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Cataract is a major cause of vision loss and hinders further diagnosis. However, enhancing cataract 
fundus images remains challenging due to limited paired cataract retinal images and the difficulty of 
recovering fine details in the retinal images. To mitigate these challenges, we in this paper propose a 
two-stage multi-scale attention-based network (TSMSA-Net) for weakly supervised cataract fundus 
image enhancement. In Stage 1, we introduce a real-like cataract fundus image synthesis module, 
which utilizes domain transformation via CycleGAN to generate realistic paired cataract images 
from unpaired clear and cataract fundus images, thus alleviating the scarcity of paired training data. 
In Stage 2, we employ a multi-scale attention-based enhancement module, which incorporates 
hierarchical attention mechanisms to extract rich, fine-grained features from the degraded images 
under weak supervision, effectively restoring image details and reducing artifacts. Experiments 
conducted on the Kaggle and ODIR-5K datasets show that TSMSA-Net outperforms existing state-
of-the-art methods for cataract fundus image enhancement, even without paired images, and 
demonstrates strong generalization ability. Moreover, the enhanced images contribute to improved 
performance in downstream tasks such as vessel segmentation and disease classification.
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With the development of deep learning techniques, researchers have proposed numerous retinal disease detection 
and segmentation algorithms to aid in clinical diagnosis1. However, these algorithms require high-quality retinal 
image inputs, while cataract retinal images are typically characterized by capture device and patient variability, 
making it difficult to ensure image quality. The quality of cataract retinal images is often shown as blurriness 
and poor image readability, Rendering the diagnosis of diseases by ophthalmologists challenging. Meanwhile, 
these poor-quality retinal images also may lead to suboptimal outcomes in automatic image processing, such 
as disease detection and segmentation, consequently impacting further disease diagnosis. Therefore, the 
restoration of cataract fundus images has clinical value2. Figure 1 shows the fundus images of cataract image and 
the enhancement image restored by our TSMSA-Net. It can be observed that compared to Fig. 1c, d, Fig. 1a, b 
are relatively blurry, with lower visibility of the fundus structures. It is difficult to accurately extract the fundus 
information of these blurred images, indicating the effectiveness of our TSMSA-Net.

In addressing the blurriness of the cataract retinal images, researchers have extensively explored retinal 
image enhancement methods3–7, utilizing classical methods to improve image quality. However, these manually 
designed algorithms fail to adequately preserve image details and suffer from the issue of amplifying image 
noise, leading to erroneous guidance in image restoration. Subsequently, with the advancement of deep learning, 
researchers began to utilize deep learning to enhance retinal images, achieving promising results8–11.

Although the artificial synthesis methods12–14 can effectively obtain a large number of paired cataract retinal 
images, the synthetic function cannot fully cover the degradation conditions of cataract images, resulting in poor 
generalization ability of well-trained networks in real cataract retinal image application scenarios. In addition, 
unsupervised methods9,15 are prone to losing detailed information of retinal images during the enhancement 
process due to the lack of supervised constraints.
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To address the above challenges, we propose a two-stage multi-scale attention-based weakly supervised 
cataract retinal image enhancement network (TSMSA-Net). Our TSMSA-Net mainly leverages a real-like 
cataract image synthesis stage to simulate more realistic paired degradation images. Specifically, we firstly apply 
a synthetic function to narrow the domain gap between synthetic and real cataract retinal images. Subsequently, 
we use the synthetic cataract images as the source domain and real cataract images as the target domain for 
domain transformation, resulting in real-like paired synthetic cataract retinal images. To further enhance the 
detail rendition, we introduce a multi-scale attention-based cataract retinal image enhancement stage. Unlike 
the widely used U-Net16, we utilize multi-scale attention modules to extract more abundant image detail features, 
avoiding the loss of details during the down-sampling process. TSMSA-Net combines the conversion capabilities 
of CycleGAN, the structural information retention strategy of ArcNet, and the unsupervised learning idea of 
EnlightenGAN, introduces a multi-scale attention mechanism and a high-frequency extraction module, and 
achieves better image enhancement effects.

We summarise the main contributions of this paper as follows:

•	 We propose a real-like cataract image synthesis stage to obtain more paired realistic synthesized cataract 
images, addressing the problem of difficult acquisition of paired images and the inability of the synthesis 
function to effectively cover the degradation of cataract images.

•	 We propose a multi-scale attention-based cataract image enhancement stage to better fuse multi-scale fea-
tures, enabling the enhancement network to better recover image details and reduce the generation of arti-
facts.

•	 Qualitative and quantitative experiments on the Kaggle and ODIR-5K datasets demonstrate that our TSM-
SA-Net outperforms existing state-of-the-art cataract image enhancement methods. And the enhancement 
can improve the automatic image processing, such as disease classification and segmentation.

Related work
Classical retinal image enhancement methods
Classical methods for retinal image enhancement typically involve manually designing algorithms using prior 
information of the images, often focusing on enhancing contrast and brightness. For instance, many methods 
utilize contrast limited adaptive histogram equalization (CLAHE) to improve image contrast and achieve retinal 
image enhancement17. Additionally, some researchers employ filtering techniques for image enhancement18. 
In addition, Dash et al.4 propose a joint model of fast guided filter and matching filter to enhance vascular 
extraction performance. Mohammed et al.3 present a hybrid algorithm that utilizes wiener filtering and CLAHE 
to enhance color retinal fundus images, reducing noise generation and achieving better enhancement effects.

Although the aforementioned methods can achieve excellent enhancement results, they also exist some 
limitations. Firstly, they are unable to precisely control the enhancement level, resulting in extracted features that 
struggle to preserve image details and are prone to amplifying image noise. Secondly, these manually designed 
prior information is often simplistic and cannot fully adapt to the various retinal degradations present in the real 
world, thus limiting their applicability.

Deep learning-based retinal image enhancement methods
In recent years, deep learning has shown outstanding performance and has been widely applied to low-level 
visual tasks, such as segmentation19, dehazing20, and image enhancement21. In the field of image enhancement, 
there are also many methods that have achieved excellent enhancement effects22–24. However, most methods 
use the supervised learning method, leveraging a large amount of paired training data to learn the mapping 
from low-quality images to high-quality images25. However, obtaining the paired data in medical scenarios is 
extremely difficult and time-consuming. Therefore, researchers have proposed artificially degrading high-quality 
images to synthesize low-quality images for supervised training10,12,26–28.nBy computing the OT cost in feature 
space, this method is able to better preserve local structures and minimize unnecessary artifacts29. An end-
to-end optimized teacher-student framework is proposed for simultaneous image enhancement and domain 

Fig. 1.  Fundus images. (a,b) Cataract images. (c,d) The image enhanced by our TSMSA-Net.
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adaptation30. This paper proposes a model based on a teacher-student network, combining NoiseContextNet 
Block and iterative pruning technology to improve denoising effect and computational efficiency31.

Since the degradation conditions that can be covered by artificially degraded methods are limited and 
cannot fully restore the degradation of real cataract images, and there exists a domain gap between artificially 
synthesized fundus degradation images and real degraded fundus images, the models trained by these methods 
often lack generalization ability when processing real degraded fundus images. Subsequently, some researchers 
propose semi-supervised methods for fundus image enhancement to reduce the dependence on the requirement 
of paired data. Wu et al.8 propose a semi-supervised generative adversarial network (SSGAN-ASP) to train the 
network using both supervised data and unsupervised data. In addition, there are also methods proposed to use 
unpaired images for unsupervised learning in fundus image enhancement to reduce the need for paired data. 
Yang et al.15 introduce an unpaired fundus image enhancement method based on high-frequency extraction and 
feature description to preserve the structural information of the image and reduce the generation of vascular-like 
artifacts during the enhancement process. Li et al.9 propose an unsupervised cataract fundus image restoration 
network (ArcNet) that does not require annotations. However, due to the lack of supervision constraints, 
unsupervised learning methods mainly simulate the results of high-quality images from low-quality images 
through image style transformation, which easily leads to the loss of detailed information in low-quality images.

Proposed approach
Due to the inability of synthesized images generated by the composite function to fully simulate the degradation 
of real cataract fundus images, and the risk of losing structural and detailed information in unsupervised 
learning methods, we propose a Two-Stage Multi-Scale Attention-based Network (TSMSA-Net) for weakly 
supervised cataract fundus image enhancement. To better obtain synthesized cataract fundus images that are 
closer to realistic scenarios, we propose a real-like cataract fundus image synthesis stage. To better capture the 
detailed information of cataract fundus images, we design a multi-scale attention-based enhancement stage, 
which learns informative features under weak supervision to preserve fine details and improve image quality.

Overall pipeline
Figure 2 illustrates the overall architecture of our two-stage multi-scale attention-based weakly supervised 
cataract retinal image enhancement network (TSMSA-Net), which consists of a real-like cataract fundus image 
synthesis stage as stage 1 and a multi-scale attention-based cataract fundus image enhancement stage as stage 2. In 
stage 1, we first utilize a composite function C(·) to generate simulated cataract fundus images, aiming to reduce 
the domain gap between the synthesized and real cataract fundus images. Subsequently, we use the CycleGAN32 
network for domain translation between the synthesized cataract fundus images and the corresponding real 
cataract fundus images, to make the synthesis images are closer to the real ones. We utilize these synthesized 

Fig. 2.  The overall architecture of the proposed network. Our network consists of stage 1 and stage 2. In stage 
1, given a clear image c and a real cataract image r, we first extract structural information from each image for 
guidance. Subsequently, we employ CycleGAN32 to perform domain transformation on the synthetic image 
and the real cataract image, And in stage 2, we use a series of multi-scale attention (MSA) to extract more 
details from the synthetic real-like cataract images.
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cataract fundus images paired with their corresponding clear fundus images as the input for the stage 2. In stage 
2, we employ multi-scale attention to further extract the detailed information of the degraded images more 
precisely.

Real-like cataract fundus image synthesis stage
To generate synthetic cataract fundus images that better reflect real-world conditions, we propose a real-like 
cataract fundus image synthesis stage, as shown stage 1 in Fig. 2. S represents the source domain, S̃ represents 
the image mapped from the source domain S to the target domain T through the generative network. r represents 
the target domain,r̃ represents the image mapped from the source domain S to the target domain T through the 
generative network. r̂ represents the image mapped from the target domain T to the source domain S through 
the generative network.resulting in the generation of real-like cataract image. Inspired by ArcNet9, we adopt the 
degradation model proposed in33 to simulate the cataract-induced degradation process and further improve it 
to better suit our task. The simulate formulation is represented as:

	 C(sC) = α · sC ∗ gB (rB , σB) + β · J ∗ gL (rL, σL) · (LC − sC) ,� (1)

where C(sC) represents the simulated cataract fundus image, sC  denotes the clear image, c stands for the 
image’s r, g, b channel, α and β represent the weights of the clear fundus image and the noise from the cataract, 
∗ denotes the convolution operation, gB  and gL represent gaussian filters for smoothing the clear image and the 
cataract panel, respectively, g (r, σ) denotes a gaussian filter with radius r and spatial constant σ, J represents the 
cataract panel, and LC  represents the highest intensity of sC .

In the proposed two-stage multi-scale attention weakly supervised cataract retinal image enhancement 
network (TSMSA-Net), the reason for dividing Fa into three parts along the channel dimension is to better 
capture feature information at different scales. After decomposition, features can be learned on different 
channels, thereby understanding the image content more comprehensively. The network is also able to focus on 
feature representations at different levels, which helps to improve the effect of image enhancement. Specifically, 
Fa is divided into three parts Fa1 , Fa2 , and Fa3 , and each part passes through an attention block with different 
convolution kernel sizes, so that diverse features can be extracted. These different scale features are then merged 
and multiplied with Fb to obtain multi-scale attention features. This helps the network work effectively on 
different image regions and objects of different sizes.

The segmentation and multi-scale processing enhance the expressiveness of feature representations. If the 
original feature F is directly input into the attention block, the details and hierarchical structures that can be 
captured by segmentation and multi-scale processing may be missed. In addition, the segmented features are 
processed through different attention blocks, which can learn richer and more diverse feature representations.

However, the degradation that can be simulated by mathematical formulas is limited. Therefore, we further 
synthesize cataract fundus degraded images that are closer to real-world scenarios through an improved 
CycleGAN32. Through two GAN networks, we learn mappings from the sythesized cataract image domain s to 
the real cataract image domain r, and from real cataract image domain r to the synthesized cataract image domain 
s. We ensure the similarity between generated images and input image content through GAN loss functions and 
cycle consistency loss functions. The generative networks are adapted from Johnson et al.34, which contains two 
convolutional layers with stride 2, several residual blocks and two convolutional layers with stride 1

2 . For the 
discriminator network, we use 70 × 70 PatchGANs35,36. In order to retain as much structural information of 
the fundus image as possible, inspired by ArcNet9, based on the Retinex theory37, we utilize a high-frequency 
extraction module H (·) to extract structural information from the fundus image as the guidance. The high-
frequency extraction module H (·) can be represented as:

	 H (I) = I − I ∗ gP (rP , σP ) , � (2)

where I represents the fundus image, and gP (rP , σP ) denotes a gaussian filter with radius rP  and spatial 
constant σP .

Multi-scale attention-based cataract fundus image enhancement stage
To fully leverage the features of the synthesized real-like cataract fundus images and enhance the enhancement 
effect, we propose a multi-scale attention-based cataract fundus image enhancement stage, as shown in the stage 
2 of Fig. 2. This stage consists of a high-frequency extraction module and three multi-scale attention (MSA) 
modules. The high-frequency extraction module aims to preserve the structural information of the fundus 
image for better restoration of cataract fundus image details. Inspired by38, the MSA is designed to exploit the 
features of the synthesized real-like cataract fundus images and learn richer characteristics of the fundus images. 
The learning process of the multi-scale attention modules can be represented as follows:

	 Mi = Fi + fMSAB (LN (Fi)) , � (3)

	 Fi+1 = Mi + fGDF B (LN (Mi)) , � (4)

where Fi and Fi+1 represent the input and output features of the multi-scale attention module, Mi represents 
the extracted multi-scale features, fMSAB (·) denotes the MSAB module, fGDF B (·) denotes the Global Dual-
Branch Fusion Block (GDFB), and LN (·) represents the layer normalization operation.

As shown in Fig. 3, the MSAB module consists of three attention blocks (AB). Firstly, the features are divided 
into two parts along the channel dimension, resulting in features Fa and Fb. Next, Fa is further divided into 
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three parts along the channel dimension, yielding Fa1 , Fa2 , and Fa3 , which are then fed into the attention 
blocks (AB). Each AB module employs different convolutional kernels to extract multi-scale features and capture 
richer image detail information. Subsequently, the features of different scales are concatenated and multiplied 
element-wise with Fb to obtain the multi-scale attention features. AB is shown in Fig. 3, which consists of two 
deep-wise convolutions, a deep-wise dilation convolution, and a 1×1 convolution to achieve a larger receptive 
field for feature extraction. The GDFB firstly adopt a channel-wise splitting to split the input into two halves. 
We remain one branch while applying a deep-wise convolution operationt to the other branch. Afterwards, we 
merge the dual cranch together by multiplied to obtain the global spatial information.

Loss function
Real-like cataract fundus image synthesis stage We train the real-like cataract fundus image synthesis stage using 
the loss function from CycleGAN32, which can be formulated as follows:

	 LCycleGAN = λLcyc

(
GR

S , GS
R

)
+ LGAN

(
GR

S , DR, S, R
)

+ LGAN

(
GS

R, DS , S, R
)

,� (5)

where S and T respectively represent the source domain and target domain, GXY  represents the mapping 
function from domain X to Y, DS  and DT  represent the discriminators for the source and target domains, 
LGAN  and Lcyc represent the adversarial loss and cycle consistency loss, λ represents the weight parameter. In 
addition, we also use the structural loss LR in10 to preserve the structural information of the fundus. The overall 
loss function can be expressed as:

	
Ltotal = LCycleGAN (·) + LR

(
SG,

∧
RG

)
+ LR

(
RG,

∧
SG

)
,� (6)

where XG represents the structural graph of X.
Multi-scale attention-based cataract fundus image enhancement stage: To preserve the content information 

of fundus images, retain their structural details, color brightness, and minimize the occurrence of artifacts during 
the restoration process, we utilize several loss functions. These include the mean squared error loss LMSE  to 
constrain structural variations, color loss LColor  to maintain color brightness consistency, total variation loss 
LT V  and L1 loss to preserve image edges and promote smoothness, and structural similarity index loss Lssim 
to recover both brightness and structural details. Lssim can improve the structural quality of the generated 
image, mainly helping to maintain the structural information of the image, not just the pixel-level error, but 
also maintaining consistency at a higher level of visual structure. Lcolor  is used to maintain the consistency of 
the image color, making it visually closer to the true value image. The overall loss function can be expressed as:

	
Lmulti = λT V ∆(c − y) + λMSE ||c − y||2 + λL1||c − y||2 + λssim

∼
ssim((c, y)) + λColour|| max

rgb
crgb − max

rgb
yrgb||,� (7)

where λ represents the hyperparameter, rgb denotes the r, g, b channels, and 
∼

ssim = 1 − ssim.

Fig. 3.  The architecture of multi-scale attention block (MSAB). Our MSAB mainly consists of 3 attention 
blocks (AB) with different scales of convolution kernel to explore the multi-scale features for the better 
enhancement.
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Experiments
Dataset and evaluation metrics
Dataset. We train and test our TSMSA-Net on publicly available datasets. Specifically, we use the normal and 
cataract subsets of the Kaggle dataset to create an unpaired dataset for unsupervised training in stage 1. And in 
stage 2, we use the normal subset of the Kaggle dataset and the degraded normal subset generated from stage 
1 to form a paired dataset for supervised training. All images are resized to 512 × 512 before being sent to the 
model. For testing, we use a subset of cataract-labeled images from the ODIR-5K dataset and the cataract subset 
of the Kaggle dataset.

Evaluation metrics. We assess the effectiveness of our TSMSA-Net by using the natural image quality 
evaluator (NIQE)39 and initial score (IS)40 as metrics to evaluate the image enhancement quality, where lower 
values of NIQE and higher values of IS indicate better performance.

Implementation details
We implement our TSMSA-Net on the PyTorch framework, optimize using the Adam optimizer41 and train on 
a single V100 GPU. In stage 1, we start with an initial learning rate of 0.0002, and the model is trained for 150 
epochs with a linear decay of the learning rate. The batch size is set to 8. In stage 2, during the training phase, 
we start with an initial learning rate of 0.0001, and the model is trained for 100 epochs. The input image size is 
512×512, and we random crop size to 256×256 and fed into the network. The batch size is set to 4. For the loss 
function, we use the weights as follows: λT V =1, λMSE=1, λColor=0.1, λssim=0.1, and λL1 =0.5. The MSAB 
employ convolutional kernels with scales of 7-9-1, 5-7-1, and 3-5-1 for different branches. During the testing 
phase, the input image size is set to 512×512, and the batch size is set to 1.

Comparision with state-of-the-art methods
Quantitative results
We compare our TSMSA-Net with six state-of-the-art models, including CycleGAN32, CofeNet27, 
EnlightenGAN24, ArcNet9, PCENet12, and GFENet10. Tables 1 and 2 summarize the comparison results, which 
are based on the pre-trained models provided by the networks and tested on our dataset. From Tables 1 and 2, 
we can clearly observe that our TSMSA-Net achieves the best results in NIQE and IS on Kaggle and ODIR-5K. 
Concretely, our method surpasses GFENet by 0.15 and 0.09 in NIQE on Kaggle and ODIR-5K respectively, 
although GFENet is trained on a larger dataset. Although ArcNet9 has seen the test set images during the training 
process, our method still outperforms ArcNet by 0.87 and 0.15 in NIQE and IS on the Kaggle dataset. As shown 
in Table 6, We also test the value of PSNR and our method achieved the best results.

Visual comparison
Meanwhile, we also provide the visual comparison between TSMSA-Net and other models on the cataract sub-
dataset of Kaggle and the ODIR-5K cataract sub-dataset in Figs. 4 and 5, respectively. It is important to note 
that unlike other models, our model is trained only on the 300 images in the Kaggle sub-dataset, which may 
contribute to the stylistic differences in the restored images compared to other models. From Fig. 4, it can be 
observed that our model is capable of restoring clean and clear vessels in the optic disk, demonstrating the ability 
of the multi-scale attention module to extract image features. Additionally, as our model has not seen the ODIR-

Method NIQE ↓ IS ↑
CycleGAN32 9.85 1.37

CofeNet27 9.75 1.39

EnlightenGAN24 8.47 1.50

ArcNet9 6.43 1.31

PCENet12 6.20 1.53

GFENet10 6.21 1.47

TSMSA-Net(Ours) 6.12 1.56

Table 2.  Quantitative results on ODIR-5K dataset. The best results are highlighted in bold.

 

Method NIQE ↓ IS ↑

CycleGAN32 9.50 1.41

CofeNet27 9.12 1.39

EnlightenGAN24 8.95 1.49

ArcNet9 7.09 1.42

PCENet12 6.32 1.53

GFENet10 6.37 1.41

TSMSA-Net(Ours) 6.22 1.57

Table 1.  Quantitative results on Kaggle dataset. The best results are highlighted in bold.
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5K dataset during the entire training process, Fig. 5 also reflects the generalization capability of our model. It 
is evident that our model can effectively restore detailed features such as blood vessels even when trained on a 
relatively small dataset.

Ablation study
In this section, we conduct ablation experiments to investigate the effect of the proposed different components. 
We test the NIQE39 and IS metrics40 on the Kaggle dataset. The experimental results are summarized in Table 
3. “w/o stage1” indicates that paired images are not obtained through training in stage 1, and synthetic images 
generated using the composition function are directly paired with corresponding clear images. “w/o MSAB” 
means that the multi-scale module is not used in stage 2. We only use a single AB module with a convolution 
kernel of scale 3-5-1 instead of the three AB modules of different scales.

w/o Stage1 w/o MSAB NIQE ↓ IS ↑

✓ 6.28 1.53

✓ 6.64 1.54

✓ ✓ 6.41 1.53

6.22 1.57

Table 3.  Ablation study on Kaggle dataset. The best results are highlighted in bold.

 

Fig. 5.  Visual comparsion with state-of-the-art methods on ODIR-5K, and areas of contrast are marked 
with green and yellow boxes on the original image. (a) Cataract image. (b) CycleGAN32. (c) CofeNet27. (d) 
EnlightenGAN24. (e) ArcNet9. (f) PCENet12. (g) GFENet10. (h) TSMSA-Net(Ours).

 

Fig. 4.  Visual comparsion with state-of-the-art methods on Kaggle, and areas of contrast are marked with 
green and yellow boxes on the original image. (a) Cataract image. (b) CycleGAN32. (c) CofeNet27. (d) 
EnlightenGAN24. (e) ArcNet9. (f) PCENet12. (g) GFENet10. (h) TSMSA-Net(ours).
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From the first and fourth rows of Table 3, it can be observed that without the learning from stage 1 network, 
the NIQE and IS indicators decrease by 0.06 and 0.04, respectively. This indicates that the synthesized cataract 
images from stage 1 are closer to real cataract degradation compared to the synthesized function. As a result, 
better enhancement effects can be achieved for real cataract images. Moreover, from the second and fourth 
rows of Table 3, it can be seen that employing multi-scale attention significantly boosts performance by 0.42 
and 0.03 in NIQE and IS metrics respectively, demonstrating that the extraction of multi-scale information can 
effectively enhance the ability of image enhancement. Notablely, from the second and third rows of Table 3, it 
can be observed that the effect of using only the image enhanced by the stage 1 network is slightly inferior to 
directly using the synthesized image. This may be because there is some degree of feature loss during the domain 
adaptation process. As shown in Table 3, using both stage 1 and the multi-scale attention module can achieve 
the best results on the Kaggle dataset, which can further demonstrate the proposed components’s effectiveness. 
We also add the ablation study to evaluate the effect of concatenating the real-like cataract image with the high-
frequency image. As shown in Table 5, when concatenating the real-like cataract image with the high-frequency 
image, the NIQE and IS achieve the better results.

Furthermore, we also provide visual comparison, as shown in Fig. 6. It can be observed that compared 
with Fig. 6d, without the stage 1 training, Fig. 6a,b have more obvious black shadows in the enhanced images. 
Moreover, comparing the magnified vessel images in Fig. 6c,d, it shows that the introduction of multi-scale 
feature extraction can extract richer vessel details, resulting in clearer recovery of vessels.

Model complexity comparisons
An analysis of the model’s complexity is essential for a comprehensive evaluation. As shown in Table   4, a 
comparative study of parameters and inference time among various models is presented. The inference time is 
obtained by inferring 100 images on a V100 GPU. In addition, since our model only synthesizes pseudo cataract 

Method Param (M) Inference time (s)

CycleGAN32 57.1 11.64

CofeNet27 41.2 79.72

EnlightenGAN24 8.6 34.84

ArcNet9 54.4 59.29

PCENet12 26.6 12.63

GFENet10 89.3 25.4

TSMSA-Net(ours) 0.17 9.43

Table 4.  The comparison of model complexity. The best results are highlighted in bold.

 

Fig. 6.  Visual comparison on ablation study. (a) Represents using synthetic cataract images by simulate 
formulation directly without the first stage and without multi-scale feature extraction. (b) Represents using 
synthetic cataract images by simulate formulation directly without the first stage. (c) Represents without 
multi-scale feature extraction. (d) Represents our method, utilizing both the first stage and multi-scale feature 
extraction. The magnified areas are indicated by green boxes in the retinal image.
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images in the stage 1, the cataract image enhancement process only occurs in the stage 2, which is equivalent to 
the image pre-processing process in stage 1. Therefore, when comparing model complexity, only the complexity 
of the stage 2 of the model is calculated. It can be seen that our method has achieved optimal results in terms of 
both parameter quantity and inference time. Specifically, the parameter quantity of our model is only 1.9% of 
that of GFE-Net, and the inference time is only 37% of that of GFE-Net. This fully demonstrates the outstanding 
performance of our method in terms of model complexity.

Applications
Our enhancement method can be used as the pre-processing for cataract retinal vessel segmentation tasks. We 
use the U-Net16 trained for vessel segmentation on the DRIVE46 and STARE47 datasets. The results are shown 
in Fig. 7. It can be observed that before enhancement, the structure of the retina fundus is relatively blurred, 
making it difficult to effectively segment vessels, resulting in less than ideal segmentation outcomes. However, 
after our enhancement network, the visibility of vessels in the retinal image is significantly improved, and the 
segmentation results are noticeably enhanced, effectively improving the ability of retinal vessel segmentation. 
More vessel structures can be segmented, which is beneficial for further medical diagnosis.

Furthermore, our approach aslo can contribute to automatic disease diagnosis. We use the retinal fundus 
multi-disease dataset (RFMiD)48 to train the ConvNeXt network49 for automatic detection. RFMiD is created for 
training automatic classification methods for both common and rare diseases, camprising 3200 fundus images 
captured by three different fundus cameras. Among them, 317 images are labeled with media haze, which may 
hinder disease diagnosis. We perform automatic disease detection on the original images and the enhanced 
images in this chapter. The results are shown in Fig. 7. Among them, DR represents diabetic retinopathy, ARMD 
represents age-related macular degeneration, MH represents media haze, BRVO represents branch retinal vein 
occlusion, ODC represents optic disc cupping, and ODE represents optic disc edema. We use recall and F1 
metrics to evaluate the classification results. The results are shown in Table 7. It can be seen that the images 
enhanced by our model can achieve better classification results than the original images. Specifically, for ARMD, 
the images enhanced by our method show improvements of 0.36 and 0.39 in recall and F1 metrics, respectively. 
For ODE, the enhanced images show improvements of 0.47 and 0.29 in recall and F1 metrics, respectively. 
Especially for images with MH, the images enhanced by our method can achieve recall and F1 metrics of 0.94 and 
0.96. This also demonstrates that our enhancement model can contribute to further automated disease detection 
and diagnosis, while effectively preserving the structural information of the fundus during the enhancement 
process, thus enhancing the accuracy of automated diagnosis.

Conclusion
In this paper, we have proposed a two-stage multi-scale attention-based network (TSMSA-Net) for weakly 
supervised cataract fundus image enhancement. To obtain more paired cataract fundus images which are 
close to the realistic scenarios, we have proposed a real-like cataract fundus image synthesis stage. To better 
utilize the features of the fundus images, we have proposed a multi-scale attention-based cataract fundus 
image enhancement stage, which extracts the structural features from different scales to facilitate better image 
enhancement. Extensive experiments have demonstrated that our TSMSA-Net favors against state-of-the-art 
cataract fundus image enhancement approaches. Furthermore, TSMSA-Net can improve the results of blood 
vessel segmentation and automatic disease detection tasks and can improve the accuracy of classification. So it can 
be used as a pre-processing of computer-aided algorithms for the facilitate diagnosis of ocular diseases. In future 
work, we will pay more attention to optic disc besides vessels to make the diseases easier for ophthalmologists 
to distinguish.

Method SSIM

TLLR42 0.50

LLIE43 0.55

HIEA44 0.65

RPCA45 0.78

Ours 0.82

Table 6.  Quantitative results on widely-used benchmarks. The best results are marked in bold. Higher SSIM 
values reflect improved performance.

 

Real-like cataract image High-frequency image NIQE ↓ IS ↑

✓ 10.12 1.46

✓ ✓ 6.22 1.57

Table 5.  Ablation study on Kaggle dataset. The best results are highlighted in bold.
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