-102 number of trays is 30, the C-102 feed tray number 
consistently has a value of 10, and similar correspondences are observed for the other intervals. Reducing 
the number of trays results in decreased separation efficiency, which in turn increases the reboiler load and 
associated energy consumption. The increase in energy consumption further leads to a reduction in the GD of 
the HDI process.

Figure 14d illustrates the optimal values of the C-203 distillate feed ratio. The values at the Pareto points are 
primarily distributed around the lower limit of 0.78. The C-203 column involves multiple recycle streams and 
complex interactions with other variables. Reducing the distillate feed ratio not only decrease the recycle flow of 
the HDC pyrolysis process, but also reduce overall energy consumption/operating costs and increase the GD of 
the HDI process. Therefore, maintaining the C-203 distillate feed ratio at the lower operating limit is beneficial 
for the HDI process.

Conclusion
This study presents an artificial neural network-assisted multi-objective optimization framework of HDI 
production process for improved the economic, energy and environmental performance. The TOPSIS method 
was employed to facilitate decision-making along the Pareto front, leading to the identification of the optimal 
configuration. The key findings were summarized as follows:

(1) The ANN-based surrogate model was built to predict the convergence and various objective values of the 
HDI process. The results demonstrated that the convergence model has an accuracy of 0.7305, and the R2 values 
for the objective models corresponding to TAC, TEC and GD are 0.98886, 0.99996, and 0.99996, respectively. 
The corresponding mean squared error values for the objective models are 1.57245, 0.14187 and 0.11556. The 
above results demonstrate the accuracy of the surrogate models.

(2) The ANN-assisted MOO framework was established to optimize the HDI process. The results show a 
remarkable reduction of 71% of the computational time compared to rigorous process simulation. The solving 
time of the multi-objective optimization for the HDI process can be shortened from 145.9 h to 42.3 h with the 
premise of accuracy by using the surrogate model. An optimal solution was selected by the TOPSIS method from 
the Pareto front. Compared with the actual operating conditions, the TAC and TEC can be respectively reduced 
by 19.72% and 28.79% when the GD increases by 21.60% under the optimal scheme.

Fig. 14.  Interval of (a) C-101 pressure, (b) C-102 number of trays, (c) C-102 feed tray number and (d) C-203 
distillate feed ratio corresponding to the Pareto-optimal front.
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(3) Sensitivity analysis indicated that the C-101 pressure, C-102 number of trays, C-102 mass reflux ratio, 
C-102 feed tray number and C-203 distillate feed ratio are the most influential parameters for TAC, TEC and 
GD.

Data availability
Data is provided within the manuscript or supplementary information files.
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