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Malaria remains one of the leading causes of global morbidity and mortality, with millions of cases 
and fatalities annually. Effective intervention strategies by public health authorities and medical 
practitioners necessitate a robust understanding of disease transmission dynamics. This study presents 
a novel framework for modeling malaria transmission dynamics by integrating temperature and 
altitude-dependent transmission functions into a compartmental SIR-SI model. A key innovation lies in 
the introduction of a new transmission function that explicitly captures environmental dependencies, 
enhancing realism in the modeling of disease spread. We conduct steady-state analysis of the system, 
establishing the stability criteria for both disease-free and endemic equilibria through linearization 
techniques. We used a novel transmission function to model the dependence on temperature and 
altitude. To address the challenge of accurate parameter estimation, we develop a comparative 
learning framework using ANNs, RNNs, and PINNs, with PINNs standing out by embedding 
epidemiological dynamics into the training process. This enables physics-constrained parameter 
inference, significantly enhancing predictive performance over purely data-driven approaches. 
Additionally, we implement Dynamic Mode Decomposition (DMD) to derive a data-driven transmission 
risk index from infection trajectory data, providing a novel and interpretable metric for real-time risk 
assessment.

Keywords  Malaria model, Compartmental model, Data-driven methods, Neural network, Dynamic mode 
decomposition

According to the 2022 report by the World Health Organization (WHO), Africa remains the region most 
severely affected by malaria globally. Notably, 94% of the world’s 233 million malaria cases and 95% of global 
malaria-related fatalities (approximately 580,000 deaths) occur on the African continent (Fig. 1). These figures 
underscore malaria’s disproportionate mortality burden in Africa, emphasizing the critical need for advanced 
modeling frameworks to enhance healthcare professionals’ understanding of disease transmission dynamics.

In epidemiological research, compartmental models based on ordinary differential equations (ODEs) are 
widely used to analyze disease spread. These models partition populations into distinct, mutually exclusive 
compartments, enabling the mathematical study of transitions between health states (e.g., infection, recovery, 
vaccination, or death). Commonly employed frameworks include the SIR (Susceptible-Infected-Recovered), 
SIRD (Susceptible-Infected-Recovered-Deceased), and SIRDV (Susceptible-Infected-Recovered-Deceased-
Vaccinated) models, which simulate population flows through ODE-derived rates of change. Early mathematical 
models of malaria laid the foundation for understanding transmission dynamics. Ross introduced a two-
compartment model capturing basic interactions between infected humans and mosquitoes but omitted the 
parasite’s latent period (see1–4). MacDonald5 later incorporated the mosquito latent phase, while Anderson 
refined the framework by modeling both human and mosquito susceptibility and infection explicitly. For 
detailed developments and comparisons of these models, see6.

In the study by Ogueda et al.7, a variant of the physics-informed neural network (PINN), termed the disease-
informed neural network (DINN), was employed as a deep learning model. The SIRD compartmental model 
was utilized to analyze disease dynamics, incorporating the movement of individuals between cities. The 
primary objective of this work was to predict various parameters, including the rates of transmission, mortality, 
and recovery for the selected cities, as well as the rate of movement of individuals between them. Several studies 
have combined compartmental epidemic models with physics-informed and deep learning approaches to model 
COVID-19 dynamics. These include applications of PINNs to SIR-type models for estimating transmission and 
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recovery rates8–10, and the integration of LSTM and DNN with extended compartmental frameworks to forecast 
short- and medium-term trajectories across different regions11–14. For a broader overview of related statistical 
and deep learning models, see15–25. Several studies have also investigated stochastic models for infectious 
diseases; for further details, we refer to26,27..

In the study by Bhuju et al.28, the temperature dependence of the transmission rate was analyzed using the 
SEIR model for humans and the LSEI model for mosquitoes. The authors conducted various mathematical 
analyses, including the stability of the disease-free equilibrium and the existence of the endemic equilibrium. 
Numerical simulations across different temperature scenarios revealed that temperature significantly influences 
the transmission rate. Keno et al.29 examined the temperature dependency of the transmission parameter using 
the SIR model for humans and the SI model for mosquitoes. Their analysis includes assessments of both local 
and global stability of equilibrium points. The study demonstrated that when the basic reproduction number is 
less than one, the disease-free equilibrium is both locally and globally asymptotically stable. Additionally, the 
impact of temperature on transmission dynamics was investigated, reinforcing the conclusion that temperature 
plays a critical role in disease transmission.

In the study by Proctor et al.30, Dynamic Mode Decomposition (DMD) was utilized to incorporate control 
effects and extract low-order models from high-dimensional, complex systems. Alla and Kutz31 implemented 
DMD to reduce the order of a nonlinear dynamical system. Similarly, Andreuzzi et al.32 extended DMD for 
forecasting future states of parametric dynamical systems. Watson et al.33 employed a Bayesian time series model 
in conjunction with random forests to predict the number of cases and deaths using the SIRD compartmental 
model, conducting a 21-day forecast for three cities: New York, Colorado, and West Virginia. Additional 
research on mathematical models of malaria and dengue can be found in34–43. Most existing studies on malaria 
transmission dynamics primarily rely on mathematical modeling. In contrast, this work leverages deep learning 
methods to analyze the dynamics of malaria transmission. One key advantage of using the neural network 
approach is that these models are designed to emulate the human brain, allowing them to capture complex 
patterns in data. This capability makes deep learning particularly well-suited for modeling malaria dynamics.

This study employs a feedforward Artificial Neural Network (ANN) to predict trajectories across all five 
compartments of the epidemiological model. To infer malaria transmission parameters, we implement a 
comparative analysis using three machine learning architectures: ANNs, Recurrent Neural Networks (RNNs), 
and Physics-Informed Neural Networks (PINNs). RNNs are uniquely suited for this task due to their capacity 
to capture temporal dependencies in sequential data, enabling robust forecasting by leveraging historical trends. 
PINNs further enhance parameter estimation by integrating domain-specific physical laws–derived from the 
governing equations of the SIR-SI system–directly into the neural network’s loss function, ensuring biologically 
plausible outputs. For risk quantification, Dynamic Mode Decomposition (DMD) is applied to infected 
population trajectories; unlike conventional deep learning methods, DMD operates as a data-driven modal 
decomposition technique, extracting dominant spatial-temporal patterns to characterize transmission risks 
without requiring a priori mechanistic assumptions. Central to this analysis is the multivariate environmental 
dependence of the transmission rate, which is rigorously evaluated through the concurrent effects of temperature 
and altitude–a critical advancement over prior univariate approaches.

The remainder of this work is structured as follows: Section Model formulation introduces the mathematical 
formulation of the compartmental epidemiological model, incorporating environmental dependencies such as 
temperature and altitude into the transmission dynamics. Section Data-Driven Methods details the analytical 
and computational framework, beginning with the problem statement, followed by methodology encompassing 
steady-state stability analysis, parameter estimation using artificial neural networks (ANNs), recurrent neural 
networks (RNNs), and physics-informed neural networks (PINNs), and concluding with results evaluating 

Fig. 1.  In 2017, four countries from Africa accounted for 45% of all malaria cases worldwide.
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trajectory predictions and risk quantification via dynamic mode decomposition (DMD). Finally, Section 
Concluding remarks synthesizes the findings, discusses their implications for malaria mitigation strategies, and 
proposes future research directions to enhance model generalizability and real-world applicability.

Model formulation
This section presents a compartmental epidemiological model to capture the interdependent dynamics of 
malaria transmission between human and mosquito populations, a necessity given the disease’s reliance on 
cross-species interaction. The human population is divided into three compartments: susceptible (Sh), infected 
(Ih), and recovered (Rh). In parallel, the mosquito population is categorized into susceptible (Sm) and infected 
(Im) compartments. The model accounts for bidirectional transmission mechanisms: infected mosquitoes (Im) 
transmit the parasite to susceptible humans (Sh), increasing the Ih population, while infected humans (Ih) 
subsequently infect susceptible mosquitoes (Sm), driving the rise of Im. These interactions are governed by 
density-dependent transmission rates, reflecting real-world contact patterns. The model assumes constant birth 
and death rates, homogeneous mixing of the population, and no demographic or spatial heterogeneity. Figure 2 
schematically represents the coupled transmission pathways, emphasizing the feedback loop central to malaria’s 
persistence.

For the human population, we consider the standard SIR model, and for the mosquito population, we 
consider the SI model. The following is the system of differential equations.

	

dSh

dt
=ΓhNh − βhShIm

Nh
− µhSh

dIh

dt
=βhShIm

Nh
− (γh + µh)Ih

dRh

dt
=γhIh − µhRh

dSm

dt
=ΓmNm − βmSmIh

Nm
− µmSm

dIm

dt
=βmSmIh

Nm
− µmIm.

� (1)

The model used in this work is the SIR-SI model. The SIR model is used for the human population, and the SI 
model is used for the mosquito population. Table  1 and  2 explain the compartments and the parameters used.

Compartment Symbol Explanation

Sh It represents the section of the human population who are susceptible to malaria

Ih It represents the section of humans who are infected with malaria

Rh It represents the section of humans who have recovered from malaria

Sm It represents the section of mosquitoes that are susceptible to the malaria-causing parasite

Im It represents the section of mosquitoes that are infected with the malaria-causing parasite

Table 1.  Interpretation of compartments.

 

Fig. 2.  Schematic diagram of SIR-SI system.
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Disease-free steady state analysis
In this section, we perform the steady-state analysis. Steady-state solutions play an important role when the 
analytical solution is not known, and we want to study the qualitative properties of solutions.

We define the basic reproduction number for the model (1) as

	
R0 = βhβmΓhΓm

µhµ2
m(µh + γh) .

Observe that the basic reproduction number depends on recruitment rates, infection rates, recovery rates, and 
mortality rates.

Theorem 1  If R0 < 1, the disease-free steady state is locally stable.

Proof  For the analysis of the disease-free steady state, we need to equate the infected and recovered populations 
of both species to zero. Therefore, we obtain Sh = Γh

µh
, Ih = 0, Rh = 0, Sm = Γm

µm
, Im = 0.

Dividing the first three equations Nh and the last two equations with Nm in (1), we get

	

dSh

dt
=Γh − mβhShIm − µhSh

dIh

dt
=mβhShIm − (γh − µh)Ih

dRh

dt
=γhIh − µhRh

dSm

dt
=Γm − βmSmIh

m
− µmSm

dIm

dt
=βmSmIh

m
− µmIm.

� (2)

Now our task is to linearize the system (2) around the disease-free steady state. After linearization, we obtain 
the following system

	

dSh

dt
=Γh − mβh

Γh

µh
Im − µhSh

dIh

dt
=mβh

Γh

µh
Im − (γh + µh)Ih

dRh

dt
=γhIh − µhRh

dSm

dt
=Γm − βm

Γm

mµm
Ih − µmSm

dIm

dt
=ΓmβmIh

mµm
− µmIm.

Constructing the Jacobian matrix, we get

Compartment Symbol Explanation

Γh Birth rate of the humans

Nh Total human population

βh Transmission rate of malaria in humans

µh Mortality rate of humans due to malaria

γh Recovery rate of humans

Γm Birth rate of mosquitoes

βm Transmission of malaria in mosquitoes

µm Mortality rate of mosquitoes

Nm Total population of mosquitoes

Table 2.  Parameters description.
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J =




−µh 0 0 0 − mβhΓh
µh

0 −(γh + µh) 0 0 mβhΓh
µh

0 γh −µh 0 0
0 −βmΓm

mµm
0 −µm 0

0 βmΓm
mµm

0 0 −µm




.

The characteristic polynomial of the above matrix is

	
f(λ) = −(λ + µh)(λ + µh)(λ + µm)

[
(λ + µm)(λ + µh + γh) − βhβmΓhΓm

µmµh

]
.

For the system to be stable, all the eigenvalues must have negative real parts. It is clear that three of the eigenvalues 
are negative; we need to check the roots of the quadratic polynomial for the remaining two eigenvalues. By 
solving the quadratic equation, we get the roots as

	

−(γ + µh + µm) +
√

(µm + µh + γh)2 − 4(µm(µh + γh) − βhβmΓhΓm

µhµm
)

2

−(γ + µh + µm) −
√

(µm + µh + γh)2 − 4(µm(µh + γh) − βhβmΓhΓm

µhµm
)

2 .

If we observe, the second root is always negative, and thus we need to find out the condition for which the first 
root is negative, and that is

	
µm(µh + γh) − βmβhΓmΓh

µhµm
> 0.

Rearranging the above inequality, we get the expression

	
βhβmΓhΓm

µhµ2
m(µh + γh) < 1.

So, if R0 < 1, it will ensure us that the disease-free steady state is stable. � □

Endemic steady state analysis
In this subsection, we aim to study the stability of the endemic steady-state.

The given system of equations is

	

dSh

dt
=Γh − mβh

Γh

µh
Im − µhSh

dIh

dt
=mβh

Γh

µh
Im − (γh + µh)Ih

dRh

dt
=γhIh − µhRh

dSm

dt
=Γm − βm

Γm

mµm
Ih − µmSm

dIm

dt
=ΓmβmIh

mµm
− µmIm.

Before proceeding with the next theorem, it is essential to define the following quantities

	

b =µh + βhI∗
m

Nh
+ µh + γ + βhI∗

h

Nm
+ µm

c =(µh + βhI∗
m

Nh
)(µh + γ) + (µh + γ)(βhI∗

h

Nm
+ µm) + (βhI∗

h

Nm
+ µm)(µh + βhI∗

m

Nh
) − βmβhS∗

mS∗
h

NmNh

d =
(

µh + βhI∗
m

Nh

) [
(µh + γ)(βhI∗

h

Nm
+ µm) − βmβhS∗

mS∗
h

NmNh
+ βmβ2

hS∗
mS∗

hI∗
m

NmN∗
h

]
,

where S∗
m, S∗

h, I∗
m, I∗

h  are the non trivial equilibrium solutions.

Theorem 2  If R0 > 1 and b, c, d, bc − d > 0, the endemic steady state is locally stable.

Proof  The equilibrium points will be obtained by equating all of the above time derivatives to zero, and solving 
them for non-trivial solutions, we obtain the solutions as
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S∗
h =

Nh(γ + µh)(µmNm + ΓhNhβm

γ+µh
)

βm(µhNh + ΓmNmβh
µm

)

I∗
h = NhNmµmµh(R0 − 1)

βm(µhNh + ΓmNmβh
µm

)

R∗
h = NhNmµmγh(R0 − 1)

βm(µhNh + ΓmNmβh
µm

)

S∗
m =

Nmµm(µhNh + ΓmNmβh
µm

)

βh(µmNm + ΓhNhβm

γ+µh
)

I∗
m = NhNmµmµh(R0 − 1)

βh(µmNm + ΓhNhβm

γ+µh
)
.

Linearizing the model (2) around the endemic equilibrium point, we get the following system

	

dSh

dt
=ΓhNh − βh

Nh
(S∗

hIm + I∗
mSh − S∗

hI∗
m) − µhSh

dIh

dt
= βh

Nh
(S∗

hIm + I∗
mSh − S∗

hI∗
m) − γIh − µhIh

dRh

dt
=γIh − µhRh

dSm

dt
=γmNm − βm

Nm
(S∗

mIh + SmIh∗) − µmSm

dIm

dt
= βm

Nm
(S∗

mIh + SmIh∗) − µmIm.

Writing the Jacobian matrix, we get

	

J =




− βhI∗
m

Nh
− µh 0 0 0 − βhS∗

h
Nh

βhI∗
m

Nh
−(γh + µh) 0 0 βhS∗

h
Nh

0 γh −µh 0 0
0 − βhS∗

m
Nm

0 − βhS∗
m

Nm
− µm 0

0 βhS∗
m

Nm
0 βhS∗

m
Nm

−µm




The characteristic polynomial of the above matrix is

	
f(λ) = − (λ + µh) (λ + µm)

([
λ + µh + βhI∗

m

Nh

] [
(λ + µh + γ)

(
λ + βmI∗

h

Nm
+ µm

)
− βmβhS∗

mS∗
h

NhNm

]
+ β2

hβmS∗
hI∗

mS∗
m

N2
hNm

)
.

From the above equation, we can see that we have two linear factors and a cubic factor. To analyze the cubic 
factor, let us state the following lemma:

Lemma 1  Let f(x) = ax3 + bx2 + cx + d be a cubic polynomial. For f(x) to have all negative roots or complex 
roots with negative real parts, the following conditions are necessary:

	 a > 0, b > 0, c > 0, d > 0, bc − ad > 0.

Now, by using the above-stated lemma, we can arrive at our required result. � □

Remark 1  Equilibrium points are crucial for evaluating malaria control efforts. A disease-free equilibrium indi-
cates that transmission can be halted through vector control and drug administration, while an endemic equilib-
rium suggests sustained transmission, requiring ongoing interventions. Stability analysis helps identify critical 
thresholds, such as intervention coverage or mosquito density, to guide effective control strategies.

Numerical validation of the stability theorems
In the previous section, we established that the disease-free steady state is attained when R0 < 1. Accordingly, 
we selected R0 = 0.04, 0.16, and 0.51, ensuring R0 < 1. As shown in Figs. 3, 4, and 5, the infected populations 
of humans and mosquitoes decline over time.

From Figs. 3, 4, and 5, we observe that the proposed model for malaria spread exhibits stable dynamics 
when the reproduction number remains below 1. Furthermore, as the reproduction number increases, the peak 
infection level intensifies, indicating a heightened disease burden within the population.
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Importance of steady-state analysis and equilibrium points
Steady-state analysis in malaria modeling provides insights into the long-term behavior of transmission 
dynamics, focusing on equilibrium points where the rate of new infections and recoveries stabilizes. These 
equilibrium points are critical in understanding malaria persistence and eradication potential in specific 
regions. Identifying whether the system reaches a disease-free equilibrium or a sustained endemic state allows 
for targeted intervention strategies.

For malaria control, equilibrium points are essential for assessing the effectiveness of interventions. A disease-
free equilibrium indicates that malaria transmission can be halted, typically through a combination of vector 
control measures such as insecticide-treated nets, indoor spraying, and mass drug administration. Conversely, 
an endemic equilibrium suggests that transmission is sustained within the population despite interventions, 
indicating that continuous, long-term strategies such as routine treatment, surveillance, and seasonal control 
programs are needed to keep malaria prevalence low. Stability analysis of these equilibrium points helps to 
identify critical thresholds, such as coverage levels for interventions or mosquito density, that determine whether 
malaria transmission will be suppressed or continue to persist, guiding the implementation of more effective 
control measures.

	
βhβmΓhΓm

µhµ2
m(µh + γh) < 1.

Fig. 4.  For R0 = 0.16, firstly infected population increases and then diminishes to zero.

 

Fig. 3.  For very small value of R0 = 0.04, infected population converges to zero.
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This inequality indicates that if the basic reproduction number R0 is less than 1, it ensures that the disease-free 
steady state is stable, further supporting the potential for malaria eradication through effective control strategies.

Temperature and altitude dependence of the transmission rate
Several factors influence malaria transmission; however, Patz et al.44 identify temperature and altitude as among 
the most significant. Therefore, we model transmission as a function of temperature and altitude as follows:

	 β(T, h) = β0e
− (T −25)2

η2 e
− h2

ξ2 (1 − e
− h2

ξ2 ),� (3)

where β0 is the transmission constant of the region, T is the temperature of the region, h is the altitude, η and 
ξ are the constants associated with the region’s temperature and height, respectively. The Gaussian function 
is centered at 25◦C , as this temperature is biologically optimal for mosquito survival, leading to maximum 
transmission. This aligns with the findings of Shapiro et al.45, which also identify a similar optimal temperature 
for malaria mosquito breeding.

Here e− (T −25)2

η2  is used to model the temperature and e− h2
ξ2 (1 − e

− h2
ξ2 ) is used to model the height. Malaria 

transmission will be very minimal when the temperature is either extremely high or it is extremely low and 
thus to model this variation, the Gaussian function is used and the reason for shifting it by 25 is because the 
optimum temperature for mosquito’s existence and malaria transmission is 25 ◦C. Also, malaria transmission 
is completely zero when the altitude is zero since there won’t be any mosquitoes in the sea and in the same way 
when the altitude is extremely high again the transmission is completely zero since there are no mosquitoes in 
the space and thus to model both of these conditions the negative exponential function is used in this manner.

Assuming the temperature is from T1 to T2 and the height is from h1 to h2, we can write

	
βavg =

∫ T2

T1

∫ h2

h1

e
− (T −25)2

η2 e
− h2

ξ2 (1 − e
− h2

ξ2 )dhdT.� (4)

Here, the effect of transmission rate is studied (Figs. 6 - 8) by changing the temperature values for a fixed height. 
The parameters considered are the following: β0 = 10, and for human we have taken η = 200, ξ = 20000 and 
for mosquitoes, η = 400, ξ = 40000. The different temperature values which we used are 25◦, 30◦, 35◦, 40◦, 
45◦.

From Figs. 9 to 11, we observe that the transmission rate is highest when the altitude is 150. This represents 
the maximum value among the altitudes considered. Therefore, we conclude that h = 150 may serve as a 
threshold value for altitude in the model. The function f(h) = e

− h2
ξ2 (1 − e

− h2
ξ2 ) achieves its highest value 

when h = ξ
√

ln(2), and thus the transmission rate increases as the height value approaches h = ξ
√

ln(2). 
By substituting both values of ξ and taking the average, we get approximately 142.1; thus, the optimal value for 
altitude can be concluded to be in the range 140 − 150, and since it can be observed that the trajectory for all of 
these values is nearly the same.

Fig. 5.  Behaviour of infected population for R0 = 0.51. It reveals that the number of infected mosquitoes 
initially increases for a brief period before diminishing and eventually converging to zero.
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Data-driven methods
Unlike conventional epidemic modeling approaches grounded in deterministic differential equations, this 
work adopts a data-driven paradigm to analyze malaria transmission dynamics. Our methodology integrates 
machine learning techniques, specifically artificial neural networks (ANNs), recurrent neural networks (RNNs), 
and physics-informed neural networks (PINNs), to infer system parameters and predict trajectories directly 
from observational data. This shift eliminates the need for explicit implementation of complex mathematical 
formulations; instead, neural architectures autonomously learn latent patterns and adapt their computations 
through iterative training. We systematically evaluate these architectures for parameter estimation, with PINNs 
further constrained by epidemiological principles to ensure biological fidelity. The derived parameters are then 
used to forecast the infection trajectories, demonstrating how hybrid data-driven and mechanistic approaches 
can advance predictive modeling of malaria transmission under heterogeneous environmental conditions.

Parameter estimation
An important factor influencing disease transmission is the parameters associated with transmission dynamics. 
Understanding these parameters is crucial for medical professionals, as it allows them to assess the severity of the 

Fig. 6.  At a constant altitude of 75 meters, temperature variations above and below 25◦C were rigorously 
assessed to determine their influence on transmission dynamics. Our analysis reveals that 25◦C serves as 
the optimal temperature for maximizing transmission rates. Analysis demonstrates a consistent decline in 
both infected mosquito and human populations as temperatures rise beyond this threshold. Furthermore, 
population trends for infected mosquitoes and humans align with a Gaussian distribution, reflecting a 
symmetrical, bell-shaped relationship with temperature. These findings underscore the critical role of 
temperature regulation in transmission mitigation strategies.
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disease and implement appropriate interventions. This section presents three distinct neural network models. 
Artificial neural networks (ANNs), recurrent neural networks (RNNs), and physics-informed neural networks 
(PINNs) to estimate these parameters. Using the predicted parameters, we can forecast the trajectories of the 
various compartments involved in the disease dynamics. We used synthetic data generated from the system 
(1) to ensure consistency with the governing equations (critical for PINNs), enable controlled training of ANN 
and RNN models, and provide a clean benchmark for comparison using realistic parameters that isolate core 
transmission dynamics.

The architecture of Artificial Neural Networks (ANNs) employed in this study consisted of five layers, 
including three hidden layers. Each hidden layer comprised 15 dense units utilizing the sigmoid activation 
function, while the output layer contained seven dense units without an activation function. The Recurrent 
Neural Networks (RNNs) framework implemented in this work featured three layers: an input layer, a dropout 
layer, and an output layer. The input layer consisted of 50 Long Short-Term Memory (LSTM) units with the 
ReLU activation function, followed by a dropout layer with a 20% dropout rate to mitigate overfitting, and an 
output layer with seven dense units without an activation function. The Physics-Informed Neural Networks 
(PINNs) architecture closely followed the ANN structure, with the primary distinction being the number of 
nodes in the input and output layers, which were set to one and five, respectively. This modification enabled the 

Fig. 7.  When the altitude was maintained at 100 m, temperature variations were analyzed to assess their 
impact on transmission dynamics. The findings confirm that 25◦C is the optimal temperature for maximizing 
the transmission rate. Additionally, the population density of infected mosquitoes was higher compared to an 
altitude of 75 m, though the variation was marginal.
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PINNs to incorporate physical constraints into the learning process, enhancing predictive accuracy and model 
generalizability.

Since three distinct neural network architectures are utilized in this study, the methodological approach 
differs for ANN, RNN, and PINN. For ANN and RNN, both models were trained on a dataset comprising 1000 
data points, where the input consisted of the first 10 points of the trajectories for all compartments, and the 
output corresponded to the estimated parameters. The estimated parameters from ANN and RNN are shown in 
Table 3 and 4. The ANN and RNN models showed poor parameter estimation performance (errors > 200% for 
some parameters), highlighting their sensitivity to hyperparameters and training. While tuning might improve 
results, it is time-consuming and uncertain. In contrast, the methodology for PINN diverges significantly from 
these conventional models, as it does not rely on a predefined training dataset. Instead, an initial set of assumed 
parameters is iteratively refined by minimizing the loss function, thereby ensuring convergence to the actual 
parameter values through a comparison between the predicted and true trajectories. Here, the input variable 
is time, while the output consists of the trajectories of all five compartments. The selection of parameter values 
in this preliminary study was deliberately generic to evaluate the PINN framework’s capability in recovering 
parameters under idealized conditions. While these values are not empirically derived, this approach allowed 
us to assess the algorithm’s performance independently of confounding factors such as data noise or parameter 
interdependencies. Moving forward, parameter refinement will be guided by region-specific epidemiological 
literature–such as African mosquito mortality rates sourced from the Malaria Atlas Project, and sensitivity 
analyses to identify the most influential parameters. The ability of PINNs to effectively address inverse problems 

Fig. 8.  At a fixed altitude of 125 m, the impact of temperature variations on transmission dynamics was 
analyzed. The findings consistently indicate that 25◦C remains the optimal temperature for maximizing 
the transmission rate. A similar trend was observed, with a slight variation in the population of infected 
mosquitoes, reaching its peak at a higher point.
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will further facilitate the integration of sparse field data, such as monthly case reports, enabling a more robust 
and data-driven parameter estimation process in future research.

For a novel comparison between the models, each model is simulated for 20000 epochs. Details of actual and 
predicted parameters are given in the tables below.

From Fig. 12 and Fig. 13, it can be observed that the predictions made by PINN closely align with the actual 
values, demonstrating its effectiveness in parameter estimation for the SIR-SI compartment model with trajectory 
prediction. Additionally, the trend analysis reveals that PINN effectively captures the underlying dynamics of 
the system, accurately reflecting the growth and decline patterns of infections over time. The model consistently 
follows the expected trajectory, reinforcing its reliability in forecasting epidemic progression.

PINNs outperform traditional ANN and RNN models by integrating epidemiological equations directly into 
the learning process. Unlike purely data-driven approaches, PINNs enforce physical consistency through a dual 
loss function–combining data loss with physics-informed loss–leading to better generalization, especially under 
sparse data. This makes them particularly effective for parameter estimation and predictive modeling in disease 
dynamics, where data may be limited but underlying processes are well-understood. Loss function in PINNs 
involves both data loss and physics loss, which gives better estimates for parameters. Mathematically,

	
Lphysics =

∑
i

|F (ti)|2� (5)

	
Ldata =

∑
i

∣∣uθ(ti) − utrue
i

∣∣2
� (6)

	 L = λphysicsLphysics + λdataLdata� (7)

Fig. 9.  At a constant temperature of 28◦C, altitude variations were studied. Population density trends for 
infected mosquitoes and humans exhibit a Gaussian distribution, reflecting a symmetrical, bell-shaped 
relationship with altitude. These findings highlight the significant impact of altitude on disease transmission 
and emphasize the importance of considering elevation in vector control strategies.
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where:

•	 Lphysics - Physics-informed loss, ensuring that the learned function satisfies the governing physical laws.
•	 Ldata - Data loss, ensuring that the learned function closely matches observed data.
•	 L  - Total loss function combining physics and data losses.
•	 F (ti) - Residual of the governing physical equation at time ti.
•	 uθ(ti) - Neural network approximation of the true solution at time ti.
•	 utrue

i  - True observed data value at time ti.
•	 λphysics - Weighting factor for the physics-informed loss.
•	 λdata - Weighting factor for the data loss.

The parameters predicted by PINNs for all five compartments are presented in Table 5. The temporal evolution 
of the human population is depicted in Fig. 12, while the mosquito population dynamics are shown in Fig. 13. 
Previous studies have predominantly relied on traditional time-series or statistical methods, such as LSTM, 
for epidemic forecasting. For example, Wang et al.46 applied LSTM to predict COVID-19 trends, Chandra et 
al.47 explored ARIMA for dengue incidence modeling, Yadav et al.48 used regression frameworks for malaria 
risk assessment, and Elshafee et al.49 employed Bayesian statistical approaches. In contrast to these data-driven 
methods, our work leverages PINNs to integrate mechanistic epidemiological principles (e.g., transmission 
dynamics and compartmental interactions) directly into the parameter estimation process. This physics-
informed approach achieves minimal error across nearly all compartments (Table 5), demonstrating its ability 
to reconcile observed data with domain knowledge. These results highlight the advantages of PINNs for 
epidemic modeling, as they inherently encode the biophysical processes governing disease spread, enabling 
robust parameter inference even with sparse or noisy datasets. While Physics-Informed Neural Networks 
(PINNs) showed promising results in our study, it is important to acknowledge their limitations. The superior 
performance of PINNs is largely attributed to the integration of known physical laws into the learning process. 
However, in scenarios where the governing dynamics are poorly understood, highly stochastic, or where the 

Fig. 10.  With the temperature maintained at 35◦C, the impact of altitude fluctuations on transmission 
dynamics was further examined. A similar trend was observed; however, at 35◦C, the peak population of 
infected mosquitoes occurred at lower altitudes.
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data-generating process deviates significantly from the assumed model structure, as may be the case with real, 
noisy malaria data, PINNs may underperform compared to conventional data-driven approaches like ANN 
or RNN. Thus, their applicability is inherently constrained by the availability and accuracy of the underlying 
physical model.

Finding the risk of a disease
The most important aspect of a disease is the determination of risk, which we define as the number of infected 
people in a particular region. Whenever there is a disease outbreak in a country, there are some regions where 
there is more risk compared to the other regions; thus, it is essential to calculate the risk of every region. This 
problem statement is addressed using the method of DMD (dynamic mode decomposition), and the main 

Parameter Predicted Value Actual Value Relative Error (%)

Birth rate of humans 0.38273 0.40000 4.32

Transmission rate of humans 0.28249 0.30000 5.84

Death rate of humans 0.09973 0.10000 0.27

Recovery rate of humans 0.04640 0.01000 364.01

Birth rate of mosquitoes 0.07613 0.05000 52.25

Transmission rate of mosquitoes 0.01045 0.02000 47.73

Death rate of mosquitoes 0.05757 0.04000 43.92

Table 3.  Comparison of predicted and actual values with relative errors for ANN.

 

Fig. 11.  The impact of altitude variations on transmission dynamics was further analyzed at a fixed 
temperature of 42◦C. In this case, a more significant decline in the population of infected mosquitoes was 
observed. These findings highlight the critical role of altitude in shaping transmission patterns and optimizing 
intervention strategies.
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reason for using this method is that DMD can make exact predictions from raw data, unlike other deep learning 
methods. The complete methodology of the problem statement can be seen in Fig.  14.

Dynamic Mode Decomposition (DMD) extracts spatiotemporal coherent structures from high-dimensional 
dynamical systems30–32. Given a sequence of m + 1 state vectors xk ∈ Rn sampled at intervals ∆t, we construct 
snapshot matrices:

	 X = [x1, x2, . . . , xm], X ′ = [x2, x3, . . . , xm+1]� (8)

DMD seeks a best-fit linear operator A ∈ Rn×n satisfying: X ′ ≈ AX . The solution proceeds via truncated 
singular value decomposition (SVD):

Fig. 13.  Prediction made by PINNs for the mosquito population.

 

Fig. 12.  Prediction made by PINNs for the human population.

 

Parameter Predicted Value Actual Value Relative Error (%)

Birth rate of humans 0.19740 0.40000 50.65

Transmission rate of humans 0.18619 0.30000 37.94

Death rate of humans 0.34348 0.10000 243.48

Recovery rate of humans 0.21954 0.01000 2095.38

Birth rate of mosquitoes 0.18898 0.05000 277.96

Transmission rate of mosquitoes 0.24995 0.02000 1149.77

Death rate of mosquitoes 0.38605 0.04000 865.13

Table 4.  Comparison of predicted and actual values with relative errors for RNN.
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X ≈ UrΣrV ∗
r (rank-r approximation)

Ã = U∗
r X ′VrΣ−1

r (reduced operator)

Solving the eigenvalue problem for Ã : ÃW = W Λ, Λ = diag(λi)  yields full-state DMD modes:

	 Φ = X ′VrΣ−1
r W � (9)

The continuous-time eigenvalues ωi = ln(λi)/∆t determine mode dynamics (growth/decay rates and 
frequencies). The reconstructed solution is: x(t) ≈

∑r

i=1 ϕi exp(ωit)bi, b = Φ†x1, where ϕi are columns 
of Φ and b contains mode amplitudes.

In this work, Dynamic Mode Decomposition (DMD) is used to calculate the disease risk in a particular 
region. DMD provides early detection by identifying patterns in time-series data, facilitating timely intervention. 
Additionally, it performs dimensionality reduction by extracting dominant modes from large datasets, 
preserving essential dynamical features while reducing computational complexity. Its forecasting capability 
allows for accurate predictions of disease progression, aiding in proactive decision-making. Moreover, while 
standard DMD operates linearly, extended DMD (eDMD) can approximate nonlinear disease dynamics, making 
it adaptable to complex epidemiological models. DMD also captures the oscillations of the dynamics, and by 
analyzing its peak values, we obtain a measure of risk. The DMD plot and the eigenvalue spectrum can be found 
in Fig. 15.

From the eigenvalue spectrum, we can observe that all the points are either on or within the unit circle. This 
shows that the transmission of malaria in Africa is stable. African map with the corresponding color coding 
based on the risk can be found in Fig.  16.

From Sub Fig. 15b we can observe that the disease spread is not severe since all of the infections are within 
the unit circle. DMD extracts governing dynamics directly from observational data, making it advantageous 

Defining the SIR-SI 
dynamical system. 

All trajectories are 
taken, but for each 

country 4 regions are 
considered.

All trajectories are 
taken as a 2-D matrix. 

Each country is divided into 
4 parts and then trajectories 
are generated using  Runge 
kutta method for different 

initial conditions.

Each of the trajectory is 
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Fig. 14.  Flow chart of methodology.

 

Parameter Predicted Value Actual Value Relative Error (%)

Birth rate of humans 0.39200 0.40000 2.00

Transmission rate of humans 0.28186 0.30000 6.05

Death rate of humans 0.09793 0.10000 2.07

Recovery rate of humans 0.00949 0.01000 5.07

Birth rate of mosquitoes 0.04593 0.05000 8.14

Transmission rate of mosquitoes 0.01969 0.02000 1.56

Death rate of mosquitoes 0.03600 0.04000 10.01

Table 5.  Comparison of predicted and actual values with relative errors for PINN.
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Fig. 16.  A map of Africa with color coding representing risk levels, where green indicates the lowest risk and 
red denotes the regions with the highest risk.

 

Fig. 15.  DMD plot and the eigenvalue spectrum.
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for rapidly evolving outbreaks where mechanistic understanding is incomplete50. Unlike machine learning 
approaches (e.g., LSTM), which excel at long term prediction but acts as ’black boxes’, DMD provides 
interpretable spatial-temporal modes, albeit with trade-offs in modeling strongly nonlinear interactions. This 
balance positions DMD as a complementary tool for real-time risk assesment alongside established methods.

Concluding remarks
In this work, an attempt is made to understand the dynamics of malaria transmission using various mathematical 
and machine-learning techniques. The proposed theorems related to steady states were validated using 
numerical simulations. We also examined the influence of temperature and altitude on malaria transmission. 
Subsequently, parameter estimation was performed using three neural network architectures–ANNs, RNNs, 
and PINNs–where the best-performing model’s predicted parameters were utilized to forecast the trajectories of 
all compartments. Finally, the study assessed the measure of risk using Dynamic Mode Decomposition (DMD), 
providing valuable insights into malaria dynamics and prediction.

While these results are preliminary and based solely on synthetic data, they demonstrate the potential of the 
proposed methodology as a step toward developing actionable tools for policymakers. By accurately quantifying 
transmission dynamics in controlled settings, this approach lays the groundwork for future integration with real-
world data. In particular, incorporating PINNs with real-time surveillance systems could, in principle, support 
the identification of transmission hotspots and inform scenario-based planning under climatic uncertainties. 
Such extensions, once validated with empirical data, may ultimately assist in optimizing resource allocation and 
enhancing outbreak preparedness in climate-sensitive regions.

In the future, we aim to enhance malaria transmission modeling by incorporating advanced physics-
informed machine learning techniques. Sparse Identification of Nonlinear Dynamics (SINDy) can help discover 
parsimonious governing equations from data, potentially uncovering key drivers of transmission. Neural 
ODEs provide a flexible framework to model continuous-time disease dynamics from irregular time series 
data. Variants such as VPINNs (Variational PINNs) and Recurrent PINNs can improve model accuracy and 
scalability, particularly in capturing spatiotemporal variability and memory effects.

Data availability
This study uses only synthetic data, which was generated for the purpose of this research. The synthetic data are 
not based on real-world observations and can be made available upon request to the corresponding author at : 
a-tridane@uaeu.ac.ae
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