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Gene expression and molecular
pathway analyses differentiate
immunotherapy-induced
myositis from spontaneous
dermatomyositis
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Immune checkpoint inhibitor therapy (ICl)-induced myositis (irMyositis) occurs in about 1% of patients
treated with anti-PD1 or anti-CTLA-4 antibodies and can be debilitating or even fatal. We compared
gene expression profiles from skeletal muscle biopsies between irMyositis patients, patients with
spontaneous dermatomyositis (DM, comprising anti-Mi2-positive and anti-TIF1-y-positive subtypes),
and non-diseased controls (NDC). We used the NanoString nCounter PanCancer Immune Profiling
Panel to perform differential gene expression (DGE) and pathway enrichment analyses. We identified
93 differentially expressed genes (DEGs) across conditions. Gene set enrichment analysis (GSEA)
suggested activation of interferon gamma (type-Il IFN) and interferon alpha/beta (type-I IFN) signaling
in irMyositis and DM, respectively. For instance, type-Il IFN was upregulated exclusively in irMyositis
when compared to DM, which conversely showed upregulation of effector genes downstream type-I
IFN. The observed fold-change of a subset of 33 genes drove the GSEA. We further characterized

the DEGs using network interaction and expression correlation analyses. This allowed us to describe
potential differences between regulatory hubs and cells involved in irMyositis susceptible to ICI
effects. For example, the downregulation of FOXP3 we observed together with the upregulation of
the chemokine CCL14 in irMyositis may have been a consequence of T cell activation upon ICl therapy.
The gene expression correlation and putative molecular interactions set irMyositis apart from DM,
particularly with respect to IFN response and DGE of interactors of ICl protein targets (CTLA4, PD-1,
PD-L1). Our results suggest new avenues for understanding immunotherapy-related adverse events.
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Immune checkpoint inhibitor (ICI) therapy can induce a plethora of immune-related adverse events (irAE).
While immune-related colitis, hepatitis and endocrine side effects occur frequently, neuromuscular side effects
are rare with a frequency of less than 3%!. IrMyositis is the most frequent neuromuscular irAE occurring in
up to 1% of patients treated with anti-PD1 and/or anti-CTLA-4 antibodies®. IrMyositis can be complicated
by concomitant myocarditis (irMyocarditis) or Myasthenia-gravis-like symptoms, which often leads to long
term sequelae’, disability or even fatalities?. Importantly, one in two patients documented with irMyositis/
irMyocarditis died in a large adjuvant clinical trial®. Thus, diagnostic and therapeutic approaches must be
improved.

So far, irMyositis has often been treated in analogy to spontaneous autoimmune dermatomyositis despite
important clinical and immunological differences between the ICI-induced and idiopathic inflammatory
myopathies (IIMs)>S. Myositis-associated autoantibodies including autoantibodies against nuclear and
cytoplasmic antigens are rarely detected in irMyositis, whereas they are positive in up to 89% of patients with
IIM’~?. Dermatomyositis is considered a highly heterogeneous entity, with six main groups, namely anti-
TIF1-y, anti-Mi2, anti-MDAS5, anti-NXP2, anti-SAE, and autoantibody negative subtypes'®~!2. It can be difficult
to distinguish between irMyositis and IIMs associated with malignancy but cutaneous features like Gottron
sign, heliotrope rash or periungual erythema typically present in anti-Mi2 dermatomyositis (Mi2 subtype)
can help to determine the diagnosis. Histologically, irMyositis can manifest itself by marked signs of necrosis,
perifascicular atrophy and vascular damage, or pro-inflammatory cell infiltrates!*. Mi2 subtype patients respond
well to standard treatment, including corticosteroids and rituximab or other autoantibody reducing approaches
(plasmapheresis) and show a good overall prognosis'*~1” while anti-TIF1-y dermatomyositis (TIF1y subtype) is
more therapy-refractory. As with IIM, common symptoms of irMyositis patients are myalgia and progressive,
proximal upper and lower extremity weakness. Additionally, symptoms such as myopathy of external ocular
muscles and diplopia can resemble those of myasthenia gravis. However, compared to myasthenia gravis,
irMyositis shows a more sudden onset and no fluctuation of symptoms or fatigability'®. Elevation of creatine
kinase levels, myopathic changes in the electromyogram and necrotic myofibers in muscle biopsies are found in
patients diagnosed with irMyositis!®.

In this study, we measured gene expression at the RNA level to elucidate the molecular mechanisms involved
in irMyositis and DM, to better understand similarities and differences in pathological mechanisms that could
guide diagnosis and treatment. Using the NanoString nCounter PanCancer Immune Profiling Panel', we
determined the expression levels of 770 genes related to immune-oncological signaling pathways and cell types
and identified a set of significantly differentially regulated genes from muscle biopsies. Most notably, tissue
extracts of irMyositis patient biopsies showed distinct immunological pathways from those activated in anti-
Mi2-positive and anti-TIF1-y-positive ones, which may suggest novel therapeutic research strategies.

Methods

Patient cohorts

The study design and concept of analysis is described in Fig. 1. Skeletal muscle biopsies were analyzed from
patients diagnosed with irMyositis (n=15, 17 samples), Mi2 subtype (n=8, 8 samples), and TIFly subtype
(n=6, 6 samples) DM, from Berlin, Erlangen, Essen, Paris, and Zurich. The diagnosis of irMyositis was deemed
likely when symptoms occurred in close-time association to ICI therapy initiation and if other causes were
excluded. All cases of irMyositis, except for two, were diagnosed in patients who had been treated for cutaneous
melanoma. Additionally, we investigated skeletal muscle biopsies from patients with nonspecific complaints in
the context of “fatigue-like” symptoms, without clinical muscle weakness, absence of morphologic abnormalities
on skeletal muscle biopsies, absence of elevated creatine kinase (CK) levels or laboratory evidence of any systemic
inflammation, serving as NDC (n=4, 4 samples). Table 1 presents the demographics and clinical characteristics
of patients included in the analysis. We derived the collected data from clinical health records submitted after
patient consent to the digital hospital information systems in the participating centers in Berlin, Erlangen, Essen,
Gottingen, Paris and Zurich. It includes muscle strength assessments, CK levels, autoantibody profiles, and
characteristics of muscle pathology. CK levels were within range in the NDC group and significantly elevated in
the diseased groups. All muscle biopsy samples analyzed in this study were obtained from patients between 22
and 86 years of age. The analysis included samples from 17 female and 18 male patients. The subgroup of NDC
includes an equal number of male and female participants. In the Mi2 and TIF1y subtype group female patients
predominate, whereas male participants are predominant in the irMyositis group. As most patients suffered
from cutaneous melanoma, the employed ICI therapies were anti-PD-1 (nivolumab or pembrolizumab), in
some patients in combination with anti-CTLA-4 (ipilimumab). This study was approved by the institutional
review boards at the Friedrich- Alexander University Erlangen-Niirnberg (2_20B), the LMU University Hospital
Munich (20-1122) and at the Charité —-Universititsmedizin Berlin (EA2/163/17). All research was performed
in accordance with the legally binding regulations in Germany and the Declaration of Helsinki for research
involving human participants. We obtained informed consent from all participants and/or their legal guardians
before handling samples and processing data.

RNA isolation
We isolated total RNA from muscle specimen using TRIzol Reagent (Thermo Fisher Scientific, Germany), as
previously described?.
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Fig. 1. Schematic representation of patient registry (33 patients) and concept of analysis. The patient cohort
is subdivided into irMyositis, Mi2 subtype and TIF1y subtype, and NDC. Arrows indicate the comparisons
investigated in this study.

NanoString-based sample profiling

For each sample, we quantified gene expression using the NanoString nCounter PanCancer Immune Profiling
Panel (NanoString, XT-CSO-HIP1-12). The panel consists of six positive control probes, eight negative control
probes, and 770 probes aimed at detecting the RNA levels of that many H. sapiens genes. 40 out of the 770 probes
are specific for a set of housekeeping genes. The rest of the probes account for a set of well-known cancer and
immune response-associated genes. After checking that RNA quality was adequate, we used 200-500 ng of total
RNA as input and performed sample hybridization according to the manufacturer’s instructions. We completed
the data acquisition on an nCounter Digital Analyzer (NanoString, Seattle, USA).

NanoString data processing and normalization

We extracted count data from NanoString RCC files using the nanostringr library (version 0.41) for the R
programming language (version 4.2.3)2?2. For each sample, we evaluated the quality of the raw counts for
each gene-probe hybridization by comparing them with the average counts of negative control probes. After
normalizing by the sample library size, if a gene had corresponding counts-per-million (CPM) higher than
the average negative control count plus two standard deviations in less than four samples (the size of NDC
subtype, the smallest in the cohort), we removed that gene from the analysis. The rationale was to guarantee
that all analyzed genes had adequate expression in most samples, to avoid statistical imbalances?’. Next,
following NanoString guidelines, we scaled the raw counts of the remainder genes across samples using CodeSet
Content Normalization; briefly, sample-specific scaling factors are computed based on the ratio between the
average geometric mean of housekeeping gene counts and the geometric mean of the whole-sample counts (see
MAN-C0011-04, available at https://university.nanostring.com, for further details).
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Patient | Muscle Pathology | Autoantibody | Type of ICI | Treatment at Sex Muscle Strength Comorbidities/ | Extramuscular
Group | ID Characteristics Profiles Therapy Time of Biopsy | (M/F) | Age | Assessments Ck Level (U/I) | Malignancy Manifestations
1 normal N.R. N/A N.R. F 39 | N.R. normal N.R. N.R.
2 normal N.R. N/A N.R. M 64 | N.R. normal N.R. N.R.
A 3 normal Neg. N/A N.T. M 22 | normal 127 none none
4 normal Neg. N/A N.T. F 49 | normal normal none none
5 DMS. anti-Mi-2 N/A N.R. F 86 | proximal tp. N.R. N.R. S.L.
6 DMS. anti-Mi-2 N/A N.R. F 83 proximal tp. 9,000 N.R. S.L.
7 DMS. anti-Mi-2 N/A N.T. M 54 g f{g;g’ legia NR. none SL.
B 8 DMS. anti-Mi-2 N/A N.R. F 82 4/5 tp. N.R. none S.L.
9 DMS. anti-Mi-2 N/A N.R. F 62 4/5 tp. 6,400 none S.L.
10 DMS. anti-Mi-2 N/A N.T. F 48 N.R. N.R. none S.L.
11 DMS. anti-Mi-2 N/A N.T. M 57 | 4/5proximalhp | N.R. none S.L.
12 DMS. anti-Mi-2 N/A N.T. F 86 4/5 proximal hp | N.R. N.R. S.L.
13 DMS. anti-TTF-1y N/A N.T. F 62 3-4/5 tp. N.R. breast cancer S.L,B.L
14 DMS. anti-TIF-1y N/A N.T. M 71 4/5 tp. 2,000 none S.L.
15 DMS. anti-TIF-1y N/A N.T. F 60 4/5 tp. 2,400 EA. S.L.
¢ 16 DMS. anti-TTF-1y N/A N.T. F 48 | 4/5tp. N.R. N.R. none
17 DMS. anti-TTF-1y N/A N.T. F 69 | 4/5tp. 11,500 N.R. none
18 DMS anti-TIF-1y N/A N.T. F 64 | N.R. N.R. none skin calcinosis
19.1 N.M. Neg. Com. N.R. M 75 | proximal tp. N.R. C.M.S.N.R. N.R.
19.2 N.M. Neg. Com. N.R. M 75 proximal tp. N.R. C.M. S.N.R. N.R.
20 isrilgﬂnasn?r;ation Neg. Pembro steroids M 75 | multiple®™ 6,870 multiple”* myocarditis
21 NR. Neg. Pembro gf;%‘;ﬁg’ﬁ; M 75 | N/A 1,626 CM.IV g{;ﬁgﬁﬂ:?s
2 NR. N/A Com. mp. 1 mg/kgbw | M 69 | N/A 301 CM.IV ?ﬁpatiﬁi;f3’
yreolditis
23.1 %zrfﬁfg(:eczﬁc anti-cN-1A Ipi, Pembro | steroids M 58 | proximal hp. 2,400 CM. IV none
232 z‘gﬂ;’gfk anti-cN-1A Ipi, Pembro | steroids M 58 | proximal hp. 2,400 CM.1IV none
5/5 peripheral
24 N.M. Neg. Pembro mp. 1000 mg M 61 extremities, 11,900 C.M.S.N.R. vitiligo
b aw., op.
25 N.M. Neg. Nivo mp. 500 mg M 74 :5?31;%;;“‘1 6,200 lung cancer BL
26 N.M. Neg. %ig)l{?mi_ N.T. F 63 4/5 hp. 2,705 renal cancer B.L, dyspnea
27 N.M. Neg. Pembro N.T. F 86 aw., op., ptosis 1,400 C.M.S.N.R. ptosis
28 N.M. Neg. iﬁi‘:}bm’ N.T. M 75 | aw. N.R. CM.SNR. none
29 N.M. Neg. Nivo N.T. F 76 tp. N.R. C.M.S.N.R. none
30 N.M. Neg. Nivo NT. M 83 | whper legsand [ 459 CM.SNR. none
31 zsxir‘lggzrff{:r:?ri}:iyon Neg. Com. steroids F 59 N.R 625 CM. 1V colitis, arthritis
32 N.M. Neg. Com. multiple” M 77 | N.R >42,670 CM.S.NR. none
33 N.M. Neg. Nivo N.R. M 84 tp. N.R. C.M.S.N.R. N.R.

Table 1. Clinical data documentation (n=33, 35 samples). Demographics and clinical characteristics of patients,
obtained from clinical health records submitted to digital hospital information systems in the participating centers
in Berlin, Erlangen, Essen, Gottingen, Paris and Zurich. Patient ID from which multiple biopsies have been sampled
are indicated with a second numbering system (e.g. “19.1”). For improved readability, patient characteristics

have been abbreviated: NDC (A), Mi2 subtype (B), TIF1y subtype (C), and irMyositis (D) groups; monotherapy
with Pembrolizumab (Pembro), Nivolumab (Nivo) or Ipilimumab (Ipi), as well as a combination approach of
Ipilimumab/Nivolumab (Com.); muscle pathology characteristics typically found in dermatomyositis (DMS.) or
necrotizing myopathy (N.M.); patient information not reported by the center or data is not part of routine patient
assessment (N.R.); not-applicable or unperformed treatment or diagnostic approach (N/A); no treatment (steroids
or immunosuppressants) at time of biopsy (N.T.); no autoantibody found (Neg.); age at time of biopsy (Age); body
weight (b.w.); methylprednisolone (mp.); ophthalmoplegia (op.); tetraparesis (tp.); hemiplegia (hp.); axial weakness
(aw.); cutaneous Melanoma stage IV (C.M. IV) and Cutaneous melanoma stage not reported (C.M. SN.R.);
endometrioid adenocarcinoma (E.A.); skin lesions (S.L.); bulbar involvement (B.I.). Further commentaries are
abbreviated by #: steroids, IVIG, plasmapheresis, hemodialysis, intensive care treatment; ##: left hip flexor palsy M4
and hyposensitivity ventral thigh; ###: MGUS/metastatic melanoma (subcutaneous and soft tissue metastases).
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Statistical analysis and differential gene expression

Similarly to previous work on NanoString data, we employed the limma-voom framework to model the
mean-variance relationship of log-CPM normalized data?*-?’. We further compensated for the within-sample
expression variation using the trimmed mean of M-values (TMM) normalization on CPM values upon applying
voom. Then, we constructed a linear model of gene expression using disease subtype (irMyositis, Mi2 subtype,
TIF1y subtype, and NDC), cartridge (batch), and biopsy conservation (FFPE, cryopreservation) as explanatory
variables (covariates). We additionally modeled patient variation as a random effect to account for correlation
between sample biopsies derived from the same patient, using the limma function duplicateCorrelation as
described previously?’. After correcting for the unwanted covariate effects, we carried out DGE analysis across
disease subtypes via empirical Bayes moderation of standard errors (pairwise, moderated t-test and analysis
of variance of the corresponding t-statistics via F-statistics). P-values resulting from F-tests were adjusted to
5% FDR using Benjamini-Hochberg correction. To correctly account for multiple testing both within and
across pairwise comparisons (post hoc t-test), we selected the hierarchical modality within the limma function
DecideTests; briefly, this adjustment method first computes a scaling factor based on the number of significant
F-tests within the nominal FDR (5%), then it accordingly recomputes the FDR level, and finally adjusts t-tests
comparison-wise.

Enrichment analysis
We used the observed gene-wise fold-changes to perform GSEA using the R library ClusterProfiler®. As gene
sets, we used Reactome pathways with sizes ranging from 3 to 100 genes.

Network reconstruction and representation

We reconstructed a gene network of directed molecular interactions by accessing the Reactome graph database
using Neo4j and CYPHER queries®. We used the SchemaClass of Regulation nodes to curate the mode
of regulatory interactions. We used the cellular component annotation in EntityWithAccessionedSequence
nodes to curate the subcellular or extracellular localizations of the interacting genes. To prune the Reactome
network, we computed all pairs, directed shortest paths (APSPs) between a subset of DEGs, by means of igraph
implementation of Dijkstra’s algorithm?°.

Expression correlation tests

We used Spearman’s correlation to measure the strength of association between the expression levels of gene
pairs across the sample cohort. We applied asymptotic ¢ distribution and Edgeworth series approximations
to perform the correlation test statistics. After Benjamini-Hochberg correction, correlations were considered
significant at a nominal FDR of 5%. We curated immune-cell-specific biomarkers using the whitepaper of the
nCounter PanCancer Immune Profiling Panel (NanoString, XT-CSO-HIP1-12)>..

Result validation using deposited RNAseq data and literature mining

To compare DGE results of this study to previously published expression data, we downloaded and re-analyzed
from Gene Expression Omnibus the RNAseq dataset entry GSE220915%. The dataset consists of RNA extracts
from muscle biopsies classified as dermatomyositis, comprising anti-Mi2 (n=12), anti-NXP2 (n=14), anti-
TIFly (n=12), and anti-MDA5 (n=6) subtypes, antisynthetase syndrome (n=18, patients tested positive for
anti-Jol autoantibodies), immune-mediated necrotizing myopathy (n= 54, patients tested positive for anti-SRP
or anti-HMGCR autoantibodies), inclusion body myositis (n=16), and histologically normal muscle biopsies
(n=33). After normalizing by the sample library size, if a gene had corresponding CPM higher than 10 in less
than 16 samples, we removed that gene from the analysis. Information on batches or other covariates was not
available, and we therefore formulated the linear model regression only in terms of sample classification. We
conducted DGE analysis in the same fashion as with the NanoString dataset using edgeR and limma, except for
CodeSet Content Normalization. See Supp. Information for code implementation.

We conducted a comprehensive, semi-automatic review of biomedical literature concerning irAE, ICI
therapy especially in melanoma, and DM using ENQUIRE (software implementation deposited as apptainer
image at https://doi.org/10.6084/m9.figshare.29357207.v1)*?. First, we formulated the following PubMed
queries: (i) ((("immune checkpoint inhibitor*"[MeSH Terms])) AND (‘autoimmune diseases’[MeSH Terms]))
NOT (“review”[Publication Type]), “10 years” and “Abstract” filters, 239 results as of 17.06.2025; (ii) (("immune
checkpoint inhibitors/adverse effects"[MeSH Terms] AND “melanoma”[MeSH Terms]) OR ("dermatomyositis/
immunology"[MeSH Terms])) NOT (“review”[Publication Type]), “10 years” and “Abstract” filters, 660 results as
of 17.06.2025. Using the resulting list of PMIDs as input, we generated a network of significantly co-occurring
genes and MeSH terms and corresponding source literature via ENQUIRE. The network was then converted
to a graph database using Neo4j and interrogated via CYPHER queries. See Supp. Information for code
implementation.

Statistical software
Table 2 and Supp. Information report the software we used to conduct the data analysis.

Results

Transcriptomic profiling of tissue samples from skeletal muscle biopsies from patients with
irMyositis versus patients with Mi2 and TIF1y subtype

Table 3 summarizes the characteristics of 35 patient samples used in this study. The cohort consists of 4 NDC
samples, 8 Mi2 subtype samples, 6 TIF1y subtype samples, and 17 irMyositis samples. We accounted for the
technical variability effect of different NanoString Cartridges, sample conservation, and correlation between
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biopsies from the same patient using the limma-voom framework. We assessed the quality of batch-correction
via principal component analysis (Supp. Information).

We checked the expression quality of both endogenous and housekeeping genes probed by the “Cancer-
Immune” NanoString panel. We excluded 135 endogenous genes from downstream DGE analysis, as their
expression was above the average negative control signal in more than four samples. Next, we performed the
analysis of variance in expression profiles of the remainder 595 genes across the 4 diagnosis groups (NDC, TIF1y
subtype, Mi2 subtype, and irMyositis). 93 genes showed significant F-statistics after 5% FDR p-value correction.
Finally, we performed DGE analysis for each pair-wise comparison. Table 4 illustrates the per-comparison count
of upregulated and downregulated genes after 5% FDR p-value correction. We found no DEG when comparing
the TIF1y subtype and Mi2 subtype.

GSEA of reactome pathways highlights differences in active immunological pathways

Using the observed log2 fold-changes derived from the pairwise DGE analysis, we conducted GSEA for each
pairwise comparison on Reactome pathways (Fig. 2). We observed opposite enrichment or Reactome pathways
related to interferon signaling between DM and irMyositis (Fig. 2A). In particular, when compared to NDC,
both Mi2 and TIF1y subtypes showed positive enrichment of type-I IFN signaling as well as immune response by
interferon-related genes classically described in the context of antiviral responses. However, these same pathways
were negatively enriched in irMyositis when compared to DM. In contrast, type-II IEN signaling was positively
enriched only in irMyositis compared to NDC. Interestingly, it appeared that the enrichments of interferon
alpha/beta signaling and DDX58/IFIHI1-mediated induction of interferon alpha/beta Reactome pathways were
more pronounced in the TIF1y subtype biopsies, compared to Mi2 subtype ones. Further comparison-specific,
significant GSEAs were the positive enrichments of Toll-like receptor signaling in TIF1y subtype compared to
NDC, and T-cell specific regulations (CD28, CD3, and TCR molecular interactions) in irMyositis compared
to TIF1y subtype. The Jaccard similarity between core enrichment genes indicated that a subset of genes drove
the enrichment of multiple, interrelated pathways (Fig. 2B). The heatmap in Fig. 2C clusters comparisons and
enrichment core genes based on the fold-changes of the latter, whose coordinated fold-change led to a significant
gene set enrichment score; the 33 genes shown, each belonging to one or multiple core enrichment groups, were
selected due to their significant F-statistics. In particular, the genes ISG15, STATI, OAS3, IF127, ISG20, IFITM1,
DDX58, and BST2 contributed to gene set enrichment in all six comparisons and possessed qualitatively similar
fold-change patterns. Reactome pathways related to interferon signaling are those with the highest coverage of
genes with significant F-statistics.

Pairwise differential gene expression reveals distinct regulatory patterns in irMyositis and
Mi2 and TIF1y subtypes

For each gene that simultaneously drove the enrichment of multiple Reactome pathways and demonstrated
statistically significant F-statistics (Fig. 2C), we investigated which pairwise comparisons between subtypes were
also significant. This way, we identified groups of genes with distinct DGE patterns (Fig. 3). The RNA expression
of the kinase-encoding genes MAPKI and IRAKI, the phosphorylation-dependent, peptidyl-prolyl cis/trans
isomerase PIN1, the 20S immunoproteasome subunit PSMBS, and the class I MHC genes HLA-A, HLA-C, and
HLA-G were upregulated in both DM and irMyositis compared to NDC. In contrast, many interferon-stimulated
genes (ISGs) were upregulated in DM compared to NDC, but downregulated in irMyositis when compared to
both Mi2 and TIF1y subtypes; these differentially regulated ISGs encode for transcriptional regulators (IRF7),
signal transduction and activation factors (STATI, ISG15, IF127, and IFI35), and effector and sensing proteins
(MX1, IFIT1, IFITM1, BST2, IFIH1, OAS3, and DDX58). Interestingly, the extracellular-matrix component FNI
was downregulated in irMyositis compared to both Mi2 and TIF1y subtypes, but not upregulated in the latter
two when compared to NDC.

GSEA and pairwise differential expression of core enrichment genes highlighted interferon signaling and
ISGs as the most prominent feature distinguishing DM and irMyositis (Fig. 2-3). To further inspect this outcome,
we selected genes annotated under the GSEA-derived Reactome pathways i) Interferon signaling, ii) Interferon
alpha/beta signaling, iil) Antiviral mechanisms by IFN-stimulated genes, iv) ISG15 antiviral mechanism and v)
Negative regulators of DDX58/IFIH]1 signaling. Then, we utilized the results of the post hoc test statistics for each
of the six pairwise comparisons to identify all DEGs in the panel that also belong to these pathways, irrespective
of GSEA core enrichments (Fig. 4 and Supp. Information). In addition to the previously described ISGs, we
observed a consistent downregulation of type-II IFN in both TIFly and Mi2 subtypes compared to NDC, as
well as its upregulation in irMyositis compared to DM. The volcano plots highlight that fewer ISGs were found
to be differentially regulated in irMyositis compared to DM; nevertheless, irMyositis still shows upregulation of
a handful of molecular components of interferon signaling such as TYK2 and IRFI, when compared to NDC.

Interestingly, we found fold-change directions opposite to what GSEA suggested for a few interferon genes
such as IFNBI, IFNARI, and especially INFAI7 and IFNA7. However, it must be noted that their average
expression was relatively low across the sampled biopsies and that the irMyositis group presented outliers in
terms of log, CPM of these genes (Fig. 3).

Clustering of DEGs is conserved in both interaction network and expression correlation
analyses

Next, we were interested in assessing if genes with similar DGE patterns were also closely associated in terms of
mechanistic interactions or expression correlation with known cell type markers. In particular, we focused on
genes that after post hoc testing showed i) significant regulation in the same direction in the two comparisons
of irMyositis against Mi2 and TIF1y subtypes, and ii) opposite regulation or insignificant DGE, in the two
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Library/Database
Procedure Code snippets (pseudocode) (version)
RCC file import counts = parse_counts(RCC file), attributes = parse_attributes(RCC file) nanostringr (0.1.0)

CPM normalization

calcNormFactors(DGEList object, method = “none”)

edgeR (3.40.2)

Filtering of lowly expressed genes

filterByExpr(DGEList-object, group = disease subtype, min.count=2A(mean(per-probe average
negative-control count) +2 * sd(per-probe average negative-control count)))

edgeR (3.40.2)

CodeSet Content Normalization

in-house script (Supp. Information)

R base (4.2.3)

Design matrix creation

model.matrix(~ 0 + disease subtype + cartridge + conservation)

R stats (4.2.3)

Heteroschedasticity correction (voom)

voom(calcNormFactors(DGEList object, method = “TMM?”), design = model. matrix(...),
normalize.method = “none”, plot=F)

limma (3.54.0)

Intersample correlation estimation

duplicateCorrelation(voom output, model.matrix(...), block=Patient-ID)$consensus.correlation

limma (3.54.0)

Linear model regression

ImFit(voom output, model. matrix(...))

limma (3.54.0)

Contrast matrix creation

in-house script (Supp. Information)

R base (4.2.3)

Fold-change estimation and statistical inference
(moderated t-test, F-test)

contrasts.fit(ImFit output, contrast matrix); eBayes(contrasts.fit(...),trend = Erobust = F)

limma (3.54.0)

Statistical inference (post hoc moderated t-test) | decideTests(eBayes output,method = ‘hierarchical, adjust.method = ‘BH;, p.value =.05)) limma (3.54.0)

APSPs identification all_shortest_paths(Reactome graph, from =i, to=j, mode="all”) for any i, j in gene list igraph (1.3.5)

Correlation test cor.test(i, j, alternative = "two.sided", method = “spearman’, continuity=T) for any i, j in gene list R stats (4.2.3)
docker.io/reactome/

Gene sets and pathway resources

Cypher queries (Supp. Information) graphdb (version 90)

Table 2. R Functions and parameters used for NanoString data analysis. See Methods for in-depth description
of the procedures.

comparisons of Mi2 and TIF1y subtypes against NDC. We defined such genes as putative immunotherapy-
related DEGs (irDEGs). Table 5 lists irDEGs and their observed, significant fold-changes.

We also included in the interaction analysis the ICI targets CD274 (PD-L1), PDCD1 (PD-1), and CTLA4,
whose DGE was statistically insignificant in all six comparisons (Supp. Information). Figure 5 illustrates
the mechanistic interactions obtained after selecting all-pairs shortest paths (APSPs) within irDEGs and
ICI targets from the Reactome Graph Database?. Unfortunately, NT5E and TNFRSF8 possessed no path to
any other irDEG or ICI target, while CCL14 and TIGIT had not been curated in any Reactome pathway at
the time of the analysis (April 2025). We employed the Fruchterman-Reingold algorithm to obtain a force-
directed layout where directed intracellular and extracellular interactions are respectively assigned weak and
strong spring-like repulsions forces, highlighting a dense hub of intracellular interactions between ISGSs.
While most ISG interactions appeared as positively regulating, DDX58, IFIH1, and TRIM25 exhibited a cycle
of negative regulations belonging to the pathway DDX58/IFIH1-mediated induction of interferon-alpha/beta
(R-HSA-168928). Annotated under the same pathway, CASP10, a component of the death-inducing signaling
complex (DISC), can participate in RIG-I (DDX58)/MDAS5 (IFIH1)-dependent immune response; the reason
for the observed deregulation pattern opposite to DDX58 at the RNA level is unclear, as it could imply higher
levels in irMyositis of either its inactive pro-form or its active, cleaved one. FCGR1A, the gene encoding for Fc-
gamma receptor 1, shares interactions with interferon response factors (IRFs) and several other genes such as
B2M as a result of DNA binding by IFNG-activated factor to their promoter regions (GAF, ReactionLikeEvent
R-HSA-1031716). However, its discordant regulation and lower average expression compared to IRFs may imply
that its upregulation happened in a separate cell subpopulation, such as macrophages and dendritic cells that
classically express Fc-gamma receptors. KLRC2, TGFB2, FN1, CR1, CFB, and IFNG were laid out further away
from ISGs. In particular, IFNG is neighbored by RUNX1, CBFB, and PTPN6, which in turn directly interact
with CTLA4, CD274, and PDCD1, making it one of the irDEGs with the shortest connections to all ICI therapy
targets. RUNX1 and CBFB encode for transcription factors that can respectively promote transcription of IFNG
and CR1 and inhibit that of CTL4A in the absence of FOXP3, a hallmark transcription factor in regulatory T
cells (R-HSA-8877330). FOXP3 was downregulated in all three comparisons between myositis conditions and
NDC (Supp. Information). Type-II IFN signaling can be hampered by protein tyrosine phosphatases (PTPs)
in cells bearing type-II IFN receptors (R-HSA-877300), as reflected by the negative regulation from PTPN6 to
IENG. In fact, both SHP-1 (PTPN6) and SHP-2 (PTPN11) show negative regulation interactions in the APSP-
derived network; binding of PD-1 (CD274) or CTLA4 to their respective ligands, causing phosphorylation in the
former, can recruit and activate these PTPs in T cells (R-HSA-389948, R-HSA-389948).

Finally, we investigated expression correlation between irDEGs and immune cell gene markers provided
by the nCounter PanCancer Immune Profiling Panel. The rationale was to assess if similarly expressed irDEGs
clustered together with genes characteristic of a particular immune cell. Based on the 595 analyzed genes, we
selected a) GTF3C1, ZNF205, GZMB, and IL21R as natural killer (NK) cell markers; b) CD19, MS4A1, CD22,
CD79A, CD79B, and TNFRSF17 as B cell markers; ¢) CD3D, CD3E, CD3G, CD4, CD8A, and CD8B as T cell
markers; d) CD68, CD163, CCL13, and CD209 as antigen-presenting cell (APC) markers. Figure 6 shows the
heatmap we obtained by computing Spearman correlation between genes using batch-corrected log, CPM
values. In contrast to the other cell marker genes, The NK cell ones showed no significant, positive correlation
with each other, and we therefore excluded them from the clustering analysis (Supp. Information). We applied an
unsupervised cut of the hierarchically clustered dendrogram into four groups and observed clusters respectively
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Sample | Group Cartridge | Field-of-view (FOV) | Conservation method
1 NDC C12 555 FFPE

2 NDC C12 555 FFPE

3 NDC C12 555 Cryopreserved
4 NDC C12 555 Cryopreserved
5 Mi2 subtype | C49 194 Cryopreserved
6 Mi2 subtype | C49 194 Cryopreserved
7 Mi2 subtype | C15 555 Cryopreserved
8 Mi2 subtype | C15 555 Cryopreserved
9 Mi2 subtype | C15 555 Cryopreserved
10 Mi2 subtype | C15 555 Cryopreserved
11 Mi2 subtype | C15 555 Cryopreserved
12 Mi2 subtype | C15 555 Cryopreserved
13 TIF1y subtype | C15 555 Cryopreserved
14 TIF1y subtype | C15 555 Cryopreserved
15 TIF1y subtype | C15 555 Cryopreserved
16 TIF1y subtype | C15 555 Cryopreserved
17 TIF1ly subtype | C19 555 Cryopreserved
18 TIF1y subtype | C20 555 Cryopreserved
19.1 irMyositis C15 555 Cryopreserved
19.2 irMyositis C49 194 Cryopreserved
20 irMyositis C12 555 FFPE

21 irMyositis C12 555 FFPE

22 irMyositis C12 555 FFPE

23.1 irMyositis Cl14 555 FFPE

232 irMyositis C12 555 FFPE

24 irMyositis C20 555 Cryopreserved
25 irMyositis C20 555 Cryopreserved
26 irMyositis C20 555 Cryopreserved
27 irMyositis C20 555 Cryopreserved
28 irMyositis C20 555 Cryopreserved
29 irMyositis C20 555 Cryopreserved
30 irMyositis C19 555 Cryopreserved
31 irMyositis C48 555 Cryopreserved
32 irMyositis C48 555 Cryopreserved
33 irMyositis C49 194 Cryopreserved

Table 3. Characteristics of muscle samples from the patient cohort used in this study (n=35). The table
displays the differences between the muscle samples that were considered in the analysis to reduce the effect of
technical variability.

Comparison Number of upregulated genes | Number of downregulated genes
Mi2 subtype—NDC 24 30

TIF1y subtype—NDC 27 28

irMyositis—NDC 17 18

TIF1y subtype - Mi2 0 0

irMyositis — Mi2 subtype 19 24

irMyositis — TIF1y subtype | 11 23

Table 4. Number of DEGs per comparison.

consisting of i) irDEGs downregulated in irMyositis compared to DM and no immune cell marker; ii) APC
markers and CD4 iii) B cell markers; iv) irDEGs upregulated in irMyositis compared to DM and remaining
T cell markers. The first cluster comprised most of the previously discussed ISGs, and we found that many of
the observed Spearman positive correlations were also statistically significant (5% FDR). A smaller subset of
downregulated irDEGs showed similar, but mostly insignificant correlations to ISG expression (ILIRAP, IRF7,
NT5N, FN1, TGFB2). Cluster (iv) further bifurcated into one subset comprising T cell markers and the irDEGs
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Fig. 2. GSEA across irMyositis, Mi2 subtype, TIF1y subtype, and NDC. A: Dot plot of significant enrichment
scores for Reactome pathways, categorized by comparison (Benjamini-Hochberg correction - BH—5% FDR).
Dot size refers to the number of genes belonging to the enrichment core, i.e., genes whose coordinated fold-
change led to the significant gene set enrichment score (Count). Color depicts the GSEA enrichment score
normalized by its expected value under the null hypothesis, given the pathway size (NES). B: Enrichment
map of the significantly enriched pathways. Node sizes reflect the cardinalities of the union of unique genes
belonging to enrichment cores of a pathway, while node sectors and their colors represent relative proportions
of the respective enrichment core sizes in each comparison (GSEA). If the Jaccard similarity between unions
of core enrichments for two distinct gene sets is higher than 0.2, an edge is drawn to represent a functional
overlap between gene sets. C: Heatmap of 33 genes, selected based on belonging to at least one comparison-
wise enrichment core (top blocks), and on showing a significant F-statistics at the same time (BH, 5% FDR).
Correspondence between genes and enriched pathways is encoded by black rectangles. The genes are depicted
and clustered column- and row-wise according to DGE (observed log2 fold-change). Discrete color codes for
B and C, are annotated collectively (Comparison). To reduce the figure complexity, we have only depicted
Reactome pathways listed within the top-nine absolute-value NES per comparison (A-B), and detailed
annotation for the minimum set of enriched pathways that would include all selected genes (C).

TIGIT, IFNG, and CRI, the other consisting of the irDEGs TNFRSF8, KLRC2, CCL14, CASP10, and FCGRIA.
Among the latter, KLRC2 significantly correlated with TIGIT and IFNG expression, while the rest exhibited no
significant, positive correlations.

Discussion

ICI therapy is increasingly applied across a wide range of tumor entities and at earlier stages of tumor
development. However, it can also cause irAE entailing morbidity and long-lasting symptoms that can persist
after immunotherapy discontinuation and even be fatal. Thus, a better understanding of the pathological
mechanisms underlying irAEs, such as irMyositis, is required. Although most patients with irMyositis respond
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Fig. 3. Pairwise differential expression of GSEA-driving genes. 33 genes were selected based on belonging

to at least one comparison-wise enrichment core and on showing significant F-statistics at the same time
(Benjamini-Hochberg correction, 5% FDR). Each box-and-whisker representation summarizes the batch-
corrected, logarithmic counts-per-million (log, CPM) of one gene in different sample groups (Subtype).
Individual data points are also shown. The genes are sorted row-wise by average expression. IrMyositis, Mi2
subtype, TIF1y subtype, and NDC are denoted by different colors. Horizontal brackets indicate significant
pairwise DGE, after applying Benjamini-Hochberg correction (5% FDR, hierarchical post hoc correction - see
Methods for further details).

well to corticosteroids, some can still develop sequelae and fatalities may occur®. In fact, irMyositis is one of
the side effects with the highest mortality rate of around 20-46%*> and myalgic symptoms are among the
most frequent chronic side effects even after cessation of ICI therapy®. Therefore, early diagnosis and initiation
of treatment, as well as tailored therapeutic approaches for steroid-refractory cases, are essential. In this study,
we characterized irMyositis compared to Mi2 and TIF1y subtypes as well as NDC at a gene expression level
using patient biopsies. Our study revealed diverse gene regulatory programs, thus giving insights into the
immunological components that distinguish these diseases.

Based on our findings, irMyositis and Mi2/TIF1y subtypes seem to show different molecular signatures
related to interferon signaling. Using NanoString nCounter PanCancer Immune Profiling Panel, we were able
to identify a consistent upregulation of ISGs related to type-I IFN signaling in DM compared to NDC and an
opposite downregulation of the same ISGs in irMyositis compared to DM. Our analysis seemed to indicate
that irMyositis does not possess the typical interferon signature that appears to characterize various DM and
inflammatory idiopathic myopathies, including the MDA5 subtype which wasn’t included in our study®®%.
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Fig. 4. Differential expression patterns of genes related to interferon signaling. The volcano plots show
Benjamini-Hochberg (BH) adjusted p-values and logarithmic fold-changes of 595 analyzed genes for each
comparison. The horizontal dashed line corresponds to a log-transformed adjusted p-value of 0.05 and all
genes above the line are significantly differentially expressed (5% FDR, hierarchical post hoc correction - see
Methods for further details). Names of significant genes belonging to the Reactome pathways i) Interferon
signaling, ii) Interferon alpha/beta signaling, iii) Antiviral mechanisms by IFN-stimulated genes, iv) ISG15
antiviral mechanism, and v) Negative regulators of DDX58/IFIH]1 signaling. See Supp. Information for tabulated
gene-to-pathway correspondence.

Despite we observed a generalized overexpression of PSMB8, whose transcription has been associated to type-
II IFN exposure, in all three comparisons between myositis and NDC conditions, IFNG was downregulated
in DM compared to NDC and upregulated in irMyositis compared to DM. Interestingly, our network-based
analysis recognized the interactions between IFNG and the effector PTPs activated by PD-1 and CTLA4
signaling as a potential hub through which the effects of ICI cancer treatment could lead to the observed
differences between irMyositis and DM?3. The fact that the master T cell regulator FOXP3 was downregulated
in all myositis conditions might imply, that cell subpopulations other than T cells could cause the characteristic
regulation observed in irMyositis®®. The hub of intracellularly interacting ISGs formed a consistent cluster
of expression correlations that seem to suggest that mostly non-immune cells produce the regulated ISGs*.
In contrast, TIGIT and IFNG clustered and positively correlated with T cell markers, but also with KLRC2, a
C-type lectin receptor primarily expressed by NK cells*!: an interplay between T and NK cells has been recently
shown in inclusion body myositis*>. A handful of irDEGs couldn’t be further characterized by our network-
and correlation-based analysis. CD30 (TNFRSF8) has been shown to be downregulated in other autoimmune
diseases: its upregulation would further set irMyositis apart from DM*3. NT5E has been previously characterized
as an immunosuppressive factor involved in response to ICI cancer therapy***>. TIGIT (CD155) is a recently
identified immune checkpoint expressed in both T and NK cell, in agreement with our expression correlation
analysis: its higher expression in irMyositis compared to DM makes it a druggable candidate whose role in
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Gene name | Average expression (log2 CPM) | Mi2—NDC | TIF1y—NDC | irMyositis—NDC | TIF1y—Mi2 | irMyositis—Mi2 | irMyositis—TIF1ly
BST2 11.50 2.10 2.60 0.00 0.00 -1.04 -1.62
CASP10 7.20 -1.90 -1.70 0.00 0.00 1.12 0.95
CCL14 10.40 0.00 0.00 0.00 0.00 1.56 2.05
CFB 9.90 0.00 0.00 0.00 0.00 -2.17 -2.19
CR1 9.50 0.00 0.00 0.00 0.00 1.56 2.07
DDX58 10.50 3.30 4.50 0.00 0.00 -2.49 -3.66
FCGR1A 6.80 0.00 0.00 0.00 0.00 1.21 1.28
FN1 13.30 0.00 0.00 0.00 0.00 -1.29 -1.30
IFI16 11.80 0.00 0.00 0.00 0.00 -1.07 1.05
IF127 13.80 3.00 3.40 0.00 0.00 -2.26 -2.65
IFI35 10.20 2.20 2.70 0.00 0.00 -1.79 -2.25
IFIH1 9.80 2.20 3.00 0.00 0.00 -1.90 -2.77
IFIT1 11.80 4.10 5.80 0.00 0.00 -4.15 -5.82
IFIT2 10.20 0.00 0.00 0.00 0.00 -2.81 -3.84
IFITM1 13.90 3.20 4.10 0.00 0.00 -1.63 -2.54
IFNG 7.20 -2.30 -2.40 0.00 0.00 1.68 1.76
ILIRAP 8.90 0.00 0.00 0.00 0.00 -0.97 -1.24
IRF7 10.10 2.30 2.50 0.00 0.00 -1.85 -2.00
ISG15 11.90 5.80 7.70 0.00 0.00 —4.55 -6.47
ISG20 9.10 0.00 3.10 0.00 0.00 -1.76 -2.20
KLRC2 6.90 -2.40 -2.50 0.00 0.00 1.78 1.84
MX1 12.70 4.00 5.10 0.00 0.00 -3.94 -5.02
NT5E 10.40 0.00 0.00 -1.60 0.00 -1.30 -1.83
OAS3 10.40 3.40 4.40 0.00 0.00 -2.68 -3.71
STAT2 12.00 2.00 2.30 1.00 0.00 -1.01 -1.30
TGFB2 10.30 3.40 3.30 0.00 0.00 -2.34 -2.20
TIGIT 7.70 -2.40 -2.80 0.00 0.00 1.54 1.86
TNFRSF8 7.20 -2.60 -2.10 0.00 0.00 1.97 1.44

Table 5. Immunotherapy-related DEGs (irDEGs). Selection of irDEGs was based on i) significant regulation
in the same direction in the two comparisons of irMyositis against Mi2 and TIF1y subtypes, and ii) opposite

regulation or insignificant DGE, in the two comparisons of Mi2 and TIF1y subtypes against NDC, after post

hoc testing. Observed expression was corrected for batch and conservation covariates and averaged across all
samples. Observed fold-changes different from zero are indicated if significant after post hoc multiple testing
adjustment of pairwise comparisons (5% FDR) - see Methods for further details.

immunotherapy-induced conditions such as irMyositis should be further assessed in future studies*. Lastly,
we observed CCL14 upregulation exclusively in irMyositis-DM comparisons: this chemokine was previously
studied in the context of cancer progression and associated with immune cell infiltration*”8,

We cross-compared the expression patterns of FOXP3, IFNG, and the other identified irDEGs using a publicly
available RNAseq dataset (GSE220915) of different spontaneous myositis types and healthy muscle biopsies, and
semi-automatic text mining and review of research article on myositis, ICI, and irAE using ENQUIRE (Methods
and Supp. Information)*>*. The gene-wise average expression strongly correlates between our dataset and
GSE220915. The observed irDEG fold-changes between Mi2/TIF1y subtypes and NDC clustered the closest to
those reported in GSE220915 between DM and healthy controls, in contrast to comparisons between irMyositis
and the other subtypes in our study, confirming the difference between irMyositis and DM. However, we
observed discrepancies in fold-change directions of lowly-expressed genes such as FOXP3 and IFNG, and close-
to-noise expression of IFN genes in GSE220915 that also possess high variability in our dataset, such as IFNA7,
IFNA17, and IFNBI. We think these differences can be attributed to the choice of healthy control biopsies and to
the exact protocol followed to select the slices, as differences in the latter can have a considerable impact on the
outcome of cell-specific, generally lowly expressed genes such as interferons and FOXP3. Nevertheless, literature
text mining highlighted the over-expression of type-II IFN and the localized enrichment of Thl and CD8*
leukocytes over Th2 and FOXP3* ones in the context of ICI therapy and irAE**->1. At the same time, type-I1 IFN
levels in serum were found to correlate with medical assessment of DM severity and an RNAseq study including
irMyositis and DM found enrichment of type-I IFN signaling in both but type-1I signaling only in irMyositis'*>2.

A limitation of this study is that a subgroup of patients received corticosteroids prior to undergoing muscle
biopsy. This may have influenced gene expression results, i.e. by downregulating pro-inflammatory genes (TNF,
IL1B, IL6, PTGS2, components of the iNOS complex, HLA genes, FBXO32, and TRIM63)>3. However, it would
have been unethical to delay patient treatment, in cases where muscle biopsies could not be scheduled promptly.
Another limitation is the bulk processing of total RNA from biopsies, therefore losing both single-cell and spatial
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Fig. 5. Interaction network of immunotherapy-related genes. Genes that after post hoc testing showed i)
significant regulation in the same direction in the two comparisons of irMyositis against Mi2 and TIF1y
subtypes, and ii) opposite regulation or insignificant DGE, in the two comparisons of Mi2 and TIF1y subtypes
against NDC were selected and defined as irDEGs. Next, directional interactions from Reactome pathways
containing irDEGs, (PD-L1), PDCDI (PD-1), or CTLA4 were extracted. The depicted directed network
consists of all-pairs shortest paths (APSPs) between such genes within the selected pathways. Genes included
in the nCounter PanCancer Immune Profiling Panel are depicted by pie charts, while genes excluded from the
analysis due to close-to-noise expression levels are depicted as dashed circles (see Methods for details). Each
sector of the pie chart represents a pairwise DGE analysis between NDC, TIF1y, Mi2, and irMyositis subtypes.
Stroke color of pie charts represents the average gene expression across subtypes with respect to the pan-gene
interquartile expression (IQR). Nodes of genes not included in the panel are minimized. CD274, PDCD1,
CTLA4, and their neighbors are highlighted by red labels. Reactome annotation for the interaction types are
depicted by the color and type of edge lines and the network is laid out using a force-directed algorithm in
which stronger and weaker forces reflect intracellular and extracellular interactions (see Methods for details).

information of the gene expression. We tried to alleviate this shortcoming by combining a molecular interaction
analysis with expression correlation tests using immune cell markers provided in the NanoString panel®'. Also,
for lowly expressed genes like IFNA7 and IFNB1 with high variability and borderline detection, bulk analyses
can limit the interpretation of gene expression patterns. Nevertheless, the NanoString nCounter assay has been
shown to be as sensitive as qPCR and their gene expression estimates strongly correlated in previous independent
studies on interferonopathies, blood, and tumor samples, including FFPE biopsies, when performed on the same

total RNA extract®6.
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Fig. 6. Correlation heatmap of immune cell biomarkers and immunotherapy-related genes. Genes that after
post hoc testing showed i) significant regulation in the same direction in the two comparisons of irMyositis
against Mi2 and TIF1y subtypes, and ii) opposite regulation or insignificant DGE, in the two comparisons of
Mi2 and TIF1y subtypes against NDC were selected and defined as irDEGs. Turquoise rectangles correspond
to irDEGs downregulated in irMyositis—DM comparisons, while red ones correspond to upregulated ones.

T cell, B cell, and APC biomarkers were curated according to the whitepaper of the nCounter PanCancer
Immune Profiling Panel and indicated by black rectangles. The green gradient represents the percentile range
in which the average gene expression falls, with respect to the whole-panel expression. Correlation tests were
performed using Spearman correlation and via asymptotic ¢ distribution and Edgeworth series approximations.
Significant correlation values (orange-purple gradient) are reported by asterisks (Benjamini-Hochberg
correction, 5% FDR). An unsupervised cut of the hierarchical clustering with four as desired number of groups
is applied.

To summarize, our results highlighted gene regulations (type-II IFN signaling) and putative effectors (T and
NK cells) that can differentiate irMyositis and DM and be directly affected by ICI therapy, thus offering further
avenues for understanding immunotherapy-induced autoimmune conditions. We think that future studies at
cellular resolution, such as single-cell sequencing or spatial transcriptomics, will allow to better characterize the
differences between myositis subtypes.

Data availability

Data is provided within the manuscript or in supplementary information files (Supplementary_material.zip).
The compressed archive contains RCC files, a condensed sample information file, Reactome-derived gene sets
and multigraphs used for GSEA and network-based analysis (Figs. 2 and 5), complete differential gene expression
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and gene set enrichment analysis results (.xlsx file), graph databases of textmined literature used for cross-com-
parison (tar.gz files), as well as code and additional results described in the manuscript (Supp. Information), in
the form of an RMarkdown file exported in HTML format.
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