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Smartwatches enable longitudinal and continuous data acquisition. This has the potential to remotely 
monitor (changes) of the health of users. However, differences among subjects (inter-subject 
variability) limit a model to generalize to unseen subjects. This study focused on binary classification 
tasks using heart rate and step counter from smartwatches, including night/day and inactive/active 
classification, as well as sleep and SpO2-related (oxygen saturation) tasks. To address inter-subject 
variability, we explored different transforming and normalization regimes for time series including 
per-subject and population-based strategies. We propose a modified factorized autoencoder, which 
separates the data into two latent spaces capturing class-specific and subject-specific information. 
Our proposed generalized factorized autoencoder and triplet factorized autoencoder improved 
classification accuracy over the baseline from 74.8 (± 10.5) to 83.1 (± 5.1) and 83.4 (± 5.3), respectively, 
for night/day classification, gains for inactive/active classification were modest, improving from 84.3 
(± 9.4) to 86.9 (± 4.4) and 86.6 (± 4.3), respectively. Our study highlights challenges of handling inter-
subject variability in smartwatch data and how factorization models can be used to enable more robust 
and personalized health monitoring solutions for diverse populations.
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Consumer-grade smartwatches have transformed the landscape of personal health monitoring by enabling the 
continuous recording of vital signals, such as heart rate, physical activity, and sleep patterns. Originally developed 
for recreational use and fitness tracking, these devices have rapidly gained attention in the medical domain due to 
their widespread availability, non-invasiveness, and relatively low cost. When combined with machine learning 
(ML) techniques, smartwatch data has demonstrated significant potential for early detection and monitoring 
of various health conditions, including cardiovascular diseases, diabetes, and respiratory disorders1,2. This shift 
marks an important step toward integrating wearable technologies into predictive and preventive healthcare.

In the context of cardiovascular disease, early detection and monitoring are particularly challenging due to 
the subtle, gradual changes in cardiovascular signals that precede acute events3. Cardiovascular disease affects 
millions worldwide, with significant mortality and morbidity rates, and is a leading cause of death4,5. Traditional 
diagnostic methods rely on echocardiography and clinical biomarkers6,7, which are often inaccessible for 
continuous monitoring. Wearable devices provide an opportunity to bridge this gap by enabling remote, real-
time monitoring of early warning signs such as changes in heart rate dynamics, physical activity, and sleep 
patterns. However, the successful implementation of such systems requires overcoming challenges related to 
variability and data quality.

Cardiovascular properties, including heart rate dynamics, are highly individualized and influenced by various 
factors. Studies have shown that body weight8, sex9, age, and height10,11 play significant roles. Correspondingly, 
heart size and function scale with body mass index and exhibit sex-specific differences in cardiac output and 
structure. Furthermore, longitudinal studies using consumer-grade wearables like Fitbit have shown that 
resting heart rate and heart rate variability exhibit substantial inter-subject (between individuals) and intra-
subject (within individuals over time) variability12. Such variability is further influenced by lifestyle factors, 
environmental conditions, and emotional states, complicating the interpretation of physiological signals for 
population-wide predictions.

Despite limitations, such as low sampling rates and reliance on derived metrics (e.g., estimated heart rate 
variability), smartwatches provide surprisingly detailed insights into physiological states. For example, studies 
have demonstrated their ability to capture heart rate patterns that correlate with respiratory infections13 or cardiac 
conditions like atrial fibrillation and heart failure14–16. However, this level of detail also introduces challenges 
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in ML-based analyses. Measurements of heart rate often encode individual-specific characteristics, which may 
dominate the patterns learned by ML models, leading to poor generalization across unseen subjects. This issue 
arises when subject-specific variability (e.g., baseline heart rate differences) confounds the relationship between 
the physiological signal and the predictive task. Such confounding can degrade the performance of ML models, 
as they may focus on irrelevant patterns rather than generalizable features predictive of health outcomes.

Addressing inter- and intra-subject variability in smartwatch data has been a major focus in recent literature. 
Techniques such as domain adaptation17, domain generalization18, batch effect correction19, and feature 
normalization20 have been explored to improve generalization. Domain invariance techniques, including 
adversarial training and representation learning, aim to disentangle subject-specific factors from class-relevant 
signals21–23. These strategies are essential for creating robust predictive models that can generalize across diverse 
populations, a critical requirement for clinical applications of wearable data.

In this study, we propose a novel machine learning framework for predicting several tasks such as night/day 
and active/inactive binary classification, based on heart rate and step counter data obtained from smartwatches. 
Such tasks can for example help in assessing circadian rhythm disruptions or monitoring recovery post-surgery, 
which are important indicators of overall health. Our approach incorporates methods to address inter- and intra-
subject variability, including normalization techniques, domain-invariant feature extraction and an extended 
loss function, to enhance the model’s generalizability. By leveraging the continuous and rich data captured by 
consumer-grade wearables, we aim to provide a scalable solution for smartwatch monitoring, advancing the 
integration of wearable technology into cardiovascular healthcare.

Methods
A general overview of our machine learning approach is given in Fig. 1. Roughly, it consists of three steps. First, 
the smartwatch time series data is transformed to capture the dynamics and segmented into windows of several 
minutes. Then the data is normalized for which we propose and analyze several approaches (either population-
based or subject-based). Lastly, the windows are fed into a factorized autoencoder that is specifically designed to 
disentangle variations between subjects and variations between classes by mapping the samples simultaneously 
in a so-called domain-space (representing differences between subjects) as well as a class-space (representing 
differences between the classes). For that, we do propose three different variants based on a contrastive technique, 
two of which are use our generalized factorized loss and one is based on our proposed triplet factorized loss. The 
following gives more details on each of the steps.

Transformation
We apply two transformations to the heart rate time series to capture dynamic changes while minimizing 
the influence of individual baseline variability. Heart acceleration (acc(t)) is calculated as the first derivative 
of the heart rate hr, defined as the difference between the heart rate at time t and t − 1 (Eq. 1). This metric 
isolates the temporal rate of change in heart rate, making it insensitive to baseline heart rate differences, which 
vary significantly across subjects and may confound comparisons. Additionally, we compute the normalized 
(relative) heart acceleration (accrel(t)) as the ratio of heart acceleration to the heart rate at time t (Eq. 2). 
This normalization accounts for variability in heart rate magnitude, enabling more consistent interpretation of 
changes across different heart rate levels:

	 acc(t) = hr(t) − hr(t − 1)� (1)

	
accrel(t) = hr(t) − hr(t − 1)

hr(t) � (2)

Segmentation
The (transformed) heart rate timeseries is segmented using a sliding window of 240 samples (20 min) with a stride 
of 36 samples (3 min), at a sampling rate of once per 5 s. This window length was selected after hyperparameter 
tuning which included windows of length 120 (10 min), 360 (30 min) and 720 (60 min). To ensure data quality, 
windows containing timegaps of larger than 5 s, indicative of missing values are excluded. Each window is then 
assigned a label according to the criteria in Table 1. An SpO2 lower than 95% is generally undesirable24, but as 
a margin to distinguish abnormal events from normal ones, we label SpO2 levels lower than 90% as abnormal.

Normalization
We aim to further reduce inter-subject variability in heart rate data through the application of multiple techniques 
based on Z-normalization. Our approach leverages multiple variations of Z-score normalization tailored to 
different subsets of the data to enhance the consistency and comparability of heart rate measurements across 
individuals while accounting for subject-specific characteristics.

For population-based normalization, the heart rate time series of all training samples across all training 
subjects are aggregated to compute the population mean and standard deviation. The heart rate values are then 
standardized by subtracting the population mean and scaling them to unit variance. The calculated population 
mean and standard deviation are subsequently applied to normalize the heart rate time series of test subjects.

For per-subject normalization, Z-score normalization is applied individually to each subject. Two approaches 
are considered (and illustrated in Fig. 1B): In the per-test subject normalization, after training with the 
population-based normalization, an initial portion of each test subject’s data–up to the first 60% of their time 
series-is used to calculate a subject-specific mean and variance. The remaining test data is then normalized using 
these parameters. This approach ensures that each subject’s data is standardized based on their unique heart 
rate characteristics. However, it requires a “burn-in” period to gather sufficient data for effective calibration. 
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Task Class 1 Class 2

Night/day Timestamp between
00:00 and 05:00

timestamp between
11:00 and 18:00

Inactive/active Average steps
< 5 per minute

Average steps
> 50 per minute

SpO2 (ab)normal Average SpO2
90

Average SpO2
> 95

Light/deep sleep Light sleep Deep sleep

Light/restless sleep Light sleep Restless sleep

Light/REM sleep Light sleep REM sleep

Table 1.  Tasks (rows) and corresponding derived class labels (columns).
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Fig. 1.  Overview of the steps of the proposed machine learning approach. (A) The timeseries signal is 
transformed and segmented using a sliding window. (B) Subjects are split as train (green, left) or test (blue, 
right) subjects. Windows of test subjects are further split in calibration (yellow) and test (blue) windows. (C) 
Windows are fed in factorized autoencoder models (three at a time for the triplet factorized autoencoder), 
where xi, xj  refer to windows from the same subject with the same class label, and xk  refers to a window of a 
different subject and class label. The corresponding loss function consists of three main components (Eq. 3). A 
fully-connected (FC) layer uses only the class latent space zc to predict the class label to determine the cross-
entropy loss. Both the domain latent space zd and class latent space zc are fed into the decoder to reconstruct 
the original input windows to determine the reconstruction loss. Finally, the class latent space and domain 
latent space are optimized using either our generalized factorized loss or triplet factorized loss, as described in 
“Factorized autoencoders” section.
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Note that this only affects the model during the test phase. For the per-train subject normalization the Z-score 
normalization is performed separately for each training subject, using their individual mean and variance, 
computed on the entire training data of that subject. Note that this only affects the model during the training 
phase. The test subjects are processed similarly to the per-test subject scenario.

In both the population-based and per-subject normalization approaches, we explore two variations: 
normalizing based on all heart rate samples or exclusively on heart rate samples corresponding to zero steps 
(inactivity normalization). The motivation for the latter is to better estimate resting heart rate, as it focuses on 
periods of inactivity, which are less influenced by diverse and subject-specific physical activities. Normalization 
during inactive moments is hypothesized to provide a more consistent baseline across subjects, thereby 
enhancing the effectiveness of the normalization process.

Factorized autoencoders
We investigated methods to mitigate inter-subject variability using contrastive25 and triplet26 similarity learning. 
Specifically, we adopted the sequential factorized autoencoder (FAE) framework used by Gyawali et al.21. This 
approach addressed inter-subject variability by employing two key components. Factorized latent representations: 
The bottleneck layer of an autoencoder is partitioned into two distinct latent spaces: a class latent space (zc) and 
a domain latent space (zd). Contrastive loss function: A contrastive loss is applied to encourage the network to 
optimize class separability within the class latent space while making it invariant to subject-specific variability. 
Simultaneously, the domain latent space is trained to capture subject-specific characteristics while remaining 
independent of class labels. This separation allows the class latent space representation to be effectively used for 
downstream tasks.

Building on this framework, we generalized the original loss function and propose the Generalized Factorized 
Autoencoder (GFAE) defined as:

	 L = Lce + α
(
βLc

(
zc

i , zc
j , yc

ij

)
+ (1 − β)Ld

(
zd

i , zd
j , yd

ij

))
+ γLrec� (3)

where Lc is the class loss defined by the similarity between a pair of class latent samples (zc
i  and zc

j ) and the pair’s 
corresponding class label yc

ij . Similarly, Ld is the domain loss between a pair of domain latent samples (zd
i  and 

zd
j ) and the pair’s corresponding domain label yd

ij , where β trades off the class loss and domain loss. Lce and 
Lrec represent the cross-entropy loss and reconstruction loss and are defined as:

	
Lce = − 1

2
∑

l∈{i,j}

(yc
l log (ŷc

l ) + (1 − yc
l ) log (1 − ŷc

l )) � (4)

	
Lrec =1

2
∑

l∈{i,j}

||xl − x̂l||2 � (5)

α and γ are the regularization coefficients for the contrastive loss and reconstruction loss, respectively.
The class loss is defined as:

	 Lc
(
zc

i , zc
j , yc

ij

)
= yc

ij ||zc
i − zc

j ||22 +
(
1 − yc

ij

)
max

(
0, mc − ||zc

i − zc
j ||22

)
� (6)

where yc
ij  equals one if the samples that form the pair have the same class labels, and zero otherwise. Regardless 

of which subjects the pair originates from, the first term aims to project samples of the same class close to each 
other in the class latent space. When the samples do not have the same class labels, they are kept distant of each 
other up to a threshold defined by the class margin, mc.

The domain loss is similarly defined as:

	 Ld
(
zd

i , zd
j , yd

ij

)
= yd

ij ||zd
i − zd

j ||22 +
(
1 − yd

ij

)
max

(
0, md − ||zd

i − zd
j ||22

)
� (7)

where yd
ij  equals one if the pair have the same domain labels and zero otherwise. Regardless of which classes the 

pair originates from, the first term aims to project samples of the same subject close to each other in the domain 
latent space. When the samples do not have the same domain labels, they are kept distant of each other up to a 
threshold defined by the domain margin, md.

In the original FAE, the parameter β was set to 0.5, equally balancing the class and domain losses. However, 
depending on the nature of the data, the model may benefit from adjusting this weighting to account for varying 
levels of inter-subject variability. In particular, the severity of inter-subject differences can influence how much 
emphasis should be placed on minimizing class versus domain loss.

Additionally, in the original FAE framework, the domain loss did not account for situations where pairwise 
latent representations originated from different subjects. Specifically, in Eq. (7), yd

ij  is always set to 1, effectively 
deactivating the second term. Explicitly modeling this scenario in the loss can enable the model to learn 
differences between subjects, improving subject separability. To address this limitation, we introduced the 
domain margin loss, adding it as the second term in Eq. (7). This modification is a critical consideration for 
improving subject-specific invariance by explicitly modeling inter-subject differences.

Furthermore, the cross-entropy loss was not included in the original training process, as classification 
was performed during fine-tuning after the FAE model had been trained solely with the reconstruction loss. 
However, using reconstruction error as a surrogate loss function for model hyperparameter tuning did not yield 
models that performed well in classification tasks27. This suggests that optimizing solely for reconstruction error 
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is insufficient for achieving high classification performance, emphasizing the need for a more targeted approach 
that integrates both class separability and domain invariance from the outset.

Next to the contrastive loss, we investigated using a triplet loss26 instead, which we denote as the Triplet 
Factorized Autoencder (TFAE). It operates on triplets of samples: an anchor, a positive (same class as anchor) 
sample, and a negative (different class from anchor) sample. It learns to minimize the distance between the 
anchor and positive sample while maximizing the distance between the anchor and the negative sample.

The corresponding triplet class loss and domain loss are defined as:

	 Lc(zd
i , zd

j , zd
k) =max

(
||zc

i − zc
j ||22 − ||zc

i − zc
k||22 + mc, 0

)
� (8)

	 Ld(zd
i , zd

j , zd
k) =max

(
||zd

i − zd
j ||22 − ||zd

i − zd
k ||22 + md, 0

)
� (9)

It is important to note that sample i,j and k are the anchor, positive and negative sample, respectively. Therefore, 
the positive sample must have the same class and subject label as the anchor, while the negative sample must have 
a different class and subject label.

In the performed experiments, the factorized models are compared to a Multilayer Perceptron (MLP) baseline 
that is identical in number of neurons in each layer and all shared hyperparameters, to the factorized models 
except that its loss function includes only cross-entropy and reconstruction loss (Eqs. 4 and 5). Hyperparameter 
tuning using gridsearch resulted in the following optimal settings for the loss function: a value of 0.1 for α, 0.75 
for β, 1.0 for γ and 0.01 for δ. For training, we used the Adam optimizer with a learning rate of 0.1, a batch size 
of 128 and a maximum of 100 epochs with early stopping. Finally, the optimal network architecture included a 
final hidden layer with 20 neurons. The MLP baseline and factorization models are based on a neural network 
consisting of in total 3 layers in the encoder where the number of neurons decay linearly. Thus, there are 240 
neurons in the input layer, 130 neurons in the first hidden layer and 20 neurons in the second hidden layer. 
Furthermore, we inspect the separability of the domain and class latent space considering four scenarios: (1) a 
logistic regression trained on the domain latent space using the domain (subject) label, which should be able to 
seperate subjects well in the domain space but not in the class space as that should not separate on subjects; (2) 
training on the domain latent space using the class label, which should not be able to separate classes both in the 
domain and class space as the domain space should not separate classes; (3), training on the class latent space 
using the label, which should be able to separate classes well in the class space but not in the domain space; (4) 
and training on the class latent space using the domain label, which should not be able to separate classes in both 
spaces. Only the latter two apply to the MLP, as it only learns one latent space.

Evaluation
To evaluate the effectiveness of the proposed methods, we employ stratified leave-10-subjects-out cross-
validation and use the ROCAUC score for the classification task as the performance metric. The data is split 
such that no subject appears simultaneously in both the training and validation sets, preventing information 
leakage. Furthermore, stratification is achieved through the pairwise and triplet sampling strategies (Appendix 
A), which ensure that each subject is sampled an equal number of times. Additionally, the pairwise sampling 
guarantee that the number of pairs sampled both within subjects and between subjects is balanced. Class labels 
are also sampled randomly to maintain an equal representation of both classes. Similarly, the triplet sampling 
approach ensures a balanced number of anchors from each class while also maintaining an equal distribution of 
samples from each subject.

Results
Data set
Smartwatch data from the ME-TIME study (registered at clinicaltrials.gov with ID NCT05802563) was used 
and Table 2 show the characteristics of the development set, used to train and tune the models, as well as the 
test set. The diversity among subjects, is reflected in their corresponding smartwatch data. This is particularly 
evident in the mean and standard deviation of the heart rate, but also in the standard deviation of the (relative) 
heart acceleration, which exhibit substantial inter-subject variability, as shown in Fig. 2. Such variability can 
significantly impact the generalization performance of machine learning models.

Furthermore, we have defined several binary classification tasks, as outlined in Table 1. The night/day 
classification is based on the timestamps of the heart rate sensor. Windows that fall entirely between midnight 
and 5 AM are labeled as ‘night,’ while those that fall entirely between 11 AM and 6 PM are labeled as ‘day.’ The 
inactive/active classification is determined using the step counter, which records the number of steps taken 
per minute. Windows with an average of fewer than 5 steps per minute are classified as ‘inactive,’ allowing for 
minor step counts due to hand movement noise. Windows with more than 50 steps per minute are classified 
as ‘active.’ To maintain clear class separation, windows with step counts between 5 and 50 are excluded. The 
normal/abnormal SpO2 classification is based on blood oxygen saturation levels. Windows with SpO2 values 
below 90 are labeled ‘abnormal,’ while those above 95 are labeled ‘normal.’ Values between 90 and 95 are excluded 
to ensure a distinct separation between classes. Finally, the sleep stage classification is based on labels provided 
by the Fitbit. Only windows in which the sleep stage remains consistent throughout the entire window are 
considered.

Multi-subject factorization
To evaluate the models’ performance on multiple subjects, the models are trained using 50 train subjects and 
tested on 30 test subjects. The ROCAUC for the Night versus Day classification (left) and Inactive versus Active 
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Fig. 2.  Mean and standard deviation of data per subject for heart rate (first row), heart acceleration (second 
row), relative heart acceleration (third row) and steps per minute (last row).

 

Characteristic Train subjects Test subjects

Total 50 30

Age, years

18–39 17 9

40–54 10 5

55–64 9 4

> 65 14 12

Diagnosis

Reference 26 16

Heart failure 8 5

Persistent atrial fibrillation 3 2

Permanent atrial fibrillation 4 1

Paroxysmal atrial fibrillation 9 6

Sex
Male 27 16

Female 23 14

Diabetes

18.5–24.9 20 15

25–29.9 16 9

> 30 14 6

Diabetes
Yes 19 5

No 41 25

Smoking
Yes 13 4

No 37 26

Hypertension
Yes 17 9

No 33 21

Device
Charge 5 32 19

Inspire 2 18 11

Table 2.  Characteristics of the development and test sets.
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classification (right) is given in Table 3. The corresponding receiver operating characteristic (ROC) curves for 
the unnormalized heart rate case are given in Figure E6, Appendix E.

When using the original heart rate, the factorization models show improvement on the night/day classification 
task and to a lesser degree, improvement on the inactive/active task. The smaller improvement gain can be 
accounted to the fact that the latter is an easier task, with almost 10 higher points of ROCAUC (on a 0–100 scale) 
for the MLP baseline.

Using heart acceleration and relative heart acceleration normalizations does not improve the models. This 
may be due to the fact that heart rate values at adjacent time points are frequently identical, resulting in a one-
point difference of zero. Consequently, the time series becomes sparse, as illustrated in Appendix D.

Furthermore, the TFAE performs best by a margin on the night/day classification and the GFAE without 
domain margin loss on the inactive/active classification. However, the differences are small considering the fact 
that the GFAE and TFAE are within 0.5 points with a ten times higher standard deviation. Similarly, for the 
inactive/active classification task the GFAE and TFAE are within 1.5 points with a standard deviation of more 
than 4, indicating that the difference is relatively small. Overall, the standard deviation over subjects decreases 
when using factorization.

In Table 4, several additional tasks are considered. Both Light & REM sleep and Light & deep sleep tasks 
performs at near random for all models, while the normal & abnormal SPO2 performs slightly above random. 
The only task that performs better than random is classifying light sleep from restless sleep, where the GFAE 
with non-zero margin loss performs best. Furthermore, the GFAE in this configuration also has the best mean 
performance in three out of four tasks. Fitbit identifies restless sleep based on movement, such as tossing and 
turning, which notably impacts heart rate. In contrast, light and deep sleep have more subtle effects on heart rate 
that the Fitbit fails to capture28.

Per-subject calibration
We investigated the effects of the normalization methods described in “Normalization” section. The results for 
Z-normalization applied per test subject, using varying percentages of each test subject’s calibration set (yellow 
part of Fig. 1b), are presented in Fig. 3. Figure 4 illustrates the results of Z-normalization applied per train 
subject, where train subjects were normalized individually, in combination with per-test-subject normalization.

Per-test subject normalization does not consistently improve performance. This is most pronounced in the 
GFAE with domain margin loss and the TFAE without inactivity normalization. Furthermore, normalization 
with too little calibration data can have adverse effects as can be seen by the dip in performance with a calibration 

Model/task

Light and restless Light and REM
SPO2
Normal and abnormal Light and deep sleep

hr hr hr hr,a hr,ar hr hr,a hr,ar

MLP 61.41 (10.72) 49.63 (3.41) 51.24 (2.42) 50.31 (1.32) 49.83 (1.72) 52.93 (5.12) 48.41 (3.74) 51.72 (2.03)

FAE 62.93 (9.71) 50.02 (0.10) 50.92 (2.31) 51.71 (2.42) 50.02 (1.10) 49.01 (3.24) 49.15 (0.62) 51.82 (3.93)

GFAE
(md = 0) 63.54 (8.51) 49.82 (4.73) 52.51 (3.42) 50.43 (3.71) 50.14 (2.91) 52.42 (3.31) 50.10 (1.41) 50.11 (1.32)

GFAE
(md ̸= 0) 63.72 (8.71)  50.14 (4.42) 52.91 (3.92) 50.03 (3.92) 50.41 (2.73) 52.23 (3.02) 50.31 (1.74) 49.93 (1.53)

TFAE 63.62 (8.42) 49.71 (4.53) 52.84 (3.72) 50.32 (3.74) 50.32 (2.51) 52.14 (3.11) 50.21 (1.64) 49.74 (1.42)

Table 4.  Mean and standard deviation of ROCAUC over subjects for sleep related and SP02 tasks. For visual 
clarity, ROCAUC values are reported scaled from the standard range of 0–1 to 0–100. Hr = heart rate, hr,a = 
heart acceleration and hr,ar = relative heart acceleration. The GFAE is considered with a domain margin loss 
equal to zero and non-zero. Significant values are in [bold].

 

Model/task

Night and day Inactive and active

hr hr,a hr,ar hr hr,a hr,ar

MLP 74.81 (10.53) 73.24 (5.83) 58.63 (7.02) 84.12 (9.41) 82.11 (7.83) 75.63 (7.22)

FAE 78.23 (9.01) 71.12 (5.34) 70.63 (5.72) 85.91 (6.41) 81.72 (8.61) 75.13 (7.82)

GFAE
(md = 0) 81.24 (5.31) 73.13 (6.31) 73.23 (6.01) 87.83 (4.62) 81.61 (9.13) 74.53 (8.84)

 GFAE
(md ̸= 0) 83.14 (5.12) 74.31 (6.12) 74.12 (5.81) 86.93 (4.42) 81.41 (9.23) 74.71 (8.63)

 TFAE 83.42 (5.33) 74.21 (6.23) 74.34 (5.61) 86.62 (4.31) 81.54 (9.11) 74.73 (8.41)

Table 3.  Mean and standard deviation of ROCAUC for night/day and inactive/active classification. For visual 
clarity, ROCAUC values are reported scaled from the standard range of 0–1 to 0–100. Hr = heart rate, hr,a = 
heart acceleration and hr,ar = relative heart acceleration. The GFAE is considered with a domain margin loss 
equal to zero (md = 0) and non-zero (md ̸= 0), where after gridsearch, the optimal md was found to be 1. 
Significant values are in [bold].
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proportion of 10%. Using all calibration data seems to benefit the mean performance for most models. In 
contrast, applying per-train subject normalization in addition to per-subject normalization provides a more 
consistent increase in performance with increasing calibration proportion.

Both configurations have been examined with and without the inclusion of inactivity normalization, which 
improves all models, albeit not consistently over all calibration proportions. The GFAE is the best performing 
model. When calibration is done per test subject, inactivity normalization is required to reach a similar 
performance as calibration per train and test subject.

Class and domain latent space analysis
To quantify how well class and domain information is disentangled into their corresponding latent space, a 
logistic regression was trained on both latent spaces using either class labels, to inspect how well the classes 
are seperated (class accuracy) or domain labels, to inspect how well the subjects can be seperated (domain 
accuracy). Ideally, the class latent space should excel at class label prediction but perform poorly on subject 
labels, while the domain latent space should excel at subject label prediction but perform poorly on class labels. 
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Effect of calibration per train and test subject for night/day classification
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Fig. 4.  Effect of calibration per-train and per-test-subject for night/day classification. Calibration proportion 
is the amount of data from a train or test subject used to compute a subject-specific mean and variance, to 
standardize the remaining data. Vertical grey lines denote the tested calibration proportions: 0%, 6%, 30%, and 
60%. Dashed lines denote inactivity normalization. Since a population mean and standard deviation are not 
applicable in this configuration, it can only be performed with a non-zero calibration proportion.
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Fig. 3.  Effect of calibration per-test-subject for night/day classification. Calibration proportion is the amount 
of data from a test subject used to compute a subject-specific mean and variance, to standardize the remaining 
data. Vertical grey lines denote the tested calibration proportions: 0%, 6%, 30%, and 60%. Dashed lines denote 
inactivity normalization.
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The train and test results for night day classification are presented in Tables 5 and 6. Similarly, the results for 
inactive active classification can be found in Appendix C, tables C1 and C2.

Interestingly, for the MLP model, the domain accuracy is slightly lower on the training set than on the test set, 
likely due to the increased complexity of the training set classification task. Nevertheless, all models, including 
the baseline MLP, surpass the 2% and 3.3% baseline accuracy for the train and test performance respectively (as 
a results of having 50 subjects in the train set and 30 subjects in the test set), demonstrating their ability to extract 
meaningful patterns despite the challenges posed by the subject distribution.

The results indicate further that both latent spaces contain substantial class information, as evidenced by 
their strong performance on the class labels. This can also be observed in the first and third column of the 
Uniform Manifold Approximation and Projection (UMAP) (Fig. 5, C3 and C4), where the class and subject 
latent spaces are colored by class label. Still a significant class difference can be observed in zd. Similarly, the 
domain latent space of factorization models often outperform the MLP in subject classification, suggesting a 
correlation between domain and class features, which could stem from the fact that the loss functions of the 
factorization models do not explicitly enforce feature decorrelation. although the factorization model tries 
to explicitely put the subject information on the domain latent space. Further analyses on pairwise subject 
classification (Appendix B), confirm this observation.

For both the train and test sets, the GFAE with positive domain margin loss as well as the TFAE improve 
domain accuracy using zd compared to the MLP. This demonstrates that the factorization models effectively 
capture and encode subject-specific information in the domain latent space. However, these improvements are 
less pronounced in the test set, particularly for the inactive/active task, suggesting that the factorization models 
could benefit from more subjects to generalize better.

Discussion and conclusion
We have investigated the challenge of inter-subject variability in heart rate time series, that limits the 
generalizability of machine learning models to unseen subjects. By evaluating normalization techniques and 
factorization models, we aimed to reduce this variability and improve classification performance for tasks such 
as night/day and inactive/active classification.

The heart rate time series that were transformed by the (relative) first-difference showed degraded 
performance, likely due to the sparsity it introduces in the signal, as heart rate values at adjacent time points 
are frequently identical, resulting in zeros or a one-point difference of zero. Factorized autoencoder models 
demonstrated consistent improvements, particularly for night/day classification. The GFAE with a positive 

Model Latent space Class accuracy Domain accuracy

MLP zc 76.81 9.12

FAE
zc 80.23 3.81

zd 76.12 4.53

GFAE
(md = 0)

zc 82.21 10.24

zd 76.71 11.01

GFAE
(md ̸= 0)

zc 83.02 12.22

zd 73.10 14.70

TFAE
zc 84.44 17.74

zd 74.31 20.11

Table 6.  Night/day class and domain test ROCAUC of logistic regression on zc and zd using 30 test subjects.

 

Model Latent space Class accuracy Domain accuracy

MLP zc 89.71 8.52

FAE
zc 82.42 10.21

zd 74.14 10.93

GFAE
(md = 0)

zc 90.52 14.11

zd 87.70 16.24

GFAE
(md ̸= 0)

zc 98.61 25.62

zd 97.32 36.94

TFAE
zc 98.43 10.23

zd 98.21 28.14

Table 5.  Night/day class and domain train ROCAUC of logistic regression on zc and zd using 50 train 
subjects.
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domain margin loss as well as the TFAE achieved the highest accuracy, highlighting the benefit of explicitly 
modeling inter-subject variability in the loss function.

Using the factorization models as base, we calibrated them for each subject individually, using either 
Z-normalization on all the heart rate data or only during inactive moments. We investigated this calibration 
in two situations: calibrating only test subjects using a withheld calibration set or calibrating both train and 
test subjects. Combining normalization by the heart rate during inactive periods (referred to as inactivity 
normalization) with calibration across both train and test subjects yielded the most consistent improvements.

The factorization models were further investigated by using a logistic regression to investigate the separability 
of the classes in the class-related latent space and the subjects in the subject-related latent space.

The factorized models improved separability of subjects in the subject-related space. However, while the 
improvements over the baseline were significant, the separability still leaves substantial room for further 
refinement. Latent space analysis revealed that class-related information was encoded in both task and domain-
latent spaces, potentially due to the loss functions’ lack of explicit constraints to enforce feature decorrelation. 
Future work could explore techniques to enforce this by incorporating an adversarial component, as demonstrated 
in the sensor-based human activity recognition literature29,30, could be beneficial.

The addition of a domain margin loss allowed the models to learn differences between subjects, which is 
critical for addressing inter-subject variability. This loss explicitly models the distinctions between subjects in 
the subject-related latent space, enabling the model to better disentangle subject-specific characteristics. Future 
work could extend this by leveraging metadata on subjects, such as demographic and physiological information, 
directly in the domain margin loss.

Unfortunately, tasks such as sleep state and SpO2 classification, showed poor performance, where only the 
restless/light sleep task performed slightly better than random. The limited utility of these tasks is likely due to 
the lack of reliable labels from consumer-grade devices like Fitbit31. Furthermore, sleep stage is estimated using 
body movement data from the accelerometer and heart rate variability (HRV) derived from the PPG sensor–
granular information that may not be fully preserved in the estimated heart rate in smartwatches.

By advancing methods to handle inter-subject variability, as demonstrated in this study, machine learning 
applications in smartwatch health monitoring will be better equipped to generalize across diverse populations. 
Our proposed generalized factorized autoencoder and triplet factorized autoencoder showed improvements 
using smartwatch data, highlighting their potential to address inter-subject variability. These advancements not 
only contribute to more accurate and reliable models but also pave the way for personalized and inclusive health 
monitoring solutions, ensuring greater applicability to real-world scenarios.

Data availability
The anonymized heart rate, step counter and deidentified timestamps of the Fitbit time series data are available 
on request to a.naserijahfari@hagaziekenhuis.nl with a signed data access agreement.
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Fig. 5.  UMAP visualization of the models using the test data for night/day classification. Parentheses indicate 
coloring (class or domain).

 

Scientific Reports |        (2025) 15:26704 10| https://doi.org/10.1038/s41598-025-12102-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Received: 28 February 2025; Accepted: 15 July 2025

References
	 1.	 Sabry, F., Eltaras, T., Labda, W., Alzoubi, K. & Malluhi, Q. Machine learning for healthcare wearable devices: The big picture. J. 

Healthc. Eng. 2022(1), 4653923 (2022).
	 2.	 Saad, H. S., Zaki, J. F. & Abdelsalam, M. M. Employing of machine learning and wearable devices in healthcare system: Tasks and 

challenges. Neural Comput. Appl. 36(29), 17829–17849 (2024).
	 3.	 Noitz, M. et al. Detection of subtle ECG changes despite superimposed artifacts by different machine learning algorithms. 

Algorithms 17(8), 360 (2024).
	 4.	 World Health Organization: Cardiovascular diseases (CVDs). Accessed: 2025-02-04 (2021). ​h​t​t​p​s​:​​/​/​w​w​w​.​​w​h​o​.​i​n​​t​/​n​e​w​s​​-​r​o​o​m​​/​f​a​c​t​

-​​s​h​e​e​t​s​​/​d​e​t​a​i​​l​/​c​a​r​d​i​o​v​a​s​c​u​l​a​r​-​d​i​s​e​a​s​e​s​-​(​c​v​d​s​)
	 5.	 Townsend, N. et al. Epidemiology of cardiovascular disease in Europe. Nat. Rev. Cardiol. 19(2), 133–143 (2022).
	 6.	 McDonagh, T. A. et al. European society of cardiology heart failure association standards for delivering heart failure care. Eur. J. 

Heart Fail. 13(3), 235–241 (2011).
	 7.	 Mayo Clinic Staff: Heart Disease: Diagnosis and Treatment. Accessed: 2025-02-04 (2024). ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​m​a​y​o​c​l​i​n​i​​c​.​​o​​r​g​/​d​​i​s​e​a​s​​​e​s​-​c​

o​n​​d​i​t​i​​o​​n​s​/​h​e​​​a​r​t​-​d​i​​s​​e​a​s​e​/​​d​i​a​g​n​​​o​s​i​s​-​t​r​e​a​​t​m​e​n​​t​/​d​r​c​-​2​0​3​5​3​1​2​4
	 8.	 Lauer, M. S., Anderson, K. M., Kannel, W. B. & Levy, D. The Impact of Obesity on Left Ventricular Mass and Geometry: The 

Framingham Heart Study. JAMA 266(2), 231–236. https://doi.org/10.1001/jama.1991.03470020057032 (1991).
	 9.	 Ryan, S. M., Goldberger, A. L., Pincus, S. M., Mietus, J. & Lipsitz, L. A. Gender- and age-related differences in heart rate dynamics: 

Are women more complex than men?. J. Am. Coll. Cardiol. 24(7), 1700–1707. https://doi.org/10.1016/0735-1097(94)90177-5 
(1994).

	10.	 Oberman, A., Myers, A. R., Karunas, T. M. & Epstein, F. H. Heart size of adults in a natural population-tecumseh, michigan: 
Variation by sex, age, height, and weight. Circulation 35(4), 724–733 (1967).

	11.	 Liao, D. et al. The ARIC Investigators: Age, race, and sex differences in autonomic cardiac function measured by spectral analysis 
of heart rate variability-the aric study. Am. J. Cardiol. 76(12), 906–912. https://doi.org/10.1016/S0002-9149(99)80260-4 (1995).

	12.	 Quer, G., Gouda, P., Galarnyk, M., Topol, E. J. & Steinhubl, S. R. Inter-and intraindividual variability in daily resting heart rate and 
its associations with age, sex, sleep, BMI, and time of year: Retrospective, longitudinal cohort study of 92,457 adults. PLoS ONE 
15(2), 0227709 (2020).

	13.	 Chen, Y. et al. Smartwatch-based algorithm for early detection of pulmonary infection: Validation and performance evaluation. 
Digit. Health 10, 20552076241290684 (2024).

	14.	 Tison, G. H. et al. Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiol. 3(5), 409–416 
(2018).

	15.	 Naseri, A., Tax, D. M., Reinders, M. & Bilt, I. Heart disease detection using an acceleration-deceleration curve-based neural 
network with consumer-grade smartwatch data. Heliyon 10(21), e39927 (2024).

	16.	 Wasserlauf, J. et al. Smartwatch performance for the detection and quantification of atrial fibrillation. Circ. Arrhythm. Electrophysiol. 
12(6), 006834 (2019).

	17.	 Zhou, Z., Zhang, Y., Yu, X., Yang, P., Li, X.-Y., Zhao, J. & Zhou, H. Xhar: Deep domain adaptation for human activity recognition 
with smart devices. In: 2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 
1–9 (2020). IEEE

	18.	 Zhu, T., Afentakis, I., Li, K., Armiger, R., Hill, N., Oliver, N. & Georgiou, P. Multi-horizon glucose prediction across populations 
with deep domain generalization. IEEE J. Biomed. Health Inform. (2024)

	19.	 Shen, X. et al. Multi-omics microsampling for the profiling of lifestyle-associated changes in health. Nat. Biomed. Eng. 8(1), 11–29 
(2024).

	20.	 Kumar, C. S., Ramachandran, K. & Kumar, A. Vital sign normalisation for improving performance of multi-parameter patient 
monitors. Electron. Lett. 51(25), 2089–2090 (2015).

	21.	 Gyawali, P. K., Horacek, B. M., Sapp, J. L. & Wang, L. Sequential factorized autoencoder for localizing the origin of ventricular 
activation from 12-lead electrocardiograms. IEEE Trans. Biomed. Eng. 67(5), 1505–1516 (2019).

	22.	 Cai, R., Li, Z., Wei, P., Qiao, J., Zhang, K. & Hao, Z. Learning disentangled semantic representation for domain adaptation. In: 
IJCAI: Proceedings of the Conference, vol. 2019, p. 2060 (2019). NIH Public Access

	23.	 Ilse, M., Tomczak, J.M., Louizos, C. & Welling, M. Diva: Domain invariant variational autoencoders. In: Medical Imaging with Deep 
Learning, pp. 322–348 (2020). PMLR

	24.	 Röttgering, J. G. et al. Determining a target spo2 to maintain pao2 within a physiological range. PLoS ONE 16(5), 0250740 (2021).
	25.	 Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning of visual representations. In: 

International Conference on Machine Learning, pp. 1597–1607 (2020). PMLR
	26.	 Hoffer, E. & Ailon, N. Deep metric learning using triplet network. In: Similarity-based Pattern Recognition: Third International 

Workshop, SIMBAD 2015, Copenhagen, Denmark, October 12-14, 2015. Proceedings 3, pp. 84–92 (2015). Springer
	27.	 Kouw, W.M. & Loog, M. An introduction to domain adaptation and transfer learning. arXiv preprint arXiv:1812.11806 (2018)
	28.	 Tsunoda, M., Endo, T., Hashimoto, S., Honma, S. & Honma, K.-I. Effects of light and sleep stages on heart rate variability in 

humans. Psychiatry Clin. Neurosci. 55(3), 285–286 (2001).
	29.	 Su, J., Wen, Z., Lin, T. & Guan, Y. Learning disentangled behaviour patterns for wearable-based human activity recognition. 

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6(1), 1–19 (2022).
	30.	 Qian, H., Pan, S. J. & Miao, C. Latent independent excitation for generalizable sensor-based cross-person activity recognition. 

Proceedings of the AAAI Conference on Artificial Intelligence 35, 11921–11929 (2021).
	31.	 Haghayegh, S., Khoshnevis, S., Smolensky, M. H., Diller, K. R. & Castriotta, R. J. Accuracy of wristband fitbit models in assessing 

sleep: systematic review and meta-analysis. J. Med. Internet Res. 21(11), 16273 (2019).

Author contributions
A.N., D.T. and M.R. conceptualized the study and developed the methodology. Data curation, formal analysis 
and software development was performed by A.N. Supervision was done by D.T, M.R and I.B. All authors re-
viewed the manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Scientific Reports |        (2025) 15:26704 11| https://doi.org/10.1038/s41598-025-12102-7

www.nature.com/scientificreports/

https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-%28cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-%28cvds)
https://www.mayoclinic.org/diseases-conditions/heart-disease/diagnosis-treatment/drc-20353124
https://www.mayoclinic.org/diseases-conditions/heart-disease/diagnosis-treatment/drc-20353124
https://doi.org/10.1001/jama.1991.03470020057032
https://doi.org/10.1016/0735-1097(94)90177-5
https://doi.org/10.1016/S0002-9149(99)80260-4
http://arxiv.org/abs/1812.11806
http://www.nature.com/scientificreports


Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​1​2​1​0​2​-​7​​​​​.​​

Correspondence and requests for materials should be addressed to A.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:26704 12| https://doi.org/10.1038/s41598-025-12102-7

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-025-12102-7
https://doi.org/10.1038/s41598-025-12102-7
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Tackling inter-subject variability in smartwatch data using factorization models
	﻿Methods
	﻿Transformation
	﻿Segmentation
	﻿﻿Normalization
	﻿﻿Factorized autoencoders
	﻿Evaluation

	﻿Results
	﻿Data set
	﻿Multi-subject factorization
	﻿Per-subject calibration
	﻿Class and domain latent space analysis

	﻿Discussion and conclusion
	﻿References


