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Analysis of a mathematical model
for malaria using data-driven
approach
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Malaria remains one of the leading causes of global morbidity and mortality, with millions of cases

and fatalities annually. Effective intervention strategies by public health authorities and medical
practitioners necessitate a robust understanding of disease transmission dynamics. This study presents
a novel framework for modeling malaria transmission dynamics by integrating temperature and
altitude-dependent transmission functions into a compartmental SIR-SI model. A key innovation lies in
the introduction of a new transmission function that explicitly captures environmental dependencies,
enhancing realism in the modeling of disease spread. We conduct steady-state analysis of the system,
establishing the stability criteria for both disease-free and endemic equilibria through linearization
techniques. We used a novel transmission function to model the dependence on temperature and
altitude. To address the challenge of accurate parameter estimation, we develop a comparative
learning framework using ANNs, RNNs, and PINNs, with PINNs standing out by embedding
epidemiological dynamics into the training process. This enables physics-constrained parameter
inference, significantly enhancing predictive performance over purely data-driven approaches.
Additionally, we implement Dynamic Mode Decomposition (DMD) to derive a data-driven transmission
risk index from infection trajectory data, providing a novel and interpretable metric for real-time risk
assessment.

Keywords Malaria model, Compartmental model, Data-driven methods, Neural network, Dynamic mode
decomposition

According to the 2022 report by the World Health Organization (WHO), Africa remains the region most
severely affected by malaria globally. Notably, 94% of the world’s 233 million malaria cases and 95% of global
malaria-related fatalities (approximately 580,000 deaths) occur on the African continent (Fig. 1). These figures
underscore malaria’s disproportionate mortality burden in Africa, emphasizing the critical need for advanced
modeling frameworks to enhance healthcare professionals’ understanding of disease transmission dynamics.

In epidemiological research, compartmental models based on ordinary differential equations (ODEs) are
widely used to analyze disease spread. These models partition populations into distinct, mutually exclusive
compartments, enabling the mathematical study of transitions between health states (e.g., infection, recovery,
vaccination, or death). Commonly employed frameworks include the SIR (Susceptible-Infected-Recovered),
SIRD (Susceptible-Infected-Recovered-Deceased), and SIRDV (Susceptible-Infected-Recovered-Deceased-
Vaccinated) models, which simulate population flows through ODE-derived rates of change. Early mathematical
models of malaria laid the foundation for understanding transmission dynamics. Ross introduced a two-
compartment model capturing basic interactions between infected humans and mosquitoes but omitted the
parasite’s latent period (see'™*). MacDonald® later incorporated the mosquito latent phase, while Anderson
refined the framework by modeling both human and mosquito susceptibility and infection explicitly. For
detailed developments and comparisons of these models, see®.

In the study by Ogueda et al.’, a variant of the physics-informed neural network (PINN), termed the disease-
informed neural network (DINN), was employed as a deep learning model. The SIRD compartmental model
was utilized to analyze disease dynamics, incorporating the movement of individuals between cities. The
primary objective of this work was to predict various parameters, including the rates of transmission, mortality,
and recovery for the selected cities, as well as the rate of movement of individuals between them. Several studies
have combined compartmental epidemic models with physics-informed and deep learning approaches to model
COVID-19 dynamics. These include applications of PINNSs to SIR-type models for estimating transmission and
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Fig. 1. In 2017, four countries from Africa accounted for 45% of all malaria cases worldwide.

recovery rates® 1%, and the integration of LSTM and DNN with extended compartmental frameworks to forecast

short- and medium-term trajectories across different regions!!~!4. For a broader overview of related statistical
and deep learning models, see!>?. Several studies have also investigated stochastic models for infectious
diseases; for further details, we refer to?6%7..

In the study by Bhuju et al.?%, the temperature dependence of the transmission rate was analyzed using the
SEIR model for humans and the LSEI model for mosquitoes. The authors conducted various mathematical
analyses, including the stability of the disease-free equilibrium and the existence of the endemic equilibrium.
Numerical simulations across different temperature scenarios revealed that temperature significantly influences
the transmission rate. Keno et al.?’ examined the temperature dependency of the transmission parameter using
the SIR model for humans and the SI model for mosquitoes. Their analysis includes assessments of both local
and global stability of equilibrium points. The study demonstrated that when the basic reproduction number is
less than one, the disease-free equilibrium is both locally and globally asymptotically stable. Additionally, the
impact of temperature on transmission dynamics was investigated, reinforcing the conclusion that temperature
plays a critical role in disease transmission.

In the study by Proctor et al.*°, Dynamic Mode Decomposition (DMD) was utilized to incorporate control
effects and extract low-order models from high-dimensional, complex systems. Alla and Kutz*! implemented
DMD to reduce the order of a nonlinear dynamical system. Similarly, Andreuzzi et al.*? extended DMD for
forecasting future states of parametric dynamical systems. Watson et al.** employed a Bayesian time series model
in conjunction with random forests to predict the number of cases and deaths using the SIRD compartmental
model, conducting a 21-day forecast for three cities: New York, Colorado, and West Virginia. Additional
research on mathematical models of malaria and dengue can be found in®~*%. Most existing studies on malaria
transmission dynamics primarily rely on mathematical modeling. In contrast, this work leverages deep learning
methods to analyze the dynamics of malaria transmission. One key advantage of using the neural network
approach is that these models are designed to emulate the human brain, allowing them to capture complex
patterns in data. This capability makes deep learning particularly well-suited for modeling malaria dynamics.

This study employs a feedforward Artificial Neural Network (ANN) to predict trajectories across all five
compartments of the epidemiological model. To infer malaria transmission parameters, we implement a
comparative analysis using three machine learning architectures: ANNs, Recurrent Neural Networks (RNNs),
and Physics-Informed Neural Networks (PINNs). RNNs are uniquely suited for this task due to their capacity
to capture temporal dependencies in sequential data, enabling robust forecasting by leveraging historical trends.
PINNs further enhance parameter estimation by integrating domain-specific physical laws-derived from the
governing equations of the SIR-SI system-directly into the neural networK’s loss function, ensuring biologically
plausible outputs. For risk quantification, Dynamic Mode Decomposition (DMD) is applied to infected
population trajectories; unlike conventional deep learning methods, DMD operates as a data-driven modal
decomposition technique, extracting dominant spatial-temporal patterns to characterize transmission risks
without requiring a priori mechanistic assumptions. Central to this analysis is the multivariate environmental
dependence of the transmission rate, which is rigorously evaluated through the concurrent effects of temperature
and altitude-a critical advancement over prior univariate approaches.

The remainder of this work is structured as follows: Section Model formulation introduces the mathematical
formulation of the compartmental epidemiological model, incorporating environmental dependencies such as
temperature and altitude into the transmission dynamics. Section Data-Driven Methods details the analytical
and computational framework, beginning with the problem statement, followed by methodology encompassing
steady-state stability analysis, parameter estimation using artificial neural networks (ANNs), recurrent neural
networks (RNNs), and physics-informed neural networks (PINNs), and concluding with results evaluating
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Fig. 2. Schematic diagram of SIR-SI system.

Compartment Symbol

Explanation

Sh

It represents the section of the human population who are susceptible to malaria

Iy,

It represents the section of humans who are infected with malaria

Ry

It represents the section of humans who have recovered from malaria

Sm

It represents the section of mosquitoes that are susceptible to the malaria-causing parasite

I'ITL

It represents the section of mosquitoes that are infected with the malaria-causing parasite

Table 1. Interpretation of compartments.

trajectory predictions and risk quantification via dynamic mode decomposition (DMD). Finally, Section
Concluding remarks synthesizes the findings, discusses their implications for malaria mitigation strategies, and
proposes future research directions to enhance model generalizability and real-world applicability.

Model formulation
This section presents a compartmental epidemiological model to capture the interdependent dynamics of
malaria transmission between human and mosquito populations, a necessity given the disease’s reliance on
cross-species interaction. The human population is divided into three compartments: susceptible (S3), infected
(In), and recovered (R},). In parallel, the mosquito population is categorized into susceptible (Sr,) and infected
(Im) compartments. The model accounts for bidirectional transmission mechanisms: infected mosquitoes (/)
transmit the parasite to susceptible humans (S), increasing the I, population, while infected humans (1)
subsequently infect susceptible mosquitoes (Sy,), driving the rise of I,,. These interactions are governed by
density-dependent transmission rates, reflecting real-world contact patterns. The model assumes constant birth
and death rates, homogeneous mixing of the population, and no demographic or spatial heterogeneity. Figure 2
schematically represents the coupled transmission pathways, emphasizing the feedback loop central to malaria’s
persistence.

For the human population, we consider the standard SIR model, and for the mosquito population, we
consider the SI model. The following is the system of differential equations.

dSh BrSnlm
—TN,, — 2rondm
i nNn N, 1hSh
dIh 7/BhShI"L
A N, el
dRp
- = LIL - ) 1
g~ dn = Ry (1)
dt N‘"L H 5
dIm _BmSmI}L _ I
dt ~  Npn mem

The model used in this work is the SIR-SI model. The SIR model is used for the human population, and the SI
model is used for the mosquito population. Table 1 and 2 explain the compartments and the parameters used.
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Compartment Symbol | Explanation

Ty Birth rate of the humans

Ny, Total human population

Bh Transmission rate of malaria in humans
wh Mortality rate of humans due to malaria
Yh Recovery rate of humans

T Birth rate of mosquitoes

Bm Transmission of malaria in mosquitoes
m Mortality rate of mosquitoes

Ny, Total population of mosquitoes

Table 2. Parameters description.

Disease-free steady state analysis
In this section, we perform the steady-state analysis. Steady-state solutions play an important role when the
analytical solution is not known, and we want to study the qualitative properties of solutions.

We define the basic reproduction number for the model (1) as

Ry = ﬁhﬁ'mrhrrn
0= "5
Hh Wim (Hh + 'Yh)

Observe that the basic reproduction number depends on recruitment rates, infection rates, recovery rates, and
mortality rates.

Theorem 1 If Ry < 1, the disease-free steady state is locally stable.

Proof For the analysis of the disease-free steady state, we need to equate the infected and recovered populations
of both species to zero. Therefore, we obtain S, = %, I, =0,Ry, =0,5, = E—m Iy =

m

Dividing the first three equations IV}, and the last two equations with N, in (1), we get

dsS
7; =I'y — mﬂhsh[rn - MhSh
dIp,
dt} :mﬂhsh['m - (’Yh - ,uh)[h
dRp
=t Iy — R 2
dt Yhih Hhith ( )
dSm ﬂmSm]h
:F’m - - - 'mS'rrL
dt m .
d[m _Bmsmlh _ I
a ~—  m fim fm-

Now our task is to linearize the system (2) around the disease-free steady state. After linearization, we obtain
the following system

dSh Ph

Ph_1, — Ly -
It h— mpBh o 1nSh
dly, Iy

— = — Ly — I
7 mpBh o (vn + pn)In

dRp

—— =yl — un R
i Yhlh — phEin

ds r

—_ =I'y — Bm i In, — NmSm
dt Mfbm

Al TwBmlIn B I
At~ mpm mame

Constructing the Jacobian matrix, we get
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mpBrTH
— i 0 0 0 —#
0 —(w+mn) O 0  moemn
J = 0 Yh —HUh 0 0
—BmTm
0 Bl 00

The characteristic polynomial of the above matrix is

/Bh,ﬁmrhrm
S = =N+ pn) A+ pn) (A + pm) [(/\ + pn ) (A + pin + ) — e |
For the system to be stable, all the eigenvalues must have negative real parts. It is clear that three of the eigenvalues
are negative; we need to check the roots of the quadratic polynomial for the remaining two eigenvalues. By
solving the quadratic equation, we get the roots as

—(v+ ph + pm) + \/(,um + pun + ¥n)? — At (i + ) — 2elminlm

HpHm
2
—(y + bn + pm) — \/(um + pn +yR)? — 4(pm (pn + 1) — 76’1%:5;”)
5 .

If we observe, the second root is always negative, and thus we need to find out the condition for which the first
root is negative, and that is

/Bmﬁhrmrh >
Hh m

Pom (i + YR) — 0.

Rearranging the above inequality, we get the expression

ﬁhﬁmrhrm

_LEhPmihim
fon i (fen + Yh)

So,if Ry < 1, it will ensure us that the disease-free steady state is stable. O
Endemic steady state analysis

In this subsection, we aim to study the stability of the endemic steady-state.
The given system of equations is

dSh Fh
oh Dy — mBy— T — S
7 r—mpBh o HrSh
dly, I'n
Eh By T, — I
7 mpn o (vn + pn)In
dRh
=vuIn — un R
dt Yhih Hhlth
dSm T
— =I'nu — Bm Iy — mSm
dt A M hTH
dI7n FnL BnL Ih
——mPmih .
dt Mhm,

Before proceeding with the next theorem, it is essential to define the following quantities

_ Bl Brly
b=pn+ N, THetyd i
-~ Bnln, Brlj, B}, Brlmy  BmBnSmSh
c=(un + N, )(pn + ) + (o + 7)(7Nm + pm) + (Tm + pim) (n + N, ) NN
-~ Brlm Brly B BrSu S BmBiSwSily,
d= (llzh + Nh (Mh + ’Y)( Nm + TIL) NmNh + NmN;; 5

where Sy, Sh, I, I, are the non trivial equilibrium solutions.
Theorem 2 If Ry > landb,c,d,bc — d > 0, the endemic steady state is locally stable.

Proof The equilibrium points will be obtained by equating all of the above time derivatives to zero, and solving
them for non-trivial solutions, we obtain the solutions as
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* Nh('Y“!‘Mh)(Mmqu_%)
Sh = T
B (1 Nip + Ll

_ NthﬂmNh(RO - 1)

I; =
B (nNn + 7Fm’x’:"ﬁh)
R = Nth,U‘m'Vh(RO - 1)
h = Ty N Br
IBm(NhNh + T)
« Nmﬂm(,uthh + Fm’iv%ﬁh)
Sm = N. L NpBm
B (pom Ny, + —bmee )
J— Nth,um,Ufh(RO - 1)

m TpNpBm \”
BlL(MmNm+ ﬁerlylh )

Linearizing the model (2) around the endemic equilibrium point, we get the following system

% —I'WN — %(s;zm +I,Sh — SiTn) — pnSh
% :%(Si[m + 15 Sn = SiLy) =y — pndy,
% =vIn — pn R

B N~ %ﬂn(s:nfh + S D) = fim Sim
% :J’%(Smh + S dn*) — I

Writing the Jacobian matrix, we get

1 85"
—Em 0 0 0 O
Bn s, Bn S
s —(m+mpn) 0O 0 e
J= 0 Y —pn 0 0
0 —Gom 0 SRR 0
BrSm Pn S,
0 A 0 A —lm

The characteristic polynomial of the above matrix is

A+ pn +

Bl
Nh

Bm I _ BmBrSnSh B B Sy L S,
} [(A + pn +) (A + N + fm NoN,, + NZN,, .

m

f(/\)=—(>\+#h)(>\+#m)<

From the above equation, we can see that we have two linear factors and a cubic factor. To analyze the cubic
factor, let us state the following lemma:

Lemma 1 Let f(x) = ax® 4 bx® + cx + d be a cubic polynomial. For f(x) to have all negative roots or complex
roots with negative real parts, the following conditions are necessary:

a>0,b>0,¢>0,d>0,bc—ad>D0.
Now, by using the above-stated lemma, we can arrive at our required result. O

Remark 1 Equilibrium points are crucial for evaluating malaria control efforts. A disease-free equilibrium indi-
cates that transmission can be halted through vector control and drug administration, while an endemic equilib-
rium suggests sustained transmission, requiring ongoing interventions. Stability analysis helps identify critical
thresholds, such as intervention coverage or mosquito density, to guide effective control strategies.

Numerical validation of the stability theorems
In the previous section, we established that the disease-free steady state is attained when Ro < 1. Accordingly,
we selected Rp = 0.04,0.16, and 0.51, ensuring Ry < 1. As shown in Figs. 3, 4, and 5, the infected populations
of humans and mosquitoes decline over time.

From Figs. 3, 4, and 5, we observe that the proposed model for malaria spread exhibits stable dynamics
when the reproduction number remains below 1. Furthermore, as the reproduction number increases, the peak
infection level intensifies, indicating a heightened disease burden within the population.
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SIR-SI Malaria Model

Infected Humans Over Time RO = 0.04 Infected Mosquitoes Over Time
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Fig. 3. For very small value of Ry = 0.04, infected population converges to zero.
SIR-SI Malaria Model
Infected Humans Over Time RO =0.16 Infected Mosquitoes Over Time
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Fig. 4. For Ry = (.16, firstly infected population increases and then diminishes to zero.

Importance of steady-state analysis and equilibrium points

Steady-state analysis in malaria modeling provides insights into the long-term behavior of transmission
dynamics, focusing on equilibrium points where the rate of new infections and recoveries stabilizes. These
equilibrium points are critical in understanding malaria persistence and eradication potential in specific
regions. Identifying whether the system reaches a disease-free equilibrium or a sustained endemic state allows
for targeted intervention strategies.

For malaria control, equilibrium points are essential for assessing the effectiveness of interventions. A disease-
free equilibrium indicates that malaria transmission can be halted, typically through a combination of vector
control measures such as insecticide-treated nets, indoor spraying, and mass drug administration. Conversely,
an endemic equilibrium suggests that transmission is sustained within the population despite interventions,
indicating that continuous, long-term strategies such as routine treatment, surveillance, and seasonal control
programs are needed to keep malaria prevalence low. Stability analysis of these equilibrium points helps to
identify critical thresholds, such as coverage levels for interventions or mosquito density, that determine whether
malaria transmission will be suppressed or continue to persist, guiding the implementation of more effective
control measures.

,Bhﬂmrhrm
[h i (e =+ Yn)
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SIR-S| Malaria Model

Infected Humans Over Time RO = 0.51 Infected Mosquitoes Over Time
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Fig. 5. Behaviour of infected population for Ry = (0.51. It reveals that the number of infected mosquitoes
initially increases for a brief period before diminishing and eventually converging to zero.

This inequality indicates that if the basic reproduction number Ry is less than 1, it ensures that the disease-free
steady state is stable, further supporting the potential for malaria eradication through effective control strategies.

Temperature and altitude dependence of the transmission rate
Several factors influence malaria transmission; however, Patz et al.** identify temperature and altitude as among
the most significant. Therefore, we model transmission as a function of temperature and altitude as follows:

_(T-25)2 n2 2

BT =foe 7 o E(1—c &), G)

where (o is the transmission constant of the region, T is the temperature of the region, # is the altitude, 7 and
¢ are the constants associated with the region’s temperature and height, respectively. The Gaussian function
is centered at 25°C, as this temperature is biologically optimal for mosquito survival, leading to maximum
transmission. This aligns with the findings of Shapiro et al.*>, which also identify a similar optimal temperature

for malarlal mosqujto breeding. ) 2

_hZ _hZ
Heree  7*  isused to model the temperatureande ¢° (1 —e ¢ )isused to model the height. Malaria

transmission will be very minimal when the temperature is either extremely high or it is extremely low and

thus to model this variation, the Gaussian function is used and the reason for shifting it by 25 is because the

optimum temperature for mosquito’s existence and malaria transmission is 25 °C. Also, malaria transmission

is completely zero when the altitude is zero since there won’'t be any mosquitoes in the sea and in the same way

when the altitude is extremely high again the transmission is completely zero since there are no mosquitoes in

the space and thus to model both of these conditions the negative exponential function is used in this manner.
Assuming the temperature is from 77 to 7% and the height is from h; to hg, we can write

T2 ph2 (1-25)2 2 _ n2
Bavg = / / e 7 e €(1—e €)dhdT. (4)
™ Jh

Here, the effect of transmission rate is studied (Figs. 6 - 8) by changing the temperature values for a fixed height.
The parameters considered are the following: Bo = 10, and for human we have taken 77 = 200, { = 20000 and
for mosquitoes, n = 400, £ = 40000. The different temperature values which we used are 25°, 30°, 35°, 40°,
45°.
From Figs. 9 to 11, we observe that the transmission rate is highest when the altitude is 150. This represents
the maximum value among the altitudes considered. Therefore, we conclude that h = 150 may serve as a
h h

threshold value for altitude in the model. The function f(h) = e & 1- 67?) achieves its highest value

when h = £/In(2), and thus the transmission rate increases as the height value approaches h = £4/In(2).

By substituting both values of £ and taking the average, we get approximately 142.1; thus, the optimal value for
altitude can be concluded to be in the range 140 — 150, and since it can be observed that the trajectory for all of
these values is nearly the same.
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Fig. 6. At a constant altitude of 75 meters, temperature variations above and below 25°C were rigorously
assessed to determine their influence on transmission dynamics. Our analysis reveals that 25°C serves as
the optimal temperature for maximizing transmission rates. Analysis demonstrates a consistent decline in
both infected mosquito and human populations as temperatures rise beyond this threshold. Furthermore,
population trends for infected mosquitoes and humans align with a Gaussian distribution, reflecting a

symmetrical, bell-shaped relationship with temperature. These findings underscore the critical role of

temperature regulation in transmission mitigation strategies.

Data-driven methods

Unlike conventional epidemic modeling approaches grounded in deterministic differential equations, this
work adopts a data-driven paradigm to analyze malaria transmission dynamics. Our methodology integrates
machine learning techniques, specifically artificial neural networks (ANNs), recurrent neural networks (RNNs),
and physics-informed neural networks (PINNs), to infer system parameters and predict trajectories directly
from observational data. This shift eliminates the need for explicit implementation of complex mathematical
formulations; instead, neural architectures autonomously learn latent patterns and adapt their computations
through iterative training. We systematically evaluate these architectures for parameter estimation, with PINNs
further constrained by epidemiological principles to ensure biological fidelity. The derived parameters are then
used to forecast the infection trajectories, demonstrating how hybrid data-driven and mechanistic approaches
can advance predictive modeling of malaria transmission under heterogeneous environmental conditions.

Parameter estimation
An important factor influencing disease transmission is the parameters associated with transmission dynamics.
Understanding these parameters is crucial for medical professionals, as it allows them to assess the severity of the
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Fig. 7. When the altitude was maintained at 100 m, temperature variations were analyzed to assess their
impact on transmission dynamics. The findings confirm that 25°C is the optimal temperature for maximizing
the transmission rate. Additionally, the population density of infected mosquitoes was higher compared to an
altitude of 75 m, though the variation was marginal.

disease and implement appropriate interventions. This section presents three distinct neural network models.
Artificial neural networks (ANNS), recurrent neural networks (RNNs), and physics-informed neural networks
(PINNS) to estimate these parameters. Using the predicted parameters, we can forecast the trajectories of the
various compartments involved in the disease dynamics. We used synthetic data generated from the system
(1) to ensure consistency with the governing equations (critical for PINNs), enable controlled training of ANN
and RNN models, and provide a clean benchmark for comparison using realistic parameters that isolate core
transmission dynamics.

The architecture of Artificial Neural Networks (ANNs) employed in this study consisted of five layers,
including three hidden layers. Each hidden layer comprised 15 dense units utilizing the sigmoid activation
function, while the output layer contained seven dense units without an activation function. The Recurrent
Neural Networks (RNNs) framework implemented in this work featured three layers: an input layer, a dropout
layer, and an output layer. The input layer consisted of 50 Long Short-Term Memory (LSTM) units with the
ReLU activation function, followed by a dropout layer with a 20% dropout rate to mitigate overfitting, and an
output layer with seven dense units without an activation function. The Physics-Informed Neural Networks
(PINNS) architecture closely followed the ANN structure, with the primary distinction being the number of
nodes in the input and output layers, which were set to one and five, respectively. This modification enabled the
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Fig. 8. At a fixed altitude of 125 m, the impact of temperature variations on transmission dynamics was
analyzed. The findings consistently indicate that 25°C remains the optimal temperature for maximizing
the transmission rate. A similar trend was observed, with a slight variation in the population of infected
mosquitoes, reaching its peak at a higher point.

PINNS to incorporate physical constraints into the learning process, enhancing predictive accuracy and model
generalizability.

Since three distinct neural network architectures are utilized in this study, the methodological approach
differs for ANN, RNN, and PINN. For ANN and RNN, both models were trained on a dataset comprising 1000
data points, where the input consisted of the first 10 points of the trajectories for all compartments, and the
output corresponded to the estimated parameters. The estimated parameters from ANN and RNN are shown in
Table 3 and 4. The ANN and RNN models showed poor parameter estimation performance (errors > 200% for
some parameters), highlighting their sensitivity to hyperparameters and training. While tuning might improve
results, it is time-consuming and uncertain. In contrast, the methodology for PINN diverges significantly from
these conventional models, as it does not rely on a predefined training dataset. Instead, an initial set of assumed
parameters is iteratively refined by minimizing the loss function, thereby ensuring convergence to the actual
parameter values through a comparison between the predicted and true trajectories. Here, the input variable
is time, while the output consists of the trajectories of all five compartments. The selection of parameter values
in this preliminary study was deliberately generic to evaluate the PINN framework’s capability in recovering
parameters under idealized conditions. While these values are not empirically derived, this approach allowed
us to assess the algorithm’s performance independently of confounding factors such as data noise or parameter
interdependencies. Moving forward, parameter refinement will be guided by region-specific epidemiological
literature-such as African mosquito mortality rates sourced from the Malaria Atlas Project, and sensitivity
analyses to identify the most influential parameters. The ability of PINNGs to effectively address inverse problems
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Fig. 9. Ata constant temperature of 28°(, altitude variations were studied. Population density trends for
infected mosquitoes and humans exhibit a Gaussian distribution, reflecting a symmetrical, bell-shaped
relationship with altitude. These findings highlight the significant impact of altitude on disease transmission
and emphasize the importance of considering elevation in vector control strategies.

will further facilitate the integration of sparse field data, such as monthly case reports, enabling a more robust
and data-driven parameter estimation process in future research.

For a novel comparison between the models, each model is simulated for 20000 epochs. Details of actual and
predicted parameters are given in the tables below.

From Fig. 12 and Fig. 13, it can be observed that the predictions made by PINN closely align with the actual
values, demonstrating its effectiveness in parameter estimation for the SIR-SI compartment model with trajectory
prediction. Additionally, the trend analysis reveals that PINN effectively captures the underlying dynamics of
the system, accurately reflecting the growth and decline patterns of infections over time. The model consistently
follows the expected trajectory, reinforcing its reliability in forecasting epidemic progression.

PINNSs outperform traditional ANN and RNN models by integrating epidemiological equations directly into
the learning process. Unlike purely data-driven approaches, PINNs enforce physical consistency through a dual
loss function-combining data loss with physics-informed loss-leading to better generalization, especially under
sparse data. This makes them particularly effective for parameter estimation and predictive modeling in disease
dynamics, where data may be limited but underlying processes are well-understood. Loss function in PINNs
involves both data loss and physics loss, which gives better estimates for parameters. Mathematically,

gphysics = Z |y(tl)|2 (5)
Lata =Y Jua(t:) — ui™[’ ©)
L = )\physics:fphysics + )\dataozﬂdata (7)
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Fig. 10. With the temperature maintained at 35°C, the impact of altitude fluctuations on transmission
dynamics was further examined. A similar trend was observed; however, at 35°C, the peak population of
infected mosquitoes occurred at lower altitudes.

where:

o Lphysics - Physics-informed loss, ensuring that the learned function satisfies the governing physical laws.
o Zjata - Dataloss, ensuring that the learned function closely matches observed data.

o £ - Total loss function combining physics and data losses.

o Z(ti) - Residual of the governing physical equation at time ;.

« ug(t;) - Neural network approximation of the true solution at time ;.

o ul™€ - True observed data value at time #;.

o Aphysics - Weighting factor for the physics-informed loss.

o Adata - Weighting factor for the data loss.

The parameters predicted by PINNS for all five compartments are presented in Table 5. The temporal evolution
of the human population is depicted in Fig. 12, while the mosquito population dynamics are shown in Fig. 13.
Previous studies have predominantly relied on traditional time-series or statistical methods, such as LSTM,
for epidemic forecasting. For example, Wang et al.%¢ applied LSTM to predict COVID-19 trends, Chandra et
al.¥” explored ARIMA for dengue incidence modeling, Yadav et al.*® used regression frameworks for malaria
risk assessment, and Elshafee et al.*’ employed Bayesian statistical approaches. In contrast to these data-driven
methods, our work leverages PINNs to integrate mechanistic epidemiological principles (e.g., transmission
dynamics and compartmental interactions) directly into the parameter estimation process. This physics-
informed approach achieves minimal error across nearly all compartments (Table 5), demonstrating its ability
to reconcile observed data with domain knowledge. These results highlight the advantages of PINNs for
epidemic modeling, as they inherently encode the biophysical processes governing disease spread, enabling
robust parameter inference even with sparse or noisy datasets. While Physics-Informed Neural Networks
(PINNSs) showed promising results in our study, it is important to acknowledge their limitations. The superior
performance of PINNGs is largely attributed to the integration of known physical laws into the learning process.
However, in scenarios where the governing dynamics are poorly understood, highly stochastic, or where the
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Fig. 11. The impact of altitude variations on transmission dynamics was further analyzed at a fixed
temperature of 42°C. In this case, a more significant decline in the population of infected mosquitoes was
observed. These findings highlight the critical role of altitude in shaping transmission patterns and optimizing
intervention strategies.

Parameter Predicted Value | Actual Value | Relative Error (%)
Birth rate of humans 0.38273 0.40000 4.32

Transmission rate of humans 0.28249 0.30000 5.84

Death rate of humans 0.09973 0.10000 0.27

Recovery rate of humans 0.04640 0.01000 364.01

Birth rate of mosquitoes 0.07613 0.05000 5225
Transmission rate of mosquitoes | 0.01045 0.02000 47.73

Death rate of mosquitoes 0.05757 0.04000 43.92

Table 3. Comparison of predicted and actual values with relative errors for ANN.

data-generating process deviates significantly from the assumed model structure, as may be the case with real,
noisy malaria data, PINNs may underperform compared to conventional data-driven approaches like ANN
or RNN. Thus, their applicability is inherently constrained by the availability and accuracy of the underlying
physical model.

Finding the risk of a disease

The most important aspect of a disease is the determination of risk, which we define as the number of infected
people in a particular region. Whenever there is a disease outbreak in a country, there are some regions where
there is more risk compared to the other regions; thus, it is essential to calculate the risk of every region. This
problem statement is addressed using the method of DMD (dynamic mode decomposition), and the main
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Parameter Predicted Value | Actual Value | Relative Error (%)
Birth rate of humans 0.19740 0.40000 50.65
Transmission rate of humans 0.18619 0.30000 37.94

Death rate of humans 0.34348 0.10000 243.48

Recovery rate of humans 0.21954 0.01000 2095.38

Birth rate of mosquitoes 0.18898 0.05000 277.96
Transmission rate of mosquitoes | 0.24995 0.02000 1149.77

Death rate of mosquitoes 0.38605 0.04000 865.13

1000

800

600

Population

400 |

200 -

Table 4. Comparison of predicted and actual values with relative errors for RNN.
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Fig. 12. Prediction made by PINNs for the human population.
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Fig. 13. Prediction made by PINNs for the mosquito population.

reason for using this method is that DMD can make exact predictions from raw data, unlike other deep learning
methods. The complete methodology of the problem statement can be seen in Fig. 14.

Dynamic Mode Decomposition (DMD) extracts spatiotemporal coherent structures from high-dimensional
dynamical systems>*-32, Given a sequence of m + 1 state vectors x;, € R™ sampled at intervals A¢, we construct
snapshot matrices:

X =[x1,%2,..,Xm]|, X' =[X2,X3,...,Xm+1] (8)

DMD seeks a best-fit linear operator A € R™*™ satisfying: X' &~ AX. The solution proceeds via truncated
singular value decomposition (SVD):
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Parameter Predicted Value | Actual Value | Relative Error (%)
Birth rate of humans 0.39200 0.40000 2.00

Transmission rate of humans 0.28186 0.30000 6.05

Death rate of humans 0.09793 0.10000 2.07

Recovery rate of humans 0.00949 0.01000 5.07

Birth rate of mosquitoes 0.04593 0.05000 8.14

Transmission rate of mosquitoes | 0.01969 0.02000 1.56

Death rate of mosquitoes 0.03600 0.04000 10.01

Table 5. Comparison of predicted and actual values with relative errors for PINN.

Data set preparation

Defining the SIR-SI
dynamical system.

l

Country wise analysis

All trajectories are
taken, but for each
country 4 regions are
considered.

l

Continent analysis

All trajectories are
taken as a 2-D matrix.

Each country is divided into
4 parts and then trajectories
are generated using Runge
kutta method for different
initial conditions.

Each country’ data is
stored in the form of a 2-D
matrix and DMD is
performed on the matrix
to find out of the average
of the DMD peaks.

DMD is performed on this
2-D matrix to find out the
eigenvalues and
eigenvectors.

l

l

Each of the trajectory is
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excel sheet, where each
column stores a trajectory.
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the country and the
representation is shown in
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plotted to understand the
stability of the dynamics.

the african continent map.

Fig. 14. Flow chart of methodology.

X~ U, VS
A=Urx'v,et

(rank-r approximation)

(reduced operator)

Solving the eigenvalue problem for A : AW = WA, A =diag(\;) yields full-state DMD modes:

®=X'V,.x7'w )

The continuous-time eigenvalues w; = In(\;)/At determine mode dynamics (growth/decay rates and
frequencies). The reconstructed solution is: x(t) &~ » 7| ¢; exp(wit)bi, b= ®Fxy, where ¢; are columns
of ® and b contains mode amplitudes.

In this work, Dynamic Mode Decomposition (DMD) is used to calculate the disease risk in a particular
region. DMD provides early detection by identifying patterns in time-series data, facilitating timely intervention.
Additionally, it performs dimensionality reduction by extracting dominant modes from large datasets,
preserving essential dynamical features while reducing computational complexity. Its forecasting capability
allows for accurate predictions of disease progression, aiding in proactive decision-making. Moreover, while
standard DMD operates linearly, extended DMD (eDMD) can approximate nonlinear disease dynamics, making
it adaptable to complex epidemiological models. DMD also captures the oscillations of the dynamics, and by
analyzing its peak values, we obtain a measure of risk. The DMD plot and the eigenvalue spectrum can be found
in Fig. 15.

From the eigenvalue spectrum, we can observe that all the points are either on or within the unit circle. This
shows that the transmission of malaria in Africa is stable. African map with the corresponding color coding
based on the risk can be found in Fig. 16.

From Sub Fig. 15b we can observe that the disease spread is not severe since all of the infections are within
the unit circle. DMD extracts governing dynamics directly from observational data, making it advantageous
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Fig. 16. A map of Africa with color coding representing risk levels, where green indicates the lowest risk and
red denotes the regions with the highest risk.
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for rapidly evolving outbreaks where mechanistic understanding is incomplete®. Unlike machine learning
approaches (e.g., LSTM), which excel at long term prediction but acts as ’black boxes, DMD provides
interpretable spatial-temporal modes, albeit with trade-offs in modeling strongly nonlinear interactions. This
balance positions DMD as a complementary tool for real-time risk assesment alongside established methods.

Concluding remarks

In this work, an attempt is made to understand the dynamics of malaria transmission using various mathematical
and machine-learning techniques. The proposed theorems related to steady states were validated using
numerical simulations. We also examined the influence of temperature and altitude on malaria transmission.
Subsequently, parameter estimation was performed using three neural network architectures—ANNs, RNNs,
and PINNs-where the best-performing model’s predicted parameters were utilized to forecast the trajectories of
all compartments. Finally, the study assessed the measure of risk using Dynamic Mode Decomposition (DMD),
providing valuable insights into malaria dynamics and prediction.

While these results are preliminary and based solely on synthetic data, they demonstrate the potential of the
proposed methodology as a step toward developing actionable tools for policymakers. By accurately quantifying
transmission dynamics in controlled settings, this approach lays the groundwork for future integration with real-
world data. In particular, incorporating PINNs with real-time surveillance systems could, in principle, support
the identification of transmission hotspots and inform scenario-based planning under climatic uncertainties.
Such extensions, once validated with empirical data, may ultimately assist in optimizing resource allocation and
enhancing outbreak preparedness in climate-sensitive regions.

In the future, we aim to enhance malaria transmission modeling by incorporating advanced physics-
informed machine learning techniques. Sparse Identification of Nonlinear Dynamics (SINDy) can help discover
parsimonious governing equations from data, potentially uncovering key drivers of transmission. Neural
ODEs provide a flexible framework to model continuous-time disease dynamics from irregular time series
data. Variants such as VPINNs (Variational PINNs) and Recurrent PINNs can improve model accuracy and
scalability, particularly in capturing spatiotemporal variability and memory effects.

Data availability
This study uses only synthetic data, which was generated for the purpose of this research. The synthetic data are
not based on real-world observations and can be made available upon request to the corresponding author at :
a-tridane@uaeu.ac.ae
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